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1. Introduction

In this paper we analyse the way r.e. theories relate to one another, and in
particular how they behave under extensions. Our viéwpoint will be to consider
those r.e. theories (of propositions) based on a fixed recursive set of literals
{P:|i € w}, and in doing so we could also consider them as proper filters in the
free boolean algebra with recursive meet (A) join (v) and identity (=) relations.
One of the fundamental observations concerning decidability of r.e. theories is
that there are essentially undecidable theories, that is, theories with no (complete)
decidable extensions. As is well known, a simple example of such a theory is
obtained by considering the theory generated by {F, | i€ A} U {P;|j € B} where A
and B are r.e. recursively inseparable sets. This result was sharpened con-
siderably by Martin and Pour-El [14] who showed that one could (using priority
methods) find a pair of r.e. sets A, B as above such that T was essentially
undecidable, and every r.e. theory T extending T was a principal extension of T.
In a sense this could be viewed as a ‘maximal’ r.e. theory in the sense that
although it’s set of extensions is classically ‘thick’, it’s set of effective extensions is
‘thin’. Our broad purpose in this paper is to investigate maximal r.e. theories:
what maximality may be interpreted as in this lattice, and how other theories
relate to a maximal theory. '

Our starting point is the Martin—Pour-El result cited above. This example
suggests a few concepts which we shall analyse in this paper. We say an r.e.
theory is well generated if it is generated by a pair of sets {P; | e A}, {P|je B}.
We say an r.e. theory T has few r.e. extensions if T is essentially undecidable and
every r.e. extension of T is a principal extension of 7. We shall call an r.¢. theory
T a Martin—Pour-El theory if it is both well generated and has few r.e.
extensions. Many questions suggest themselves: If T has few r.e. eéxtensions is T
contained in a Martin—Pour-El theory? Do r.e. Martin—Pour-El theories or
theories with few r.e. extensions exist in every nonzero r.e. degree? Is every r.e.
essentially undecidable theory contained in Martin—Pour-El theory? —a theory
with few r.e. extensions? '
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Here we show that all the questions above have negative answers. We shall
summarize our results by section, but before doing so we mention a weaker type
of maximality condition which turned out to be important to our investigations:
We say an r.e. theory T has relatively few r.e. extensions if T is essentially
undecidable and every 1.¢. theory containing T has a common principal extension
with 7. If T is also well generated, we say T is weakly Martin—Pour-El.

In Section 2 we dispose of the preliminaries, definitions and notations, etc.

In Section 3 we analyse Martin-Pour-El theories. Suppose {F; |ie A},
{P.|jeB} generate an r.e. theory 7. We show that:

Corollary 3.4, There exists an r.e. Martin—Pour-El theory with AU B effectively
simple (so T=x0").

Theorem 3.5, If T is weakly Martin—Pour-El, then AU B is hypersimple.
Theorem 3.7. There exists an r.e. Martin—Pour-El theory such that T=; AUB is
of low degree (i.e., T' =1 @").

In fact we generalize this to show

Theorem 3.9. Let n be given. There exists an r.e. Martin—Pour-El theory T such
that T®WI=.0

In Section 4 we analyse the degrees which do and do not contain Martin—Pour-
El theories. The main result is:

Theorem 4.4. Below any r.e. nonzero degree %, there exists a nonzero r.e. degree
8 <y that bounds no degree containing an r.e. Martin—Pour-EI theory.

This is particularly surprising in view of the facts that (by Section 3) there are .
Martin—Pour-El theories in low, ., —low, and high, ., — high,, for all » and the

following two results

Theorem 4.1. There exists an r.e. weakly Martin—Pour-El theory in each nonzero
r.e. degree.

Theorem 4.5. There exists an r.e. Martin—Pour-El theory such that deg(T ) is high
and incomplete and, AU B is an r.e. maximal set.

However, 4.1 should be contrasted with

Theorem 4.3. Each nonzero r.e. degree contains an r.e. weakly Martin—Pour-El
theory that is not Martin—Pour-El.
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In Section 5 we show how to generalize our results to theories which are not
well generated. The main results here are

Theorem 5.1. There is an r.e. theory T with few r.e. extensions contained in no
r.e. Martin—Pour-El theory.

Theorem 5.3. Below any nonzero r.e. degree, there is a nonzero r.e. degree &
which bounds no r.e. theory with few r.e. extensions.

Theorem 5.4. If T is weakly Martin—Pour-El, but not Martin—Pour-El, then T is
an essentially undecidable theory contained in no r.e. theory with few r.e.
extensions.

Finally, Section 6 deals with maximality amongst r.e. theories with decidable
extensions, that is, the ‘non-essentially undecidable ¢ase’. Indeed we analyse the
lattice L(D) of r.e. subtheories of a fixed complete decidable theory D. Here, the
natural way to analyse this is under congruence =% where for Ty, T, subtheories
of D, we define T, =*T; if they have a common principal extension in L(D).
With this definition we may-analyse L(D) in a way similar to other lattices of r.e.
substructures (see for example [15]), since =* is an equivalence relation (it is
obviously ot in general). We show how one may define maximal, etc., with this
in quite a natural way. For example, T is maximal in L(D) if T#* D and for all
T'eL(D), if T' is an extension of 7, then either T'=*T or T'=*D, The
existence of such maximal theories is not surprising in view of the fact that we can
find an r.e. theory T such that L(T, D) (= the lattice of r.e. subtheories of D
which extend T) is recursively isomorphic to the lattice L(w) of r.e. sets. (This
result also shows that the first-order theory of the lattice of r.e. theories is
undecidable since Hermann [9, 7, 8] has shown Th(L(w)) is undecidable.)
Finally, we show that the study of L(D) is therefore richer than that of L{w) by
studying ‘nonextendibility amongst r.e. axioms’ for r.e. subtheories of D, this
being a structural feature of subtheories which certainly cannot occur in the
lattice of r.e. sets. ’
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2. Notations and terminology

As we remarked earlier, it is useful to consider theories as filters of the
atomless boolean algebra Q on the fixed set of generators {F;|ie w}. f AcQ
we let A* denote theory (filter) generated by A. As usual, we say A is principal if
A = {a}* for some a € Q, and for theories A; and A, we say A, is principal over
A, if there exists a € Q such that A; = (A, U {a})*. We shall write (4, a)* for
(A U {a})*. We remark that as usual a theory A is consistent if A £0 (or 0¢ A).

We enumerate as {W,}... the r.e. consistent theories, and {F}.c, the well
generated theories. These may be considered as enumerated by letting (4., B.) be
an enumeration of the r.e. disjoint subsets of @ and setting F, = (P, Blie
A, &jeB,). We denote by w, the e-th r.e. set. We consider W, ={x|xe
(W,)* &x <max{s, y |y e w.}}, where {w,,} is some fixed enumeration of w..
{, ) will denote some fixed pairing of » and (,...,) will denote {{,),) ).
@, and ¥, will be used to oracle machines and we write @, ,(M; z) for the result,
if any, of computing s steps in the computation of the e-th oracle with oracle M
and input z. If this converges we write @, (M;z)|, and @, ,(M;z)] otherwise.
We write @.(M;z)] if 3s (P.(M;z)]). We use the standard use function as
follows:

py (y =x and the computations for @,(4;x)} and
ulk, A, x) = @.(Aly; x)] are identical},
undefined, otherwise,

where Aly = {z € A ]z <y}. If we are equipped with an enumeration {4,} of A4,
then we write u(k, 4, s, x) for u(k, 4,, x). We identify sets where appropriate -
with their characteristic functions, and similarly, if, say Vx (@(A; x} = B(x)) we
write @,(A) = B. ’

A few further remarks are perhaps in order. When treating theories it suffices
to consider only elements of the form \/ &,F; where &P will always denote F; or
P. This is because T+x Ay if and only if T+x and Tty. Thus, writing each
element in conjunctive normal form, it becomes clear we need only consider
elements in \/ &P, form. :

If A and B are r.e. theories (consistent) we write A =" B if there éxists x such
that both (A, x)* and (B, x)* are consistent and (A, x)*=(B, x)*. Thus the
definition for A being weakly Martin—Pour-El reads: for all B extending A,
B=*A.

All other notation is essentially standard, unless specifically stated, and may be
found in [19] or [20]. '
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3. Lattice properties

In this section we establish various lattice properties associated with classes of |
well generated theories, and in particular Martin—Pour-El type theories. We
begin with the fundamental construction of a Martin—Pour-El theory. We feel
that as this construction forms a basis of many later ones, we shouid give it as an
aid to the reader. The proof and result are due to Martin and Pour-El [14].

Theorem 3.1. There exists an r.e.. Martin—Pour-El theory T.

Proof. Recall that W, denotes the e-th r.e. theory, and is given by enumerating
elements of the form \/ gF,. At each stage s, we shall have constructed 7, and
add a (possibly empty) subset of the free generators {F}ie w} (or their
negations) to 7; to form T, so that T =, T; has the desired properties. We
assume the P, are ordered via P, <P, <---, and at edch sfage s we define the list
By <By,<--- to list the set {P.| P, P.¢ T,}. We satisfy the following require-
ments (for e € w): ’

"R, 0¢(T, W)*—3x ((T; x)* = (T, W,)*).

We shall construct x as x = gy x;, where the x; are elements of a certain
‘witnessing’ set Q,, and we shall construct in stages as @, = lim, Q. ;. We say that
R, requires attention at stage s + 1 if e is least such that there exists y € W, ;. such
that y ¢ (T;, O..)*" and 0¢ (T, W.,)*. If y is least for e we say R, requires
attention via y. Our attacks on R, must clearly ensure that T is consistent
incomplete and perfect, that is we meet

N,: lm B, ; = B, exists.
5

Construction

Stage 0. Set Ty=Q, =9 and so B;, =P, for all i € w. .
Stage s + 1. Do nothing unless R, requires attention for some e <s. If R, requires
attention via y, define i

Lie, s, y) = {&:B;, | &:B, occurs in y for i > e}.
Now set T,., = (T, L(e, s, ¥))* and Q. ;.1 = Q..U {y}, and say y is acted on via
e at stage s + 1. End of Construction

Lemma 3.2, If y is acted on via e at stage 5 + 1, then there exists x a boolean
combination of {By;, . .., Bes} (={Bgs+1s - - - » Besw1}) Such that T, . Fy & x.

Proof. Without loss of generality we may write

y=VeB,vVeB,v V abiv V &P,
i=e -

i=e eFeT; e,
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Thatis y =x vz vm v n, say. Since x—y, it suffices to show that T,,, Fy—x.
Notice that if m#0, then as +m—y and as me T, ye T, and so R, cannot
require attention via y. Therefore m=0. Now as rie T;,; and Ze T, — T, (by
construction), it follows that T, .;Fy—x as required. [ :

Lemma 3.3. Q. is finite and lim, B, ; = B, exists.

Proof. By induction let ¢ be least with B;,=B,,= B, for all s=¢ and i <e. We
claim B,,;, may change at most finitely often subsequently (and here Q, is
finite). When R, requires attention via y at stage s+1 (s +1>¢), T, }y. By
Lemma 3.2, T,ly<>x, where x us derived above as a boolean combination
Bo, ..., B.. Clearly then (Z;41, Q. c+1)* Fx. Notice (T, Q. ,)* ¥ x for if otherwise
as Fx—y (by construction), it would follow that y € (T;, Q. )*, contradiction to
R, requiring attention. That is, each time R, requires attention after stage ¢, we
must choose a new boolean combination of By, . . . , B, of which there are only 2%
such. Notice it is immediate that all the R, are met. O
r

A moment’s thought reveals that if 7T =(P, Pj; i€eA,jeB)* is constructed
using the above construction, then A U B is effectively simple, that is, there is a
recursive function f such that if w, N (A UB) =@, then card(w,) <f(e). Thus we
have,

Corollary 3.4. There exists a Martin~Pour-El theory T with T=,0".

Proof. It is well known (see e.g. [19]) that effectively simple sets are complete.
Notice that if T is well generated, then T=1A U B as follows: given x, put x into
conjuctive normal form, namely x = /\;¢c X; say where x; = \/;;, €,F. Then

xeToVieFdjel((jeAifgB=P)or(jeBifg=E)). O

We shall continue to implicitly use T=¢ A U B henceforth. The sets A, B form
a pair of recursively inseparable sets of a special type and we say r.e. sets A, B-
are a maximal pair if AN B =4, card(w — (AU B))=o and if C and D are r.e.
disjoint sets with C> A and D o B, then card(C — A) < and card(D — A) < .
It would seem reasonable to conjecture that if T is generated by a maximal pair,
then T is at least weakly Martin—Pour-El. The next pair of results show that this
is not the case. One interpretation of this is that ‘maximality’ in the well
generated theories does not imply the same in the general theories. According to
[14] the following result for Martin—Pour-El theories was discovered by A. Boxer
{unpublished).

Theorem 3.5. If T=(P, F,-IieA, jeB)Y* is a weakly Martin—Pour-El. r.e.
theory, then AU B is hypersimple.
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" Proof. Suppose AU B is not hypersimple. Then there exists an infinite recursive
sequence of pairwise disjoint finite sets {D,},c, such that Vr (D, N (A U B) #).
LetE,=D,,UD,,.,. Then

vn (card( ((A UB)U Lg E, )) = 2).
We shall define G =, G; in stages, such that G o T and G # *T. At each stage
Sy Xe=\/ie g P is put into G;,;— G,. We ensure that some y, = lim, Yes 15 in G
such that y, = \/;.r, P, where F,c E,, and card F, =2 and Ym (E, N[(AUB)U
Unzm F,] =8) from which it will follow that G#*T. We build F, =1, F , in
stages.

We say that e requires attention at stage s -+ 1 if 3j e E, such that P, occurs in y, ,
and j € A; U B,. (We tacitly assume T, = (B, P lieA,, je B)*

Construction ¢

Stage 0. Set Gy =0 and define ye o=x, all e € w.

Stage s + 1. Step 1. If no e <s requires attention défine for all § < s, I;s =Y, and
K, =F, and finally M, = G;, and go to Step 3.

Step 2. If e requires attention with e least, find the least j =j, in F, ; such that P
occurs in y., and j € (A; U B;). (By induction we assume y,, = Vier, B). Now
define

res='\F/ Pi: Ke.s=};¢‘z.s—{js} and Ms=Gsu{re,s}-
1€,
[EJA
Now for i <s and i # ¢ define r,; = y;, and K, = F,.
Step 3. Finally, set fori<s,

K;s fori<s,
E. fori=s,

{r,-,s for i <s,
1= .
Vit x, fori=s,

E:',S+1 = {

Gi=(M,UT,U{x,})*. O End of Construction

Notice that at stage s + 1 either T,  Fy, 41, ; as 13,-, € ;.1 — T, (our action is
essentially irrelevant), or some F, occurring in y,, which might be forcing
T;41F Y, i1s removed. By construction card("), F. ;) =2, i.e., e requires attention
at most card(E, — 2) times, and it is easy to see the G we form is generated by

{RlieAyU{P|jeB}U U{\/P,}
eew \ieF,
where, for all e, F,N(AUBU .. F)=0. Consequently it follows that G #*T
and resuit follows. O

This result yields
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Corollary 3.6. Suppose 6 #0 is any nonzero r.e. degree. There exists an r.e.
theory T=(P, P;|i €A, je B)* such that A, B is a maximal pair and T is not
weakly Martin—Pour-El and T has degree 6.

Proof. By [1] or [5] an r.e. set C possesses a decomposition into an r.e. maximal
pair if and only if C is simple. Let C be a simple set of degree & which is not
hypersimple and let A, B be the resulting decomposition. By 3.5, A U B ought to
be hypersimple if T = (7, E| i€ A,je B)* were weakly Martin—Pour-El. [

Theorem 3.5 suggests that if T is Martin—Pour-El, perhaps AU B is (say)
maximal, or hyperhypersimple, etc. The following resuit is therefore interesting
from two points of view: first it shows that this is not the case, second it is
interesting since later we show there is an r.e. degree not bounding an r.e. degree
containing a Martin—Pour-El theory. .

Theorem 3.7. There exists an r.e. Martin—Pour-El theory such that T has low
degree (that is T' =1 0).

Remark 3.8. Consequently, by Martin’s theorem [13] AU B (for this theory) is
not maximal, nor dense-, super-, hyperhyper-simple or any class containing only
members of high r.e. degrees. This result may be proved by direct modification of
the standard ‘lowness’ finite injury argument according to, say, Soare [20] {cf. [2]
for details). Basically putting C; = A; U B; we define a restraint r(e, s) such that
r(e,s) =0 if @, .(C;;e)] and rle, s) =ule, C, s, e) if @,,(C,;e)|. Now define
R(e, s) = max{e, r(i, s) | i <e} and if R, as before requires attention we put &35, ,
into T,,,—7; for i>R(e,5). A simultaneous induction based on the usual
argument shows that lim, r(e, s) = r(e) exists, after all the R; for j <e are met,
and then R;,, requires attention at most 2* " more times.

We may sharpen this result as follows using the Jockusch~Shore pseudo-jump -
technique [12].

Theorem 3.9. Let n be given. There exists an r.e. Martin—Pour-El theory T such
that T@ WE=10' where T ® WX denotes (2x [x e T} U{2x +1|x e WI}.

Remark 3.10. ‘And so choosing an index » such that for all B, W2 =1 B’, we
may deduce the first result.

Proof. We again define C,=A;UB; and show CO WS =K where K=
{(x,y)|x € W,}. We retain the notation and terminology of Theorem 3.1 with
the following changes. We must preserve computations showing e e WE. Define
r(e, s) to be the use function for computing e e W, if e e W, and r(e, §)=0
otherwise. Now define R(e, s) = max{e, r(i, s) | i <e} Define L{e, s, y)=
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' {é,-Bi,s | &:B,s occurs in y and i > R(e, s}}. We introduce markers on the natural
numbers for convenience (in encoding K).

Construction

Stage 0. As in 3.1, and declare all m € @ unmarked.

Stage s + 1. Define L = L(e, s, y) if e <s and R, requires attention via y, define
L =@ if for no e <s, R, requires attention. For 0=<m <y find the least unmarked
number m, with m € K, mark it, and define:

T.UL "if no such m exists,
Tooy=9 TULU{B,} if By,€L, and m exists,
T.ULU{B,,} otherwise,

where k=R(m,s)+ 1. Finally set Q.;.1=0.,U{y} if Lle,s,y)¥9 and
Qi 41=0; fori#e If L=6, set Q.1 =Q,.,. 0O End of Construction

As in 3.2 if y is acted on at stage s+1, then there exists x, a boolean
combination of By, . .., Bge,),s such that T, . by < x.

Lemma 3.11. lim, R(e, s) = R(e) exists, all the R, are finite, all the R, are met, and
lims BI',S - Bi exiS‘tS.

Proof. By induction, go to a stage ¢ where for all s =¢, r(i, s) = r(i) for i <e, and
all the P, for j <e have stopped requiring attention (and so Q;, = O,). Moreover,
by induction we may suppose that any number <, to be marked at any stage has
been by stage t. Now if e ¢ WE, for any s =¢, then r(e, s) = 0. If there exists ' =¢
such that ee WS, (¢ least) then r(e, s)=r(e, t') for all s>¢' since we are
protecting these computations. In any case lim, R(e, s) = R(e) exists. Go to stage
t'=t where Vs>t (R(e,s)=R(e, t')). Now R, can require attention at most
22" more times. 0

Lemma 3.12. TO W] =K.

Proof. As lim, r(e, s) = r(e) exists, the limit lemma ensures that W <1 K: using
the K-oracle find a stage ¢ where r(i, s) for i < e has reached its final value, now
see if r(i, s) =0. :

Conversely suppose we are given a C- and a W¢-oracle. Let m € @, and
suppose we can compute a stage ¢ where, for all e <m, for all >t (r(e, s) =
r(e, t)). Via the C-oracle we may then compute a stage ¢’ where for all e <m and
all j<R(e,s)+1, B,,=B, for all s>¢. Now if the current computation
concerning (m € WE?) is later destroyed, it is because W, later changes through
its current use function. We may find a stage v via this oracle and the C-oracle
where the computations computing m e W,? are permanent, and via the
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C-oracle, where for all i<R(e, v)+1, for all s=v, B, =B;,. Now R(e, v) =
R(e). And moreover, me K<>m €K, since, if Is>v (me K, —K,), then the
construction endures that 3s, = s (Breys1,s, € Csr1— G). O

In view of the results of Jockusch and Shore [10] this gives

Theorem 3.12. Let n € w. There exist r.e. Martin—Pour-El theories T, T, with
deg(T)) in low,,, — low, and deg(T}) in high, ., — high,,.

4. Degrees

The main result of this section is to produce an r.e. nonzero degree which
bounds no r.e. Martin—Pour-El theory. This is somewhat surprising in view of the
fact that we show they exist in low and high r.e. degrees, and also because of the
following theorem. -

Theorem 4.1. Let D be any r.e. nonrecursive set There exists a weakly
Martin—Pour-El theory T with' T= D. :

Proof. We build T ={_J, 7, and retain the notation of Theorem 3.1. Let fbea
1-1 recursive function enumerating D. To ensure T=;D we code, that is, we
ensure £Bg € I;.1 — T; some & To ensure T< TD we permit on the index of
the complement. We introduce therefore,

n(e, s, y) = {the least m > e such that £, B3, occurs in y, if one exists,
i 1, otherwise.

Our requirements are
R;: W,oT—-W,=*T,
N,: lim B, ; = B, exists.
5

We say R, requires attention at stage s + 1 via y if y is least for the least e such that
y € We,s+1 and }’ ¢ (I;’ Qe,s)* and n(e) §, y) Bf(S).

Construction
Stage s + 1. If no R, requires attention, set T,.,=(T,, Bgsy,9)*. If R, requires
attention via y define

(T;, L(e, 5, y))* if By, € L(e, 5, ¥),

L= .
‘+1 (T, Le, 5, ¥), Byeys)*, otherwise.

Define Q.s+1= Q.U {y}. 0 End of Construction
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As before, if y is acted on at stage s + 1, there exists z, a boolean combination
of By, ..., B, such that T, ., }y <> z. Consequently, lim, B, ; = B, exists, since
R, can receive attention at most finitely often. It remains to show that all the R,
are met and that T=;D. This follows from the following lemma which was
proved jointly with Jeff Remmel. (In the original version of this paper, there was
an error in the proof of this lemma.} :

Lemma 4.2 (with Remmel). Suppose N=(P, P:icA, jeB)* is any well
generated consistent theory, and {B,, By, ...} lzst in order {P:i¢ AU B}.
Suppose W is any consistent theory with W o N and W% N. Then for any n there
exists x € W, with x = \/;cr &:B; and m € F implies m > n.

Remark. An equivalent form of this lemma is: Let »n be given and suppose W is
any consistent theory with W=* {1}, then there exists x ¢ W with x = \/, .z &,B
and forallie F, i >n.
r

Proof of 4.2. Suppose the hypotheses are satisfied. Then for each ze W — N we
have

Nl—z<—>\/ &B; v \/ gBi=xvY withx#0.
There are at most 2% choices for x, thus x € {x,, .. ., x,,} say. Consequently we
have that W is a consistent extension of N such that for all z € W — N we have

Ntrzex, vy withx;#0,

where x; = ;<. £B; and y = \/,.., £;B;, We need to show W=* N, We prove this
by induction on m (but independent of n). Without loss, we assume that for all ¢,
i, eB;¢ W (otherwise add €B; to N, etc). Now if m =1, then W (W, x,)*.
Assume the result for m <k, and consider m =k + 1. Define i to be bad if there
exist j, k with x; = B; and x, = B;. There are two cases.

Case 1: 3i(i<n &1 is not bad). Without loss suppose i =1 and B; occurs in %;
implies that for some ¢ =t(f), &B, occurs in x; with t <» and ¢t+#1.

Subcase (i): Ap (B, occurs in x,). In this subcase, define W' = (W, B))*.
Notice that 0 ¢ (W, B,)*, for if 0 € (W, By)*, then 0=B; A y for some y € W, and
so0 By=B;vy implying B,eW, contradiction. Define N'=(N, B))*. Let
{*1, . . ., x,} list those x; not containing B, (notice £ < k). Now let x; be the result
of deleting all occurrences of B, from x;. Notice that as 1 is not bad, for all i with
1=<i=<t, x; #0. Now we see that W’ is a consistent extension of N' such that for
allze W' —N',

N'lzex;vy withx;#0.

Now we apply the induc_:tion hypothesis to W', N' since t < k.
Subcase (ii): Vp (B, does not occur in x,). This subcase is easy. Define
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W' = (W, B)* and N' = (N, B;), and apply the induction hypothesis to W', N !
and {x,, ..., x,} where x,, ..., x, list those x; not containing occurrences of B;.

Case 2: Alli<n are bad. In particular, for (w.l.o.g.) i =1 we have x; =B, and
x,= B,. Now fix y where

y=B,v \V&B;=B V.
i>n
Let g € W — N be such that 1 is bad for g, namely, if £B; occurs in q and i <n,
then i =1 and &B;=B,. Then

Nl'qe.él v \/SiBi=Bl v ‘h-
i=>n

It follows that

yag=(BLvy)na (B, v q1)
=(B A B)v(BiAg)V (Biayyv A ‘1’1)
—(BI/\%)V(BIA_J’I)V(}H/\%) P
=nvgonrl-]
implying y, v g€ W. It follows that y;vg,=1 since if y,vg;¥1, we see
Y1V g1=\i>n &B; by construction, contradicting the hypotheses of the lemma.

-Thus for all g€ W — N, if 1 is bad for g, then ¢ = B, vq;and y, v ¢, =1. Thus

for all ¢, if 1 is bad for g, then for some i>n with gB; in y;, we have sB
occurring in g;. Let

W'=(W, By, £;:B;: &,B; occurs in y; & i # 1),
and L
N'=(N, gB;, B,:&B; occurs in y; & i #1)*.

We claim W' is consistent. Suppose 0 e W’. Then 0= B, A /Ni>n €:B; A x for some
x € W. This means By vV \Visn &B; =B, v Vi~ &:B; v x € W. But recall that y e W
where y = B, v y1= B, Vv i, &B;. It follows that \/;..,, £B; € W, a contradiction.
Thus 0¢ W'. Let {x;,...,x} denote those x; not containing B, nor £B; as
above, and let x{ denote the result of deleting B, from x;. Then W' is a consistent
extension of N' such that for all z € W' — N’ we have N' -z <>x; v p where x; #0
with x,€{%s,...,%). (Notice that x{#0 since if x; contains B, and x; €
{x2, .., X:} then 1 is not bad for x;.) Applying the induction hypothesis to W’,
N’ and {x,, ..., x,} will conclude the proof of 4.2. O

In view of this result, if we wish to produce an r.e. degree free of
Martin—Pour-El theories, we must at least have a technique which produces a
weakly Martin—-Pour-El theory which is not Martin—Pour-El in some r.e. degree.
As the next result actually improves on this, and gives the basic strategy for one
negative requirement in the subsequent theorem, we give the result in ‘some
detail.
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Theorem 4.3. Suppose d is any nonzero r.e. degree. Then & contains an r.e.
weakly Martin—Pour-El theory T which is not Martin—Pour-El

Proof. We suppress the degree requirements (which are not serious obstacles
and are met by permitting and coding) until the end of the theorem, as we feel
they will interfere with the exposition of the basic strategy. To ensure T is weakly
Martin—Pour-El we meet '

R.: W,o Timplies W,=*T.

To ensure T is not Martin—Pouf~El, we must produce an r.e. theory M with
0#M, M > T and M not principal over T. To this end, we define an ordering «
of the elements in \/ &P, form via

1#)V &P <V &P, (#1)
ial jer 2
if for all i e I there exists j € J such that ¢,P; = ¢F,. Notice y «<x if and only if
Fy—>x. The idea is to produce an infinite collectionl {z(e) | e € w} of elements of
the form \/ &P such that M =(T, z{e)|eec w)*}0 and for all k, z(k)¢
(T, z(e) | e # k)*, and moreover, for all y < z(e), y #z(e), y ¢ M. We must be
careful with the interaction of the construction of the z(e)’s and the satisfaction of
the R,. We construct z(e) = lim, z(e, s). We must be careful that although we can
satisfy the R; we cannot too seriously injure work we’ve done in constructing
z(e, 5), say. The point is that suppose we choose z(e} = F,, then we cannot ever
add P, to T for then M}0. This has a serious effect on the R; for j <k, i.e.,
higher priorities are affected by lower ones. (This type of action in fact is trying to
stop T from being weakly Martin-Pour-El.)
Our solution is to link the z(e)’s together, so that at the end of the
construction, the z(e) will appear as '

Z(O)=80V81V82(=d3VdgVdg),
z(D)=govg1Ves Vg (=divdivdivd}),
z(Q)=govg1veEsvesVves(=divdivdivdivd),

where the z(i) are ‘linked’ by (go, g1, &3, - - -), where each g; is a P, for some j
(g: # g:)- This idea allows us to never add 0 to M through our efforts to satisfy
the R,. We must satisfy

N,: There exists z(e) as described previously, where lim, z(e, s) = z(e).
Initially all the z(e) are undefined. At each stage s we ensure that

2(0,5), ..., z(t, 5) are defined, where t— o as s— . The ranking is

No, RO; Nl; Rl’ e
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Notice that N, is never injured provided our protection is satisfactory. We say
that R, requires attention at stage s +1 if

(i) dei3” is defined,

(il) 0 $ (m,si I;)*:

(iii) there exists y € W, such that if g(y) =min{¢P, | &P, occurs in y}, then
gly)>diiz’,

(iv) for some setJ, y = ;s &B;,,

(v) eis least, with respect to (i), (ii), (iii) & (iv).
We say that R, requires attention-via y, in this case. (We presuppose an ordering
of the P’s with P, P.:<min{P,1, ,+1} )

For technical reasons, we employ a sequence ty , <?; ; <- - - of elements ‘yet to
be involved’, formally ¢ , is the i + 1-th P, with P, P. ¢ T, and P, # d" ¢ for any j, k,
or t<s (where defined). We say N, requires attention if z(e, s) is currently
undefined. .

Construction

Stage 0. Set Ty=4, d3°=P,, d}°=P,, and d3°=PF,, and so z(0,0)=F,v P, v
P,. Now define ¢o=P;,; for all i € .

Stage s + 1. If no N, nor R, for e=s requires attention we may suppose N,
requires attention. Thus either N, requires attention for e <s +1 or R, requires
attention for f <s. If N, requires attention (with e =f + 1, as e #0) define

z(l, s +1)=2(0,s) fori<sf
and
zle, s+ Dy=di*v---vdii vig, v,

and so dP* ' =df* fori<e, dii}  =to, and d2{3 = t, . Now set t; ; = ;. ; for all
i € w. Declare as undefined all the z(i, s + 1) for i > e. If R, requires attention via
y, define

L=L{e,s,y)={&P.| &P, occurs in y}.

(Notice that as y = \/ &Bj; 0¢ (T;, L)*.) Define T..,=(T,, L)*.
We now perform a recovery step which forces all the z(j, s) for j >e into T,,,.
Our strategy has protected d513* which, by induction occurs in all the z(j, s) for

>e (i.e., di5,=det3). So the recovery step is to set
J y step

e+1 s *
s+1 = (Ts+1) e+2

Notice (again, by induction) this has no effect on the z(i, 5) for i <e. We may
now generate a 4, list by deleting from the current f;; list all the #;, = £F; such
that eP, e T, — T;, giving, say t,,<---<f,,<---. Now finally declare all the
z(j, s) for j > e undefined, and go to stage s +2. U End of Construction

The reader may check that once we reach a stage s where for all s=¢,
2(j, s)=z(j, )y =z()), ] <e, then all the P, for j <e are met. Now wait till a stage
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s >t occurs where z(e + 1, 5) is defined. Now the action (waiting for y e W, ; and
putting 7 € T, ) of the R, ensures that R, requires attention at most once, that is,
z(e + 1, 5) once defined can become undefined at most once more. Therefore all |
the N, are met for M will be, by induction, as described in the original
specifications. Finally all the R, are met by Lemma 4.2: Once a stage ¢ occurs
such that Vs>t (z{e+1,s) is defined), z(e +1,)=z(e+1). It follows that
JzeW,(z=V\/ gB; such that gB;>dsiy"). However letting F={i|&B;<
del?), then Fis finite, and so every element of W, not in T is equivalent to one
of the form

y= \/ &B; v _\/8:‘Bi;
ieF’ i¢F
i.e., where F' c F and F’' #@, and under these conditions, 4.2 says that W,=*T.

We now conclude the proof by giving some remarks concerning how one may
introduce the degree-theoretic restrictions. As we femarked earlier, we shall
achieve this using standard permitting and coding. We feel that it is completely
clear that, if one permits on indices, the result will §till hold, viz: put ¢;B; ; only if
(i) B,;>d}* as before and (ii) all the i for &B;, in x are =f(s) where f is some
desired recursive function.

However, coding some set f(w) into T is a little less straightforward, in the
sense that it will really injure our N, strategy. We actually encode B35 Or
eB%¢¢)+6,s iNt0o Toyq — T, and perform a recovery step after each encoding. Thus
we define

z(0,0)=PFv---vP=Byv---vBy

so that
z(1,8)=Byv---vByv Bs ;v B .

Now the requirement R, is the only positive one to affect z(1, 5), and the worst it
can do is add eB;; to T,, — T}, and we then recover by adding Bs ; to T, so that
all the z(i, s) for i > 1 are annihilated at this stage. Now thereafter one can check
that for some s’ >s

z(1,8Y=Byv v By3vbs, v Bg.

Now at worst the coding requirement asks us to add one of £Bs ;- or &8s to
T.+1— T;. By selecting this to be £B;,. we may proceed as before, in the sense
that this action is precisely as if it were attacked by an R;. Similarly one can
check (by induction) that if z(e, s} is defined, then

z(e,8)=Byv:-vBvBs,vB;,v:---vB
) 0 3 5, 7.5 2e+4-3,5

and our above comments apply to z{e, s) as they did to z(1, s). (Notice here the
recovery step is required for the above configuration for z(e, s). Without this, as
in the next construction, it is unclear how one may ‘force degrees upward’.) The
reader may check that the above remarks indeed give the desired result. 0O
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We are now in a position to show:

Theorem 4.4. If 8 #0 is any r.e. degree, then there exists an r.e. degree 6,#0 -
below & which bounds no r.e. Martin—Pour-El theory.

Proof. We construct an r.e. set D =, D, in stages. For technical convenience,
we shall delete the requirement that we construct D below a given r.e. degree.
This is obtained in the obvious way via standard permitting, and really in no way
interferes with the construction. We first must ensure that I} is nonrecursive.
Recalling that w. is the e-th r.e. set, we satisfy

R,: D#w.,.

Our negative requirements will be similar to those of the previous theorem in
some sense.

N: If @,(D)=A.UB. and card(w — (A, UB))=w, then (P,FB|icA,,
j € B.y* is not Martin-Pour-EL ‘

¥

(Where (®,, A,, B,) is an enumeration of the triples of oracles, and disjoint r.e.
sets.) :
We satisfy these as

N If &,(D)=A,UB, and card(w — (A, UB,))=c, then there exists a
collection z(e) =lim, z(e, s) which have the same properties relative to D
as did the z(e) in Theorem 4.3.

Let us first consider the interaction of one N, with the satisfaction of the R,. In
Theorem 4.3 we built the z(e) as z(0, s), . . ., z(k, s) where k— . Each z(i, s)
was of the form v(i,s) vm vn where z(i ~1,s) was of the form v(i,s)vg
and g #m. We ensured that we did not allow the v(i, s) to be forced into T due
to the action of any R; for j > e.. In some sense we could use the same strategy
here since once the length of agreement between @, (D)=A, U B, reaches a .
certain length such that a number of elements are excluded from A, U B,, we can
keep those elements out of A, U B, forever by restraining D on the use function
associated with the computation. That is, we wait until, say,

P, (D, x)=(A, UB,)[x] forallx=<lI(e,s)

(where (e, 5) is the current length of agreement, and the computation has used
u), such that for P,# PB,#F;, {P, B, B} N(A.,UB,;)=0 and P, <l(e, 5). We
now define z(0, s) = P, v P, v P; and refrain from enumerating any new elements
into D below u. Later, we might get new elements F,, P not in (A, UB, )
when the length of agreement I’ rises so that I’ >max{P,, ..., Ps}. We can then
define z(1,s')=P,v P v P,v P and restrain on the use of @, .(D,,x)=
(Aes U B, s)[x] for x<I'. In this way we might permanently define our sequence
z(0), z(1), ...

The first problem is that we must spread out the defining of the various z(e)’s
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so they may interact with the R;. This is solved essentially by the technique of 4.3,
we replace N, by

Ny If .(D)=A,UB, and card(w — (A, U B,)) =, then for all i<k,-
lim, z({e, i}, 5) = z({e, i)} exists with the desired properties.

We assume, given e, that (e, -) is monotone increasing in the second variable for
a fixed first variable. .

The second problem is that we can no longer perform the recovery step of the
previous result. A moment’s thought reveals however that this is not really
necessary, provided we retain any protection we previously imposed, in the sense
that this will give us a larger list, say

{z(e)} U{g(e)}.

"The third problem comes about because we are dealing with many N,’s. This is
more serious since between N, .y and N (. r+2y there may be many R; each of
which might injure our current candidate for z(e, s). Indeed it is clear that N (e,0)
might be fatally injured by the R, for j < (e, n). This is overcome by starting our
definition of the z({e, 0}, 5) over again, and a finite injury argument eventually
reveals that z({e, 0)) will become permanently defined. The real obstacle is that
between N .y and N ...y there are many R;, and yet we cannot keep
redefining z({e, i), s) for i <k, to keep all the linkages intact. The idea is now to
take (say) z({e, 0}, s)=P v P v ---v P, where t>({e, 1) — (e, 0)) +4. In this
way, whenever N, ,, is injured, we shall be able to pick, at some future stage,
another set {P;, ..., P;} and thus after no injuries,

z((_e,1),s)=P1vP2v---VP,_lvpitv'...vp_

l‘('
But, .
z({e, 1),s)=P1vav---vP_._sz,f,v---vP,ff

after the first injury, etc. This idea will show that after N (e,1y 18 maximally
injured, i.e. at most t—4 times, then z({¢, 1), s) =P, v Bv Psv P v --v P;
and now no element <« z({e, 1), s) may enter 4, U B,. :

For technical convenience for each e it will be useful to generate the set
{Bis|i€w}=M, where if Bj, =P, iff i ¢ A,, U B,,. Define a function g(e, k) =
({e,k+1) — (e, k))+4. We define a list a;,={xecw]x¢D,}. We actually
make D simple and we ensure lim, a;, = a; exists. At each stage we generate
certain restraints r(e, s) and define R(e, 5) = max,, {r(i,s), » .}. We say R,
requires attention via x if x is least such that xew,, ar.. .>R(e,5) and
w.,s N D, =@ (where e is least).

In the construction to follow we shall employ certain technical devices,
hopefully to simplify notation

(i, 5) = the critical part of z(i, 5),
Y(i, 5) = the set of rejected z(i, s).
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If z(i, s) is defined, then it will always be the case that v(i, s) is defined. We
define v(—1,s5)=0. We say N; is injured if R; for i <j requires attention. If
N;=N(.xy and R; requires attention for i < (e, 0) we say N; is fatally injured.
Finally we say N (e,}c) requires attention at stage s +1 if z((e, k), s) is undefined,
Nier-1y is unsatisfied, and there exist a set J of B, such that J=
{BJ10 s+ o2 Biens) (.e., card(J)>gl(e, k)) and if i =max{i | P, = B}, for some
Jix €J}, then the current length of agreement I(e, s) of the computation

@, (D;; x) = (A.; U B, )(x)

is greater than i (that is Vy <i, +1 (D, ,(D;; y) = (4., U B, ;)(y)). We say that
N (..ry requires attention via J =J({e, k), s).

Finally for all i=1, v(i, s) will be of the form P, v B, v ---v F,, say, with
P, <---<P,. We ensure that card(iy, . .., i,)>3 at any stage, and define the
next v(i, s) to be the element n(i, s) where v(i, s)=n{i,s) v P, ie., n(i,s)=
P,v---v P . The element P{i,s)=F, will be called the difference between
v(i, §) and n(i, s).

Construction
Stage 0. Set Do=0 and r(i, 0) =0 for all i € w, and ﬁnally define a; =0 for all
iew.
Stage s + 1. If no R,, or N, for e<<s requires attention, go to stage s +2. If R,
requires attention via x set D;,; = D, U {x}. Now for all i >e¢, declare z(i, s + 1)
as being undefined. For all i > e, if N; is fatally injured declare Y(i, s) = and
v(i, s) as undefined if i # (k, 0) and v({k, 0),s)=0 all k, and finally declare
n(i, s) as undefined. If N, is not fatally injured and v(i, s) is currently defined,
there are two cases.

Case 1. If z(i,s) is currently defined, define v(i,s+1)=n(i,s) and set
Y(i,s+1)=Y(@ s)U {z(, 5)}.

Case 2. If z(i, s) is undefined, define v(i, s +1)=v(i, s) and set Y({,s +1) =
Y(i, s). '

Find the least i such that a;; =x and set g;,.1 =a;, for j<iand a; ;.1 =a;44, §
for j=i. Now go to stage s +2, declaring all injured N, as unsatisfied at stage
5 + 1, and maintaining all current restraints.

If Nk requires attention, and again is of highest priority, and it requires
attention via J =J({e, k), ), we define

z{{e, k), s)=v(,s)vP,v---VvP;

Whel'e {Pio’ c ey ,g(z k)} J { Jo,52 v v
be

Tg(e,k)

}. Now define v((e k+1) 5), to

Js(e k)i ¥

v({e, k+1),8)=v(,s)vB, v - v I SN
and so _
n({e,k+1),s)=v(,s) vh,v---VvP

Ege,k)-2"
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Declare N ., as currently satisfied. Notice that this aspect of the construction

ensures that v(i, s) is defined before N; can require attention. (Recall here that

v({e, 0), s) =0 always.) In this way we always come up with a linked system.
Finally raise the restraint r({e, k), 5) to be

r({e, k), s +1) =1+ max{R({e, k), s), u}

where R({e, k), s)=max{e, r(i,s) |i=<{e, k)} and u is the use function of the
computation

®, (Dy; x)= (A, UB,)(x) through length I(e, s).

Now for all i< {e, k) define r(i,s +1)=r(i,s) and for all > (e,. k) define
r(i, s + 1) =max{r({e, k), s + 1), R(i, s)} 0O End of Construction

The reader may easily establish by induction that for all e € w, for all %,
() If ¢, (D)=A,UB, and card(w — (4, U B,)) =%, then

(a) z({e, 0}, s) becomes defined at some stage s after which it is not fatally
injured (so that all the R; for j < (e, 0) have stopped requiring attention),

(b) once z({e, i}, s) is defined, and never injured thereafter, v({e, i + 1), 5) is
henceforth defined, and it can be injured at most g(e, 4) times, and so if
&, (D)=A.,UB, and card(w —(A,UB,)) =, there exists a stage ¢t where
z({e,i+1),t) becomes permanently defined, z({e,i+1),)=2z({e,i+1),s)
for all s>t¢, and card(v(e, i+ 1), f)=card(v(e, i))+2 (with the obvious
meaning).

i) If &.(D)+#A,UB, or card(w — (A, U B,)) <=, they cease to matter at
some stage.

(iii) lim, R(e, s) = R(e) exists and is finite.

(iv) All the R; are met (and require attention at most once).

(v) lim, a, ; = a; exists.

Finally notice that once z({e, 0), s) becomes permanently defined, say at stage
t, we may consider Y =, Y(i, 5). This is r.e., and for all s >¢, Y(i, s) #0. We
must note that if z({e, i))=1lim, z({e, i), s), and if ®.(D)=A.,UB, and if
card(w — (A, U B,)) =, then (A. UB.UY U {z({e, i)) | i € @})* is not principal
over (A,UB,)* since one an show by induction that for all g <«z(e, i),
g<z(e,i)¢(A,, B., Y, z({e, j})|j #i)*, and from this the result follows. [

In view of the above, the classification of the degrees containing Martin—Pour-
El theories becomes very interesting, especially in view of the fact that there exist
such theories in low degrees. The next result shows how to combine the basic
construction with an infinite injury argument, and also extends our lattice
development. We have:

Theorem 4.5. Let @<y D <1@'. There exists an r.e. Martin-Pour-El theory
T=(P, PlicA,jeB)* with AUB a maximal set and D %, T.
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Proof. Again, we build T=J, T,, and C=\J,C, where C,=A,UB,. Our
requirements are that C is maximal, R, as before and

N,;: @, (C)#D.

We assume D = lim, D, with D; finite is given by the limit lemma. If F is a finite
well generated theory, define G(F) = {i € | D; or D, € F}, the content set. In this
construction we must be very careful that the infinite injury aspect (that is,
maximalizing e-states, yet keeping @.(C)# D) does not interfere too seriously
with the R,, which boils down to interfering with the Q,,. Roughly speaking,
y € Q. , must be allowed to contribute £B{ at many stages. For an element of the
form x = P, define the e-state of x at stage s + 1 to be by - - b,, a finite sequence
of 0’s and 1’s such that

b _{1 ifiew,,and k <e,
o otherwise,

*

for 0=k =<e. For completencss we review the definitions given in Soare [20].
Define a, = px [x € C,5y — C] if Co1y — C, #8, and a,+~ max(C, U {s}) otherwise.
We define @e,,(C,, x) to be the same as @, (C,, x) provided that the use function
of this computation is <a, and declare d\ie,s(Cs, x) undefined otherwise. Notice
that at a frue stage s, namely where C, [, = C|[,,, any apparent computation is a
permanent computation. Let TS=ithe set of true stages. Define (e, s)=
max{x:Vy <x (D(x) = 8,(C,, )} and ri(e, s) =max{x:u<s (x <, )
and  Vy <s (A [ueyco = Av [u, 5, qv))} Finally the restraint (e, 5) =
max{u(e, x, G, s):x <rii(e,s)}. The injury set is L =\J, L, where L =
{x|Fv<s@x=<Fle,v)andx e Cq1— C}.
We introduce a recursive function as follows.

1 ifxeW,, and B, occurs in x
g(e’ 3, x) = for G(E,-B,-,_,) >max{G(Be,s)’ F(y: S) ]y = 6},
—~1 otherwise.

We say R, requires attention at stage s + 1 via y if
(i) Either (a) y e Q. ; and g{e, s, y)=1or(b) ye W, 4y andy € (1‘;, Q..)%,
(11) 0¢ (rn ufes) , and
(iii) e is least.
. Let E be a finite subset of W,. We say x is W,-least for E if x € E and

Vge(E—-{x}) Vicw (qeW,,—>xeW,))

(we may assume card(W,,.;— W,,)<1). We have requirements {M,} which
assert that C is maximal. We say M, requires attention at stage s-+1 if
Tk € Upe; Wi 541 such that k =e and there exists ¢ €| i<, Wgo41 Such that g >k
and

(i) B, isin a higher e-state than By, at stage's + 1,

(ii) G(By,)>max{e, ?(x,s)|x =s)}.
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Construction

Stage s + 1. For simplicity we adopt the following ‘computer science’ convention:
“X<«<—WUY” means we are renaming the set XU Y by X. In the construction
the set 7; is renamed a (finite) number of times. Each time it is renamed, it "
generates a new collection of {B;,} (where, recall, the B, list in order
{P,| B, P, ¢ T.}). This could be avoidéd by extra subscripts and a more complex
definition for M, to require attention. We also adopt a ‘subroutine’ convention
(substage 2) for a ‘condition controlled loop’.

Substage 1. If no R, requires attention for e <s set T; =T, and go to substage 2.
If R, requires attention let y be W, lest for {x € W, ., | R, requires attention via
x}. Define

L(e, s, y)={&B,,| &B,;, occurs in y, i >e, and
G(&:B;,) > max{e, F(x, s) | x =e}}.

Now define T, =(T;, L(e, s, y))* and set

Qe.s fye@.,,
Qesu{y} ify¢Qe,.n ’

and go to substage 2.
Substage 2 (Begin subroutme)

Case 1: Subcase (a). If T, = T; and no M; for f<s requires attention, set
T.,1 =T, and go to stage s + 2.

Subcase (b). If T; & T, and no M; for f<s requires attention, set T,,,; =T,

and go to stage s + 2.

Case 2: Subcase (a). If T, T and f <s is least such that M, requires attention,
find the least (g, k) for f and define

T,«(T, {B;, | k<j<q &B;¢{B;.| B, or B,,e T}})".

Y

Qess1= {

Generate a new set {B; | i <s} with this T}, and go to begin substage 2.
Subcase (b). If T,  T; and f <s is least such that M; requires attention, ﬁrst
find (g, k) least for f and put

B |k=j<qg)*

Generate a new set {B;, | i <s} and go to begin substage 2.
Set T=J, T;and Q. =, Q... 0O End of Construction

Basically, we maximize all the e-states (for e <s) we possibly can at stage s + 1,
because there are only finitely many e-states, and the ordering of the e-states
ensures that case 2 of substage 2 can be applied at most finitely often, after which
we apply case 1 and go to stage s + 2.

We now assume the injury lemma: (Soare [20]) i G £ 1., then D# & (C) and
the window lemma: (Soare [20]) If D # &,(C), then for all i <e, 11m,eTS R(e <
o where' R(i, s) = max{r(i, s) | i <e} and so for all i<e, lim inf, Roe, t) <o, We
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finally need

Lemma 4.6. For all e, I, is recursive, R, requires attention at most finitely often,
all the M, and N, are met, and all the R, are met.

Proof. By simultaneous induction, suppose I recursive. Then D # @,(C) by the
injury lemma, and so lim inf R(e, s) = R(e) exists by the window lemma. Now at
some true stage ¢, Vs>t (R(e, s)=R(e)=R(e, 1)) and V¢’ e TS (t' >¢ implies
R(i, t)Y=R(,t) for all i<e). At-some true stage ¢'>¢ we thus know Vs>
t' (B,,=B,) for all z=<R(e).

The {R;:g < e} can require attention at most finitely often thereafter, precisely
as before since each time we must pick a new boolean combination of a subset of
By,...,B R(;), and since whenever x € Q,, at some stage s>¢', a simple
induction (by the definition of W,-least, and requiring attention) ensures that at
some frue stage t” = s, R, requires attention vig x, and i§ so trimmed, as usual, to
a boolean combination of By, . . ., Bs, and so requires attention finitely often.
The reader is asked to supply the details. Once thé {R;:f=<e} stop requiring
attention at stage t”, fe+1,s for s >t can change only through the action of M for
some f<e. We are free to meet the M, for f<e, and consequently the usual
argument of Soare [20, Proposition 3.8], shows that all the M; for f <e are met;
and the set of elements contributed to C by the M; for f <e after stage " is simply
maximizing f-states, and so L., is recursive. Thus Vf=<e (I} recursive— R,
requires attention at most finitely often, all the R,, M, and N, are met, and Ly is
recursive) and so Lemma 4.6 follows. [

Clearly one can blend in other requirements. We conjecture, however, that

() If T=(P,P|ieA,jeB)* is Martin-Pour-El, then A U B is contained in
a maximal r.e. set.

(i) If & is a high r.e. degree, then & contains an r.e. Martin—Pour-El theory
(that is, does the domination of the computation function allow us to use Martin -
permitting in some way?). (See Note added in proof.)

One might attempt to refute (ii) by showing that the degrees containing
Martin—Pour-El theories (or indeed, theories with few r.e. extensions, see
Section 5) coincide with some well known class of r.e. degrees. After the
high/low degrees, the ones which naturally spring to mind are the promptly
simple degrees, that is, those which are not halves of minimal pairs. We give a
quick sketch of a proof that: ' '

Theorem 4.7. There exist minimal pairs of (high) r.e. Martin—Pour-El theories, _
Proof (sketch). In a minimal pair construction, we would satisfy the usual R, and

requirements of the form @, (AUB)=W¥,(A’UB")=f and f total implies f
recursive. When arranged properly (on a tree, say) these requirements co-operate
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in a way that they

(i) eventually settle down and impose ﬁmtely much restraint to the whole
construction, or

(ii) impose essentially no restraint.
With the idea that y € O, again may contribute &Bjs at various stages of the
construction we simply guess that the current restraint is' permanent, and then if
we reach a recovery, we allow (, to again contribute so that it ‘corrects’ itself to
our current guess. The details are a straight-forward generalization of the minimal
pair argument, with modifications along the above lines to allow for the ‘lim inf’
rather than ‘lim’. O

Such considerations do suggest a further question: Are the r.e. degrees
containing Martin—Pour-El theories closed upwards? (indeed a filter?).

Evidence for this is the following: .
Remark 4.8. Suppose a and b are r.e. degrees containing Martin—Pour-El
theories. Then so does a v b, the least upper bound of a and b.

Proof. Let T,=(P,P|ieA, jeB.) for k=1, 2 be r.e. Martin—Pour-El
theories of degrees a and b respectively. Let B; and B, be r.e. boolean algebras
recursively isomorphic to Q/7; and Q/7, respectively. Let B;= B, @ B, and let T;
be the r.e. theory with Q/T; recursively isomorphic to B;. Then T; has the desired
properties. O

5. Theories with few r.e. extensions

In this section we wish to analyse theories with the property that they have few
r.e. extensions, and see their relationship with Martin—Pour-El theories. Recall
that T has few r.e. extensions if T is essentially undecidable and every r.e.
extension of T is principal over T. It is obviously easy to produce r.e. theories
with this property which are not Martin—Pour-El, namely let T = (P, _ISJr licA,
J € B)* be Martin-Pour-El, let m, new — (AU B) and then T' = (T, B, v P,)*
has the desired property. Of course 7’ is contained in a Martin—Pour-EI
theory (which'is principal over T'). This is not always the case.

Theorem 5.1. There is an r.e. theory T with few r.e. extensions contained in no
r.e. well generated theory, and so, in particular, no Martin—Pour-El theory.

Proof. We build T={J, T; in stages. Let {F,} be a listing of the r.e. well
generated theories, that is F. = (P, F{i € A,, j € B,)* where {A., B.} is a listing
of the r.e. disjoint pairs of sets. To ensure that T is contained in no r.e. well
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generated theory, we meet
N.:: T¢E,.
We must also meet the following
R: 0¢(W,, T)*=3x (W, T)* = (T, x)*).

Define x@y=(x Ay)v (¥ A¥). Notice that xDy,x)*=(x,y)* and (x&
¥, X)* = (%, 7)*. The idea involved in satisfying N, above is to place x, @ y, into T
at some stage, and then wait until x, or X, occurs in R,. If neither occurs, then
E T If, say x, occurs, we add y, to T, forcing ¥, into 7, thereby ensuring
(F,, T)*F0. The interaction of the N, ensures that we must choose x, =P,

Y. =P, say and {x,, y.} N {x;, y;| i # €} = 6. The interaction of the R, with the N,
means that we must have a sequence of x,Dy, say x,,@Dy., such that
lim, (x.; D y.) exists. Therefore we meet

>

N,: lim, x.; =x, and lim, y, ; =y, exist, with the pro'perties outlined above.

A further source of trouble is that if we attempt to meet the R, in a similar way as
before we want to put &F; into 7., — T, for &P, occurring in some x € (T;, Q;,)*
say. The problem is that &F; may equal x,;, %, ;, y., or J., for some e of lower
priority. This is, of course, feasible {with finite injury) if P, =x., (or %)
provided that for no j does gP. =7, ; (respectively y, ;). But we claim that once
X s @y, s occurs in T, this case cannot occur. This follows since

(I.;J xe,s ®y8,s)* = (:1:‘3 (xe.s V .)T,S) A ('—x:.; V ye,s))*
={(T;, (Xeys V Vers)s Kes V Ve s *

and so if x=\/ &P, then x ¢ (T;, Q.,) means that ex,, and €y, cannot both
occur in x (for, as above x € T;, a contradiction). This observation allows us to
satisfy the R; and not seriously injure any N; in the process.

We introduce some notation:

B, , will list in order {P;| P, P.¢ T},

as before. We use a certain restraint function r(e, s). We say R, requires attention
if there exists x e W, such that x ¢ (T, Q.,) and 0¢ (T, W,,)*. We say N,
requires attention if x, ; is undefined, or &x, ; or €y, occurs in F, ;, and N, is not
met.

Priority rankihg: No, Ry, Ny, Ry, .. ..

Construction

Stage 0. Define r(e, 0) =¢ for all e € w, set Ty=9 and declare all the x,, y,, as

undefined.

Stage s + 1. Do one of the following for the requirement of highest priority.
Case 1. If R, for e <s requires attention via x define

L{e, 5, x) = {&;B; | &B;, occurs in x for i > r(e, 5)}.
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Set T,y = (T;, L(e, s, x))*. Define r(e, s +1) =r(i, s) for i <e. Declare r(k, s +
1)=r(e, s) + k for & > e and declare all the x, ,, ., for i = e as undefined.

Case 2. If N, is of highest priority e=s to require attention and Xgy 1S
undefined, find the first pair (B;, B;,1 ) such thati >e, and B, is so large that it
has not occurred in any T;, Q;, or W and is bigger than r(e — 1, s) so far. Now
set X, ; =B} Ye: =Bisy, and set T, = (T, X.s Dy..)*. Now set r{e,s+1)=
r(e,s)+i+1 and for all k>e, r(k,s+1)=r(e,s +1)+k, and for all j >e, set
r(j, s)+1=r(j, s).

Case 3. If N, is of highest priority and requires attention and x,, is defined,
then if ex,,eF,;, we set T,,,=(T,ex,,)* in this case. If gy, s € F,; and
ex. s ¢ F.;, set T, =(T,, €y, ,)*. Now declare F, as met and note N, will never
again require attention. Keep all the restraints at their current levels.

To complete the construction set 7' =(_J, T,. [ End of Construction

We need to show that (i) lim, r(e, s)=r{e) exists, (ii) each R, requires
attention at most finitely often and (iii) all the R, are met all the N, are met.

Certainly it is true that if x is acted on at stage s + 1 by R,, then there exists y,
a boolean combination of By, .. ., B, such that '

1;-1-11'35‘_’)’:

for the same reasons as before. By induction find a stage ¢ where for ail s > ¢, for
alli<e, j<e
(i) R;never again requires attention (i.e. is met),
(i) N, is met,
(i) r@i, s) =r(i, 1) = r(i).
(Notice, by induction r(i + 1) >r(i).)

We claim R, may require attention at most finitely often hereafter. Again this
follows by the proof in Theorem 3.1. Once R, has finished requiring attention, we
are free to define x,..,,; and y..; ; which will thereafter be protected unless one of
EXe41,s OT €Y., OCCUrs in F, ., ; in which case, its complement is added to T, ..
In any case once R, has finished requiring attention N,,, needs attention at most
twice more, and so is met. Thus lim, r(e + 1, 5s) = r(e) exists and the result follows
by induction. O

Let us make some remarks concerning the above construction. It is easy to see
that T may be generated

() asT=(B, P, B ®P,|icA, jeB, k#nand k, neC)*

(ii) with A, B, and C pairwise disjoint.
Alternatively we may consider the collection {P.® F,} above as Z={P.v
P,, P, v P} asin the proof, with, forally e Tif y € Z (here y = \/ g,F,), y <K x for
any x € Z. In any case T=1A U B U C and hence we can produce by the previous
techniques T of degree 0'. For other degree controlling techniques we may work
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along the same lines as our preceding result except we must be slightly more
subtle. We give an example:

Theorem 5.2. There exists an r.e. theory T with few r.e. extensions such that
deg(T) is low, and T is not contained in any r.e. Martin—Pour-El theory.

Proof. The difference between this and the results so far is that we must control
the whole of 7, rather than just AU B. One way to achieve this is to define
T!={x € (T.)* | x =s} and then refrain from adding elements to 7; which change
some restrained region of T;. Another idea is to control T by controlling A, B,
and C above directly (notice that C is not r.e. here) in the sense that we control
T.={P, E, P.@®P,), at stage s, (with the appropriate meanings here for this
set). In any case, we define a restraint r(e, s) with r(e, s) =0 if &,,(T;;€)] and
r(e, s)=ule, T., s, e) if @, (T:;e)|. Now define R(e, ) = max{e, r(i, s) | i <e}.
The point is, with priority e we must ensure that ’

T.:'+1 rR(e,s) = T.; rR(e,s)' ’

A moment’s thought reveals that by choosing our Xet1,0 Ye+1,s appropriately this
can be ensured by eventually showing lim, R{e, s) = R(e) exists, where R(e, 5)=
max;<. #(i, 5) where #(i, s) = {max(R(, 5), 2(i, 5)}, where £(j, s) = min{k | for all
&;, and for finite sets F with y e F>y >k, (T, &B;,)icr[re.sy = (T)* [ree.sy)» and
then only adding ¢B;, into T,,,—T; for i> R(e,s). Now 2(i,s) may be
effectively computed and the rest of the result goes through as before. [

With considerable increase in technical complication along the above lines we
may also produce such a T of incomplete high r.e. degree, etc. We now devote
our attention to analysing the results 4.3 and 4.4 in this more general setting.
Recall that an r.e. theory T has relatively few r.e. extensions if every r.e. theory
containing T has a common principal extension with T and T is essentially
undecidable. It is really fairly obvious that we may use a similar technique to that -
of 4.3, (avoiding elements of the form x,; and y, ), to produce an r.e. theory T
with relatively few r.e. extensions which does not have few r.e. extensions, and is
contained in no r.e. Martin—Pour-El theory.

We have some more serious technical problems when we try to apply our work
to Theorem 4.4:

Theorem 5.3. Below any given r.e. nonzero degree, there is a nonzero r.e. degree
which bounds no r.e. theory with few r.e. extensions.

Proof (sketch). Again, our strategy will be to produce a linked system z({e, k})
of elements which are independent over W, U Y(e) (with notation as in Theorem
4.4). (As with 4.4 this obviously blends with permission). That is, we ensure that
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for all &,
z{e, k) ¢ (W,, Y(e), z{(e, £)) | t # k)*.

The problems involved are mildly complicated by the fact that W, may be no
longer generated by, say A, U B,. Let m, = max{x € W, ,} and we may consider
W., as given by W,,={x|xe(W,,)* and x <max{s, m,}}. Now, our new
negative requirements are:

N If ¢,(D)=W, then if W, is essentially undecidable, then for all k,
lim, z({e, k), s) = z({e, k)) exists, and the system {z{e, i}|icw} is
independent over (W,, Y(e))*.

Our strategy is this, we wait until a length of agreement is achieved so large that
there exists a set x({e, k), 0,s), ..., x({e, k), g(e, k), 5) which is included in
this length, is currently independent over (Y(e, s), W, ,)*, and is ‘good’ for n,
namely: :

(i) If I(e, s) is the current length of &, ,(D,)=W,,, then I(e, s)>max{all
boolean combinations of v({e, k), s) and x({e, k) ri, s} | i <g(e, k)}, and

(i) For all i=1, v({e, k),s) v V;=: x({e, k), j, 5) ¢ (Y(e, 5), W,.,, z({e, 0},
S): et z((e, k— 1): S)’ v((eJ k).- S) v \/j&i+1 x((e7 k):j’ S))*

We then proceed as before, namely, we define

z({e, k), 5)=v({e, k), 5) vV x({e, k), i, ),

>

v((e, k+ 1): S) =U(<e: k): sV '%Yk)x((e’ k>7 i S)

and
n({e, k+1),s)=v({e, k), s)v V x({e k), i, s5).
: H{gle,k)—1

Now restrain on the use of the computation as before.

If we are successful in our restraint, we will ensure that the
z({e,0),5),...,2({e, k),s) will be fixed, and remain independent over
(W.,s» Y(e, 5))*. The reader may check that the remaining details go through
almost precisely as in 4.4. Notice that if E, is essentially undecidable, then such
x(e)’s as above must occur at some stage. [

We close this section with a theorem and some questions. The theorem
analyses how other r.e. theories relate to ‘maximal’ ones. A natural question to
ask is “Does every r.e. theory have an extension T which is ‘maximal’ in the sense
that it is either complete and decidable, or T has few r.e. extensions?” The
answer is negative:

Theorem 5.4. Suppose T is an r.e. weakly Martin—Pour-El theory that is not
Martin—Pour-El. Then T is an essentially undecidable r.e. theory contained in no
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r.e. theory with few r.e. extensions. Consequently, if 8 is any nonzero r.e. degree,
there exists an r.e. essentially undecidable theory of degree d such that no extension
is an r.e. theory with few r.e. extensions.

Proof. We show that

Lemma 5.5. If T is an r.e. Martin—Pour-El theory with T = (P, P.|i € A, j € B)*
and ke A, then T,=(P, P;|ic A—{k},je B)* is also an r.e. Martin—-Pour-E!
theory. .

Once we show that 5.5 holds, Theorem 5.4 is deduced as follows: Let 7, be an
r.e. weakly Martin—Pour-El theory of degree & that is not Martin—Pour-El. Let T;
be an r.e. extension with few r.e. extensions. As T, is weakly Martin-Pour-El, T,
and T; have a common consistent principal extension, say 0 ¢ (5, )= (T, )™
Now y = Aver Ys Whete 3 = \/jes 5y By That is (Ta, 7)* = (T, | i  F)*. Now
we may delete all occurrences of &;F’s which occur in T; since

(1) if EI(I)RI'(!) € T;, then Yi € 43, 1; ’

(ii) if &) P € T2, then g (,)P(,) AY; €T, and so

ify;= \/ V &xyPrwy, then Lly <y,
k#(l

This gives us a ‘minimal’ set of generators y;, ..., ¥,, say, where no occurrence
of g; Py in any y; is an element of 7,. Now it is easy to see that we may generate
ﬁmte sets A’, B’ such that y;,..., y,€(F, 13 |ied’, je B")Y* =T, such that if
(P,,R,l:eAz,]eBz)* then A’ NA,=B'NB,=0, and A'NB,=B' NA,=
ﬂ Therefore T,, Tr=(T3, y)* < (P, J|zeA',]eB')*— T,. Now as T has few
r.e. extensions, T, has few r.e. extensions and so T is Martin Pour-¢l, and this
coniradicts Lemma 5.5 since card((A,UB,UA'UB’)—(AUB))<w». 0O

Proof of Lemma 5.5. Let T, 7; be as described. Again consider only elements in -
\/ &P, form. Let W = 7, and W be nonprincipal over T;. Let

=({(P)* N W)U T)*,
W= (((P)* N W)U T)*,
Wa = ((W — (WyU W5))* U T))*.

It is easy to see W;, W, and W; are all r.e., and that W = (W, U W, U W,)*. We
claim W, is principal over T;. If P, e W; stop, since Wy = (T3, P)*. If P, ¢ W,
consider W] which results from the deletion of all occurrences of P from
elements in W;, and then generating the theory (again, r.e.). Now consider

= (W1, T)*. Certainly 0¢ W4 and so Wi=(T, », ..., y.)* where y;=\/ &P,
where £PB, &P ¢T. Thus it is easy to see that under these circumstances
(T3, Pc v ¥, - - - 5 Pe vV Yo)* = Wi, Similarly one may show W, is principal over T;.
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Finally one can show along similar lines that W= (T, z, . . ., z,) where z; is of
the form z;=\/ P, and P¢7T, &F¢7T, and z;e W for all j Then W, =
(T1, z1, - - -, Z,)* and so W; is also principal over T;. Thus W;= (T, f)* say, and
so W=(T;, A\ f)* and so W is principal over T;, a contradiction. O

This generates:

(i) The obvious question-— Is it the case that every r.e. essentially undecidable
theory has an r.e. extension with relatively few r.e. extensions? What about
well-generated theories? (We suspect that if we try to sharpen this to say “Is it
the case that every r.e. essentially undecidable well generated theory is contained
in an r.e. weakly Martin—Pour-El theory” it is surely false, but we can probably
produce with an e-state construction an r.e. pair of r.e. sets contained in no r.e.
maximal pair.)

(i) Also our results indicate the similarities of these 1.e. theories with maximal
r.e. sets in a certain sense, so it is natural to ask about automorphisms of these
objects in the lattice of r.e. theories. In dealing withralgebraic structures one must
be very careful about such matters (cf. [4], [6], or [18]). For example: Are all r.e.
theories with few r.e. extensions automorphic? Notice that the failure of =* to be
an equivalence relation means that there is no meaningful way to address “the
lattice modulo =*"" as in the r.e. set case.

6. Theories with decidable extensions

So far we have concerned ourselves only with essentially undecidable r.e.
theories. Of course, the other situation deserves some attention and, in this
section, we shall give some ideas towards.an analysis of this situation. To begin
with, the results and techniques of Jockusch—Soare [11, 12} are obviously relevant
here. For example, let T be r.e. Martin—Pour-El, and consider this as an r.e. filter
in the free boolean algebra Q. Let B be a boolean algebra recursively isomorphic
to Qmod T. Let B'=B x {0, 1}, the boolean algebra formed by the product of
B with the 2-element boolean algebra. Now find an r.e. theory T’ with Q mod T
recursively isomorphic to B'. Then of course every r.e. extension of T’ is
principal over. T, T’ has 2™ complete extensions and precisely one decidable
complete extension (generalizing Theorem II of Martin and Pour-El [14]). The
reader is referred to {11, 12], for further results along these lines.

There is another natural way to view r.e. theories with decidable extensions by
considering the lattice L(D) or r.e. subtheories of a complete decidable theory D,
Since they are all recursively (auto-) isomorphic, we may take D as (P, |i € w)*.
Thus we shall ask questions about the way r.e. subtheories of D relate to one
another. One apparently very natural way to study L(D) is via =* for amongst
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members of L{D) this is an equivalence relation:

Convention. In this section T=*W will mean there exists x € D such that
(T, x)* = (W, x)*.

We might hope that L(D) under =* might act like various other lattices of r.e.
substructures which have already been studied. For example, suppose we call
M e L(D) a maximal r.e. theory if M #* D and for all W € L(D) if W o M then
either W=* M or W=*D. We have:

Theorem 6.1. Let K be a maximal r.e. set. Then M = (B |i e K)* is a maximal
r.e. theory.

Proof. Suppose Wo M, W+#*M, W #*D and WeL(D). We construct
D(W) =J; D(W). (The technique is due to Downey [3, 6] in other settings.)

Construction
Stage 0. Set b, ;= P, for all i e w and Dy(W) =8.
Stage s + 1. Let e be the first element, if any, <s such that

() Vi<e (Vj<i (by, ¢ (Wyy-by, | k<j)*)), and

(li) be,s € (m: bj,s [j<e)*-
If no such e exists, then set D, (W) = D,(W). If e exists set D, (W)= D, (W)U
{b.s} and in this case set b; ., =b;;fori<eand b, ., =b;,.  fori=e. [ End
of Construction

We leave the reader to show (cf. [3]), setting i(D(W)) = {i | F, e D(W)}, that
(a) card(w — i(D(W))) = (lest W=*D),
(b) i(D(W))>K(as M W),
(¢} card(i{(D(W)) — K) = (lest W=* M),
and this contradicts the maximality of XK. [J]

Various other results and techniques borrowed from, say, the lattice of r.e. sets
seem to apply (see here Remmel {17, 18]). In so far as the lattice of r.e. sets is |
concerned, we can be somewhat more shrewd. Let O € L(D); then we define the
interval lattice L(Q, D) to be lattice of r.e. theories T with Q « T = D. We may
show:

Theorem 6.2. There exists a decidable theory Q such that L(Q, D) is recursively
isomorphic to L(w) the lattice of r.e. sels.

Proof. Let N denote a recursive copy of the boolean algebra of finite and cofinite
sets with A(N) the set of atoms recursive. Let {qq, 41, - . .} be a recursive listing
of A(N) without repetitions. Now for C e L(w) define I(C) denote the ideal
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generated by {g;|i€ C}. For any r.e. ideal J of N with J cI(w)=the ideal
generated by A(N), J is generated by an r.e. subset of the set of atoms. Thus if
we define a map i— ¢;, this induces a recursive isomorphism between L(w) and
H={I|Iis an r.e. ideal of N and I = I{(w)}. '

Now let Q be a recursive ideal of Q with @ mod Q recursively isomorphic to N.
Let £2(Q/Q) =N denote this recursive isomorphism. Now let P be the recursive
prime ideal of Q with Q(P)=I(w). Our observations ensure that the lattice of
r.e. ideals containing Q and contained in P are recursively isomorphic to L(®).
We dualize to filters, since the lattice of r.e. filters of @ is recursively isomorphic
to the lattice of r.e. ideals of Q (by reversing A to v), and the result
follows. O

Since L(Q, D) is elementarily definable in the lattice of r.e. theories, it follows
that the first-order theory of the lattice of r.e. theories is undecidable, as the
first-order theory of the lattice of r.e. has been shown undecidable by Hermann
[9, 7, 8] (also by Harrington [unpublished] by representing boolean pairs with
parameters). i

Another form of analysis of L{D) is to examine features of L(D) which do not
have analogues in the lattice of r.e. sets. For example, inspired by results in
matroids (cf., e.g. [6]) we might conjecture the existence of a supermaximal
theory, that is M € L(D) such that M #* D and for all W € L(D) if W = D then
either W=*D or W = D. Alas this is not the case:

Theorem 6.3. There exist no r.e. supermaximal theories.

Proof. Define a sequence K = {gy, q:, - . .} In stages.
Stage 0. Set go= P
Stages+ 1. Set g, 1 =PV \/,-5,1—’]-.
Note that for all jew, (g;)* N (K —{g;}*= {1}, and (K)*=D. Suppose M is

- supermaximal. As M##*D, there exists iew such that g;¢ M. By super:

maximality, if Q = (K — {g;})*, then either (Q, M)* =D or (Q, M)* =* M. Now
if (O, M)*=*M, as Q=*D, it follows that M =*D. Therefore (Q, M)*=D.
Therefore for some meM, xeQ, andye D

g=(mnax)vy
=MA(4\1quz)Vy, for some x € D since x € Q
o
=(mA/\qj)vy’, for some y’ € D.
PR
Therefore g; vii=/N\pygvimivy €Q and so ¢;vm=1 as (g)*NQ={1}.

The point is that this means g;eM since mAg,=ma(g;vm)=meM, a
contradiction. O
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Significant differences between L(w) and L(D) do occur however. We finish
with an example of this (actually inspired by the vector space case [16]). An r.e.
set of independent axioms for am r.e. theory T is an r.e. set of generators
{g:|ieI}=G such that T=({g;|iel})* and yet T#(G’)* for any proper
subset G’ of G. Formally we say the set {g;|iel} is an (independent)
axiomatization if for all i, g;¢({g;|jel— {i}})*. We show that the usual
processes of extending axioms fails in a strong way. To sharpen our results, we
say an r.e. set of axioms {g;|iel} is a strong axiomatization if, for all i,
(8)* N ({g; | j #i})*. It is easy to show that every axiomatization may be refined
to a strong axiomatization, namely if {g; | i € I} is a set of axioms, then {g{ |i e I}
is a set of strong axioms where .

(i) go=go, and gi11=gr1 v V;=:8i>

(ii) for all n, (go, ..., &)*=(g0, ..., gn)*

It is fairly straightforward to show that every r.e. theory T has a recursive strong
axiomatization. 7

When it comes to extending such sets we say an r.e. set A of strong axioms is
nonextendible in D if A D and ' -

(a) (A)*#*D.

(b) For all r.e. strong axiomatizations B, if BcD, then AcB implies
(A4)* =* (B)" |

In particular, A cannot be extended to an r.e. axiomatization for D. We have

. or

Theorem 6.4. There exists an r.e. theory T € L(D) such that
(i) T has an r.e. strong axiomatization contained in a strong axiomatization
for D.
(ii) Every r.e. strong axiomatization of T is nonextendible in D.

Proof. Let I, denote the e-th r.e. strong axiomatization. We build a strong
axiomatization J = _j, J; in stages so that T = (J)* has the desired properties. At
each stage s we specify an r.e. set {b;, |j € w} with the idea that

N.: lim b, = b, exists
5

and JU {b, | e € @} is a strong axiomatization for D. The positive requirements
are

R.: (L)*>Jand T+*(L)* implies (, N T)*#T.

To meet the R, we shall define elements x =x(e, s} and y = y(e, s) with the idea
of putting a nontrivial element z =z(e, s) = (x @ y) v k into T and keep x and y
out of T in such a way that x € (T, y)* which will ensure that if (L, NT)*=T,
then I, cannot be a strong axiomatization. We say R, requires attention if e <y is
least such that x{e, s) is currently undefined and

(1) (Ls+1NT) is a strong set of axioms.

(ii) There exist x, y € I, , such that
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(@) x¢(T, by, ¥, x(j, ), y(j, 8) | i <e, j <e and x(j, s) defined)*,
(b) y ¢ (T, bis, x, x(7, 5), y(j, s) | i s e, j<e, x(j, s) defined)*.

Construction
Stage 0. Set b, o= q; where g; as given in Theorem 6.3. Declare all the x(i, 0),

y(i, 0) undefined.
Stage s + 1. If no R, requires attention do nothing. If R, requires attention via x,

y define x(e, s + 1) =x, y(e, s + 1) =y, declare all x(i, s +1), y(i,s +1) for i>e
undefined, maintain the x(j, s + 1), y(j, s + 1) for i <e and define
z2(e,s+1)=xByvV b, vV iv v/ x(i, )
i=e

zelk; x(i.8) defined, i<e

v Vo y(s)
y(i,s) defined, i<e

Set J..,=J, U {z(e, s + 1)} and define T,..; = (/,+,)*. Finally set
b, fori=se,
.

bi,s+1 =

Pk(i) v v bj,s-i—l A \/ z fori> e,
j<i

ZGJ.H-]

where Py is the least P, with P, ¢ (Ji.1, bj,01|j <i)*. 0O End of Construction

Lemma 6.5. Each R, requires attention at most finitely often, all the N, are met
and J U {b;|i € w} is a strong axiomatization for D.

Proof. By inductioﬁ, suppose J, U {b,, | i € w} is a strong axiomatization for D,
and J,., =J, U {z(e, s + 1)}, with

LZa=z(e,s+)=x®yv Vb,V VzvVx@s)vVy@s).
i=<e zel, 3 i

<e i<e

Cleaﬂy X 69}’ ¢ (Js: bO,s: sr be,s)* leSt X € (I‘w bO,s: RS be,ss J’)*- If q €
(Jss Boss - « - » Bes)® N (Zo41)*, then :

q=zs+1vq1=(/\ ZA;eri‘s) Vv g2,

zel;

say. Therefofe,

q=(/}z1\/ﬁ\bi‘,) VZavVgivg=1
Now suppose g € (i1, bis | i <€, i#])* N (b;,41)*. Then
' g=b,vag= (/\ ZAZo A _/#\'b,-,s) Vv ¢,.
i

zels
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Thus
g=b v gV, =[]V,

(A EVBIAGavEI AN GV vas

zel;
= (/\ zZA _/\_b,-,s) vV gz Vb,
zel; i

Therefore q € (b;)* N(T;, b, |i<e, i#j)* = {1}. Therefore J,,,, bg,, ..., b,
is a strong axiomatization. The ‘b, for i>e are similar, and the ;esult
follows., O

Lemma 6.6. All the R, are met.

Proof. We first show with priority e that our action

(i) does not ‘injure’ any R; for j<e,

(ii) temporarily satisfies R,.
For (i) suppose R, is attacked via (x, y, z,,,) say. Suppose for i <e, x(i s)e
T.i1— T;. Then

x(i,s)=(/\ z;x((x@y)v VEVZ\SQZVMx(i’S)VIMy(i’S)))Vq

zel; 3

=g

so that
x(i, ) =x@, ) vx(, s)=[--]vx(s)= (/\Jz) vx(i,s)vqeT,

a contradiction.

For (ii) suppose we have lim; x(e, s) = x(e) exists, say at stage ¢, and I, > T and
(IL.NT)*=T. Notice (x)*N(TWU{y})*+#{1}. That is, let q,,...,q,6L.NT
with z €(q1,...,4,)*. Then (q1,..., g, x, y)* should be a strong set of
axioms. However define

q=y/\zr=(((x V) Ay Vf))Vb&/eEVz\éfvl])Ay, say

= ay)v (1A |
=GV TaAG Y (- Tay).

Now if we put g’ =(x v ([---1Ay)), then ¢’ =1, since g’ € (g1, ..., @u, ¥)* N
(x)*. Moreover notice by the above, since (y v([--:]Ay))=y, thatg=y Az =
g' Ay =y, that is y =y A z,. This means z, € (y)*. Consequently, since z, € T, it
follows that z,=1 (as z,€(q1, ..., g.)* N (¥)*). This means (xvFv[ -] A
(yviv[--])=1 sothatxvyv[--]=1andyviv][ ::]=1 We claim that
this implies

xe€(,bo,...,be,x(5,0),y(, 1),y |i <e and x(i, {) = x(i) defined)* = M.
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This follows since g" € M where

=@xvyv[- ])A/\ZA/\I(I)A/\Y(I)A/\b AY
—x/\/\zz\/\x(z)/\/\y(z)/\/\b AY

zel;
and this implies x € M, contradicting the definition of ‘requiring attention’, and so
(ii) is established.
Finally we must show that if (L)*>T and (I})#* 7T, then R, will require
attention. If R, fails to require attention at some large stage ¢ (by which all the R;
for j < e have settled down), we know we have a finite fixed set

F={x(0),...,x(e—1),»(0),...,yle~1)|x@), y@) defined (at £)}.
Now as (I.)* # T, there exist infinitely many x and y in I, with
x¢{(L, bo,...,b,, F,y)* and y¢(T, by, 7., b, F)*.

For each such y, x, it follows that
ye(T, by, ..., b, F x)*

lest R, requires attention. This means that for each such x, y,

y= (t/\/\b Af/\x)vg, say (f=/\p).

i=e PEF

Therefore y v ;<. b; vFe(T, x)*. Now choosing x, y, as above ensures that
{6, y}NT=0 X (LNT)* =T, and L, is a strong axiomatization, it follows that
YV \/,seb vi=1,since y v Ve b; vFe (L, — {y})* N (y)* = 1. Therefore,

(Abins)=(VBvFvy)a(Abiaf)=ya Nbin,

i=e i=e i=e
and hence, y € (T, by, . . ., b., F)* a contradiction. [

At this stage we close with a few remarks. Evidently the last argument may be
extended in various ways. For example, we could control the degree of T (by
permitting and coding, via the {b;;|i€ »}), or we could place various lattice-
theoretic restrictions on T by weaving lattice type requirements in. One idea is to
analyse hypersimplicity, maximality etc. to see if they blend with nonexten-
dibility. We leave these constructions to the interested reader. It seems fairly
clear, however, that the lattice of r.e. theories and L(D) both have an unusually
rich structure, for which the problems do not reduce to any of the lattices of r.e.
substructures previously studied. We close with a problem: Describe a nontrivial
class of automorphic invariants in either of the above lattices, and how many
automorphisms do they have?
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7. Some concluding remarks

We may wish to analyse the results of the preceding sections and search for
connections with other structures and lattices. Some areas here are ideals in
commutative rings, comes of orderings of formally real fields etc. Two we wish to
mention are recursively bounded ITj classes and the lattice of r.e. sets.

Identifying r.e. theories with r.e. ideals in the free boolean algebra Q, as we
know there is an effective inclusion inverting 1-1 correspondence between r1.e.
ideals and recursively bounded I} classes (under Zariski topology) in the Stone
space 2%, In view of this, we know that there is a natural way of assigning degrees
of IT classes. What sort of T} class corresponds to an r.e. theory with few r.e.
extensions? Answer: a thin I class.

Definition. We say a II? class (in 2°) C is thin if
(i) C is infinite and for each IT§ subclass C’ of C, eithier C'=8or C'=CNQ
for some clopen subset Q of 2.
(ii) C contains no recursive members.

Similarly

Definition. We say a IT? class (in 2°) C is semi-thin if
(i) It contains no recursive members.
(ii) If C’ is a IT9 class with C’ = C, then there exists a nonempty II9 class D
and a clopen subset Q with D=CNQO=C"NQ.

If I is an ideal of Q let IT() denote the IT] class associated with I and similarly
I(IT) the ideal associated with IT of course I(II(I)) = I. Much of the analysis of I
has been by analysis of II(Z). We hope our results indicate that one may obtain
interesting insights by analysis of I directly. These results also indicate that we
might be able to obtain sharper results in effective algebra. For example the cone .
of orderings of a recursive group is a IT} class. These results suggest that there
exist recursive infinitely generated orderable (abelian) groups whose only

. recursively orderable subgroups are finitely generated. This is indeed the case

(although the proof techniques differ significantly (see Downey-Kurtz, “Recur-
sion theory and Ordered Groups”, Ann. Pure Appl. Logic 32 (1986) 137-151)).
The techniques described here also appear to indicate new features of the
lattice of r.e. sets. Let us define an r.e. set A to be g-hypersimple, if
card(w — A) =« and for all r.e. sequences {D.},.w of canonical finite sets there
exist finite sets X = {x,, ..., x,} =« W and G such that for all y € W, there exists
x€X such that D,cAUG and D,NG=D,NG. Similarly we could define
g-hh-simplicity by replacing ‘canonical finite sets’ by ‘finite - sets’. Clearly
g-h-simplicity implies h-simplicity. Is every hh-simple set g-h-simple? Do g-hh-
simple sets exist? Here, our results can clearly be modified to establish the
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existence of g-h-simple sets in high or low degrees, establish h-simple sets which
are not g-h-simple in each r.e. degree, an r.e. degree which bounds no r.e.
g-h-simple set etc. _ . .

It is unclear how the above notions relate to the currently analysed ones.
G-hh-simple sets remain to be explored. In particular we would like to know: if
every hh-simple r.€. set is g-h-simple, then is g-h-simplicity lattice-definable in the
1.e. sets? (Also, what about g-hh-simplicity?) An affirmative solution would be.
particularly interesting, since then we would have a class of r.e. sets nontrivially
splitting the low degrees including all hh-simple sets which is still invariant under
automorphisms (and therefore include sets whose lattice of r.e. supersets is not a
boolean algebra— a class that has resisted investigation so far).

Note added in proof

Carl Jockusch, Mike Stob and the author have shown that the degrees
containing Martin—Pour-El theories are exactly the array non-recursive r.e.
degrees. This class is closed upward and correspords to, roughly speaking, those
degrees that arise in arguments which need ‘multiple permitting’. These results
will appear in a forthcoming paper entitled “Array non-recursive sets and
multiple permitting arguments”.
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