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1. Introduction

This paper concerns itself with the structure of W, the upper semilattice of r.e.
weak truth table (W-) degrees and to a lesser extent the collection D of all W-
degrees below 0%,. The upper semilattice W has received considerable attention
recently, primarily because of its applications to the study of the structure of R,
the r.e. T-degrees, but also for its own sake since the reducibility arises very
naturally in effective mathematics. The reader should recall that A < B means
that there is a recursive function y and a functional I" with F(B) A and for all x
the use u(I'(B;x)) = y(x). For example, if A is an r.e. basis of an r.e. vector
space V, then A <y, V. (In fact, in [14] it is shown that the r.e. W-degrees below
W-deg(V) are exactly the W-degrees of r.e. bases of V.) We refer the reader here
to, for example, [3, 4], [6], [9-11] [15], [28] and [37].

Applications to R usually utilize a ‘structural interaction’ of R and W (like
contiguous degrees) coupled with the fact that constructions in W are smoother
than in R. For example, various results that require infinitary methods in R (such
as density] turn out to need only finite injury methods in W. Part of this
smoothness stems from the fact that W is a distributive upper semilattice (cf.
[24]). Namely, W satisfies

(1.1) Va,b,c (asbUc — Je,f (e<b & f<c & eUf=a)).

Another nice aspect of W is that many results from R have proofs that
immediately give the corresponding result in W. One example of this is Lachlan’s
nondiamond theorem (c.f. [23]).

Nevertheless, despite all of these apparently helpful aspects of W, many of the
fundamental questions concerning the structure of W remain open (including
ones already solved for R). For example, properties like (1.1) mean that neither
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the Harrington—Shelah [20] nor the Harrington—Slaman (unpublished) techniques
for establishing the undecidability of R work for W. Indeed the decidability — or
lack thereof — of Th(W) remains open.

The focus of this paper is to analyse the embedding and substructure questions
for intervals in W and D. Our investigations were inspired by Paul Fischer’s [18]
beautiful result that there exist initial segments of W which are lattices. Our
notation will be to write W[a, b] for the r.e. W-degrees between a and b and
[a, b] for the collection of all W-degrees between a and b. The organization of
this paper is as follows. In Section 2 for completeness we review some notation
and terminology we shall use. In Section 3 we begin our investigations by showing
that Lachlan splitting and density can be combined for W preserving greatest
element. Namely we show that if a<<b in W then there exist by, b, in W with
a<b,;, b,<b, b, Ub,=b and b; Nb, exists. Several extensions to this result are
given and a partial characterization of those lattices that can be embedded into
W][a, b] preserving b is established. For example the techniques of Section 3
suffice to so embed the countable boolean algebra of finite and cofinite sets in
W][a, b] for arbitrary a <b, preserving greatest element.

Because of Fischer’s result, for arbitrary a<<b in W there don’t necessarily exist
b,, b, € W with a<b,, b,<b, byUb=Db and b, Nb, does not exist. We begin
Section 4 by showing such b, & b, exist if b=0y. We then continue with this
theme (of analysing the distribution of lattices without infimum in W) by extending
Fischer’s result to all incomplete r.e. W- degrees by showing that all incomplete
r.e. W-degrees are bottoms of lattices. That is, if a0’ with ae W, then there
exists be W with W[a, b] a lattice. In this section we also establish a result—
mentioned in [15] without proof — that there exist 1.e. sets A and B such that the
infimum of the W-degrees of A and B exists and the infimum of the T-degrees of
A and B does not exist. ‘

In Section 5 we show that lattices are dense in W. That is, if a<<b with a<<b in
W, then there exist ¢, d € W with a<<ec<d<b and W[e, d] a lattice. As a partial
result towards the classification of exactly which lattices can be so realized, we
show that if a,beW with W[a,b] a lattice, then W[a, b] and [a, b] contain
noncomplemented members (and thus W[a, b] doesn’t form a boolean algebra).

Finally, in Section 6 we use a modification of the technique of Section 5 to
show that the lattices that can be embedded into arbitrary W[a, b] with greatest
element preserved, are exactly the countable distributive lattices. We establish
this by so embedding the countable atomless boolean algebra. This then gives a
decision procedure for the existential theory of W[a,b] in the language
L{s, v, A, 1) for arbitrary a,b € W with a<<b (by using the techniques of Fejer
and Shore [17]). :

In Part II of this paper we show that although every incomplete r.e. degree is
the bottom of a lattice and although lattices are dense, these results cannot be
combined. That is, not every r.e. degree bounds a nontrivial initial segment that
forms a lattice. In fact, it is established that there is an r.e. set of high degree such
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that if B and C are r.e. nonrecursive sets with B, C <y A, then there exist B; and
C, with W-deg(B,) N W-deg(C,) not existing and By<w B, C,swC(C. As a
corollary, we see that there exist high r.e. W-degrees that don’t W-bound
minimal pairs. This stands in contrast with Coopers [8] result for R.

2. Notation

Notation and terminology are fairly standard. All sets, degrees, etc. are r.e.
unless specifically stated otherwise. Also a,b,... are (r.e.) W-degrees unless
stated otherwise. We use upper case Greek letters (@, I, . . .) for functionals, and
such letters with ‘hats’ (@, I, . ..) as W-functionals. In the latter case they have
as use functions the corresponding lower case Greek letters (¢, ¥, ...). Thus
d,(A; x)| only if ¢.(x)| and @.(A;x)] and u(P.(4;x)) < P.(x).

Warning. We always assume such use functions increasing when defined.

This convention is used mercilessly throughout and saves on notation.

We let { , )} denote a standard pairing function (monotone in both variables)
and let @@ ={(e, x):x € »}. Many of our constructions use tree of strategies
arguments. It is helpful, but not essential, if the reader is acquainted with [35, 36]
or [37]. Finally, we assume all computations etc. are bounded by s at stage s.

3. Lachlan splitting and density

In his famous ‘monster’ paper [25], Lachlan showed that (Sacks) splitting and
density [31, 32] cannot be combined in R. In [28], Ladner and Sasso showed that
for W, splitting and density could be combined. In fact, they showed

(3.1) Theorem (Ladner and Sasso [28]). If A is nonrecursive and B <y A, then
there exists an r.e. splitting A, 1A, = A of A such that B<xwA @ B, A; D B <y A.

In his paper [27]. Lachlan improved Sacks splitting by establishing (in R) that

(3.2) VaeR Ja,a,eR (a,|a, & a,Ua,=a & a;Na, exists).

For our first result, we shall show that in W, Lachlan splitting and density may be
combined. This will follow from the following result which also has several other
applications.

(3.3) Theorem. Suppose a|b. Then there exists ¢ such that

(1) aUc,bUc<aUb, and
(i) (alUe)N(bUc)=c.
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Remarks. We have shown that (3.3) fails to hold in R. In fact, we have shown
that (in R)

Ja,b [a|b & Ve, d((as<c<aUb & b=d<aUb)

3.4
G-4) —¢Nd does not exist)].

The proof of (3.4) will appear elsewhere. The reader should compare (3.4) with
(3.14) below.

Proof of (3.3). Let A=J, A, and D= iLJ, D, be given canonical enumerations of
r.e. sets with A |w D. We shall construct an r.e. set C=J,C, to satisfy the
requirements

Nyt D(ADC)#D.
Npsr: P(DDOC)#A.
P.: ,(A®C)=d,(DSC)=f and f total implies f<w C.

We shall use a pinball construction to satisfy the requirements. Strictly speaking
this is unnecessary for this particular construction, but this technique provides a
flexible platform for some later constructions, and furthermore we believe that
this makes the current proof more perspicuous.

The pinball machine is the simple one given below. Box B, is assigned to F, and
gate G, to N,. The motion of the balls is downward into pocket C (which
represents the set C). We refer to the region above C but not including the box as
the track.

gate
G,

We need the following definitions:
L(2e, s) =max{x:Vy <x (.4 & C;3y) = D(yN},
L(2e +1, s) = max{x: ¥y <x (Dc.(D: ® C;;y) = A:(y))},

r(2e, s) = max{u(P, (4, ® C;;y)): y < L(2e, 5)},
R(2e, s) =max{r(2e, t): t <5},
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r(2e + 1, s) = max{u(P. (D, ® C;; y)): y <L(2e +1, 5},
R(Q2e +1,s)=max{r(2e + 1, 1): t<s},

I, s) =max{x: Vy <x (Pe;(4, ® Ci39) = Do (D: © Cis )}
mi(e, s) =max{l(e, t): t<s}, and

Is(e, 5) = {max{t: t<s and Il(e, t)>ml{e, t)} if defined,
7o, otherwise.

A stage s is called e-expansionary if I(e, s) > mi(e, 5). Also Is(e, s) is referred to
as the last e-expansionary stage (before stage s). Balls are marked. A ball y in the
machine is marked y(e, x) for some e, x. This will indicate it emanates from box
B, (and is thus devoted to F,) and traces x.

The basic idea of this construction is as follows. We let R(i, 5) control gate i.
We argue that if R(j, s)— then A<y D (or D <w A), giving a contradiction.
This means that almost all balls pass gate G, In box B, we monitor I(e, s).
Roughly speaking, if we see that ‘both sides’ of a computation regarding x have
possibly been injured we enumerate (via the track) a trace y(e, x) into C. The use
of W-reductions allows us to present a collection of y(e, x) in advance (at
e-expansionary stages). Formal details now follow.

Rules. The machine is subject to the following rules. .

Gate Rule. If a ball x is at gate G, and x > R(e, 5), allow x to drop to the first
gate G, for j <e with x < R(j, 5). If none exist enumerate x into C.

Box Rules. Box B, is subject to the following three rules.

Rule 1 (Trace entourage assignment). For any x if a stage s is e-expansionary,
I(e, s) >x and x has no entourage in B,, assign {(e, x, sy, ..., {e,x,s+s+1)}
as x’s entourage and mark them by (e, x). By convention we note s < {e,x,s+1)
for all i. Place all the entourage in B..

Rule 2 (Emission). If there is no ball y(e, x) on the track, x has an entourage
in B,, and x is active, then ' '

if (l) As[(pe.s(x)] q&Ab(e,s)[(Pe.ls(e.s)(x)]; and
(ll) Ds[¢e,s(x)] :’&Ab(e,s)[q&e,b(e,s)(x)]:

find the least member z(e, x) of x’s entourage still in box B,. Allow z to drop out
of B, to the first gate G, for j < e such that z < R(j, s). If none exists, enumerate z
in C. In either case declare x as no longer active.

Rule 3 (Activation). If x has an entourage in B,,x is not active and s is
e-expansionary, declare x as active.

Construction, state s. Run the machine according to the above rules.

Verification. We érgue that
(i) All gates G, get at most finitely many permanent residents
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(ii) lim, R(e, s) = R(e) exists.

(iii) All the P, and N, are met, and

(iv) C=swADD.
We verify this by induction on e. Let Q = {0, ..., e — 1} denote the collection of
finitely active boxes. That is, define j <e — 1 to be a member of Q iff there are at
most finitely many j-expansionary stages. Let R={j:j<e &j ¢ Q}. Let 5, be a
stage such that

(a) y is marked y(j, x) for some j ¢ Q implies y has reached its final position by
stage g, :

(b) Vs=50 VjeQ (sis notj-expansionary), and

(c) Vk<e (G has all its permanent residents by stage s).
Please note that @ and the permanent residents of G, for k <e and s, are just
parameters. The crucial observation concerning s, is that after stage s, any ball
entering the track below G, must succeed in reaching C.

Now, without loss, let ¢ =2i. We show that N, is met and hence lim, R(e, s)
exists. We first verify that

(3.5 dASC)y#D.

(3.6) First suppose (3.5) fails. Then L(e, s)— and so R(e, s)— . We show
that this implies D <w A giving a contradiction. Let z be given. Find the least
stage s = 5(z) with s > s, and
(1) L(e, s) >z,
(ii) there are no balls g < ¢,(z) currently on the track below G, save for
permanent residents of some G; for j <e, and
(iif) For g < ¢y(2), if g is in box By at stage s, then either k=e or k e Q, or

(3.7) if keR, then A ualql=Alq]

.

It is easy to see that such a stage must exist and is A-recursive in parameters
Q, so, and has use ¢,(z). Now (3.7) ensures that any such ¢ in (jii) is now a
permanent resident of B,. This means that ho number below B, can enter C
below ¢;(z) and so the ‘®;,(4;® C,;z)’ computation is final since R(e, 5)
protects this at G, Thus (ABC;2)=d, (4, DC,;z)= D(z) = D(z).
Therefore D <y, A, a contradiction. Thus (3.5) holds.

(3.8) Next we argue that G, gets at most finitely many permanent residents and
lim; R(e, s) = R(e) exists. But this is easy. since we are dealing with W-
reductions. As &,(A4 @ C) # D we have that lim; L(e, 5) = L(e) exists. Therefore
lim, r(e, 5) exists, and so lim, R(e, s)=D(e) exists. Balls are only permanent
residents of G, if they are R(e)-restrained, and so G, has at most R{e) permanent
residents.

(3.9) Now we turn to the P,. If it is possible that P; fails to be met, then we must
have I(g, s)— ». Let s, 25, be a stage such that additionally G, has its full quota
of permanent residents. Let z >s, be given. Find the least e-expansionary stage
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53 = 85,(z) such that s,>s, and I(s, s,) > 2. Then by rule 1 (of the box rules) at
stage s, z is given an entourage

{{e,z,5:),{e,z,5,+1),...,{e,z,5,+ 5.+ 1)}.

By monotonicity of { , ), we know (e, x, s, +s,+ 1) =g is the largest member
of this set. Now find the least e-expansionary stage s; such that s,>5, and

C.lgl=Clgl
We claim that

Vs >s; (either &, (4, D C32) =, ,,(A,, D C,,; 2)

(3.10) w N
or DD, D C;z)= P, (D, D C,,; 2)).

If (3.10) fails there must exist a stage ¢ > 55 with

(At @ Ct)[d)e(z)] # (Als(e,r) @ Cls(e,t))[¢e(z)] and
(D, ® CH¢p.(2)]# (DIS(e, b)) @ Cise.n)[¢.(2)].

This follows by a simple induction and the observation that — as in 2 minimal pair
construction — if a computation is to change both sides of a computation must
change between e-expansionary stages. Since C; [g] = G[g] and g > ¢(z) it must
be that

AP D] # Avsen[9:(2)], and  D[¢:(z)] # Diseen[#:(2)])-

Now since there are >¢,(z) members of z’s entourage in B, when they are
appointed, there must be some member y <g of z’s entourage in B, at stage t. By
choice of s, and z there cannot be any member of z’s entourage on the track at
stage s, and hence rule 2 will ensure that some ball <g is released from B, at
stage . But this ball must get into C by choice of 5,. Hence C,[g] # C[g]. But this
contradicts the facts that £ >s; and C, [g] = C{g]. Hence (3.10) holds.

(3.11) It remains to show that C <y A © D. Let z be given. Find the least stage
s such that A,[z] = A[z] and D,[z] = D[z]. It is clear that if z is not yet in C, then
z ¢ C unless z is currently on the track. (If z is a member of a box, then it is now
a permanent member.)} In this construction, the restraints at B, are monotone and
so if z is blocked currently by some G,, it is a permanent resident of G,. Hence
CswADD. [

There are several corollaries (and extensions) which use the same machinery as
(3.3). First we get the promised density result for W.

(3.12) Corollary. If a<b, then there exist ¢, d such that a<c, d<b, cUd=b
and ¢ N d exists.

Proof. Combine (3.3) with (3.1). 0O

Using relatively straightforward dovetail versions of (3.1) and (3.3) we can
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obtain

(3.13) Theorem. (i) Let A <w B. Then there exists an infinite r.e. collection
{Bi}z'em Of r.e. sets with A oD Bi |wA b @B} and @B, Sw B.
jFi i

(ii) Jf {8} is an r.e. collection of r.e. W-degrees with a; |\ a; for all i, then
there exists c € W with j*

(a) e<Ua;,

(b) a;Uc|\a;Ue, and
JFi
(Q(mUcMWOJ@Uc)=u
i

Proof. This is left to the reader. O

We point out (3.13) mainly because it shows that we may embed a recursive
presentation of the boolean algebra of cofinite and finite subsets of @ into Wb, a]
for any b < a with greatest element a. This follows from (3.13) and the fact that
W is a distributive lower semi-lattice. This also raises the question of exactly
which lattices may be embedded into W[b, a] with greatest element a. By the
distributivity of W, any such lattice must be distributive. In his thesis Ambos-
Spies [1] showed that any countable distributive lattice can be embedded into
WI[b,.0'] preserving greatest element 0'. We shall extend this in Section 6 and
show that we replace 0’ by any a > b. This result has several ramifications
concerning existential theories associated with W[a, b] along the lines of Fejer
and Shore [17]. We delay this proof until Section 6 because it seems to requirc a
much more complicated technique which is introduced in Section 5.

One final result using the machinery of (3.3) concerns interactions of R and W.

(3.14) Theorem. Let A |r B. Then there exists C with A®C, BOC<;ADB
and such that E<y A® C, B ® C implies E<y C. That is, the W-infinum of the
W-degrees of A@Cand B&Cis C.

Proof (sketch). Again we use the machine of (3.3). Our new requirements are

N,: @(ADC)+#B,
3.15 {k
(3-15) Nprr: P(DBC)#A,

and the P, remains the same. The pinball machine and its rules are exactly the
same. The only problem is to ensure that each gate gets at most finitely many
permanent residents in view of the fact that we are using T-reductions in (3.15)
rather than W-reductions. This is solved by the well known ‘hattrick’ of Lachlan.
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(Specifically, for example, replace @, by &, where

D, (A, B Cssy) if a,>u(P, (A © C;3y)),
undefined, otherwise,

where a, =min{s, z: z € [(4, D C;) ~ (A,-1 D C;_1)]}.) We refer to Soare [34]
should the reader require further details. [

8,4, 0 Ciy) =

4. Density towards (' and pairs without infimum

It is perhaps natural to conjecture that the “(aUc¢) N (b U ¢) =¢” of (3.3) may
be replaced by “(alUc)N(bUc) does not exist”, or at least to conjecture that
pairs without infimum are dense in W. Certainly this is true for R since—in
[2] — Ambos-Spies showed (in R):

(4.1) Va,b (a<b—3ec,d (a<c,d<b & cNd does not exist)).

Fischer [18] destroyed both of these conjectures by showing that there was an
initial segment of W that formed a lattice. That is, he showed that

(4.2) Fa#0 Ve, d (c,d<a—cNd exists).

Fischer did, however show that upward density of pairs without infimum does
work. That is, he showed .

(4.3) Va#0 Jc,d (a<c,d & eNd does not exist).

The purpose of this section is to examine the distribution of pairs without
infimum. Our first result is an improvement of (4.3) along the lines of (3.3).

(4.4) Theorem. Ya#0 b, ¢ (a<h,c &bUc=0" & bNc does not exist).

Proof (sketch). Combine Fischer’s argument of (4.3) with Sacks splitting.
Specifically, we must— given r.e. sets A and K with K creative—build r.e.
sets C, D and auxiliary r.e. sets {V,: e € w} to satisfy
R.;: ®.(C®A)=D(D D A)=W, implies
Vs COA,DHA and D(W)#V,
and the coding requirement C © A @ D = K. Define
4.5) e, 5) =max{x: ¥y <x(D..(C, DA;;¥) = DD, A3 y) = We ()}

To meet the R, ; we have a candidate y = {e, i, x) targeted for V,. We wait till
&, (W, 5;)=V,,(») and x € K,;, — K,. We then use Jockusch’s strategy of first
adding y to one of C or D, raise R, ;s restraint, waiting till /(e, s) recovers and
then enumerating y into both the other set (D or C) and into V,. This ensures
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that
(4.6) B, (W,;;¥)=0+V.(y)=1

Also V,<w CDA, DDA if l(e, s)— by permitting or delayed permitting.
Finally since K controls the attacks, we must meet R,; with finite effect since
A<wK. To ensure that C® A D D=y K it suffices, at each stage s, to code
z € K., — K, into one of C or D. We simply choose some reasonable way to do
this (e.g. use {0, 0, z)) and, as in Sacks splitting, we code z into the C or D so as
not to injure the highest priority requirement threatened. For further details see
[18]. OO

Although not every r.e. degree is the top of a segment that is a lattice, every
r.e. degree # 0’ is the bottom of a segment of W which forms a lattice.

(4.7) Theorem. (i) Let a 0. Then there exists b0 such that b a and W[0, b]
is a lattice.
(ii) Hence Ya+#0' Ac>a (W[a, c] is a lattice).

Proof of (ii). Assume (i) holds. Let a#0' be given. Use (i) to get b with b a
and W[0, b] a lattice. Let e=bUa. We claim W[a, ¢] is a lattice. Leta<e, f<c.
By the distributivity of W we have e=e¢,Ue, and f=f, Uf, with e,,f, <b and
e;, F, <a. Now e, Nf; exists by (i). Let e, NE =g.

Suppose h=<e,f. Then h=<e,Ue,=e so that h=h; U hz‘ with h;<e; for
i=1,2. Also hy=f;Uf; and so hy=m, Um, with m; <[, for i=1, 2. We see
m; <hg, f; and so m; <e;, f;. This implies m; =g ase;Nf,=g. Alsom,<f,<a
and b, <e,<a. Hence h=<gUa. This means gUa=enf. 0O

Proof of (i). Let A= JA; be a given incomplete r.e. set. We shall construct

B =) B, together with auxiliary sets Q. = Q. , to satisfy:
5 - 5

P: @,(4)+B,
N,;: if &.,(A)=W, and I.(A)=V,, then
Q0.<wW,, V, and &(W,) = &,(V,) =7 total implies f<yw Q..

Define

le, 5) =max{x: ¥y <x [P, (As;¥)=Wos(y) &L ,(B;; y) = V... (D]}
(Here we regard &, and I as controlling the enumerations of W, and V..) Now let

mi(e, s) =max{l(e, t):t<s}, and

Ie, i, s) = max{x: Vy <x [éi,s(m,s; y)= éi.s(m,ﬁ y) &

Yz (z <max{$.(9:()), Y(@:i(¥))} =z <l(e, 5))]}.
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The principal apparatus of this construction is a partial restraint on &, and T,
imposed like a minimal pair. We cannot stop both W, and V, from changing when
we enumerate an element into A. But like a minimal pair, we impose restraint
between ‘expansionary’ stages. The crucial point recognized by Fischer [18] is that
because we are using W-degrees, it is possible to use Q, to record any injurious
changes.

It is convenient to use a tree 2= of strategies to satisfy the N, ; in conjunction
with the P.. We presume the reader familiar with this technique and refer him to
[35, 36] for more on tree arguments. We do, however, review some notation.

For o0, 7€ 2~% we write ¢ < 7 if ¢ is an initial segment of 7. We write o<, 7 if
oct or Ay(y 0co&y*lct).. We refer to 0€2°® as guesses. Let Ih(o)
denote the length of 0. We identify 2= with @ under some recursive coding and
o'? denotes the o-th column, @w‘? = {{o, y):y € @}. To meet the P, we use a
coding procedure — at guess o for lh(o) = e + 1 — by coding {{o, n): n € K} into
B if all attacks fail. Here again, K denotes a creative set.

(4.8) Definition. We define the notions: s is a o-stage, I(o, s) and r(g, s) by
simultaneous induction as follows.

(i) Every stage s is a @-stage, r(@, s) =1(@, s) =—1.

(i) If s is a T-stage with h(z) = (e, i), then if

(4.9) e, i, s)>max{l(e, i, £): t <s &t is a T-stage}, .
we say s is a t"0-stage, and define

I(°0,5)=1(e, i, 5),
r(z"0,5)=—-1, and r(z"l,s)=s+1

If (4.9) fails, then s is a v"l-stage. We define I(z"1,s)=I(z"1,¢) and
r(t"1, s) =t where t = Is(7"0, 5) the last T"0-stage <s. This is defined by

max{t: ¢t is a t"0-stage and ¢t <s}, if one defined,

Is (0, ={
$(z°0, 5) 0, otherwise.

We let o, denote the unique guess of length s with s a o,-stage. During the
construction we may declare P, as satisfied at stage s via some x with guess o. This
satisfaction is automatically cancelled if 3¢ > 5 (0, < 0) or A,[¢.(x)] #* A[P.(x)]
(This is well-defined since ¢.(x) will be defined if F, has been declared satisfied
via x.)

We shall say F, requires attention at stage s + 1 if P, is unsatisfied at stage s and
there exists x € K, such that for o c ¢, with lh(o)=e + 1:

() Vz<{o,x) (®.s(4;;2)=Bi(2)),

(i) Bi({o,x))=0, and
(iii) (o, x) >max{r(r, 5): <L 0}.
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Construction
Stage 0. Set r(z, 0)=—1 for all 7e€2%%. Set By=4§.
Stage s + 1

Step 1. Set r(z,s +1)=—1 for all T, 0s. For all v<; 0, but 7 ¢ o, set
r(z, s + 1) =r(z, 5).

Step 2. For each e if I(e, s} > ml(e, s) find the least x (if any) such that ¢, ,(x)|,
mi(e, s) > ¢(x) and both

(1) M,s[¢i(x)] +* We.b(e,s)[¢i(x)]; and

(ii) u,s[qbi(x)] + Ve,ls(e, .s)[¢i(x)]
hold, (where Is(e, s) is the last stage <s with I(e, s) >ml(e, 5)). If x exists, find
the least element (e, ¢;(x), z) of w®=%®>=) pot yet in Q,, and enumerate
(er d)i(x)! Z) into Qe.s+1 - Qe,s'

Step 3. Find the least e, if any, such that P, requires attention. Let {o, x) be
least for e. Set B,,;=B,U{{0, x)}. Declare P, as satisfied via x. 0O End of
Construction

Verification. Let S denote the leftmost path. That is, #c f and o c 8 implies
o0 c B if 3% (6”0 < g;) and 0”1 = B otherwise. We must argue that

(4.10) each P, is met and receives attention at most finitely often at y-stages for
ycfBand Ih(y)=e+1,

(4.11) all the N, ;y are met, and

(4.12) (7, 5) = r(7) exists for all v<<; o for o= §.

First let o < B with Ih(o) = (e, i) + 1 and suppose that s is a o-stage such that

for all s > sy we have

(l) c,’SL Ty

(i) s is a o-stage and j < (e, i) implies P; does not receive attention at stage s,
and

(iii) r(t, 5) =r{T) =1(7, 50) for all T o and v # 0.

To establish (4.11) suppose /{e, s)—> . First we observe that Q. <y W,, V, as
follows: let z be given. Now z € Q. only if z = {e, g, h) forsome h<gq. If h and g
exist find the least stage s where I(e, s) > mli(e, s) and W, ;[q] = W,{g]. Numbers
enter O, only during step 2 and then only when both W, and V, change. It follows
that Q. <w W, and Q, <y V., mutatis mutandis.

Now suppose (e, i, s)—> . Then o=1"0 for some 7 and {(z"0, s)—>x. To
compute f(x), find the least o-stage s,>sp with (v"0,5,)>x, and

Q. [(e, P:(x), $x))] = Q.l{e, §i(x), ¢i(x))]. Then we claim f(x)=7F(x).

Indeed, we claim for all £ >s,, one of

(413) ét’,t(m,t; x) = .é)i,sl(m,s,; x)) or
(4.14) gi’.-,:(Ve,:;J'f) = é,-,s,(%,sl;x) holds.
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To see this, we first note that after stage s,, numbers may only enter A, — A
below ¢.(¢:(x)) or y.(¢:(x)) & only at o-stages. At other than o-stages we have
set the o-restraint r(7”1, s) to exceed s, and so exceed ¢ (¢;(x)) and v.(@i(x)).
r(z"1,s) is active at o,-stages for 0%, o, Thus suppose z < ¢.(¢:(x)) and
v.(¢:{x)), and z enters 4, — A, for some o-stage £ Now at stage t+1 we set
r(z*1,t+1) to be t+1. Let ;> +1 be the least stage with e, t;) > ml(e, t).
Then by assumption on Q, we know that one of

(i) W, [p:(x) = W, [¢:(x)], or
()  Veoi(x)]= Ve [9:x)) holds.

Otherwise, step 2 would cause us to change Q. below (e, 9:(x), pul(x))
contradicting the assumption on s,. By induction we see both of

@ B (W ;%)=& (W.,;x), and

(11) (-Api,t(‘/e,r; x) = q“ji,sl(‘/e,n; x) hOlda
since ¢ was a o-stage. But this means at stage ¢, one of

@ D (W.,ix) =D (Ves; %), oOF
() D,,(Vox)= &, ,(V.s,;;x) holds.

But now the restraint r(t"1, s) =r(z"1, £) =t will preserve this until the next
7~0-stage 1,. But now at stage £,, both of (4.13) and (4.14) hold (with ¢, in place
of £). This establishes (4.11). .

Next we argue that (4.12) holds. But this is the standard minimal pair
argument: for v<; f with 7¢ o, there are only finitely many t-stages. Since
#(z, 5) is only reset at t-stages, lim, r(7, s) =r(7) exists. Now with s and o as
above, there are two cases. Either o= 10 or 6 =1"1 for some . If o=1"1,
there are only finitely many 7"0-stages. If ¢ is the last t"0-stage, then
r(o)=r(o, t+1)=t+1. Finally, if 0= "0, then r(o, s)=—1 for all 5. This
clinches (4.12).

Finally, we verify (4.10), that is that all the P, are met, and receive attention at
most ﬁnite;ly often. Let o < B with 1h(c) = e +1 and s, a stage such that for t< o
and s > s, we have

() r(z, 5) =r(z, s0),

(i) o=y 0,

(iii) if 5 is a o-stage, then P, for j <e does not receive attention at stage s, and

(iv) x € K, — K,, implies x >max{r(z, 5): T< 0}.

Now suppose that P, fails to be met, or equivalently receives attention infinitely
often. We argue as we did in the previous construction that K < A: to determine
if xeK or not find the least o-stage s=s(x)>s, such that Vz<{o,x +1)
((D...(As; 2) = B,(2)) and A,[¢.(2)] = Al9e(2)])-

Then as in (4.4) if y enters K — K, and y <x, we can use {0, y) to kill P..
Hence K,[x]=K[x] and so K=<y A, a contradiction. This concludes the proof of
(4.7). O
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Without much change to the construction we can also satisfy minimal pair
requirements to show

(4.15) Corollary. Ya#0' 3b,c (b,cfa&bNe=0& W[0,b U ] a latrice).
We mention (4.15) only because it gives a neat proof of Cohen’s [7] result:
(4.16) Corollary (Cohen [7]). The r.e. incomplete W-degrees are branching.

Proof. Let ae W with a# 0. Apply (4.15) to get b and ¢ as above. Consider
e=aUbandf=aUc. Leth=<e,f. Then h<<aUb impliesh=h; Uh, with h; <a
and h,<b. Now h;<f=aUc so h=h;Uh, with h;<<a and hy;<c. Thus
h=h;Uh;Uh; and h; Uh;<a, but hy<b,c. But bNe=0. Thus hy=0 and so
h=<a. Thus eNf=a. Finally e#a and f#a. For suppose (say) e=a. Then
aUb=a but b a, contradiction. O '

We remark that (4.15) also gives the additional information that W[a,aUb U ]
is a lattice, containing complemented members (namely aUb and aU ¢).

The last conjecture suggested by this series of results is perhaps that each a #0
bounds an initial segment that forms a lattice. This conjecture does not hold — as
we show in Part I — although we do show that segments of W that do form
lattices are dense in W. This last result is established in the next section.

We also point out that if b0 then [0, b] never forms a lattice. There are
several ways to establish this result. One elegant way is to use l-generic sets.
Recall from (e.g.) Jockusch [22] that a set A is called 1-generic if, given any r.e.
set § of strings there is a string ¢ < A such that either o is in § or no extension of
o is in A. (Actually, the original definition is in terms of forcing, this
characterization being due to Posner from his thesis.) Now a standard permitting
construction shows that each nonzero a € W bounds a 1-generic W-degree ce D.
The details of Jockusch [22, Theorem 3.1] show that if ¢ is 1-generic then [0, ¢] is
not a lattice.

Before we leave this section and turn to other results on the distribution of
lattices in W, there is one further result concerning pairs without infimum we
would like to include. This result was stated in [15] without proof, and concerns
the way infimums interrelate between R and W.

{4.17) Theorem. There exist r.e. sets A and B such that the wit-degrees of A and
B have an infimum, but the T-degrees of A and B do not.

Proof. Although it is not too difficult to establish this result directly, we choose
to use some results from the literature. Specifically using' Fischer’s result choose b
with W[0, b] a lattice. Now using Ladner and Sasso [28] take a with 0 <a<b and
a of contiguous T-degree. It is easy to modify Jockusch’s [21] construction of a




R.e. weak truth table degrees 15

pair of r.e. sets with no T-infimum to show that it works below any nonzero r.e.
T-degree, and in particular below a. Let A be an r.e. set of degree a. By
contiguity, there exist r.e. sets B, C <y A such that the infimum of the T-degrees
of B and C doesn’t exist. However since a<(b, it must be that the inf of the
W-degrees of B and C exists. [l

5. Lattices are dense

Although not every r.e. degree is the top of a lattice in W, we have seen that
each incomplete W-degree is the bottom of a lattice in W. It is natural to
conjecture that

(5.1) Va<b3Ie(a<e<b and W]a, €] forms a lattice).

In Part IT we shall show that (5.1) fails even for a = 0. The goal of this section is
to establish our best positive result along the lines of (5.1) by showing that
segments of W that form lattices are dense.

(5.2) Theorem. 3a,b(a<b— e, f(a<e<f<b& Wle,f] is a lattice)).

Proof. Let A <y B be given r.e. sets. We construct C =) C"s and D =|_J D, with
A D CD D =<y, B satisfying : s

P: &,(ADC)+D.
We build auxiliary sets 0, = O, ; satisfying

N, ®(ADCOD)=W,®ADC and
" f(ADCODD)=V,®ADC implies
Q. swW.DADC, V.&ADC andif
W PADC)=D(V.OADC)=Ff and
f istotal, then f<y\ Q,DADC.

For simplicity of notation, let W.=W, ®AD C and V,=V, B A D C. The basic
problem of satisfying the N,; in conjunction with the P. is this. In each of the
previous lattice constructions (of Section 4), a crucial characteristic of the
construction is that if we put some number in D (in the notation of this
construction) to satisfy some F,, then W, and V, get essentially one chance to
change. That is, roughly speaking, our restraint doesn’t really ‘restrain’ anything
when it. is originally imposed (and thus ‘both sides’ can change). After the next
e-expansionary stage the restraints we imposed when we attacked P, take over. In
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the current construction numbers must go into D only when B-permitted. This
necessitates our putting numbers into D at other than «-stages and means our
restraining policy won’t work. This is where C comes in. Our idea, roughly
speaking, is to ensure that either our ‘delayed restraint’ will be successful —as in
the Section 4 constructions—or C will be able to recognize that our restraint
wasn’t successful, because some number is enumerated into C to record this fact.

Care must be taken in selection of numbers to add to C for the sake of this
strategy. Remember, the sequence will be (1) add a number to D to satisfy F.,
and (2) if this (perhaps) injures some N, restraint, add some number y(x)to Cto
recognize this. Obviously this is useless it y(x) < ¢o(x) = u(P(A D C; x)),
because then it would undo our P action. This is the reason for the
guessing [confirmation procedure in the construction. That is, this procedure
allows us to ensure that the enumeration of a follower x into D doesn’t interfere
with the entry of higher priority followers into D because of x’s interaction with
the N, of higher priority than x.

We now turn to the formal details of the construction. We need the following
auxiliary functions

L(e, ) = max{x: Vy <x (P..(4, ® C;;y) = Ds(y))}
mL(e, s) = max{L(e, t): t <s},
I(e, 5) = max{x:Vy <x ($,.(4. ® C, ® D)) =Wl &
[ (A, ®C.®Dy;y) =V},
ml(e, s) =max{l(e, t): t<s}, and
I(e, i, s) = max{x: ¥y <x (@;.S(We,s; y)= &, (Vess y) &
max{@:(y), vy)} <le, s)}-

We define the notion ‘o-stage’ by induction on lh(o):
(i) Every stage s is a @-stage.
(ii) If s is a v-stage and th(z) = {e, i}, then if

Ie, i, s) > max{l(e, i, t): t<s and t is a T-stage},

we say s is a T°0-stage. Otherwise we say § is a 7"1-stage. As usual o; denotes the
unique path of lengths with s a o,-stage.

We say P, requires attention at stage s +1 if there exists a follower y = y(x, 0)
of P, such that one of the following options holds.

(5.3) (i) x € B,y — B, and c(y(x, o)) is defined.
(i) y is 7*0-confirmed for all "0 c o, and
(iii) L(e, s)>y,or

(5.4) For all followers y of P, if y =y(x, 0) and if 0 < 0;, then L{e,s)>yandy
is T*0-confirmed for all "0 co.
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Construction, stage s +1

Step 1. Cancel all followers y with guess o % o,. (That is, y = y(x, o) for some
x and o ¥ g;,.)

Step 2. Find the least follower y = y(x, y) and 770 < o such that

@) t"0cwy,
(ii) y is not yet t"0-confirmed, and

(iii) I(f, g s) >y where Ih(7) = (f, g)-

Cancel all followers bigger than y. (Note: it is a characteristic of the construction
that these have lower priority than y.) Declare y as t"0-confirmed for each such
0.

Step 3. For each e <s such that s is e-expansionary find the least x, if any, such

that
(i) ml(e, s)>x, and for ¢ = Is(e, s) we have

(i) W.[x]# W.,[x] and V_,[x] # V. .[x].

If x does not exist go to step 4. ¥ x exists, set Q. ;1= 0., U {{e, x, j)} where j is
the least number with {e, x, j) ¢ Q.. (As usual we will see j <x.)

Step 4. Find the least e such that P, requires attention. Adopt the first case
below to hold.

Case 1: (5.3) holds. In this case, find the least y =y(x, o) which pertains.
(Note: as y is alive 0=y d,. But we do not ask that o < g,.} Cancel all followers
y(g, 7) for all g with o<.7 and 7# 0. Set D, =D, U {y(x, 0)}. Set C;,,=
C, U {{e, c(y))}. (Note: y(x, o) remains a ‘follower’ unless cancelled in steps 1
or2.) ‘

Case 2: (5.4) holds. Appoint y =5 + 1 as a follower of P, with guess o where
oco, and 1h(o)=e¢+1. Mark y as y(x, o) where x is least with y(x, o) not
currently defined. Cancel all y(g, 7) for t20. If x#0, define c(y(x — 1, 0)) =
s+1. O End of Construction

It is easy to see (by induction) that for any follower y we have x<y if
y =y(x, o) for some o, and that y<c(y). Now since numbers which enter
D,,;— D, are y =y(x, o) for some x, ¢ with x € B, — B, we see that D <y, B by
permitting. Similarly the fact that y <c(y) implies that C,,[z]+# C,[z] implies
B,.1[z)# B;[z] and hence C<yw B. Also if I(e, s)—> = our previous arguments
(e.g. (4.7)) ensure that @, <w W,, V..

First we argue that all the P, receive attention at most finitely often at ‘o-stages’
and are met. Let 8 denote the leftmost path. Let ¢ = § with Ih(c) =e + 1. For an
induction, let s, be a o-stage such that for all s > s, we have

(a) o=pLo0,

(b) if s is a o-stage, and j <e then

(c) ‘P; does not receive attention at stage s, and if y has guess y for y=< o and
y # o, then y does not act by confirmation at stage s.

By our cancellation procedures, we might as well suppose F, has no followers
with guess ¢ at stage s,, and also that no follower of P, with guess y=< ¢ and
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y# o acts. Now since P, receives attention infinitely often at o-stages or
(equivalently) fails to be met, P, must get an infinite set of followers

y(0, 0), y(1, 0), y(2,0) ...

appointed after stage so. Each of these is confirmed and uncancellable. We claim
that this implies that B =< A. Let z be given. To A-recursively determine if z € B
or not find the least stage 5 > s, such that

(i) y(z+1, o) isdefined at stage s,
(i) L(e, s)>y(z+1,0), and
(i) Adg.(z+1, 0)]=Alp.(z +1, 0)].

We claim that z € B iff z € B;,. To see this, suppose that z ¢ B;. Let g be the
least number with g <z and g € B — B;. We first claim that

(5.5)  Clo.(y(g 0))]=Clo.(¥(g 0))]

To see that (5.5) holds, we argue as follows. Since y(z + 1, o) is defined so is
y(g, o) and y(g+1, 0). When y(g+1, o) becomes defined, we must have
L(0, s) >y(g, o). By our cancellation procedure when y(g + 1, o) is appointed —
say at stage ¢ for ¢ <s — the only numbers left alive which might enter D — D, are
¥(g, o) for g <g + 1. (Everything else is fixed by choice of s, or cancelled.) By
the way we appoint followers, this means that

(5.6) if peD[y(g, 0)] - D[y(g, o)], then p = y(h, o) for some h<g.

Now, numbers which enter C are of the form c(y) for some y. Now when
y(g + 1, o) is appointed at stage ¢, c(y(g + 1, 0)) is set. Since L(e, £) >y(g, o) it
follows that c(y(g + 1, 0)) > ¢.(¥(g, o)) and furthermore by monotonicity of ¢,
we must have that forallp=g +1

5.7 c(y(p, 0))> P.(y(g, 0))

Now c(y) entefs C only when y enters D. The minimality of g means that
D/y(g, 0) —1]= D[y(g, o) —1]. Combining this with (5.6) and (5.7) will give
(5.5). Let y; =y(g, 0). By (5.5) we have C[¢.(y1})] = C[¢.(y1)]. By hypothesis
(iil) A;[¢.(y1)]=A[¢.(y1)] and by hypothesis (ii) L(e, 5)>y;. This means that
the computation

gi5«2,.'.'(‘4-.9 @ Cs; Y1) =0= Ds(yl)
Is final; that is,
(5.8) Vs;=s D4, C,5y)=0.

But now by assumption g € B;,,; — B, for some (least) stage s,>s5. At such a
stage (5.3) will pertain (since (5.8) and minimality of g mean that L(e, s5) > yy).
This will create a disagreement

ée(A @ C; y1) # D ().
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It thus follows that z € B iff z € B, since no number =z can enter B after stage s.
But this is a W-reduction giving B=<y A and so we have a contradiction since
A <y B. Therefore P, is met and receives attention at most finitely often at
o-stages.

Finally we turn to the N,;, Let o< p with Ih(o)= (e, i) +1. Suppose
I(e, i, s)—>». Then o= 1"0 for some 7. Let 5, be a stage good for o as in the
verification of the P.. We must show that f<« A ® Q, @ C, given that f is total.
To see this, let z € @ be given. Let s5; be the least o-stage with 5, > 5, and such
that
() e, i, s1)>s5,

(ii) for all followers y =y(x, y) for yc o,
if y < max{.(¢:(2)), 7.(¢:(2))}, then

y is 70-confirmed for all "0 c 0.

(5.9)

Now let s, be the least o-stage with 5, <5, such that
(i) A sy +1]=A[s;+1],
(5.10) (i) Q.. [(e, 51+ 1, 5:+1)]1=Q.[{e,s;+1,5,+1)], and
(iii) C,[s,+1]=C[s+1].
We then claim that at all stages s =5,
&, (W, s 2) = By, (W3 2), OF
‘fjf.s(Ve.ﬁ z)= i’i,sz(Ve,s; z) holds.

To establish (5.11) we must first observe that (5.10) (ii) means that if s and ¢ are
e-expansionary stages >s, with £ = Is(e, 5), then

(5.12) one of W, [¢(2)] = W, {¢i(2)] or V..[¢:(2)] = Ve.[¢:(2)] holds.

Therefore, by our reasoning in (4.7) if ¢ and r are o-stages with g >r =s, and

card(ﬁ,,[M] —D,[M)=<1

(5.11)

where

M =max{¢.(¢:(2)), v.(:(2))}, and D=DBASC,

then (5.12) means that one of &, (W, ,:2)= D, (W.,;2) or &,,(V,,;2)=
@, (V. ,; z) holds. Consequently, if (5.11) is to fail, this reasoning means that
there must be o-stages s; and s, and an e-expansionary stage ¢, and a least stage
t, with I(e, t,) > z so that

(i) s;<s3=sy,

(i) s3=1Is(0,54) (thatis, Va(s;<n<s;— od¢a,)),
(i) s3<t,<tz<s,,
(iv) card(D[M]—D,[M])=1 (D, M asin (5.12)),
(v) card(D [M]-D,[M])=1, and
o) 1, =Is(e b).
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Also, if we are to suppose (5.11) is to fail, we may choose 53, t, £,, 54 least for
(5.11)’s failure (by stage ;) and thus know

(i) B, (W, 2) = Bie(Wesy; 2),
(Viii) éf,.?z(‘,e,sz; Z) = él’..s‘:;(Vt'Z..S‘:;;! Z))
(IX) (ﬁi,g(“[e,s;;; Z) :'{: d‘)i,tl(m,tl; Z)I

(®) Voo 9:(2)] = V.o [0:(2)] and so
D5 (Versy; 2) = D3.0(Vey3 2),  and

(XI) (-f’i,tz(v:e,tz; Z) # gJ‘p:‘,tl(ve,q:'u Z).

We remark that (ix), (x) and (xi) may be taken without loss, by symmetry of W,
and V,. We argue that this situation will contradict (5.9) and (5.10). By (5.10)(i),
there must exist followers y; and y, (least) with

(5.13) y,y.<M and y,eD,—D, and y,eD,-D,

Certainly, by the way we appoint followers, by (5.9) we know y, and y, are
confirmed and present at stage s;. The crucial claim is that neither c(y;) nor c(y)
is defined at stage s,. For suppose c(y,) is defined at stage s;. Then c(y,)<s,, by
the way we define ¢(y,). But then when y, enters D it causes us to enumerate
¢(y,) into C at the same stage which would violate (5.10)(iii}).

Now followers y may enter D only if c(y) is defined (by constriction). For any
follower y, with guess oo, c(y) becomes defined at 1+ o-stages. Consequently
both ¢(y,) and c(y,) are defined at stage s3, and were defined between stages s,
and s,. Now since y; and y, both exist at stage s,, y; and y, must have different
guesses ¥;, ¥, D o respectively. Now if y, ¢ v, and y, ¢ v, then cither y; or y, is
cancelled at s,. For suppose (e.g.) that y;<py; but v, ¢ y,. Now as c(y,) is
defined (which only happens at 1 + y,-stages) y, will be cancelled at some y,-stage
between s, and s;. Finally, if y; < v. but v;#y,, say, we still see that y, is
cancelled, but now for a different reason. The point is that ¢(y,) is defined when
P, for e + 1 =1h(y,) appoints a new follower. This activity automatically cancels
followers with guesses T > y; and y ¥ y,. Hence y, is cancelled. The case y, < v,
and ¥, # y, may be taken mutatis mutandis. It therefore follows that both y, and
y, cannot exist. This contradiction establishes (5.11) and completes our proof of
(5.2). O

It is of course natural to ask exactly which lattices can be realized as segments
in W. This question is related to the question of whether or not there exists (all?)
a,b with a<b and Th(W[a, b]) decidable. For example, if we could construct
W[a, b] which was complemented, then it would necessarily be the countable
atomless boolean algebra, and thus Th(Wfa, b]) would be decidable for such a
and b. Unfortunately this idea fails because W[a, b] is never complemented (and
nor is [a, b]).
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(5.14) Theorem. Let a<b. Then there exists ¢ with a<c<b such that for all
(not necessarily r.e.) degrees e, if eU c¢c=bh, then e=b.

Proof. To ensure ¢>a we use a standard Friedberg strategy. This is no problem
combining such a strategy with the anticupping technique of [11]. We refer the
reader there for further details. U

By [10] for W[0, a] we can do a little better.

(5.15) Theorem ({10])). Ya+#03c (c<a&Vesa(cNe=0—

e=0&cUe=a—>e=a)).

We do not know if (5.18) can be improved to give the result for intervals. That
is, we don’t know if
va<bdc(a<c<b&Ve<b(cNesa—e<a

(5.16)
&c¢Ue=h—>e=b)) holds.

We conjecture that (5.16) fails.

6. Embedding the atomless boolean algebra in W[a, bl

The techniques introduced in Section 5 have other applications. The applica-
tion we describe here is the promised proof that we can embed any countable
distributive lattice in W(a, b] preserving b for any a<b. this follows from

(6.1) Theorem. Leta<b. Then there exists ¢ with a <c<Db such that there exisis
2 lattice embedding of the countable atomless boolean algebra into Wic, b]
preseruing least element ¢ and greatest element b.

Proof. Let B={JB, and A= \J A, be canonical enumerations of r.e. sets with ’
5 5

A <y B. We shall construct C in stages. Let {ai i€ o} denote a uniformly
recursive sequence of recursive sets— meaning {{x,i):xem} is a recursive
relation — which forms an atomless boolean algebra Q under \J,{) and
complementation. We construct 2 recursive collection of disjoint r.e. sets
{D;:i e w} and define D. ={x:xeD;and i € o} D ADC for each € Q. Asin
Soare [36, Ch. IX, §2], we see

(62)  deg(D,)U deg(Dp) = deg(Daup),
ac B implies D.<w Dg, and

(6.3) ,
deg(Darﬂ,ﬂ) = deg(Da'): deg(Dﬁ))



22 R.G. Downey

where, of course, ‘deg’ here refers to W-degree. We therefore must meet the
requirements

R: C<y B,
Quin: D(ADC)#D,
Pipey: De(Du)=®(Ds)=f and
f is total implies f<<y D, ng.
As in [36], we have

(6.4) deg(Dynp) = deg(D,) Ndeg(Dg), and
(6.5) D,<wD; implies &cp.

To see that (6.5) holds, suppose otherwise. Then a ¢ f but D, =<y D;. Let
ieaw—p. Then D;<yD,<yDg. But also ief and so D,<y Dj Hence
D, <y Dgnp=w Dy=yw C D A, contradiction.

Let I(a, B, e, ) = max{x: Vy <x (D.,.(Des; ¥) = Be.s(Dp 53 ¥))}-

Using this Tength’ function, define the notion of a o-stage by induction on lh(o)
via :

(i) every stage s is a @-stage, and
(ii) if s is a T-stage and Ih(7) = (@, B, ), then if

l(«, B,e,s)>max{l(c, B, ¢ t): t is a t-stage and ¢ <s)

then s is a 7"0-stage. Otherwise s is a 7"1-stage. As usual let o, denote the
unique string of length s such that s is a o,-stage.
Now let

L(e, i, s) = max{x: Vy <x (®.:(4; ® C.; y) = D, .(y))}-

We attack the Q. ;, by followers y as in Section 5, although these ‘mark a
position’ only. These are marked y = y(o, x) to indicate they have guess o with
lh(c) = (e, i) and are ‘connected to’ x as their ‘permitting number’. The reader
should note that there will be a finite entourage of traces c(y, 1), ..., ¢c(y, n) for
any follower y. We always attack the least member of the list not already
attacked. The use of an entourage of traces is necessary to guarantee that we
always have a follower—trace pair available to attack the Q. ;, (as in the
pinball constructions of Section 3).

We say that Q. ;y requires attention at stage s if one of the following options
holds.

(6.6) There is a follower y = y(x, 0), say, of Q. iy with lh(o} = (e, i} such that
(i) z<y(x, o) where {z}=B,,,— B,,
(i) z$c(y(h, y), ) for any y<; o and y # o and any j {(currently defined),
(iii) y is T"0-confirmed for all 7*0 = ¢, and
(iv) c(y, 1) is defined, or -
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(6.7) for all followers y = y(x, o) for 0 < o, we have
(i) L(e, i,s)>y, and
(i) y is 7*0-confirmed for all "0 o.

Construction, stage s +1

Step 1. Cancel all y(x, 7) for 7%, 0.

Step 2. Find the least follower (if any) y with y =y(x, ¥), say such that for
*0cy: : '

(i) T*0< g; and y is not 7"0-confirmed, and

(ii) e, B, e, s) >y where Ih(z) = (a, B, ).

Declare y as 7"0-confirmed for each such 7°0. Cancel all followers y’' > y.

Step 3. Find the least (e, i) such that Q, ,, requires attention. Adopt the first
case below to pertain.

Case 1: (6.6) holds. Find the least y =y(x, o), say. Cancel all y(g, t) for
o<, 7 but 6#1. Set D,,,1=D,;;U{z} where zeB;,;—B,. Set C,,;=C, U
{e(y, )} where c(y,j) is least with c(y, )¢ C,. Note that y(x, o) does not
become undefined here.

Case 2: (6.7) holds. Appoint y =s +1 as a follower of Q. ,, with guess o< o,
where 1h(o) = (e, i). Mark y by y(x, o) where x is least with y(x, o) currently
undefined. Cancel all y(g, 7) for 0 = 7 and o # 7. Finally if x #0, set

c(p, )={e i,s+1),
c(p,2)=(e,i,s+2),..., c(p,s+1)={e, i,2s+1),

where p=y(x —1, 0). Note that this means that c(y(x — 1, ¢), 1) is only set
when y(x, o) is defined and so L(e, i, s)>y(x — 1, o).

Step 4. If (6.6) did not pertain in step 3, enumerate z into C,.,~C; for
z € B, — B,. 0[] End of Construction

The verification that all the Q. ;, receive attention finitely often ‘at o-stages’
and are met, is by now familiar so we merely sketch the details. Let ¥ denote the
leftmost path. Let ¢ < y with Ih(o) = (e, i} and let s, be a stage good for o in the
sense that after stage s, the higher priority stuff ceases activity at o-stages, also
Vs >s0 (6=, 0,), and finally z € B — B implies z exceeds all ¢(y, i) for all y with
guess p=<; ogand pFo.

Now suppose (., fails or, equivalently, is infinitely active at o-stages. Then it
follows that Q. ;; gets an infinite recursive list of followers

y(O: U), y(l, 0), S

We claim that this implies B<y A. To determine if x € B or not, find the least
o-stage §,>5¢ with y(x +1, o) defined and A, [¢., (y(x, 0))] = A[p.(¥(x, 0))]
and L(e, i, s)>y(x, 0). It is claimed that B [x] = B[x]. Otherwise, let z<x be
the least number =<x to enter z after stage 5,. Then there is some least follower



24 R.G. Downey

y =y(h, 0)<y(x, o) with z<y(h, o). At the stage ¢ when z enters B, — B;, we
create a disagreement,

(6.8) D(ADC;z)=0+Dyz2)

since the same reasoning as in Section 5 ensures that— by minimality of
h— G [e(y(h, 0), 1)—1]= C[c(y(h, 0), 1) — 1] and thus

Cal@.(y(h, 0))]=Clo.(y(h, o))].

These observations combine to give (6.8).

Finally, we establish that all the P, ., are met. Let o=y with Ih(o) =
(e, B, €)) +1 and let s, be a stage good for as for the Qi) Let z be given. As
in Section 5, find the least o-stage s, > s, such that

(i) /(a, B, e, 51) >z, and

(ii) all followers y =y(x, n) with guess 7 > o with y < ¢.(z) are 7°0-confirmed
for all z"0c 0.

Now find the least o-stage s, <5, such that

(1) A52[S1 + 1] = A[Sl + 1],
(6.9) (il) CS;[(ZSI + 2, 2.5'1 + 2, 2S1 + 2)] = C[(2S1 + 2, 231 + 2, 231 + 2)].
(lll) Drxnﬁ,sQ[Sl + 1] = Daﬂﬁ[sl + 1]

Now we can use an essentially similar—but easier— argument fo that of

Section 5 to establish that for all s > s,
6.10) one of D, (Dy32)= P, oDy, 2), or
‘ gije,.s'(}l-)ﬂ,s; Z) = q‘\je.sz(Dﬁ,sz; Z) hOIdS-

Otherwise, as in Section 5 between some least o-stages 53 and s, we have
s3=1Is(0, 54), (6.10) holding with s = 5;, and both

D“-54[¢e(z)] ¥+ -Pa,sg[(per(z)] and
Dﬁ-s4[¢e (Z)] * Dﬁ.sa[d’e(z)] hold.

Now (6.9)(iii) means that we must have a follower y, entering D, ,, — D, and y,
entering Dg,, — Dg .., but y, ¢ Dg,,—Dg,, and y,e D, — D, By (6.9)(ii) we
know that neither y, nor y, has c(y;) defined at stage s, and furthermore, as in
Section 5 one of y; or y, will cancel the other when c(y;) becomes defined before
stage s5. OO

(6.11)

Of course, as we remarked earlier, it is not true that in every interval W[a, b]
we can embed (even) diamond with b preserved. This follows by Lachlan’s
nonbounding theorem [26].

We remark that (6.1) has some pleasing consequences. In particular, since (6.1)
gives a complete classification of those lattices which embed into W[a, b] for a<b
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as the class of countable distributive lattices; we see:

(6.12) Corollary. Leta< b. Then the existential theory of the semilattice Wi[a, b}
in the language L(<, v, A, 1) is decidable.

Proof. This follows by exactly the same decision procedure as Fejer and Shore
[17]. O

We do not know about the relevant theory for the language L(=, v, A, 0).
The best result we have is that the existential theory is decidable ifa=0 and b is
promptly simple. This follows by [17], (6.1}, and the fact that the Lachlan—
Lerman—Thomason theorem — that the countable atomless boolean algebra can
be embedded into W preserving 0— works below any promptly simple degree
(just like a minimal pair). We remark that this also follows from a result of
Ambos-Spies [4]. Concerning the classification of those lattices that can be
embedded into [a,b] for a<b (preserving a and b), Christine Haught and the
author have some partial results. These will appear elsewhere.
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