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1, Introduction , | -

In this paper we investigate the lattice L(t) of r.e. substructures of an effective
model . This was first suggested by Metakides and Nerode [12] as a basic
method of analysing the algorithmic content of mathematics. Their original
studies concentrated on fields and vector spaces, but subsequently these inves-
tigations have been broadened and deepened by many authors (cf. [17]).

The goal of this paper is to prove the undecidability of the first-order theories
of a wide class of such lattices. We do so by establishing a general result applying
to a class of effective structures along the lines of those considered by Remmel
[21]. The actual theorem is a little technical to state here, but we remark that
applications include all (recursive) Steinitz systems, free groups, boolean al-
gebras, ideals, theories, and a wide class of modules over locally computable
rings. In particular we subsume most currently known undecidability results and
also solve a number of open questions (such as L(F,) the lattice of 1.e. subfields).
We review the setting and these examples in Section 2. The proof of the main
result is in Section 3. This falls into two main parts. First we prove the existence
of a certain type of r-maximal subset of « (namely one with the ‘lifting
property’). Second we show that this existence theorem yields a method of
effectively interpreting the theory of the lattice of r.e. sets in Th(L(MN)) the
theory of L(3). The result will follow because of the work of Harrington [8] and
Hermann [9]. _

In Section 4 we give some applications of the results and techniques of Section
3. We remark that although these ‘transfer’ techniques introduced here are not

- very difficult, they are powerful and have numerous applications quite aside from
the undecidability results. To demonstrate this we utilize these methods to deduce
several other results. For example, we are able to show L(E.) is not recursively
presentable. '
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2. Setting

As in Remmel [21], we work within an effective closure system, M= (M, cl).

Recall that this is a recursive set M with an operation cl: P(M)— P(M) satisfying
(i) Accl(4), '

(if) A < B implies cl(A) c cl(B),

(iii) cl{cl(A)) = cl{A4),

(iv) x e cl(A) implies that for some finite A’ c A4, x ecl(4’),
and furthermore cl is effective on (indices of) finite sets: viz, given y, x,,...x, €
M we can decide whether or not x ecl(yy, . .., ¥,). Here cl(y) denotes cl{{y}).
We let L(IN) denote the lattice of r.e. closed sets where A is closed if cl(A4) = A.
For our later work, let Th(L(N)) denote the theory of L{IN). In I there is a
natural equivalence relation =*where A =* B if there exists a finite set F with
cl(A U F)=cl(B UF). The idea is to analyse L(I%) under =* in the same way as
we analyse L(w) under =*, Thus we additionally requiré that M #* cl(f).

Some notions we need are from [21]. Let V € L(M). We say V is decidable if
given (¥, *1,...,%,) we can decide whether or not y ecl(VU {xy, ..., x,}).
From [21] we say a sequence K of elements of M is special over V if V is
decidable, K is an infinite recursive set and

(i) VA, B(A,BcK— ci(V UA)YNc(VUB)=cl(VU(ANB)),

(iil) A(VUK)=M.
For E = M we write cly(E) for cl(V U E). Now, given K special over V we can
define the support of x (with respect to K over V) as the unique smallest subset

K' of K with x ecl,(K'). We denote this by supp(x). We say K has local
exchange property (LEP) over V if, given any y and x € supp(y), we have

x e cly(supp(y) — {x}) U {y})-

Most of our results will require an effective closure system I% with a special
sequence K with LEP over V. We conclude this section by g1v1ng some examples.

(1) (w, cl), the r.e. sets. Here cl{A) = A.

(2) (Va, *), the r.e, subspaces. Here (W)* denotes the subspace generated by
W in V.. See [14], for example.

(3) (E.,cl). Here F, denotes a ‘fully effective’ algebralcally closed field, that is
one with a recursive infinite transcendence base over a recursive ground field, and
cl is an effective algebraic closure operator. See, for example [15] or [16].

(4) Steinitz systems. More generally, any recursive Steinitz system M = (M, cl).
Here 3¢ is an effective closuré system such that I% also satisfies the global
exchange property below '

yecl(A U {x}) —cl(A) implies x e cl(A U {y}).

See [16] for further details. In each of examples (2)-(4) we take V = cl(@) and
any recursive basis as a special sequence (cf. [15], [21]).
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(5) Boolean subalgebras (Remmel [20,21]). Given any effective boolean
algebra &, within its isomorphism type is a boolean algebra of the form N x D,
QO xD or €, where D is an effective boolean algebra and N is an effective:
presentation of the boolean algebra of finite and cofinite subsets of @, Q is the
atomless countable boolean algebra, and C is the boolean algebra By (the
subalgebra generated by the left closed right open subintervals of Q together with
{{g}:q € Q}). In each of N x D, C and Q x D we can find special sequences with
LEP over appropriate V. For example, in N X D let K = {{a, 05) :a is an atom of
N} and V= {{0s;d); {15 d):d € D}. The others are similar. We refer the
reader to [20] for further details.

{6) The above examples can be extended to ‘appropriately effective’ modules
over locally computable rings, and some subrings. Examples include Diew Z and
Z[x;:i € ], and subgroups of certain commutative groups.

(7) Orderings. For example (Q" <) with =< the product ordering. Let
V={{(0,y,...,¥.):y,6Q}and K={{x,0,...,0):x e Q}.

(8) Modified examples. {8a) Sometimes, we need to restrict our domain. For
example in LI(0) the lattice of r.e. ideals of Q of course for all M e LI(Q),

M=*0, since cl({1}UM)=0. The solution Yis to pick certain definable
substructures and restrict attention there. For example in §, we analyse the
lattice of r.e. subideals of a fixed recursive maximal ideal P. Now (P, cl) forms
the appropriate closure _system, and, as in [21], we can find the desired ‘ideal’
closure systems in N X D, Q x D or € by this method.

(8b) Another example of this phenomenon is the lattice of r.e. free subgroups
of G=(X,Y|-). Here we pick a recursive infinitely generated fixed free
subgroup G and look at its closure system. Classically, we find bases with LEP for
G and the effectivity conditions are guaranteed by Neilson-Schreier theory (cf.
Magnus, Karass and Solitar [12]).

(9) Intersection subsystems. One final way to make such closure systems is as
follows. In I let K be special with LEP over V. Now let M’ be a recursive set
containing V and K. We can define a new closure system (M’, cly,) via for
Bc M, cy(B)=cl(B) N M’'. This is a natural way to generate closure systems
with many pathological properties. We refer the reader to [16] for some
applications of this method.

Now some final pieces of notation and terminology. Recall from, say, [23] that
an r.e. set A with A coinfinite is called maximal if given any r.e. set W oA,
either W=*A or W=*w. A is called r-maximal if given any r.e. sets W, V with
WUV =0 either WUA="w or VUA="w. A is called atomless if A is
contained in no maximal r.e. set. An r.e. sequence of disjoint canonical finite sets
{D;}iew is called a strong array. An r.e. sequence of disjoint finite sets
{W;)}rew is called a2 weak array. I, given any weak array {Wyu)}.ie We have
W sy N A =0 for some x, we say A is hyperhyper-simple (hh-simple). We remark
that if A is r-maximal and non-maximal, then A is not hh-simple (cf. [23]). We let
{W,}.c0 denote an effective listing of all r.e. sets. If X is a special sequence over
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V we will say “let A have property P in K"; this is meant to be interpreted in
L(K), the lattice of r.e. subsets of K. For example, if we say “let A be a maximal
subset of K we shall mean that A is maximal in the lattice of r.e. subsets of K.

For any unexplained terminology and notation we refer the reader to [17] and
[23].

3. The main result

We state the main theorem.

3.1. Theorem. Suppose M possesses a special sequence K with LEP over V. Then
Th(L(IX)) is undecidable.

Our first lemma produces an r-maximal subset of w.with a certain property.
This property is defined via:

Definition. We say an r.e. set A has the lifting progerty if A is coinfinite, and
given any strong array {D,},cw, card(D, — A)=<1 for almost all x.

We remark that this notion was inspired by one (‘co-1-1’) from Madan and
Robinson [15]. We have

3.2, Theorem. There exists an atomless r-maximal set A with the lifting property.

Proof. For our construction of an atomless r-maximal r.e. set with the lifting
property, we mainly indicate the modifications necessary to Soare [23, X
Theorem 5.4]. Following this, we have markers I'; ;, arranged in a square array
where df denotes the element associated with I', at stage s, and w — A, =
{d;,:n € w}. We satisfy

N,: d,=lim, d; exists
P: W.c*H.orwo—Ac*W,
R.: H,isr.e.

where H, =AU {d;y:i<eandje w}.

Additionally, we must arrange that A has the lifting property. Let T, denote
the n-th strong array. We must satisfy

Q.: For almost all D, e T, card(D, —A)=<1.

NowletV, ,={x:t<s{x=diy;y &xeW,, & e<i)} and o(e, x,5)={i:ise &
x € V. }, the e-state with respect to the V, array measured at stage s.

At stage s +1 of the construction, we have two steps. In step 1, we follow
Soare [23]. Find the least e such that for some i, e<i<s and o(e, d}, 5} >
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ole, d5, 5). Choose i > e with o(e, d, s) as large as possible and set d.(s + 1) =d;.
In this case we say “I, pulls 4;”. Enumerate d} for ek <s, k+#i into A
(dumpmg) Set d;(s +1)=dj for j<e and d.. (s +1)=d;.; for k>0. If no .
action is taken, set d;(s + 1) = ds for all j. All of this follows [23].

In step 2, perform the following substages for 0 <j=s.

Substage j (Attacking Q,). Find the least  and the greatest k if any such that
j<i<k and df(s+1), di(s+1)eD, and D,eT,, Dump di.(s+
1), ..., diss+1(s + 1) into A, Go to substage j + 1 if j <s. If j =5, we redefine all
di*! to list in order the remaining d;(s + 1), and go to stage s + 2. (Notice we
don’t dump the least member of a D,.)

Verification. The usual arguments show that lim, d; = d, exists. Briefly, once
d; =d; for j<e and all the D, € T; for k <e containing these d; are already in
Tk_,,_z, it is easy to see that d% can only move to higher e-states. Similarly the
argument given in [23, Theorem 5.4 (Lemma 2)] will show that all the F, are met.
Step 2 automatically ensures that if D.eT, and D;N{d,,...,d.} =9, then
card(D, — A) < 1. Hence all the Q, are met: there are at most finitely many such
D, € T,. Finally we need to show that H, is r.e. The proof is essentially the same
as that of Soare. Fix e. Let o= {iti<<e & w—Ac*V;}. Choose n such that

‘ole,d,)=cforallm=n, and s with df, — d,, all m <n. Define

B={d:t+1>s&n<k=<t&jlk={j) &i<e) &
Vm (nsmst—oled,t)=0) & Vmsk (d,=d;"}.

The claim is that d% € A, at stage t +.1 iff 4% = d, or d', € A. If d', # d,, then either
% is dumped through the action of some Q; for j <k, or I, (for some m <k)

pulls some element z at stage ¢’ >t + 1. By definition of H,, I, doesn’t pull 4, at

stage ¢'. Hence, in this case also, dj is dumped into A. Thus if dit'=£d,, then
t € A. Hence H, UA =* H, and so H, is r.e. The result now follows. O

3.3. Remark. For some purposes (in Section 4) we need only an (apparently)
weaker property. We say A is weakly co-1-1 if for all strong arrays {D.} with
U D = o, card(D, — A)<1. We can, for example, show that if A is a major
subset of a maximal set, then A is weakly co-1-1, It is unclear if this is also true
for the lifting property. Our next lemma is a technical one which shows why we
call this property the lifting ptoperty.

3.4. Lemma. Suppose A is an r.e. subset of K with the lifting property, where K is
a special sequence with LEP over V. Let W e L(), and suppose WoAUYV.
Then there exists an r.e. subset D of K with clV(D) =*W.

Proof. Let W = {ay, a;,...} with ao¢ V. Let DD= supp{ag) #9. Ro=D, and
bo=aq At stage s+1, let b,.; be the least @; with supp(a;)£R,. Set
R, ;1 =R, Usupp(a,) and D;., =supp(a;) — R,. Clearly {D,},c., is a strong array.
It follows that for almost all x, card(D, — A) <1. Let t = max{x:card(D, — A) =
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2}. Let B=AUR,.;. Then B=*A. We see that Vx (card(D, — B)<1). We
claim that for all x, D, ccly,(W UR,,;). We prove this by induction. Certainly,
Dy B by definition. Now suppose Vy <x, D, = B. Consider D,. Now D, =
supp(@;) — Uy<x D;, for some j; and we may clearly suppose x >t + 1. Hence
D, ={b}UD, where D,cB and beK with (we suppose) bh¢B. It
follows that supp(a;)={b}UB’ some B'cB. By LEP, becly,(B'U{a}).
But cly(B'U {a;}) ccly(WUR,,;). Hence becly,(WUR,,;) as required. It
follows that W="*cl,,(W U R,.;)=cly{R), and R c K, giving the result. O

Now, let V;, V; € L(IM), with V; = V,. We define the interval lattice L(V;, V,) to
be the lattice generated by {W: W € L(IR) and V; = W c V5}. For any such lattice
we can naturally associate a partial ordering L*(V;, V,) by factoring out with =*,

3.5. Lemma. Let K be special with LEP over V. Let A be an r.e. atomless
r-maximal subset of K. Then there exists W € L(IR) such that W > dy(A) and
L*(cly(A), W) is recursively isomorphic to L*(w), the lattice of r.e. sets modulo
finite sets.

L3
Proof. Let A, K, and V satisfy the hypotheses of 3.5. Now A is not
hyperhyper-simple in K. Hence there is a weak array {F, F, ...} of disjoint
finite subsets of K such that Vx (F, N.A ##). In fact, it is clear that by slowing
down the enumeration of each F, we can ask that card(F,—A)=1. Let
W =cly (A UL, E). Define a function f via f:x— A U F,. We may extend this to
a mapping from L(w) via f(W.)=AU{F:xeW,}. Finally set g(W,)=
cly(f(W.)). Now g is clearly a recursive 1-1 function. It remains to show that g
induces an isomorphism from L*(w) tp L*(cly/(4), W). Let Q € L*(cl,-(4), W).
By 3.4 and the fact that AU, F, c K, there exists an r.e. set B such that Bo A
and Q="*cly(B). Now find the unique r.e. collection {F,:x € W,} with AU
Uk {F.:x € W,} = B. Evidently g:W,—cl(B). Thus g is onto, it takes the =*
equivalence class of W, to that of cl(B). It is obviously join preserving. We now -
also require that it be meet preserving. Let C and D be 1.e. It clearly suffices to
show that for all @, Re L(IR), Q=*cly(AU{F.:xeC}) and R=*cl,(BU
{E.:x € D}) implies that for all W e L(IN) if W=<*(Q, R then Ws*cl,(AU
{F,:x e CN D}). But this is obvious from the proof of Lemma 3.4, O

3.6. Remark, Notice in particular, that for (F., cl) we have found V, W e L(E.)
such that for Q, R € L(F,) with V £ O, Rc W, “[Q] A [R]” is meaningful in the
lattice theoretic sense. (Here [G] denotes the =* equivalence class of G.)
Namely, [Q] A [R] =[H] where H is an r.e. subfield such that H<* @, R and for
all W if W=s*QJ, R then W=<*H. Notice that we do not assert that
L*(cly(A), W) forms a lattice by defining [4] A [B] =[A N B], for this is not true.
(=* is not a congruence.) See, for example, [16]. We remark that it is unknown
whether or not L*(E.) is a lattice if we define meet via the lattice-theoretic
definition in 3.5.
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3.7. Condlusion of proof of 3.1. We may now conclude the proof of the main
result as follows. Using parameters v, w we can now effectively interpret
Th(L*(w)) in Th(L*(IM)). It follows that Th(L*(M)) is undecidable. Moreover in -
Th(L(cl,(A), W)) we can ioterpret Th(L*(cly(4), W)) for cly(4A)c O cW;
since cly(A)=*Q iff for all Q' with cly,(4)= Q' Q, Q' is complemented in
L(cly(A), W). To see this suppose cl,(4) =* Q. Let Q' be as above. Now there
is a finite set G with cly{AUG)2Q’'. Find G'cG as follows. Let G =
{bo, ..., b,}. Now find the least j such that b; e cl(Q' U {b;;i <j}). If none
exists, set G’ = G. Otherwise delete b; from G. Now find the least j' such that

by e cly(Q' U ({bi2i <j'} — {B})).

Now, this process halts after at most n + 1 steps to define G'. The claim is that
Q' Nely(R)=cly(A) where R=G'U(AU (U, E)— G). Since supp(Q')cA U
G, it suffices to show that Q'Ncl,(G'UA)= cly(A). Let y¢cly(A) and
yeQ'n clV(G’ UA) Let b; =max{b;:b; e supp(y) NG'}). By LEP, if supp(y) —
A={b,,.. _» b;}, we see that

b;e ClV(A U{by, .., by, U {y}) scly(Q’ by -, B}

Hence b; ¢ G' by construction: contradiction. Thus for Q,, Qe L{cl,(4), W),
Q,="*(Q, is definable in Th(L(cly(4), W)) and hence definable with parameters
in Th(L(IR)). Thus we can effectively interpret Th(L*(w)) in Th(L()). Now by
the results of Harrington [8] or Hermann [9] we know Th(L*(w)) is undecidable.
Thus Th(L(IN)) is undecidable. O

Remark. Strictly speaking, we use (e.g.) that Hermann [9] showed Th(L*(w)) by
showing all boolean pairs definable with parameters in L*(w).

3.8. Corollary. Under the conditions of 3.1, Th(L*(IR)) is undecidable.

4, Associated results

By showing every finite distributive lattice is a filter in L*(V.), Nerode and
Smith [18] originally showed Th(L(V.)) and Th(L*(V.)) were undecidable.
(However this proof doesn’t extend to L(E,).) Another result subsumed here is
that of Downey [4] who observed that the lattice of r.e. ideals of O is
undecidable. Finally we get an unpublished result of Smith [private communica-
tion] that the theory of the lattice of r.e. free subgroups of (x,y|-) is
‘undecidable.

Caroll [3] has announced the undecidability of the lattice of r.e. subalgebras of
any recursive infinite boolean algebra, We remark that our results do not seem to
apply to give the full power of this result since it is unclear whether or not every
recursive infinite boolean algebra has a special sequence of the desired type. Our
result merely works for boolean algebras discussed in Section 2.
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One associated application here is to complemented members of L(t). In the
r.e. set case, the collection of complemented (= recursive) sets form a lattice with
a decidable first-order theory. Let S(IR) denote the partial ordering of comple-
mented members of L(J). Using the techniques of Ash and Downey [1], we
have '

4.1. Theorem. (i) Let M be a recursive Steinitz system such that given any infinite
independent set I in M and yeM, dim(cl({y}UI)=w. Then Th(S(IM) is
undecidable. . _

(ii) Let M be the lattice of r.e. ideals of Q. Then Th(S(IN)) is undecidable.

Proof. (sketch). (i) Generalize the results from [1] to an arbitrary Steinitz
system. Briefly, the assumption on X allows us to show that for all V e L(IN)
there exist D;, D, € S(IM) with D, @ D, = V. With this we can effectively interpret
Th(L(2N)) in Th(S(IM)). See [1] for further details. (ii) is similar and relies on
Remmel’s result (in [22]) that any r.e. ideal can be split into a pair of-
complemented ones. O

»

Now some other applications. One curious one is:

4.2, Theorem. There is a recursively presented vector space Q such that L*(Q) is
recursively isomorphic to L*(w). '

Proof. In the setting M =V, over an infinite field construct cly,(4) = V' and W as
in 3.1. Let V" be a recursive subspace of V' with dim(V'/V")=1. Then
Q =W mod V" has the desired properties. [J -

The use of the lifting property is of course not restricted to r-maximal sets. The
following result can be established by similar modifications to Soare {23, X-
Theorem 7.2], and we leave this to the reader.

4.3, Theorem. Let B be any 23 boolean algebra. There exists a hh-simple
A € L(w) whose lattice of supersets (modulo =*) is isomorphic to 8, and A has
the lifting property.

4.4, Corollary. Let IR be as in 3.1. Then
(i) Every =3 boolean algebra is a filter in L*(IN), and
(i) L(ZR) is not recursively presentable.

Proof. (ii) This also requires Feiner’s result [7] that there are =3 boolean
algebras that are not recursively presentable. O
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There are several useful applications of the lifting property and that of being
‘weakly co-1-1" (cf. Remark 3.3). For example, if A is a weakly co-1-1 r-maximal
subset of K, then it is easy to show that cly,(4) is r-maximal. It is unknown if, for -
example, an r-maximal subset of a recursive basis generates an r-maximal
subspace. Nevertheless, by using weakly co-1-1 sets we certainly get existence
theorems. We remark that an example in [11] shows that there are r-maximal sets
that are not weakly co-1-1. It would be interesting to know if any of these notions
are definable in L(w).

As a final result, we shall prove the undecidability of another lattice of r.e.
substructures which is not directly covered by our earlier results. Let V., be over a
recursively ordered recursive field. Define a closure system (V.,, {, }) as in [6] or
[10] by xely,...,¥,) if x=Y Ay, with 0< A, <1 and J, A, =1, and also ask
that (, ) is effective. Then the lattice K(V.) of closed sets is called the lattice of
r.e. convex sets. This example allows another (indirect) application of our results.
There are no special sequences with LEP in (V., {, }). Nevertheless we can
prove:

4.5. Theorem. Th(K(V..)) is undecidable,

Proof. We need the abbreviations
Z(x)="xisempty”’=Vy (y<Sx—y=x)
lz’(x) =“xisapoint”’="1Z(x) & Vy y<x—(y=x v Z(¥))
Clx,y,z)="x=(y,z)"=ys<x&z<x&Vq(ysq&z<gqg)->x<gq)
S(x) = “x is a segment” =~p(x) & Iy Iz(p(y) & p(2) & C(x, y, 2)).
Thus we define /(x) = “x is a line” via
Ix)="Z(x) & "P(x) & Vy (SO)—>(x<y)) &
VyVzVg[lysx&zsx&q=sx&()&p(z)&p(g) & .
Vh Vi Ym ((c(h, ¥, 2) & c(k, 2, 9) &c(m, y, q))— S(h) & S(k) & S(m))]
[VaVEYm (c(h, y,z) &clkz, q) &e(m, y, q)) > (gsh &y <k &z =<m))

(That is, any three points on x are co-linear, and x is not < a segment.)
With this we can define

A(.{f) = “x is an affine subspace”
=Zx)vPX)vVy (y<x & SY))—>3z zsx & y<z & l(2)).

Now here V c V., is an affine subspace if given y,, ..., y,eV, for all A; with
Y. A;=1, LAy eV. The collection of affine subspaces of V form a recursive
Steinitz system and hence by 3.1, have an undecidable first-order theory. By the
above, we can effectively interpret this theory in Th(K(V.)). Thus Th(K(V.)) is
undecidable. [J
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We remark that we do not know if Th(K*(V..)) is undecidable. It does form a
lattice. There is a fair amount of unpublished material concerning K(V..) due to
Downey and Kalantari. These results however will appear elsewhere.
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