ON THE COMPLEXITY OF THE SUCCESSIVITY
RELATION IN COMPUTABLE LINEAR ORDERINGS

ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

ABSTRACT. In this paper, we solve a long-standing open ques-
tion (see, e.g., Downey [0, §7] and Downey and Moses [I1]), about
the spectrum of the successivity relation on a computable linear
ordering. We show that if a computable linear ordering £ has in-
finitely many successivities, then the spectrum of the successivity
relation is closed upwards in the computably enumerable Turing
degrees. To do this, we use a new method of constructing A3-
isomorphisms, which has already found other applications such as
Downey, Kastermans and Lempp [9] and is of independent interest.
It would seem to promise many further applications.

1. INTRODUCTION AND MAIN THEOREM

This paper falls into part of a long-term program in computable
model theory, where we study the spectrum problem for relations on
various classes of computable models. Suppose R is a relation on a
computable model A. If Ais a computable model isomorphic to A,
then we will let R denote the image of R in A. Then the spectrum of R
is defined as the collection of Turing (or perhaps other) degrees of R

as we run over all computable A = A.

Our understanding of possible degree spectra for distinguished re-
lations on various structures has seen significant advances in recent
years. We know that for many relations, the typical spectra we would
expect to see would consist either of a single element or of infinitely

2000 Mathematics Subject Classification. 03C57.

Key words and phrases. computable linear order, successivity.

Downey’s research was supported by a Marsden grant. Lempp’s research was
supported by NSF grants DMS-0140120 and DMS-0555381 as well as Grant # 13407
by the John Templeton Foundation entitled “Exploring the Infinite by Finitary
Means”. Wu’s research was supported by a research grant RG58/06 from Nanyang
Technological University. Lempp and Wu would like to thank Victoria University
of Wellington for its hospitality during the time this work was carried out. The
authors would also like to thank Frolov for pointing out an error in an earlier version
of this paper.

1

2 ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

many elements. (See, e.g., Harizanov [16] [I7], Hirschfeldt [19], Gon-
charov [15], or Moses [24].) We have also made great strides in the con-
struction of models such as graphs, partial orderings, etc., with many
pathological spectra such as 2-element spectra. (See, e.g., Harizanov
[18], Hirschfeldt [19], Hirschfeldt, Khoussainov, Shore and Slinko [20].)
These results work by using families of computable functions and cod-
ing or “special component” arguments (which can be viewed as the
being the same), such as in Hirschfeldt’s Ph.D. thesis. This method
usually gives graphs and then, if there is enough structure, it is pos-
sible to code these graphs into computable structures such as groups,
rings, partial orderings and the like. We remark that the concern of
the present paper is computable linear orderings, where it seems much
more difficult to achieve such rigid degree control.

However, for particular relations and particular structures, our un-
derstanding is much more limited. In the present paper, we will be
concerned with a basic relation on a linear ordering, namely the suc-
cessivity (or adjacency) relation Succ(L). Here Succ(L) holds for a pair
of elements (x,y) in a linear ordering £ = (L, <) iff x <, y and there
isno z € L with x <, z <, y. We already know that the successivity
relation on computable linear orderings is important in terms of its
algorithmic properties. For example, we have the following

Theorem 1.1 (Dzgoev and Goncharov [12], Remmel [26]). A com-
putable linear ordering is computably categom'caﬂ if and only if it has
only finitely many successivities.

What can we say about the spectrum of the successivity relation of
a particular computable linear ordering?

If the linear ordering has only finitely many successivities then this
question is plainly trivial. Thus, henceforth, we will only consider linear
orderings with infinitely many successivities.

Clearly, if £ is a computable linear ordering, then Succ(L) is a co-c.e.
set (i.e., the complement of a computably enumerable set) of pairs, and
hence the possible degree spectra will be subsets of the computably
enumerable (c.e.) degrees. What subsets of the c.e. degrees can be
realized as possible spectra? It is known that the following spectra are
possible:

(i) All c.e. degrees. (This is true by general results of Goncharov
[15] for the case when L has a copy with Succ(L) computable
and infinite, though it is easy to prove directly.)

IRecall that a computable structure A is called computably categorical iff for all
computable structures B = A, B is computably isomorphic to A.

THE COMPLEXITY OF THE SUCCESSIVITY RELATION 3

(ii) No lows members, which follows by work of Feiner [13].

(iii) A single element 0’, by Downey and Moses [11].

(iv) Every c.e. degree except 0, by Downey [7, Theorem 2.9], using
work of Downey and Knight [10] and R. Miller [25].

(v) All c.e. degrees above any given nonzero c.e. degree, a result im-
plicit in Downey [6, Theorem 7.5], using the method of Downey
[6, Theorem 7.7], based on Downey and Moses [11], Downey
and Knight [10], and Knight [22]; this result appears explicitly
in Chubb, Frolov and Harizanov [4, Theorem 2.5], based on
Downey and Moses [L1].

These results use coding methods and separator results, building on
work of Jockusch and Soare [2I]. A much more subtle question asks
what can be said about the spectrum of the successivity relation of a
giwen linear ordering. We have already seen that if the ordering has
a copy where Succ(L) is computable then the spectrum of Succ(L)
includes all c.e. degrees, but that there are examples where Succ(L) is
not computable in any computable copy of L.

The goal of this paper is to solve a fairly long-standing question
(essentially going back to [I1]), which asks whether there is a com-
putable linear ordering with infinitely many successivities where the
successivity relation is intrinsically incomplete (in the sense of Ash
and Nerode [3]). That is, does there exist a computable linear or-
dering £ with infinitely many successivities such that 0’ is not in the
spectrum of Succ(L£)? It was known by work of Downey and Moses [11]
that the answer is yes for the weak truth-table degrees, and that the
answer is no for discrete linear orderings (namely, ones where every
element save possibly the first and the last (if any) has a successor and
a predecessor), but the question has resisted all attempts at a solution
in the general case. In the present paper, we solve this question nega-
tively by showing that it is always possible to code 0" into the spectrum
of Succ(L) for any computable linear ordering £ with infinitely many
successivities.

Main Theorem. Let A be an infinite computable linear ordering with
infinitely many successivities. Suppose that C' is any c.e. set with
Succ(A) <r C. Then there is a computable linear ordering B iso-
morphic to A whose successivity relation has Turing degree deg,(C').

Although we believe that the above theorem can be proved uniformly,
the proof seems far easier when relying on the following partial solution
to this problem by Frolov:

4 ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

Theorem 1.2 (Frolov [14]). Let A be an infinite computable linear
ordering with infinitely many successivities which is either not n-like or
which is strongly n-like. Suppose that C' is any c.e. set with Succ(A) <r
C. Then there is a computable linear ordering B isomorphic to A whose
successivity relation has Turing degree degy(C').

Here, a linear ordering is n-like if it contains no interval of order-
type w or w*; and it is strongly n-like if in addition there is a fixed finite
bound on the size of the finite intervals. (We use the word “interval”
here simply to denote a “convex” subset, i.e., an interval need not have
endpoints in the linear ordering.) Note that Frolov’s result immediately
extends to infinite linear orders which contain an infinite strongly n-like
interval with infinitely many successivities.

Frolov’s result can also be extracted from Chubb, Frolov and Hari-
zanov [4], who proved the following, which can then be applied to the
appropriate interval of L.

Theorem 1.3 (Chubb, Frolov and Harizanov [4]). If £ is a computable
linear ordering where for all x € L there is a successivity (a,b) in L
with x <, a, then the spectrum of the successivity relation of L is closed
upwards in the c.e. Turing degrees.

The remainder of this paper is devoted to the proof of our Main
Theorem in the case not handled by Frolov’s theorem. As we remarked
in the abstract, the proof has some rather unusual features in that we
do not construct partial isomorphisms in the construction but certain
partial 1-1 maps, and that the final isomorphism can only be read
off from the true path of the construction, and even along it only in
the limit, making our isomorphism only AY. The point is that there
certainly have been AJ-isomorphisms in the past, such as Downey [5],
but even there, partial bijections were kept in a stage-by-stage con-
struction. This is not true here. Our method here has already found
other applications such as Downey, Kastermans and Lempp [9], where
a AJ-isomorphism is constructed similarly to our method here, and we
believe it promises many more. In retrospect, it is clear that this fea-
ture of the construction is precisely what is needed to overcome the
problems caused by the failure of the hypothesis of Theorem

We refer to Ash/Knight [2] for basic notions from computable algebra
and computable model theory, and to Soare [27] for basic notation
from computability theory. In particular, recall that for nodes o,o’
on a tree T, 0 <, o' denotes that for some n, o(n) < o'(n) and
o | n =0 | n;and that o < ¢’ denotes that o <; ¢’ or o C ¢’.

THE COMPLEXITY OF THE SUCCESSIVITY RELATION 5

2. INTUITION FOR THE PROOF OF THE MAIN THEOREM

For simplicity of presentation, we will prove the main result for C' =
() and make some remarks at the end on how to improve this to upper
cones.

To fix terminology, in an 7-like linear ordering A, we will call the
maximal finite interval containing an element a € A the mazimal block
of a. More generally, any finite interval in A will be called a block.

As mentioned above, the key idea of our proof is similar to the (some-
what easier) proof technique in Downey, Kastermans, Lempp [9], who
proved that for any n-like computable linear ordering without infinite
strongly n-like interval, there is a computable isomorphic copy without
nontrivial computable self-embedding. The idea there was not to try
to produce a AY-isomorphism by effectively approximating it by finite
partial isomorphisms, but to define finite parts of a AY-isomorphism
along the true path of an infinite-injury priority argument on a tree of
strategies. Adapting this idea to our setup, each strategy on the tree
of strategies working on making the isomorphism ¢ total and onto tries
to map one more maximal block of elements in A to a maximal block
in B of corresponding size; however, the present argument introduces
additional difficulties we will address below.

We will thus fix an infinite n-like computable linear ordering A =
(A, <4) with infinitely many successivities. We need to build a com-
putable linear ordering B = (B, <p) isomorphic to A and a (non-
computable) map ¢ : A — B, meeting, in increasing order of difficulty,
the following

Overall Requirements:

O: . is order-preserving, i.e., for all a,a’ € A, a <4 da implies
t(a) <g t(a") (and so in particular ¢ is injective);
¢ is well-defined (and in particular total);
¢ is surjective; and
there is a Turing reduction I' such that I'S*®) = C| where
Succ(B) is the successivity relation in B and C'is a 1-complete
c.e. set.

A

Since A is n-like, we may without loss of generality (but non-uni-
formly) assume that A has neither a least nor a greatest element (since
removing at most finitely many elements from an n-like linear ordering
will always result in a linear ordering without endpoints). We will also
(again non-uniformly) choose a successivity (ag,a;) in A and assume
that these two elements are enumerated into A first. (It is possible
to remove these non-uniformities, but our assumptions of no endpoints
and of a fixed successivity make our construction easier.)

6 ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

The isomorphism ¢ will now be defined along the true path TP, in
the sense that ¢ is the limit of finite partial isomorphisms ¢, between A
and B for ¢ C TP. (Unlike in Downey, Kastermans and Lempp [9],
however, while ¢ will still be the increasing union of the finite par-
tial isomorphisms ¢, for ¢ C TP, there will be times when we have
to correct I', in which case we will have to “reset” our isomorphism
back, destroying successivities in B and causing additional initializa-
tions along the true path. So while our isomorphism ¢ will again only
be AY, one can no longer compute the isomorphism ¢ from the true path
and the function giving the stage beyond which the approximation to
the true path no longer moves left of the true path up to level n of the
tree of strategies, as was possible in [9].)

In the absence of the requirement for building I'S"¢®) it is, of course,
trivial to build a computable isomorphic copy B of A, by simply copy-
ing all of A into B. However, we will present here a different way of
organizing the construction of B and the isomorphism ¢, with an eye
toward later extending it to the full construction.

2.1. Making ¢ order-preserving. This is the simplest requirement:
We simply ensure that we do not make the “silly” mistake of letting ¢
map elements in A to elements in B that are ordered differently.
The remaining overall requirements can be split up into the following
Requirements:

Wa: t(a) is (well-)defined, for each a € A;
Sy (D) is defined, for each b € B; and
Ri: ISueeB)(4) = O(i) for each i € w.

2.2. Making ¢« well-defined. Our technique for meeting this require-
ment foreshadows the technique we introduce in section 2.5l We ensure
that ¢ is well-defined not by ensuring it one element at a time, but one
maximal block at a time, using the fact that A is n-like and so each
maximal block is finite. So fix an element a € A for which ¢(a) has
not yet been defined. We need to guess the (finite) size of the max-
imal block in A containing a. Note that this can be done uniformly
in a II-fashion in the sense that there are two computable functions
ILB,RB : A X w — w such that the size of the maximal block con-
taining a to the left and right of a is given by liminfy LB(a,s) and
liminfg RB(a, s), respectively.

Now, at stage s, we simply ensure that there are LB(a,s) + 1 +
RB(a, s) many elements in B to which the maximal block of a can be
mapped. Whenever LB(a, s) or RB(a, s) increases (and so in particular
when we first start working on the element a), we add more elements

THE COMPLEXITY OF THE SUCCESSIVITY RELATION 7

to B immediately to the left or right of a, respectively, in order to
have a maximal block in B of the correct size. Whenever LB(a, s) or
RB(a, s) decreases, we discard some of the elements in B previously in
the (-image of the maximal block of a from the current range of ¢ ; of
course, these elements cannot be removed from B, but they are now no
longer in the range of (our new version of) ¢, and the strategies making ¢
surjective will worry about supplying preimages for these elements of B
later on.

2.3. Making ¢ surjective. Such a strategy o will in general work
within an interval of B, possibly bordered on one or both sides by
maximal blocks, which determine (under :~!) an infinite interval of A,
again possibly bordered on one or both sides by maximal blocks. Fix
an element b in some infinite interval of B which is not currently in
the range of ©. We now simply find an element a in our interval of A,
identify the maximal block containing a, and proceed as in section
to map a and its maximal block to B.

2.4. Defining I' at an argument i. The most complicated type of
requirement tries to compute C' from Succ(B) via I'. A typical strat-
egy o for this requirement, trying to define I' at an argument ¢, will
define the use of the computation I'"“(®)(j) to include the images in B
of all successivities in all blocks in A found by strategies C 0. There
will always be at least one such successivity since we fixed the suc-
cessivity (ag,a;) in A beforehand and we assigned this successivity to
the highest-priority strategy on the tree of strategies, which will be
a Wh-strategy defining ¢(ap) (and thus by section also «(ay)); so
any computation I'**(®)(7) has nontrivial use and can be corrected by
destroying some successivity in B. Furthermore, eventually T'Ste¢(®) (1)
will be defined with Succ(B)-correct use since any strategy on the true
path eventually identifies only correct blocks in A, and thus in B, at
stages when it has the correct outcome.

When ¢ sees that C(i) has changed and wants to correct ['Su(B)(5),
o will try to minimize the injury to higher-priority strategies: If there
is a successivity in the use of I'S"*(®)(;) not contained in any block
controlled by a higher-priority strategy, then ¢ will simply destroy such
a successivity by inserting an element into B. On the other hand, it
may be that the use of I'S%(5)(j) only contains successivities contained
in blocks controlled by higher-priority strategies 7. In the style of
minimizing injury as in the Sacks Splitting Theorem, o will now identify
a successivity contained only in maximal blocks of strategies 7 of lowest
possible priority. Given that A, and thus also B, contains infinitely

8 ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

many (maximal) blocks of size > 1 and that more and more such blocks
will be identified along the true path, and given that each computation
[Suee®) (7) needs to be corrected at most once (since C'is c.e. and the I'-
oracle Succ(B) is co-c.e.), the injury to each maximal block of B found
along the true path will be finite.

2.5. Identifying maximal blocks and outcomes of strategies.
We now introduce the key ideas of how we combine the strategies. We
first discuss the outcomes of the W,- and Sj-strategies. (Since each
R;-strategy acts at most once (in a way which affects other strate-
gies, namely, when i enters C'), we allow only one outcome for an
R;-strategy.)

The main problem consists in defining the map ¢ while trying to keep
fixed (finite) blocks in B intact as much as possible (i.e., not inserting
additional elements into them unless required for I'-correction) in order
to have them serve as images of blocks in A.

The setup will consist of a strategy o being given a finite collection
of finite blocks in A and their (-images in B identified by strategies
C o. Suppose o tries to define ¢(a) or t7'(b). In the latter case, we
first identify the element a with least Godel number in the interval
between the t-preimages of the B-blocks between which b lies. (If there
is no such a, then we end the stage; this delay must be finite if o is
along the true path.) Next, we need to identify a maximal block @
in A of length m + 1 + n, say, containing a as well as m and n many
points to the left and right of a, respectively. Then we let ¢ map @ to
a block b (containing b if we are defining t~1(b)). We will “guess” the
block @ in A by first guessing the length m + 1 + n of the maximal
block in A containing a, associating with the guess (m,n) each time
an (m+ 14 n)-tuple @ of elements in A which we currently believe to
form a maximal block in 4 containing a.

The outcomes of a strategy trying to define ¢(a) or .= (b) are thus of
the form (m,n, @), where m,n € w and @ is a < 4-ordered (m+1+n)-
tuple of consecutive elements from A containing a. These outcomes are
ordered lexicographically, where the ordering on @ is by Godel number.

We can organize the guessing for a “correct” triple (m,n,a’) (i.e., a
triple such that @ is a maximal block in \A) such that this triple is the
leftmost outcome guessed infinitely often. In addition, there will be a
stage ¢’ such that at any later stage, the only guesses on the outcome
will be the “correct” triple (m,n,a’) and triples of the form (m’, n’,a@")
(where m’ > m, or m’ = m and n’ > n). (This is because once we have
correctly guessed this @ for the first time, we will from then on only

THE COMPLEXITY OF THE SUCCESSIVITY RELATION 9

be wrong by guessing tuples @” which are strictly longer to the left or
right of a.)

2.6. Interaction between incomparable strategies working for
the same requirement. In order for the construction overall to suc-
ceed, we need to be very careful about the interaction between incom-
parable strategies working for the same requirement. This is obvious for
an R;-requirement: All R;-strategies together define the functional '
at a single argument i; so any definition of I'S"*(3)(7) made by one R;-
strategy has to be dealt with by all other R;-strategies as well, even if
the final definition of I'S"*(®)(4) is made by an R;-strategy off the true
path. However, this will not be as difficult at it appears at first, since
we only have to ensure that I'S'¢(®) is total, and that we can correct
[Suee®)(4) when i enters C.

The interaction between incomparable strategies for the other re-
quirements will turn out to be much more subtle, as we will now ex-
plain. Indeed, we will need to ensure the following property of the
construction to hold: If o and ¢’ are two strategies for the same W,-
or Sy-requirement, respectively, with ¢ < ¢’, then one of the following
two cases must hold at any stage (where a = +=1(b), as defined by o’
or some 7 C o', in the case of an S,-requirement):

(1) Either ¢(a) is defined by a strategy 7 C ¢’ (as part of a maximal
block found by 7, which happens to include a); or

(2) the maximal block @ found by o in defining ¢(a) is a proper
subblock of the maximal block @” found by ¢’, and ¢ and o’
agree on the value of ¢(a).

We need the above property in order to avoid the following problem:
If o is an Sp-strategy to the left of the true path trying to define a =
171(b), then o may believe that a is part of a large maximal block @.
But if 0 and ¢’ try to define :!(b) differently, then o’ may believe that
a’ = 171(b) is part of a smaller maximal block and so will try to make
the maximal block around b smaller than allowed by o, which would
result in injury by the lower-priority strategy o’ to the higher-priority
strategy ¢ and therefore cannot be allowed since after all, ¢ may be on
the true path and then cannot afford to be injured by lower-priority
strategies infinitely often.

Furthermore, note that we can indeed ensure the above property,
proceeding by induction on the length of o and ¢’ (which we may
assume to be equal by the assignment of requirements to nodes on the
tree of strategies in section . Assume that clause does not apply
to o and ¢’ and that the property holds for all shorter nodes. Then,
by induction on |o|, both o and ¢’ work with the same maximal blocks

10 ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

provided by the strategies 7 C o and 7/ C ¢’ respectively, except that
the blocks provided by the strategies 7/ may properly contain blocks
provided by the strategies 7, and that some of the blocks provided
by the strategies 7 may be combined into single blocks provided by
the strategies 7. However, by the failure of clause for ¢/, and by
clause for shorter strategies, we can assume that a lies between
o-subblocks of ¢’-blocks (in the case of a W,-requirement), or that b
lies between the (-images of o-subblocks of o’-blocks (in the case of an
Spy-requirement, respectively). This allows ¢’ to define ¢(a) respecting
clause (2).

In ensuring , there is one obstacle we need to overcome with a
small trick, under the notation of the previous paragraph: Normally,
one would leave any restraint imposed by o intact while ¢ appears
to be to the left of the true path. However, for the same reason as
mentioned two paragraphs above, we cannot afford to do so: It may
turn out that o is wrong about a large block around a and so would
want to protect a large block around b = ¢(a) even though while o is to
the left of the current true path, it turns out that ¢’s guess about the
size of the maximal block containing a was too high. The solution to
this problem is now obvious: Even though o is to the left of the current
true path, o will continue to monitor its guess about the size of the
block containing a, but it will only decrease its guess as elements enter
near a to the left and right of a. This trick will ensure that whatever
guess o currently has about the size of the maximal block containing a,
it is no larger than the corresponding guess of ¢/, and so o will not try
to protect a larger block around b = ¢(a) than o’.

3. PROOF OF THE MAIN THEOREM

In the following, we will assume familiarity with priority arguments
on a tree of strategies (cf., e.g., Soare [27] or Lempp [23]).

3.1. The tree of strategies. The full construction takes place on a
tree of strategies T = A<“ where

A ={(m,n,@)|mncwanda c A"} U {fin}

is the set of outcomes of a strategy, ordered lexicographically, with fin
as the greatest element, and where the @ are ordered by Gédel numbers.

We effectively order all requirements in a list {Q;};je. such that
W,, = Qsi, Sp, = Qzi41 and R; = Qs;1o for all i € w where A = {q; |
i € w}and B ={b; | i € w}, and where

Wa: t(a) is (well-)defined,

Sp: (D) is defined, and

THE COMPLEXITY OF THE SUCCESSIVITY RELATION 11

Ry ISuee®) (i) = C(i).

We will assume that the highest-priority requirement Qy is the W, -
requirement so that the successivity (ag, a;) is found immediately and
can be included in all I'-uses. Furthermore, all strategies o € T of
length j are assigned to requirement Q.

3.2. The full strategies. Each strategy is equipped with a finite par-
tial map ¢, : A — B, which is its current guess about the isomorphism
t: A — B. Naturally, we will want 7 C ¢ € T to imply ¢, C ¢,; s0 a
strategy o will always have to live with
by ‘= U Ly
TCOo
Furthermore, we define, for each strategy o, the set S, of stages at
which o is eligible to act by
Sy ={s|o C TP}

where TP; is our approximation to the true path of the construction at
stage s (to be defined in section [3.3)).

Finally, each W- and S-strategy o is also associated with two “block
size” functions, approximated by two computable functions (denoted,
with some abuse of notation, by the same letters)

LB, , RB, : A X w — w,
which, for all such o along the true path TP, will have the property
that
LB,(a) : =liminf,cs, LB,(a,s)
= size of maximal block in A containing a left of a
RB,(a) : = liminfs,cg, RB,(a,s)

= size of maximal block in A containing a right of a

(1)

Specifically, we define two computable functions, for any stage s and
for the greatest s’ € S, with s’ < s, as follows:

LBy(a,s) = |[d’,a]| — 1, where @’ is <4-least such that no element
has entered A in the interval [a', a] since stage s, and

RB,(a,s) = |[a,d']] — 1, where a' is < 4-greatest such that no element
has entered A in the interval [a, '] since stage s'.

Intuitively, the functions LB, and RB, guess at the size of the part
of the maximal block containing a to the left and to the right of a,
respectively. Clearly, these two functions will have liminf equal to the
true sizes of the part of the block to the left and right of a, respectively.

12 ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

It is now easy to check that this definition of the functions LB,
and RB, ensures above for all W- and S-strategies o along the true
path (and indeed for all strategies o for which S, is infinite). Note
furthermore that we define the block size function not only for stages
s € S, but for all stages; this is because we need to measure how the
guess on the block size to the left and right of a decreases for strategies o
to the left of the current true path as explained in section [2.6]

In the following, we will describe the action of a strategy o € T
depending on the type of requirement it is assigned to. We describe
the action of each type of strategy at a stage s and let s’ be the previous
stage in S, since o’s most recent initialization. (We set s’ = s if no
such stage exists.)

3.2.1. The full W,-strategy. This strategy ¢ has to ensure that ¢(a) is
defined. If ¢ (a) is already defined, then the strategy simply ends the
substage with outcome fin.

Otherwise, the strategy guesses that the maximal block containing a
also contains the LB, (a, s) many elements currently immediately to the
left of a as well as the RB,(a, s) many elements currently immediately
to the right of a; we will denote this tuple of elements in A by @’. The
outcome of the strategy is now (LB, (a, s), RBy(a, s),@’) (denoting that
the strategy guesses that the maximal block containing a consists of
the LB,(a,s)+ 1+ RB,(a,s) many elements in @). Then the strategy
defines 1, (@’) as follows:

o If &' = s (i.e., if this is the first stage at which o is eligible to act
since its most recent initialization), then check whether there
a (lowest-priority) W,-strategy oy <, o which has last been
eligible to act at a stage sy < s, say, and has not been initialized
since then. If so, then set L = LB,,(a,s), R = RB,,(a,s), and
define ¢, (a) = t4,(a); otherwise, set L = R = 0 and define ¢, (a)
to be the element b € B with least Godel number consistent
with ¢, (if no such element b currently exists in B, then create
one). Now create L many new elements in B immediately to
the left of b, and R many new elements 1mmed1ately to the rlght
of b; call these L+1+4 R many elements b, and define Lo(@') = v
e Otherwise, first check whether LBg(a,s) < LB,(a,s). If so,
then create LB, (a,s) — LB, (a, s’) many new elements immedi-
ately to the left of the current LB, (a,s") many elements imme-
diately to the left of b = ¢,(a). Next check whether RB,(a,s’) <
RB,(a, s). If so, then create RB,(a, s)— RB,(a, s') many new el-

ements immediately to the right of the current RB,(a, s’) many

THE COMPLEXITY OF THE SUCCESSIVITY RELATION 13

elements immediately to the right of b. Finally, denote by b
the tuple in B consisting of the LB, (a,s) many elements now
immediately to the left of b, b itself, as well the RB,(a, s) many

elements now immediately to the right of b. Define ¢, (@) =b .

The strategy now ends the substage with outcome
(LB, (a, s), RB,(a, s),a’).

3.2.2. The full Sy-strategy. This strategy o has to ensure that :=(b) is
defined. If (1;)~1(b) is already defined, then the strategy simply ends
the substage with outcome fin.

Otherwise, the strategy defines ¢, !(b) as follows:

o If ' = s (i.e., if this is the first stage at which o is eligible
to act since its most recent initialization), then check whether
there is a (lowest-priority) Sy-strategy og < ¢ which has last
been eligible to act at a stage sy < s, say, and has not been
initialized since then. If so, then define a = ¢, *(b) = ¢, (b) and
set L = LB,,(a,s) and R = RB,,(a, s); otherwise, set L = R =
0 and define ¢;!(b) to be the element a € A with least Godel
number consistent with ¢ (if no such element a currently exists
in A, then end the stage; this wait must be finite if o is on the
true path). Now create L many new elements in 3 immediately
to the left of b, and R many new elements immediately to the
right of b; call these L + 1 + R many elements 5’, and define
(@) =1,

e Otherwise, let @ = ¢, 1(b) and first check whether LB,(a,s') <
LB,(a, s). If so, then create LB, (a, s)— LB, (a, s") many new ele-
ments immediately to the left of the current LB, (a, s’) many el-
ements immediately to the left of b = ¢, (a). Next check whether
RB,(a,s") < RB,(a,s). If so, then create RB,(a,s) — RB,(a, s')
many new elements immediately to the right of the current
RB,(a, s") many elements immediately to the right of b. Finally,

denote by b the tuple in B consisting of the LB, (a, s) many el-
ements now immediately to the left of b, b itself, as well the
RB,(a,s) many elements now immediately to the right of b.

Define ¢, (@) = b .
The strategy now ends the substage with outcome

(LB,(a,s), RB,(a,s),a).

3.2.3. The full R;-strategy. This strategy needs to ensure I'Suc(B)(;) =
C(3).

14 ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

We distinguish four cases for the action of this strategy o.

If there is some S- or W-strategy 7 C ¢ which has not been eligible
to act before stage s since its most recent initialization, then o ends the
stage. (This is to ensure that the block size measurements of such 7
make sense.)

Otherwise, if I'S*(®)(4) is currently defined but not equal to C(i),
then o will make I'S'*(®)(4) undefined as follows. (Note that there may
be several definitions of I'S%(®)(7) applying, in which case the below
procedure has to be performed for each of them.)

e If the use () includes a successivity which is not in a block in B
in the range of ¢+, then o simply inserts a new element into B
so as to destroy the leftmost such successivity; in addition, o
initializes all 7/ > o and ends the stage.

e Otherwise, fix the shortest 7 C o such that the use (i) includes
only successivities which are in a block in B in the range of ¢,.
Then o inserts a new element into B so as to destroy the leftmost
successivity in y(z) which is not in a block in B in the range
of ¢~; in addition, ¢ initializes all strategies 7/ > 7 and ends the
stage. (Note that this will in particular imply that o initializes
itself.)

Otherwise, and if T'5%(®)(4) is not currently defined by a definition
made by o, then o defines T'5%(®)(j) = C(4) with use (i) including all
the successivities in all blocks in the range of ¢ . (Note that there will
always be at least one such successivity, namely, (ag, a1).) In addition, o
initializes all strategies 7 > o and ends the stage.

Finally, if neither of the above cases applies, then ¢ takes no action
but simply takes outcome fin.

3.3. The construction. The construction proceeds in stages s € w,
each subdivided into substages t < s.
At the beginning of stage 0, we initialize all strategies in T

Stage s, substage t: At substage t of stage s, the strategy o of length ¢
with the currently correct guess about the outcomes of the strategies
T C o is eligible to act. At the end of each substage t < s, the strategy o
will either end the stage (if its description specifies this, or if s = t), or
determine its outcome o and thus the strategy o~ (o) eligible to act at
the next substage t+1. The action of each strategy is determined by the
type of requirement it is assigned to and is as described in section [3.2]

Let TP, be the longest strategy eligible to act at stage s. At the end
of each stage, any strategy o > TP; is initialized.

This completes the description of the construction.

THE COMPLEXITY OF THE SUCCESSIVITY RELATION 15

3.4. The verification. We first establish a lemma which will help
us show that each strategy along the true path cannot be initialized
infinitely often by I'-correction:

Lemma 3.1. Let Cy be the set of © € C such that at some stage,
a (highest-priority) strategy ;, say, is initialized when an R;-strategy
corrects T5'B)(3) by adding one or more elements into B. Then for
each i € Cy, there is only one such 7;, and
lim || = co.
1€Cp

Proof. Fix n arbitrary. Using n-likeness and the fact that A contains
infinitely many successivities, fix m > n such that the first m many
elements of A are contained in maximal blocks of size > 1. Next, fix a
stage so such that by stage sg, the finite maximal blocks of the first m
many elements of A as well as C' [m have been completely enumerated.
Since the set of possible outcomes of each strategy is well-ordered (of
order-type w3 + 1), we can fix a stage s; > sy such that at all stages
s> 51, TPs | 3m > TPy, | 3m. Finally, fix a stage sy > s; such that no
computation I'S'*(®)(7) defined by stage s; is corrected after stage ss.

We now claim that after stage so, |7;| > 3n for all i € Cy for which
[Suee®) (7) is corrected after stage so. This is because any such R;-
strategy o, say, correcting FSUCC(B)(Z') must have length > 3m and be
preceded by > n many W-strategies having found blocks (possibly
properly) containing maximal blocks of size > 1. Thus 7; must be
longer than the nth W-strategy, giving |7;| > 3n as desired. O

We are now ready to prove the strategies along the true path ensure
the satisfaction of all requirements, finishing up the proof of our Main
Theorem for the case C' = ()':

Lemma 3.2. There is an infinite path TP through the tree T of strate-
gies (called the true path) with the following properties for all j € w:

(1) TP | j is eligible to act infinitely often.
(2) Any o <, TP | j is eligible to act at most finitely often.
(3) TP | j is initialized at most finitely often.
(4) If 0 = TP | j is a W,-strategy, then either 1 (a) is already
defined, or there is a leftmost outcome o taken infinitely often
by o, and at almost all stages at which o has outcome o,
(a) o correctly identifies the mazimal block in A containing a,
and
(b) 1,(@) takes a fized value for the maximal block @ contain-
ing a.

16 ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

(5) If o = TP | j is an Sy-strategy, then either (17)~1(b) is already
defined, or there is a leftmost outcome o taken infinitely often
by o, and at almost all stages at which o has outcome o,
(a) o defines a = 1(b) for some fized a in A,
(b) o correctly identifies the mazimal block @ in A contain-
ng a, and
(c) 1,(@') takes a fixed value for the mazimal block contain-
ing a.
(6) If 0 = TP | j is an R;-strategy then TS"B)(4) is defined and
correctly computes C(i).

Proof. We proceed by induction on 7 and assume the lemma for all
Jj<j.

Clauses and are trivial for 7 = 0, and for j > 0, they follow
by the facts that

e the set of possible outcomes of TP [(j — 1) is well-ordered (of
order-type w?® + 1),

e the delay in case TP | (j — 1) is an Sy-strategy waiting for an
t-preimage for b must be bounded, and

e [Succ®)(j) can be corrected at most once for each i.

Clause (3) now follows easily by Lemma

We complete the proof of our lemma by distinguishing cases for the
type of requirement assigned to o = TP | j.

Suppose first that o is a W,-strategy and that ¢, (a) is not de-
fined. Then o eventually takes as its outcome only the true outcome
o = (m,n,a’) for the correct values m, n and @ (for the size m of the
maximal block to the left of a, the size n of the maximal block to the
right of a, and the maximal block @ containing a) as well as outcomes
of the type (m/,n',@") (for m’ > m) or (m,n',@") (for n’ > n), so
the true outcome o satisfies clause (4) and o correctly identifies the
maximal block containing a whenever o takes outcome o. Finally,
since the definitions of ¢,(a) and ¢,,(a) agree for all W,-strategies
oo < o for which ¢,,(a) is defined, and since LB,(a,s) > LB,,(a,s)
and RB,(a,s) > RB,,(a,s) for all W,-strategies oy < o, o eventually
defines ¢, (@’) the same way at all stages at which o takes outcome o.

The argument for an Sp-strategy o is similar, except that we have to
argue first that +;1(b) stabilizes.

Finally, assume that o is an R;-strategy. Clearly, by the construc-
tion, ['S1(®)(;) cannot be permanently defined # C(7), so we just need
to show that ['Ste(B)(;) is eventually defined with Succ(B)-correct use.
So suppose, for the sake of a contradiction, that no R;-strategy makes
a permanent definition of I'"*()(4). Fix a stage s after which ¢ is no

THE COMPLEXITY OF THE SUCCESSIVITY RELATION 17

longer initialized and C(i) no longer changes. Then ¢ will eventually
make a I'S"8)(;)-definition using only the successivities in the correct
maximal blocks found by W- and S-strategies 7 C o. O

In order to prove the full theorem, for an arbitrary c.e. degree >
degr(Succ(A)), the above construction simply needs to be combined
with permitting and coding. So suppose we have a c.e. set C >p
Succ(A). There are only two reasons for us to destroy successivities in
the copy B of A we are building. One is that the corresponding pair of
elements in A is not really a successivity (which C' can compute as it
can compute Succ(A)); and the other is for coding via I', which C' can
clearly compute as well. Thus the argument combines with permitting
and coding in a standard way, since C' can unravel the full construction.

REFERENCES

[1] Ash, Christopher J., A construction for recursive linear orderings, J. Symbolic
Logic 56 (1991), 673-683.

[2] Ash, Christopher J.; and Knight, Julia F., Computable Structures and Hyper-
arithmetical Hierarchy, Elsevier, 2000.

[3] Ash, Christopher J.; and Nerode, Anil, Intrinsically recursive relations, in:
Aspects of Effective Algebra (Proc. Conf. Monash Univ., Clayton, Australia,
Aug. 1-4, 1979), J. N. Crossley (ed.), 26-41.

[4] Chubb, Jennifer C.; Frolov, Andrey N.; and Harizanov, Valentina S., Degree
spectra of the successor relation of computable linear orderings, Arch. Math.
Logic 48 (2009), 7-13.

[5] Downey, Rodney G., Every recursive boolean algebra is isomorphic to one with
incomplete atoms, Ann. Pure Appl. Logic 60 (1990), 193-206.

[6] Downey, Rodney G., Computability Theory and Linear Orderings, in: Hand-
book of Recursive Mathematics (eds. Ershov, Yuri L.; Goncharov, Sergey S.;
Nerode, Anil; and Remmel, Jeffrey B.), Vol. 2, 823-976, North Holland, 1998.

[7] Downey, Rodney G., Computability, definability and algebraic structures, in:
“Proceedings of the 7th and 8th Asian Logic Conferences”, Singapore Univer-
sity Press, Singapore, 2003, 63-102.

[8] Downey, Rodney G; Goncharov, Sergey S.; and Hirschfeldt, Denis R., Degree
Spectra of relations on boolean algebras, Algebra i Logika 42 (2003), no. 2,
105-111.

[9] Downey, Rodney G.; Kastermans, Bart; and Lempp, Steffen, On computable
self-embeddings of computable linear orderings, J. Symbolic Logic 74 (2009),
1352-1366.

[10] Downey, Rodney G.; and Knight, Julia F., Orderings with a-th jump degree
0%, Proc. Amer. Math. Soc. 114 (1992), 545-552.

[11] Downey, Rodney G.; and Moses, Michael F., Recursive linear orders with in-
complete successivities, Trans. Amer. Math. Soc. 326 (1991), 653-668.

[12] Dzgoev, Valeri D.; and Goncharov, Sergey S., Autostability of models, Algebra
i Logika 19 (1980), no. 1, 45-58, 132.

18

ROD DOWNEY, STEFFEN LEMPP, AND GUOHUA WU

[13] Feiner, L. J., Orderings and Boolean Algebras not isomorphic to recursive ones,

Thesis, MIT (1967).

[14] Frolov, Andrey N., Presentations of the adjacency relation of a computable

linear order, Izv. Vyssh. Uchebn. Zaved. Mat., to appear.

[15] Goncharov, Sergey S., The number of nonautoequivalent constructivizations,

Algebra i Logika 16 (1977), no. 3, 257-282, 377.

[16] Harizanov, Valentina S., Some effects of Ash—Nerode and other decidability

conditions on degree spectra, Ann. Pure Appl. Logic. 55 (1991), 51-65.

[17] Harizanov, Valentina S., Uncountable degree spectra, Ann. Pure Appl. Logic.

54 (1991), 255-263.

[18] Harizanov, Valentina S., The possible Turing degree of the non-zero member in

a two element degree spectrum, Ann. Pure Appl. Logic 60 (1993), 1-30.

[19] Hirschfeldt, Denis R., Degree spectra of relations on computable structures,

Bull. Symbolic Logic 6 (2000), 197-212.

[20] Hirschfeldt, Denis R.; Khoussainov, Bakhadyr M.; Shore, Richard A.; and

Slinko, Arkadii M., Degree spectra and computable dimensions in algebraic
structures, Annals of Pure and Applied Logic 115 (2002), 71-113.

[21] Jockusch, Carl G., Jr.; and Soare, Robert 1., Degrees of orderings not isomor-

phic to recursive linear orderings, Ann. Pure Appl. Logic 52 (1991), 39-64.

[22] Knight, Julia F., Degrees coded in jumps of orderings, J. Symbolic Logic

51 (1986), 1034-1042.

[23] Lempp, Steffen, Lecture Notes on Priority Arguments, preprint available at

http://www.math.wisc.edu/~lempp/papers/prio.pdfl

[24] Moses, Michael F., Relations intrinsically recursive in linear orderings, Z.

Math. Logik Grundlag. Math. 32 (1986), 467-472.

[25] Miller, Russell G., The AY-spectrum of a linear order, J. Symbolic Logic

66 (2001), 470-486.

[26] Remmel, Jeffrey B., Recursively categorical linear orderings, Proc. Amer.

Math. Soc. 83 (1981), 387-391.

[27] Soare, Robert 1., Recursively enumerable sets and degrees, Springer-Verlag,

Berlin, New York, 1987.

SCHOOL OF MATHEMATICS, STATISTICS AND OPERATIONS RESEARCH, VICTO-

RIA UNIVERSITY OF WELLINGTON, WELLINGTON, NEW ZEALAND

E-mail address: Rod.Downey@mcs.vuw.ac.nz

URL: http://wuw.mcs.vuw.ac.nz/Main/RodDowney

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WIS-

CONSIN 53706-1388, USA

E-mail address: lempp@math.wisc.edu

URL: http://www.math.wisc.edu/~lempp

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES, NANYANG TECHNO-

LOGICAL UNIVERSITY, SINGAPORE 637371, REPUBLIC OF SINGAPORE

E-mail address: |guohua®@ntu.edu.sg

URL: http://www3.ntu.edu.sg/home/guohua/

http://www.math.wisc.edu/~lempp/papers/prio.pdf
mailto:Rod.Downey@mcs.vuw.ac.nz
http://www.mcs.vuw.ac.nz/Main/RodDowney
mailto:lempp@math.wisc.edu
http://www.math.wisc.edu/~lempp
mailto:guohua@ntu.edu.sg
http://www3.ntu.edu.sg/home/guohua/

	1. Introduction and Main Theorem
	2. Intuition for the Proof of the Main Theorem
	2.1. Making the isomorphism order-preserving
	2.2. Making the isomorphism well-defined
	2.3. Making the isomorphism surjective
	2.4. Defining Gamma at one argument i
	2.5. Identifying maximal blocks and outcomes of strategies
	2.6. Interaction between incomparable strategies working for the same requirement

	3. Proof of the Main Theorem
	3.1. The tree of strategies
	3.2. The full strategies
	3.2.1. The full W-strategy
	3.2.2. The full S-strategy
	3.2.3. The full R-strategy

	3.3. The construction
	Stage s, substage t

	3.4. The verification

	References

