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Abstract. We study the complexity of (finitely-valued and transfinitely-valued)

Euclidean functions for computable Euclidean domains. We examine both the
complexity of the minimal Euclidean function and any Euclidean function.

Additionally, we draw some conclusions about the proof-theoretical strength
of minimal Euclidian functions in terms of reverse mathematics.

1. Introduction

One of the first algorithms discussed in almost any elementary algebra course
is Euclid’s algorithm for computing the greatest common divisor of two integers.
Later, this algorithm is extended to other principal ideal domains like Q[X]. In a
first course in abstract algebra, this idea is explained by describing both Z and Q[X]
as Euclidean domains. We recall the definition of a Euclidean domain.

Definition 1.1. A commutative ring R is a Euclidean domain if it is an integral
domain (i.e., there are no zero divisors) and there is a function φ : R \{0} → ω
satisfying

(∀a, d ∈ R)(∃q ∈ R)
[
d = 0 or a+ qd = 0 or φ(a+ qd) < φ(d)

]
.

If there is such a function φ : R \{0} → ON (where ON is the class of ordinals),
then R is a transfinite Euclidean domain.

In the former case, we say the function φ is a (finitely-valued) Euclidean function
for R; in the latter case, we say the function φ is a transfinitely-valued Euclidean
function for R.

The reader may note that often texts restrict attention to Euclidean domains
rather than transfinite Euclidean domains, though the greatest common divisor
algorithm works provided the range of φ is well-founded. Remarkably, it is still a
forty year old open question (implicitly a sixty year old open question) whether
there exists a transfinite Euclidean domain having no finitely-valued Euclidean
function.

If the commutative ring does not need to be an integral domain, then Z ⊕ Z
(the direct product of two copies of Z) serves as an example of a ring having a
transfinitely-valued Euclidean function (with range ω2 + ω2) but no finitely-valued
Euclidean function (see [7]). Some integral domains are known to have both finitely-
valued and transfinitely-valued Euclidean functions. For example, the functions
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2 DOWNEY AND KACH

φ1(z) = |z|, φ2(z) = dlog2 |z|e, and φ3(z) = ω · i+ j+ 1 (where z = ±2i(2j+ 1)) are
all (transfinitely-valued) Euclidean functions for R = Z (see [8]). Of course, these
functions demonstrate the well-known fact that Euclidean functions are not unique
for a ring R.

A fact that is not presented in many texts on (transfinite) Euclidean domains is
that they can be defined without recourse to the existence of a (transfinitely-valued)
Euclidean function. The idea is to define a hierarchy of sets with the property that
it exhausts the set R \{0} of nonzero elements if and only if R is a (transfinite)
Euclidean domain. At the bottom level R0 of this hierarchy, we have the units.
At the next level R1, we have all those elements which either exactly divide all
elements or give remainder a unit upon division. More generally, at level Rα, we
have all those elements which either exactly divide all elements or give remainder
in R<α upon division.

Definition 1.2 (Motzkin [5], Samuel [7]). If R is an integral domain, define a
sequence of sets {Rα}α∈ON via recursion by

Rα = {d ∈ R \{0} : (∀a ∈ R \{0})(∃q ∈ R) [a+ dq = 0 or φ(a+ dq) ∈ R<α]} .

Theorem 1.3 (Motzkin [5], Samuel [7]). If R is an integral domain, then R
is a (transfinite) Euclidean domain if and only if R \{0} =

⋃
α∈ω Rα (R \{0} =⋃

α∈ON Rα).
In the case that R \{0} = ∪α∈ONRα, the function φR mapping x to the least

ordinal α with x ∈ Rα satisfies φR(x) ≤ φ(x) for any Euclidean function φ for R.

If R is a transfinite Euclidean domain, the second part of Theorem 1.3 says
there is always a least Euclidean function. As a consequence, it is also possible to
define φR as the infimum (minimum) of all Euclidean functions, i.e.,

φR(x) = inf{φ(x) : φ is a Euclidean function for R}
(see [7]). Naturally, we seek to understand the complexity of this least function φR
and of any Euclidean function φ for R.

The goal of the current paper is to add to our understanding of the complexity
of the possible Euclidean functions φ on effectively-presented Euclidean domains.
Thus, we are studying computable commutative algebra in a tradition going back to
Herrmann (see [3]) and Van der Waerden (see [11]), and in its modern incarnation
certainly going back to Frölich and Shepherdson (see [2]), Mal′cev (see [4]) and
Rabin (see [6]). We refer the reader to the survey article [10] for background in
effective commutative ring theory.

In this paper, we will be extending earlier work of Schrieber (see [8]), solving the
questions posed in that paper. There, Schrieber showed that there is a computable
Euclidean domain with no computable finitely-valued Euclidean function, that there
is a computable Euclidean domain with a computable Euclidean function but whose
units are noncomputable, and that there is a computable Euclidean domain with
neither computable units nor a computable Euclidean function.

A coarse analysis based on quantifiers in the definition of the Rα reveals some
upper bounds. As the set R0 is Σ0

1, being the collection of units, the set Rn is Π0
2n

for 0 < n < ω. Thus in a computable Euclidean domain R, if φR is finitely-valued,
then φR is ∅(ω)-computable.

Any Euclidean function φ for R, where R is Schrieber’s computable Euclidean
domain with no finitely-valued computable Euclidean function, computes ∅′. Schrieber
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asked if it was possible to remove the restriction of being finitely-valued. We show
that it is.

Theorem 1.4. There is a computable Euclidean domain R having no transfinitely-
valued computable Euclidean function φ. Moreover, every transfinitely-valued Eu-
clidean function φ for R computes ∅′.

Schrieber’s computable Euclidean domain for which the set of units R0 is non-
computable has the property R0 is Σ0

1-complete in any computable presentation.
As we utilize this ring when later discussing relevant reverse mathematics, we sketch
his proof (see [8]). First, we recall the fact that if R is a Euclidean domain with
Euclidean function φ and S is a multiplicatively closed set in R containing the
multiplicative identity, then S−1R := {s−1r | s ∈ S and r ∈ R} is also a Euclidean
domain (see [7]). Let the Halting Problem be represented by a set of primes P and
apply the above with S as the multiplicative closure of P ∪ {±1} in Z. Then the
Euclidean domain S−1Z has Σ0

1-complete units.
This result shows that it is possible to have a computable Euclidean domain for

which R0 is as complicated as possible and for which the least Euclidean function is
as complex as ∅′ (since it can compute the units). We strengthen this by exhibiting
a computable Euclidean domain for which R1 is as complicated as possible, namely
Π0

2-complete, and thus for which the least Euclidean function is as complex as ∅′′
(since it can compute R1).

Theorem 1.5. There is a computable Euclidean domain R for which the set R1 is
Π0

2-complete.

We do not know whether this result can be extended and will make some remarks
about Rj for j ≥ 2 in the closing section. We also show that Schrieber’s result can
be extended to any ∅′-computable Euclidean function.

Theorem 1.6. There is a computable Euclidean domain R for which there is no
finitely-valued ∅′-computable Euclidean function φ.

We note Schrieber’s computable Euclidean domain with no computable finitely-
valued Euclidean function does have a computable transfinitely-valued Euclidean
function.

Theorem 1.7. There is a computable Euclidean domain R having no computable
finitely-valued Euclidean function but having a computable transfinitely-valued Eu-
clidean function.

It is well-known that results in effective algebra (which seeks to understand
algebra via computability theory) often go hand in hand with results in reverse
mathematics (which seeks to understand the logical strength of theorems of math-
ematics via their proof-theoretical strength in second order arithmetic). To con-
clude the paper, we discuss the implications of these results to the proof-theoretic
strength (within the framework of reverse mathematics) of the theorem asserting
the existence of a minimal Euclidean function. Though we offer some background
in Section 3, in a short paper such as this, we do not include all the necessary
background.

Theorem 1.8. (RCA0) The statement
MEF: every Euclidean domain has a minimal Euclidean function

proves ACA0.
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2. Proofs of Results

It is really quite difficult to construct complicated Euclidean domains. Our
results will use extensions of methods of Schrieber. Thus, as preparation for prov-
ing the theorems, we recall some notation and results introduced by Samuel and
Schrieber.

Definition 2.1 (Schrieber [8]). If K is a field and {Xi}i∈ω is a set of variables,
denote by K 〈Xi〉i∈ω the commutative ring of reduced fractions p/q with p, q ∈
K[Xi]i∈ω and q not divisible by Xi for any i.

Thus, every element x of the commutative ring K 〈Xi〉i∈ω is the product of a
monomial m and a unit u.

Theorem 2.2 (Schrieber [8]). The function φ(x) = φ(mu) := deg(m), where m
is a monomial and u is a unit, is the least Euclidean function for K 〈Xi〉i∈ω. In
particular, K 〈Xi〉i∈ω is a Euclidean domain.

All the Euclidean domains we construct will be of the form K 〈Xi〉i∈ω, where
the field K is either Q or Q(Zj)j∈ω, for some sets of formal variables {Xi}i∈ω and
{Zj}j∈ω.

Proposition 2.3 (Samuel [7]). If R is an integral domain and A, T ∈ R are
nonzero, then φR(T ) ≤ φR(AT ).

Proof. The function φ(T ) := min06=A∈R φR(AT ) satisfies

φR(T ) ≤ φ(T ) ≤ φR(1T ) = φR(T )

as a consequence of the minimality of φR and taking 1 for A. It is clear that φ,
and thus φR, has the desired property. �

Proposition 2.4. [Folklore] If R is an integral domain, A, T ∈ R are nonzero,
and A is a nonunit, then φR(T ) < φR(AT ).

Proof. Since A is a nonunit, it follows AT does not divide T . Thus

min
Q∈R
{φR(T +QAT )} < φR(AT )

by virtue of the definition of Rα. By Proposition 2.3 (as 1+QA 6= 0 for all Q ∈ R),
we have minQ∈R{φR(T +QAT )} = minQ∈R{φR(T (1 +QA))} ≥ φR(T ). �

We are now prepared to demonstrate the theorems.

Proof of Theorem 1.4. It would seem difficult to diagonalize against all computable
functions from elements of the ring to ordinal notations, but we realize that any such
function would simply map the elements of the ring to some computable subordering
of the rational numbers (as a dense linear ordering) with various extra constraints.
Thus, rather than construct R to diagonalize against transfinitely-valued Euclidean
functions φ, we diagonalize against computable relations

Eφ(x, y) := {(x, y) ∈ R×R : φ(x) ≤ φ(y).

This is justified because Eφ is computable if φ is a computable transfinitely-valued
Euclidean function.

Therefore, fix an enumeration {Ei}i∈ω of computable binary relations. The idea
is to determine whether Ei(Xi, Yi) or Ei(Yi, Xi) (if either computation converges)
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and assure this cannot be the case by making either Xi a power of Yi or Yi a positive
power of Xi.

Construction: At stage s, we introduce terms Xs and Ys. For each i ≤ s, we check
whether Ei(Xi, Yi)↓= 1 or Ei(Yi, Xi)↓= 1. If either has newly converged, we put
Xi = Y si if E(Xi, Yi)↓= 1 and Yi = Xs

i otherwise.
Finally, at each stage s, we continue the enumeration of the ring, working towards

Q 〈Xi, Yi〉i∈ω (with a slight abuse of notation).

Verification: It is clear that we construct a computable ring. By Theorem 2.2,
it is a Euclidean domain. Moreover, it cannot have a computable transfinitely-
valued Euclidean function φ. For if it did, the binary relation Eφ would be total
computable. Fixing an index i for which Eφ(x, y) = Ei(x, y), the relationship
between the terms Xi and Yi contradict Ei by Proposition 2.4. �

The idea for Theorem 1.5 and Theorem 1.6 is to construct a computable ring R
classically isomorphic to Q (Xi)i∈ω 〈Yj〉j∈ω, where {Xi}i∈ω and {Yj}j∈ω are some
set of formal variables. However, the ring R we construct will not be computably
isomorphic as it will be difficult to determine whether a formal variable Z ∈ R is
invertible.

Proof of Theorem 1.5. Fix a Π0
2-complete set S and a computable predicate P (i, s)

so that i ∈ S if and only if ∃∞s [P (i, s)]. The idea is to start with the rationals Q
and expressions {Zi}i∈ω. As the construction proceeds, each expression Zi will be
declared equal to a product of two variables Zi = Xi,jYi,j (starting with j = 0).
Every time i appears in a fixed Π0

2 set, we make Xi,j a unit and declare Zi also
equal to the product Xi,j+1Yi,j+1. The point is that if ∃<∞s [P (i, s)], then Zi will
have rank two (being a product of two variables); and if ∃∞s [P (i, s)], then Zi will
have rank one (being a product of only a variable and a unit).

Construction: At stage s, we introduce two new terms Xs,s and Ys,s and denote
their product by Zs. For each i ≤ s, we test whether P (i, s) holds. If it does, we:
enumerate X−1

i,s′ into the ring, where s′ is the greatest t < s where P (i, t) held and
s′ = i if no such t exists; introduce two new terms Xi,s and Yi,s into the ring; and
equate Zi with the product Xi,sYi,s. If it does not, we take no action.

Finally, at each stage s, we continue the enumeration of the ring, working
towards the ring Q(A) 〈B〉, where A := {Xi : X−1

i exists} and B := {Xi :
X−1
i does not exist} ∪ {Yi : i ∈ ω}.

Verification: It is clear that we construct a computable integral domain. Moreover,
if R is a Euclidean ring, then Zs ∈ R1 if and only if ∃∞sP (i, s) (as noted earlier).
Thus, it suffices to show that R is classically a Euclidean ring.

We show that R is a Euclidean ring by showing R ∼= Q (Ai)i∈ω 〈Bj〉j∈ω for
appropriate sets of variables {Ai}i∈ω and {Bj}j∈ω. Indeed, any bijection be-
tween {Xi,s : X−1

i,s exist} and {Ai}i∈ω and {Xi,s : X−1
i,s does not exist} ∪ {Yi,s}

and {Bi}i∈ω induces a bijection between R and Q (Ai)i∈ω 〈Bj〉j∈ω. �

Utilizing larger products of variables allows diagonalizing against finitely-valued
∅′-computable Euclidean functions.
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Proof of Theorem 1.6. Fix an effective enumeration {φe(x)}e∈ω of the ∅′-computable
functions and an effective enumeration {φe(x, s)}e∈ω of total computable functions
with the property φe(x) = lims φe(x, s). Additionally, we assume that if 0 6= φe(x, s)
and φe(x, s) 6= φe(x, s+1), then φe(x, s+1) = 0, i.e., that the value zero is taken for
at least one stage if the approximation changes value. We construct a computable
Euclidean domain R for which φR 6≤ φe for any e.

Construction: At stage s, we introduce a fresh term Xs into R and compute the
value of φs(Xs, s). We then introduce φs(Xs, s)+1 many new termsXs,s,0, Xs,s,1, . . . , Xs,s,φs(Xs,s)

and declare their product equal to Xs.
Then, for each e < s, we compare the values of φe(Xe, s) and φe(Xe, s − 1).

If φe(Xe, s) 6= φe(Xe, s − 1) = 0, we introduce φe(Xe, s) + 1 many new terms
Xe,s,0, Xe,s,1, . . . , Xe,s,φe(Xe,s) to the ring R and declare their product equal to Xe.
In the case that φe(Xe, s) 6= φe(Xe, s− 1) and φe(Xe, s) = 0, we enumerate X−1

e,s′,j

into the ring for 1 ≤ j ≤ φe(Xe, s
′) (where s′ is the last stage at which the approx-

imation changed), making Xe = q ·Xe,s,0 for some unit q ∈ R.
Finally, at each stage s, we continue the enumeration of the ring, closing under

addition, multiplication, and additive inverse.

Verification: It is clear that we construct a computable integral domain. Moreover,
if R is a Euclidean ring, it cannot have a finitely valued ∅′-computable Euclidean
function. This is because if lims φe(Xe, s) fails to exist, then φe(x) = lims φe(x, s)
is not a total function; and if φe(Xe) = lims φe(Xe, s) exists, then φR(Xe) =
φe(Xe) + 1 > φe(Xe), contradicting the minimality of φR. Thus, it suffices to show
that R is classically a Euclidean ring.

We show R is a Euclidean ring by showing R ∼= Q(Ai)i∈ω 〈Bj〉j∈ω for appropriate
sets of variables {Ai}i∈ω and {Bj}j∈ω. Indeed, any bijection between {Xi,s,j :
X−1
i,s,j exist} and {Ai}i∈ω and {Xi,s,j : X−1

i,s,j does not exist} and {Bi}i∈ω induces
a bijection between R and Q (Ai)i∈ω 〈Bj〉j∈ω. �

We continue by sketching Schrieber’s construction of a computable Euclidean
domain with no computable finitely-valued Euclidean function and noting it has a
computable transfinitely-valued Euclidean function.

Proof of Theorem 1.7. Fix an effective enumeration {φe(x)}e∈ω of the computable
functions.

Construction: At each stage s, we create a term Xs. For each i ≤ s for which
φi(Xi) newly converges, we create a new variable Yi and set Xi = Y

φi(Xi)+1
i .

Finally, at each stage s, we continue the enumeration of the ring, working towards
Q 〈Xi〉i∈ω 〈Yi〉Yi exists (with a slight abuse of notation).

Verification: The ring R is a Euclidean domain with no computable finitely-valued
Euclidean function (see [8]). On the other hand, the computable transfinitely-valued
function induced by mapping Yi to 1 and Xi to ω is a transfinite Euclidean function
for R. More precisely, the function φ taking a monomial Xk1

i1
. . . Xkm

im
Y `1j1 . . . Y

`n
jn

,
where `i ≤ φi(Xi) if φi(Xi)↓, is assigned the rank ω ·

∑t=m
t=1 kt +

∑t=n
t=1 `t. This

suffices as every monomial is assigned a rank and φ(x) < φ(y) whenever x | y and
y6 | x. �
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3. Connections with Reverse Mathematics

Reverse mathematics is the subfield of mathematics that attempts to calibrate
the proof-theoretic strength of theorems within the framework of second-order arith-
metic. This is done by considering a theorem T of classical mathematics and asking
what set existence axioms A are necessary to prove T over a base set of axioms B.
If T is provable from A and A is provable from T (the reversal), both over B,
then A and T have the same proof-theoretic strength. This programme was intro-
duced by Harvey Friedman (see [1]). We defer the reader to other sources (see [9],
for example) for further discussion of reverse mathematics and a formal definition
of the axiom systems within this paper.

Often, the axiom system RCA0 is chosen as the base set of axioms. Roughly
speaking, the axiom system RCA0 only requires the model to contain the com-
putable sets and be a Turing ideal. A theorem T is provable from RCA0 (over RCA0)
only if the computable sets witness the conclusion of T .

The axiom system ACA0 is strictly stronger than RCA0, requiring the model also
be closed under Turing jump. A theorem T is provable from ACA0 (over RCA0) only
if the arithmetic sets witness the conclusion of T . The system ACA0 is equivalent
to many natural theorems of classical mathematics (see [9]).

Before doing so, we need to formalize terminology within the framework of
second-order arithmetic.

Definition 3.1 (RCA0). IfM is a model, then a commutative ring R is a (transfi-
nite) Euclidean domain (inM) if it is an integral domain and there is a (transfinitely-
valued) Euclidean function φ for R in M.

A (transfinitely-valued) Euclidean function φ (inM) for R is minimal if φ ≤ φ′
for all (transfinitely-valued) Euclidean functions φ′ (in M) for R.

A priori, there is no reason for the minimal Euclidean function φ (in M) to
satisfy φ = φR. The following observation, however, is the key step in showing that
any classically non-minimal Euclidean function has classically a strictly smaller
Euclidean function of the same Turing degree. This will enable us to conclude that
if R has minimal Euclidean function (in M), then it is φR.

Lemma 3.2 (RCA0). Fix a Euclidean domain R and a non-minimal finitely-valued
Euclidean function φ for R. Let α be the least ordinal for which there is a T ∈ R
with α = φR(T ) < φ(T ). Then (fixing such a T )

φ̂(z) =

{
φ(z) if z 6= T

φR(T ) if z = T

is a finitely-valued Euclidean function for R and satisfies φ̂ 6= φ.

Proof. Since φ̂(T ) = φR(T ) < φ(T ), it is immediate that φ̂ 6= φ. As α was chosen
minimal, for any A ∈ R, there exists a Q ∈ R with φ(A + QT ) < φ(T ) as φ(A +
QT ) = φR(A+QT ) < φR(T ) = α. �

Proof of Theorem 1.8. Fixing a set X in the model, we show X ′ exists. We consider
the X-computable ring whose units are Σ0

1(X)-complete constructed by relativizing
Schrieber’s construction of a computable subring of the rationals whose units are
intrinsically Σ0

1-complete. As noted in the introduction, the (relativized) ring R
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has a computable Euclidean function, namely φ(a/b) = a. Thus, it is a Euclidean
domain, i.e., it has a Euclidean function in the model.

Consequently, by MEF, we may fix a minimal Euclidean function φ for R (so
that φ ≤ φ′ for all φ′ in the model). We argue that φ = φR. If not, the function φ̂

of Lemma 3.2 is in the model as φ̂ ≡T φ ≡T ∅ and is a Euclidean function for R.
But then we would have φ̂ < φ, contradiction the minimality of φ. Thus it must
be the case that φ = φR. As φR computes X ′, the model must be closed under the
Turing Jump. �

4. Questions and Comments

We close with some questions that remain open. We begin with the question
explicitly stated in Samuel’s classic paper.

Question 4.1 (Samuel [7]). Is there (classically) a transfinite Euclidean domain
that is not a Euclidean domain?

We note Theorem 1.7 demonstrates that the effective analogue of this question
has a positive answer.

In the finitely-valued case, we would like to know if the upper bound of the
complexity of the Euclidean function can be achieved.

Question 4.2. Is there a computable Euclidean domain R for which any Euclidean
function for R computes ∅(ω) (or even ∅(3))?

The Euclidean domains both Schrieber and we use have the property that the
least Euclidean function is determined by the rank one elements. As a consequence,
it is impossible to have R2 be more complex than ∅′′ using this approach. Thus
to answer Question 4.2 in the positive direction, it is necessary to construct a
Euclidean domain where the rank two elements are somehow more independent
than the rank one elements.

It is interesting to note that all classical constructions (at least those of which we
are aware) seem to have the property that the rank two elements are determined by
the rank one elements, or are somehow easily definable from the rank one elements.
It is conceivable that Question 4.2 has a negative answer as a consequence of some
rather deep algebra. If the answer is positive, likely new algebra will be needed too!

Finally, determining the exact proof-theoretical strength of the results above in
terms of reverse mathematics would seem interesting. For example, Theorem 1.8
shows MEF proves ACA0 over RCA0. Is it strictly stronger?

Conjecture 4.3 (RCA0). The theorem MEF is equivalent to ACA+
0 .

Also interesting would be a similar analysis for the more general case of Euclidean
rings.
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