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1. Introduction

In [2], Degtev constructed what we call a singular tt-degree, namely an r.e.
tt-degree containing a single r.e. m-degree. It is quite easy to construct an r.e.
tt-degree containing infinitely many r.e. m-degrees [9], and in [4], the author
constructed an r.e. tt-degree with no greatest r.e. m-degree.

In Part I of this paper [5], the author solved a question of Odifreddi [16,
Problem 10] by showing that it is possible for an r.e. tt-degree to contain a finite
number of r.e. m-degrees and yet not be singular. In particular, for any finite
nonzero n, in [5] the author constructed an r.e. t-degree containing exactly 2" —1
r.e. m-degrees.

In the present paper we turn to more “global” aspects by analysing the
distribution of singular tt-degrees within r.e. T-degrees. Our investigations were
inspired by Odifreddi [17], who —in particular — asked if 0% contains a singular r.e.
_tt-degree.

Define an r.e. T-degree a to be singular if a contains a singular r.e. tt-degree.

In Sect. 2 we show that O is singular. In Sect. 3 we show that singular r.e.
T-degrees are dense in the r.e. T-degrees. Finally in Sect. 4 we show that not all r.e.
T-degrees are singular. In fact we construct an r.e. T-degree a such thatifbisanr.e.
tt-degree contained in a then b has no greatest r.c. m-degree. In Sect. 5 we close with
a few open questions.

Notation and terminology are standard. A good reference is Soare [21]. The
following are exceptions. The upper case Greek letters A and I are reserved for
tt-reductions with use functions 1 and y respectively. We remind the reader that the
use function 4 of a tf-reduction A is defined as the largest member of the truth table
describing A . (Thus if A’ is the reduction given by the recursive function f then
x-use of A is the largest member of the f (x)'th truth table.) Note that, without loss,
we can take all use functions as monotone increasing both in argument and stage
number (where defined). The upper case Greek letters ¢ and ¥ are reserved for
T-functionals. We let {8,},.,, denote a standard enumeration of all partial
recursive unary functions. All computations, etc., are bounded by s af stage s. We
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warn the réader that the argument of Sect. 3 relies on tree of strategies arguments
along the lines of Lachlan [14] or Soare [20, 21]. It is helpful but not essential to
. be familiar with Sect. 2 of Part I of this paper. Finally we denote {z:z€ A&z =x}
by A[x].

The author thanks George Odifreddi for helpful discussions. He also thanks
the referee for such an excellent and helpful report. [See also the remark after the
proof of (4.1).]

2. A T-Complete Singular zz-Degree

In this section, we solve a question of Odifreddi [17] by showing that O’ is singular.
Interestingly, although the construction [2] (or [5]) of a singular degree is finite
injury, to show that 0’ is singular requires an infinite injury argument. We build
A=1{J A, with A=rK and satisfying

R, A (A=Y, and [(V)=A4 implies V,=,4.

Here R, is considered for all triples (4., I, V) oow consisting of anre. set ¥, and two
tt-reductions A,, I', with uses 4, and 7, respectively. Let f(w)=K be a recursive
{—1 enumeration of K. At each stage s we let {a; ;icw} enumerate A, in in-
creasing order. We ask that at cach stage s, 4,41 = Agu{a; k< j<k-+s} for some
k < f(s). (The reason for the “dump” becomes clear later.} The reader can check

(2.1) Lemma. If lim, a; ,=a; exists then A=rK.

Associated with the R, is a restraint r{e, s). We shall insure that lim inf, R(e, s) < 0
where R(e,s)=max{r(j,s): j<e}. To meet the R, the basic strategy is sketched
below (see [5] for more details).

Let L(e, s)=max {x:Vy<x(4, {(4s )= V, ()} and

e, s) =max {x: ¥y <x(I (Vs Y)=A) & L{e.5)> YN} -

The reader should think of (e, s) as the « 4_controllable” length of agreement. Let
A=A 0{a; igj=i+s) To satisfy a single R, we monitor Ke, s). When
l(e,s)>a; ; we ask questions of the tt-reductions 4, and I, concerning the effect of
possible future configurations of A. By the dump property, these can only be of the
form A for j<i (with j not restrained by higher priority requirements).

Thus for example setting A, = At must cause a changein V¥, , below 7.(a; -
What we look for is an inconsistency. Thus, for example, an initial segment of 4
looking like A might predict y(i) enters V, (to remain consistent) and yet A for
some j <i might predict y(i) doesn’t enter ¥, but some y(j) = y(i) does. The key idea
is that in this case we can force a disagreement by first setting 4, .. , = A} and then,
when we see y(i) enter V,, setting A, 1 = Ai and preserving this initial segment of A.

Roughly speaking, we can argue that if it is impossible to kill R, as above then
we can tie single numbers entering 4 to single numbers entering V. Fuller intuitive
remarks may be found in [5].

Coding K into A presents certain rather nasty problems since for all attacks,
once we have set up a disagreement, still later K-coding can injure this allowing the
computations to correct themselves. In particular the problems are sufficiently
complex that we need R, to be perhaps injured infinitely often and still be able to
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YR;forj>e. Roughly speaking, we do this by determining which requirement
tack by the point of A, at which we can attack requirements. This is why we
say that i requires attention (see below) rather than R, requires attention. We
turn to the construction:

Definition. We shall say that i requires attention via e at stage s+ 1 if e is least
that R, is not currently (declared) satisfied, i>max{e,r(j, s):j < e} and one of
yptions below holds:

Option. For all sets ¥, with ¥, ,C ¥, and V,C{0,...,s} we have I (V) (e, s)]
(e, 5)] or V,[m]+ A(A})[m] where m=max {7e.42): 25 e, 5)}.

ark. (2.3) says that we can change 4, ., to Aithen V, ;can’t respond to preserve
zments.

Option. We have that a; , ;< (e, 5) and we can win in a two step action based
;11,5 then g ”: that is, for all sets v.c{o,...,s} if
(i) J. .CV, then
) I, (V) AL or P, [m] 4 A40 [m].
iii) J, ,denotes what ¥, will be if we set A, 4 = Ai*! That is, if we let my(e, 5)
ax{y(y):y<l(e,s)} then J =4, At Y[my(e,s)] and  where
max {y, {z):z<l(e 5)}.

ark. (2.4) says that if I first set 4 to be A" ! wait for recovery of the I;; 4,
putations then I can win by then setting 4 to be A as in (2.3).

) Definition. We say that i demands attention at stage s+1 if there exists an e
| that

@ fOzi+1,

(ii) i requires attention via e, and

iil) i is the least such.

the least e by which i requires attention we say i demands attention via e.
istruction

e 0

A,=0. Initialize all R, (meaning that R, is unsatisfied and r(e, 0)=0).

s+l

if any i demands attention. If not set A1 =A,0{apg, - @ fipdssye 1 this
ates any restraints cancel those restraints and initialize the requirement to

ch the restraints pertained. [Of course a restraint (e, s) is violated if j <r(e,s)
a;,; enters Ay —Ag]

If i demands attention adopt the appropriate case below:

e 1. (2.3) holds. Set A,,, =A% Set r(e,s-+1)=i. Declare R, as (temporarily)
sfied. '

ie 2. (2.4) holds. Set A, =Ai*". Set r{e,s+1)=i+1.
sither case initialize all those requirements whose restraints are violated.

1 of Construction.
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Verification
(2.6) Lemma. lim, a, ,=a, exists and A= K.

Proof. Let s, be a stage such that for all s>s, for all j<e we have

() a;s=a;,,=a;and

(i) f{s)>e
Now a,, can only further change due to e demanding attention, or e—1
demanding attention [via (2.4)]. Let R, be the highest priority requirement with
¢—1 demanding attention via k after stage t. When R, pertains to a,_, at some
least stage s, we set r(k,s,)=e, initialize all R; for k>k and set 4, ,,=As. We
claim that

(2.7) either Vi>s,(I(k, t)<a,_4), or

2.8) if t=pus>s,((k,9>a,_,) then for all £>t there exists k= k() <k,
rik, =rk ) ze.

Now when e— 1 demanded attention at stage s, we reset a, ., 4 to exceed the use of
the “I(k,s,)>a,,” computations. By choice of s, and monotonicity of the
{a, ;=g € w}, it follows that for all #>¢, I(k, f)>a,_,. Now when e—1 demanded
attention at stage s,, (2.4) pertained to e— 1. By (2.4) (i), ¥, must be an extension
of J,,, and hence if ever r(£,t,) <e for all K<k at some stage ¢, > it follows that
(2.3) will hold for e—1 and k. Thus e—1 will demand attention via some k< k and
hence by k (hypothesis). But now (2.3) pertains to e—1 and we would set
A, +1=A{ ! contradicting choice of 5,. Thus either (2.7) or (2.8) holds.

Let g=t if (2.8) holds, let g=s, if (2.7) holds and let g=s5, if e—1 does not
demand attention after stage s,. Then after stage g, a,, ;can only further change ife
demands attention via some £ and (2.3) pertains. Let R, be the highest priority
requirement such that e demands attention via d after stage g, say at stage ¢;. Ttis
really quite easy to see that @, . ., =4a,,, for all r>g,. Note that this follows
because the restraint r(d, g, +1)=e is never violated after stage g, and so never.
cancelled.

Hence lim, a, ;= a, exists in any case and A=7K by 2.1). O

(2.9) Lemma (“Window Lemma”). Lim inf; R(e, s)=R(e) exists.

Proof. Suppose that for all j <, lim inf, R(j, s)= R(j) exists. If N, receives attention
only finitely often then r(e, s) is only reset finitely often and then it is obvious that
lim,R(e, s}=R(e} exists. -

Thus, without loss, suppose that R, receives attention infinitely often. This
means that lim inf,r(e, s)=r(e) exists, and r(e)=0. But we must establish this for
R(e). We claim that lim inf R(e,s) =lim inf,R(e—1,5). Let s, be a stage where
r(e,s,)> R(e—1). Now at some least stage s, >s;, we must initialize r(e, s,) from
r(e, s,) to zero. If, at this stage, R(e, s,)# R(e—1), it can only be that for some ¢, <e
we have r(ey,s,)>R(e—1). The crucial point is now that at any stage s3>s;
whenever r(e,, s3)=r{e;, 5,) is initialized (as it must be since lim inf, R(e,,s)=R{e,)
< R(e—1) exists, by hypothesis) it must also be the case that r(e, $3) is initialized too
since it must respect 1ey,s,) so long as the r(e,,s;) restraint has been in force.
Continuing this reasoning when r(e;,s;) is initialized we either have Rfe, s3)
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=R(e—1) or for some ¢, <e, we have r(e,, s5)> R{e — 1), etc. This process is well
founded and hence lim inf,R(e, s)=R(e~—1) as required. [

(2.10) Lemma. Suppose (2.3) pertains to i and e at stage s and we set r(e,s)=i.
Suppose further that a; ;=a,. Then R, is met at stage s (with I{e,s) = o0).

Proof. r(e, s) is not violated and inspection of (2.3). []
(2.11) Lemma. R, is met.

Proof. By (2.10) we know that each time R, is attacked such restraint must be
violated by either coding or R, for £ <e. Let R(e)=lim inf;R{e, s). We suppose that
K, s)—co. We must show A=, V.. ,

Let s, be a stage such that for all s> s, for all i <max{R(e), e}; a; ;=a; , =a,
V. <,,4:let z be given. Compute a stage §=s(z)> s, such that r(e, s)=0 and R(e, s
= R(e) and (e, 5) > z. Since y,(z) > z by standard convention, it must be that 2.(z) is
defined and L(e, s)>z. Now define i to be attainable if i>max {e, R(e)}. Without
loss, choose z ¢ V, ; see if for any attainable i we have that AfAD=zeV, (That is
the A4, truth table with oracle A says that ze V,)

If  exists, without loss, choose it maximally. There are two cases.

Case 1. For all attainable j<i, A, (A})=zeV,. In this case ze V. iff a; ;e A by the
dump property.

Case 2. Jj<i(A(ADf=z¢T).

In case 2 we must have 4, , = A* for some k<i (at worst, i—1 will demand
attention). Hence by (2.6), case 2 can apply to at most finitely many s. Thus search
for the least stage t whereze V, ,or z ¢ V... and either z € ¥, cannot be forced or case
1 pertains. More formally, there are several subcases.

Subcase (a). A(AY)}=ze V, and for all attainable £< k, A(AR=ze V. ThenzeV,.

Subcase (b). A(AYF z e V, but there exists k< k with Ae(Af)]= z¢ V.. In this case it
must be that =k—1 since if £<k—1, £ would demand attention (and so we'd set
Ay =AY, This, in turn means that R ;for some j < e receives attention at k—1.
The crucial point is that since k— 1 is attainable k— 1 > R({e) and so this attack fails.
Thus, compute a stage s, > 5 such that r(j, s) is first violated. At this stage we have
A, [s1=AZ[s] for some n<k—1. By abuse of notation we write A=A .
Compute the least stage s, > s, such that lle,s5)>z. The pointisthatifz¢ V, ., then
if there exists a (greaﬁest) attainable i<s, with A (45 )=z e V, it must be that (now)
for all attainable j <7, 4,(4})}=z € V,. Why is this? The point is that any such i must
be <n (by the dump property) and if there is an attainable j<Twith AfAD=z¢V,
then j would have received attention at stage s. Thus in this case z e V.iffa; ,, e A

Subcase (c). A(A¥)=zeV,. By the reasoning above if z¢ V, then if there exists a
greatest attainable a; , with 4,(4;)l=z e ¥, it must be that for all j< 7, Afd)=zeV,
too. Hence ze V., iff a; ;e A. :

Thus in case 2 also, we can effectively compute an element y(z) for z such that
zeV, iff y(z)e A. Hence V, <, A.

A=, V,: this is very similar. Again compute a stage s =$(z) with I(e,s)>z and
r(e,s)=0 and R(e, s)=R(e) and s> s,. Without loss z> Qg and z¢ A, Define i to
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be attainable as in ¥, <, 4. Fix a; ;=z. First if i is not attainable then z ¢#A. Ifiis
attainable compute a stage > s with r(e, t)=0 and R(e, t) = R(e¢) and I(e, s)> Aty p
Without loss z=gq; ,¢ 4,. Now there are two subcases.

Subcase 1. There is a (least) number 2<my(e, t) such that
() 4o, {Ai*Y=2¢V,, and
(ii) 4, (4)E=2eV, for all attainable j<i.

In this case ze 4 iff 2e V.,

Subcase 2. Otherwise. In this case note that i,i+1 is a killing point for N, and
either we set A, ; = Af for some k<i (in which case ze 4) or we set 4, , = Ai*1
and attack some requirement R, for & <e. But now z € 4 since we know this attack
fails. Hence ze A in this subcase.

This concludes the proof of A<V, and hence the whole lemma. []

In Part I of this paper [5] the author constructed an r.e. t¢-degree consisting of
exactly 2" — 1 r.e. m-degrees (for any given n > 1). In the notation of [ 5], by encoding
the block with the high e-state below the f(s)-th block if it is “o-dead”, it is possible
to extend the above to show

(2.12) Theorem. Let n>>1. Then Of contains anr.e. tt-degree with exactl y2"—1r.e.
m-degrees.

3. Density
In this section we prove
(3.1) Theorem. Singular T-degrees are dense in R.

Proof. The technique involved in the proof of this theorem consists of an amalgam
of the basic strategy (for building a singular tt-degree) and a fairly standard coding
and delayed permitting argument which has been seen in several other density type
theorems (e.g., [7, 8, 10]). In consequence, we shall concentrate on the intuition of
the construction and refer the reader elsewhere should he desire more formal
details. :

Let E < F ber.e. sets. By Sacks density theorem [197 it suffices to build an r.e.
set A with E< ;4 <, F with the tz-degree of 4 singtlar. The basic strategy remains
the same; we keep examining I{e, s) and if we see a one or a two step action to kill R,
we act to do so. Thus R, “requires attention” if e is least such that (2.3) or (2.4)
pertains to some i (least). (A subtle point here is that we have changed back to e
rather than i requiring attention.,)

In itself F-permitting causes no problems with this strategy. The first problem
is that E-coding can injure infinitely often an apparently satisfied R, by
enumerating elements below r{e,s) (as in Sect.2). The second problem is a
“coherence” one — induced by our solution to the first — which we discuss later.

The solution to the first problem, not surprisingly, involves arranging matters
to show that if R, fails to be met then F < E. That is we must attempt to build a
reduction V(E)=F predicated on R,’s failure. :

To be more specific we shall use the marker coding of Sect. 2. Namely at stage s,
Ay sy =Atfor some k < f(s) where f'(w)=E. Also to ensure A < rF weshall ask that
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F permits elements to enter 4. We refer to i as an e-attack point for R, if R, requires
attention via i. Now although R, may require attention via i, it may not be able to
attack at i since additionally we need that (for the time being, anyhow) F permits
on i at s. The first approximation is simply to attack any e-attack point in the
manner of Sect. 2 whenever we get an F-permission. Implicitly here although we
may believe R, satisfied at i if we can attack R, at i< i we will do so since this attack
is more likely to succeed. We see that for a single requirement this idea is enough.

(3.2) Lemma (One requirement). Suppose that l(e,s)— 0. Then R, is met.

Proof. Define a stage s to be E-correct for i if E [i]=E[i]. The point about
E-correct computations is that — for a single R, — if we use an E-correct i as an
attack point then such an attack will succeed.

We claim that there can only be finitely many E-correct attack points. Suppose
otherwise. Then there must exist infinitely many E-correct i to which (2.4) pertains
but only finitely many E-correct i to which (2.3) pertains. We show how to compute
Ffrom E. Let s, be a stage such that Vs > s, [if (2.3) pertains to i at stage sand not at
stage s, then i is E-incorrect at s].

Let z be given. Compute E-recursively a stage s=s(z) > s, and an attack point
i>z such that i>s, and

(i) s is E-correct for i, and

(if) i is an attack point for R, at stage s.

Notice that (2.4) must pertain to ¢ since (2.3) did not pertain to i at stage s,.
Furthermore (2.4) can’t act at i since then at the first stage ¢ with l(e, t}> q; ; after
(2.4) acts we would have that (2.3) pertains to i (or some number <i not alive at
stage 5o). It thus follows that Vs> s(z) (f(s)> 1) since (2.4) can’t act. Thus F [i]
=F[{]. Hence F<E.

A totally similar argument works to show that if (2.3) pertains infinitely often
E-correctly then F < 1.E also. Therefore we have that there are only finitely many
E-correct attack points.

Now the argument works with the same methods as Lemma (2.11). Let i be the
largest E-correct attack point and go to a stage s, where q; ;,,=aq; and l{e, 5} > g,
[assuming e, s)—o0]. Define j to be attainable if j>i. Now, for example, to
compute 4 m-recursively from V, find a stage s where l{e, 5) > z. Withoutloss z=a; ;
with j attainable. As in (2.11) compute a stage t>s such that either ze 4 or
le,1)>a;4 .. Assuming the latter there are again the two subcases.

Subcase 1. There is a (least) number Z<my(e, t) with
() Ao A D24V,
(i) 4, {A)=2eV, for all attainable i <j.

In this case ze A iff Ze V..

Subcase 2. Otherwise. In this case we note that j, j+ 1 is an attack point for R,, but
any attack must fail since j must be E-incorrect. Thus in this case, asin (2.11), ze A.
The other direction (V,<,,A4) is totally similar and is left to the reader. [

Thus we have a way of meeting a single R,. The second problem we must face is
whether or not the above strategies can be made to cohere for several R,.
Specifically we must worry that an infinitely active R, might fatally injure an R, for
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g>e. It is clearly possible that R, can act E-incorrectly infinitely often. The
problem is this & might desire i as an attack point. For some j> i, R, might be being
attacked at j and so j=r(e,s)>1. Now at this stage F decides to permit on i.
Unfortunately, since r(e, s)>i we can’t use i to attack R, since & must respect r(e, 5).
But now although r{e, s} is later destroyed (since it was E-incorrect to begin with)
we have lost our chance on i. Thus although we meet R, since there are only finitely
many E-correct attack points for i, perhaps the infinitely many E-incorrect attack
points use their E-false restraints to restrain R, when it wishes to act.

The single key observation aeceded to overcome this difficulty is that E knows if
an attack is E-correct or not and furthermore since E < . F, whatever E knows F
knows. Thus what we dois touse delayed permitting. That is, if iis as above when we
see F permit on i we declare i as F-permitted. Should r(e,s) drop (because of
E-incorrectness) we then allow i to be attacked should i still be an attack point. The
whole point is that A remains < . F since F can decide if such an event will occur.

In general we can thus satisfy R, in Ry’ environment by (as usual on a
I1,-guessing tree of strategies) building two versions of R, . The first guesses that R,
acts only finitely often and so behaves like a finite injury argument. The second
version of R, guesses that Rq acts (E-incorrectly) infinitely often and knows that
lim inf,r(0, s)=0. It thus waits to act (by delayed permitting) for r(0,5) to drop.

The reader should note that Lemma (3.2) still holds with delayed permitting in
place of permitting (i.e., should this version of R, be the correct one for the
construction “along the true pat ”). The necessary observation is that once we
know which version of R, is correct we can predicate our reduction procedures on
this parameter. :

It is important to note that although F can’t decide which version of R, is
correct (a Q"-question) nevertheless A < F. The whole point is that F can decide
the fate of any particular attack point, because F can decide if the correct
environment for us to attack a particular point will occur.

There are no problems with the coherence of n> 2 requirements and we leave
any further formal details to the reader (see [7, 8, 10] for arguments of a similar
type). [

4, A Nonsingular T-Degree

The goal of this section is to construct a nonsingular r.e. T-degree. In fact we can
prove:

(4.1) Theorem. There exists an r.e. T-degree a such that if bis an r.e. tt-degree
contained in a then b has no greatest r.£. m-degree.

Proof. It is probably easiest to approach this construction by first describing the
way one can construct an I.c. tt-degree without greatest r.c. m-degree [4]. To do
this we construct an r.e.set Q together with auxiliary r.e. sets B,=|) B, ssuch that
we satisfy 8

R, ;: T{Q)=W, implies B.=+Q and =1 (B. < W, Via 8).
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Here we are working over pairs (I, W,) consisting of a partial recursive
tt-reduction I, with use y,, an r.e. set W, together with a partial recursive function
8,. We ensure that B, <,,Q via x € B, iff x is a follower targeted for B, by stage x and
2xeQ and 2x+1¢0.

We remark that here — and in the subsequent analysis of the R, ; - the
tt-reductions are based on the assumption that the hypothesis of the requirements
hold.

(This will be modified in the full construction of a nonsingular T-degree.)
Followers of R, ; can be active or passive. Activity indicates that we are squeezing
R, as follows. Let gfe, s)=max{x:Vy<x([(Qs; V=W, (y))}. We wait till
qle, s)>x (our follower) and &, (x)} and g(e, s) > 5(x). Now if; (x)e W, ;asx¢B,
we can win R, ; in one stroke by simply restraining Q[2x +1]. [For then x ¢ B, and
8{x)e W, hence —1(B,<,,Q via 9;).]

On the other hand if §; (x) ¢ W,, ; we must be more careful. First if §,(x) ¢ [(Q;
u{2x}) then we can win — as above - by enumerating x into B, and 2x into Q.
and restraining Q[max {2x+1,7,(74x))}]. (Now) x € B, but 54{x)¢ W,. The problem
case is if §,(x) e I{Q,w{2x}). Now we win in a two step action. First we enumerate
2xinto Q, . , — O, restrain Q [max {2x +1,7,(y(x))}] and declare R, ; as active. Now
we wait until W, ; responds with a change [i.e., till qle,s)> 8x) again]. Note that
now &,(x) € W,. This we can win by enumerating 2x +1 into 0 and keeping x out of
B,. Now x¢ B, but §{x)e W, [after all W, can’t withdraw 8{x) once it enters].

The crucial point we must recognize is that — with the above strategy — should
R, ;be injured by higher priority activity we must automatically enumerate x into
B,:If xis active we have a pending commitment to attend B, < ,,0. Nevertheless such
injuries can occur at most a bounded number of times and a very gentle finite
injury argument does the rest.

The reader should note that the above strategy forms sort of an “inner
strategy” for the full requirements below.

We shall build A and B, for eew satisfy

R, If Y (4)=0.P(Q.)=4 and [(Q)=W.
then B,<,0Q, and 7 (B, <, W, via §).
Here we work relative to triples (@, Y., I, W,, Q) consisting of two T-functionals
(8, P.), a tt-functional I, and a pair of r.e. sets (W,,Q,), together with a partial

recursive function ;. Of course, again we build B, < ,0,, but this time predicated
on all of the e-computations converging. We need the auxiliary functions:

gle,s)=max {x: Yy <x([},(Qe,s; )= W, 0N} »
L(e, s)=max{x: ¥y <x(®,,{Q.,s; )= A4},
P(x, e, 5)=max {u(®, Q. y):y<x} for x<Lie,s),
Ke, s)=max {x:x<L{e,s) & x<4le, s)
Vy(y £ d(x,e,5) ¥, (A )= 0., &
Yy(y<max{y,(z): 22 x} > ¥, (A V=0, )} -
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The reader should think of I(e, s) as the A-controllable length of agreement. The
following Diagram 1 may be useful for visualising I{e, s)

l
I

—t—tn
=

I ¢(9,X,S) I

Diagram &

We satisfy the R, ; as follows. First there will be a region <y for some y devoted to
satisfy R, ; of higher priority. (This is only significant for the t-reduction we build
from Q, to B,.) To satisfy R, ; we wait till /(e, s)> y and pick a prefollower x=s for
R, ;targeted for A, We cancel all lower priority followers etc. at this stage. At the
least stage s, > s when we see le, 5,)>x we declare x as e-confirmed, cancel again
and assign a follower £=s, targeted for both B, and A. Finaily when we sce
l(e, s;)> % we declare £ as e-confirmed and again cancel all lower priority followers.

This gives the situation in Diagram 2 below.

Diagram 2

Note that the only numbers z left alive after this process with y <z <s, are x and £.
Now we can specify the ¢#-procedure B, =,,0.. Thus

Qe,sz [¢(ya €, 32)] =i= Qe [¢(y: e, SZ)] or
(42) 2eB,iff § Q.. [¢(x.6,5)]=0.[$(x.e,5,)] and @, ., [$(%,e,5,)]
=l: Qe[‘nb(ﬁ: g 32)] .
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It is hoped that the reader can see the resemblance of (4.2) to the £, of R, ;.
Roughly speaking {z: ¢(x, ¢,s))<z= ¢(% e, s,)} has the réle of 2x. Note that if we
hold A,[%] fixed then Q. ;[$(%e, s)] also remains fixed; and if 4, [£] changes then
so must @, ;[¢(X, e, 5)]. We use x and % to induce appropriate changes.

For a single R, ; our strategy is now clear. We wait til} a stage t occurs where
5, (#)| and l(e,£)>5,(%). At this stage if o{%)e W, , we can meet R, ; by simply
cancelling all lower priority followers and (thereby) restraining 4,[¢]. A typical
situation is given in Diagram 3 below.

8,0
| |
|7 we,t
T
€
I
[ Qe_,t
Y
e e e
— s
| Y (6, (0 I
Y x x t
Diagram 3

Note that all numbers between £ and ¢ are cancelled. We now win since X ¢ B, but
(R e W,

If §(#)¢W,, we act as follows. Enumerate £ into A,,,—4, cancel lower
priority followers and wait il l(e, > 5%) for some stage £>t. At such a stage i
again cancel lower priority followers. We now examine the effect of this on 6,(%).

Since I, is a tt-reduction we can ask what has happened to Q,[y(3{%))]. In
particular, we see if now we have 5 (%) e W, ;or not. If 6{2) ¢ W, ; wecannow win by
enumerating % into B, and restraining 4, [£]. This would mean that £€ B, but 9,(%)
¢ W,. Note that we must promise not to add x into 4, unless we also add z< y into
"4 This is of course fine since the only reason we would do so is because some R, ; of
higher priority acts, necessarily on numbers < y. But such action is precisely the
reason for the first clause — involving y — of (4.2).

If 5,(%) e W, ; we can similarly win by now enumerating x into A; , ;. This causes
a change in Q, below ¢(x, e, s) and so allows us, with priority {e, i to keep £ out of
B,. In this case £ ¢ B, but §(£)e W, (we restrain A[x— 1] here). Again we need to
note that if some number gets into A below y then we must act to correct B, in this
case by enumerating X into B, in response to such a change.

This concludes the discussion of a single R, ;. The coherence of the strategies
causes no problems since all of the outcomes are finitary and hence a single finite
injury argument will suffice. We know that any attack on R, ; will be completed
unless it is cancelled by some R, ; of higher priority. The point is that if we always
attack the requirement of highest priority then attacks on R, ; must involve
prefollowers less than those of R, ;. The only thing we must remember to do is to
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attend any past commitments. Thus, when R, ; sets up the described ft-reduction
and perhaps R, ; cancels this we must still honour this commitment. For example
suppose R, ; begins an attack when at a stage s, where I(¢, s,) exceeded all higher
priority (pre-) follows we assigned to it a prefollower x(8)=s,. This action may
have cancelled some set up y(e), x(e), %(e) for R, ; but note in that case if £(e) is
e-confirmed then s, exceeds that use of the %(e)-computations. Nevertheless,
although x(e) and %#{e) are cancelled we may need to later add %(e) into B, should the
first option of (4.2) hold (due to R; ;of priority higher than R, ;). Similarly if we get
another R, ; set-up y (), x(e), 2.(e) before %(é) is defined, we would have
x(f)<y.(e)and a staget where l{e, £)> y,(e) before x,(e)=t was defined. Since the
R, ;setupis complete at the stage u where £(&) is defined, although we cancel x,(e) |
and %,(e), %(é) exceeds %,(e)'s e-use and 50 Ry 3 cannot interfere with this set up
unless x(8) enters which will only cause us to enumerate %,(e) into B,.

In this way it is easily seen that the strategies Qohere and will be met via a finite
(bounded) injury argument. Remaining details are left to the reader.

Remark. At this stage, I wish to again express my gratitude o the referec who
pointed out that the strategies cohere as above in a finite injury argument. The
original argument forced them to cohere only with completed set-ups and used
the O™-machinery combined with that of [6] to achieve this.

5. Further Results, Open Questions

We do not know if (4.1) can hold for high r.e. degrees, but conjecture that it does
not. Namely we conjecture that the singular degree construction combines with
Martin-Cooper high permitting [e.g, 1] to ensure that each high r.e. T-degree
contains a singular r.e. tt-degree. The exact classification of the nonsingular
tt-degrees would seem a difficult question.

The reader should note that it is unclear if (4.1) blends with downward degree
control. For example if we try to use permitting when we enumerate % into 4, we
don’t know how Q, will respond, and hence at the stage s where the computations
recover have a decision as to whether or not to enumerate x into A. However we
must apparently make this decision at s and don’t seem to be able to wait for
permission. Of course, with standard techniques one can show that all promptly
simple degrees bound nonsingular r.e. T-degrees, but we do not know if all non-,
zero r.e. degrees bound nonsingular degrees.

Indeed it is not even clear if they can be cappable. This brings us to another ver
interesting theme in the study of strong reducibilities in T-degrees namely th
extent to which the structure of strong reducibilities within a T-degree reflects it
lattice theoretic properties in R. The best known example is the local distributivit
imposed by contiguity as in [15], but there are other examples. I believe thisisa lo
of very interesting and fruitful material here and ask, for example, if nonsingularit
has any lattice-theoretic ramifications in R.
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