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Abstract We construct a world model consisting of a matter field living in 4 dimen-
sional spacetime and a gravitational field living in 11 dimensional spacetime. The
seven hidden dimensions are compactified within a radius estimated by reproducing
the particle—wave characteristics of diffraction experiments. In the presence of mat-
ter fields the gravitational field develops localized modes with elementary excitations
called gravonons which are induced by the sources (massive particles). The final world
model treated here contains only gravonons and a scalar matter field. The gravonons
are localized in the environment of the massive particles which generate them. The
solution of the Schrodinger equation for the world model yields matter fields which
are localized in the 4 dimensional subspace. The localization has the following prop-
erties: (i) There is a chooser mechanism for the selection of the localization site. (ii)
The chooser selects one site on the basis of minor energy differences and differences
in the gravonon structure between the sites, which at present cannot be controlled
experimentally and therefore let the choice appear statistical. (iii) The changes from
one localization site to a neighbouring one take place in a telegraph-signal like man-
ner. (iv) The times at which telegraph like jumps occur depend on subtleties of the
gravonon structure which at present cannot be controlled experimentally and therefore
let the telegraph-like jumps appear statistical. (v) The fact that the dynamical law acts
in the configuration space of fields living in 11 dimensional spacetime lets the events
observed in 4 dimensional spacetime appear non-local. In this way the phenomenol-
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ogy of CQM is obtained without the need of introducing the process of collapse and a
probabilistic interpretation of the wave function. Operators defining observables need
not be introduced. All experimental findings are explained in a deterministic way as
a consequence of the time development of the wave function in configuration space
according to Schrodinger’s equation without the need of introducing a probabilistic
interpretation.

Keywords Emerging quantum mechanics - Entanglement to gravitons - Weak field
gravity - Chooser - Particle localization - Wave—particle duality

1 Introduction

The problem of whether quantum mechanics, including the postulated concept of ran-
dom collapses, provides a real representation of the world or whether it implies just
a probabilistic interpretation of experimental data is still discussed controversially.
Whereas Penrose suggests that collapse is a dynamics arising in a natural way from
gravity [1-6], Omnes claims that decoherence solves the problem and, hence, objec-
tification in quantum mechanics is a non-existent problem [7]. On the other hand
Bassi and Ghirardi point out the internal contradictions of the decoherence program
[8]. Pearle also refers to the conceptual difficulties of the decoherence theory [9]. A
suggestion to generalize relativistically the dynamical collapse models has been pre-
sented by Bedingham et al. [10] and by Tumulka [11,12]. Kiefer and Joos maintain
that the dynamical collapse models invoking gravity may be simply drowned by envi-
ronmental decoherence and hence are to be considered as “excess baggage” [13—15].
As far as locality is concerned, d’Espagnat contends that decoherence theory does not
reconcile physics with the objective existence of phenomena (strong realism) [16,17].
Diirr and Teufel maintain that decoherence does not create the facts of our world, but
rather produces a sequence of fapp-redundancies, which physically increase or stabi-
lize decoherence. They believe that physical theory should describe the behaviour of
real objects, located in physical space [18]. In the present paper we report a theory
which is in the spirit of quantum realism.

As is well known and well accepted, the Schrédinger equation evolves a state,
which qualifies as representing real world, into a state which is a superposition of real
world states and as such does not qualify as a real world state. To handle this problem
von Neumann [19] introduced a second dynamics which is not unitary and serves as
reduction on real world states. This second dynamics is referred to as collapse or state
vector reduction and cannot presently be described by a mathematical theory. We refer
to this state of quantum theory as Copenhagen quantum mechanics (CQM).

In recent years there have been attempts to construct theories where CQM
and/or quantum field theory emerge in the low energy (infrared) limit of a (higher-
dimensional) theory which is capable of combining quantum mechanics and general
relativity. Superstring theory and/or M-theory [20,21] are the most well-known exam-
ples. According to a different theory developed by ’t Hooft the fundamental laws valid
at the Planck scale are derived from Newton’s law, but are different. In this theory
CQM emerges as the low energy limit due to a chaotic (dissipative) dynamics (loss
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of information) with a set of attractors operating during the development of the sys-
tem from the Planck scale to the microscopic (atomic) scale. Classical variables can
assume any arbitrary value out of a continuum while quantum states are discrete [22—
25]. Inspired by 't Hooft’s idea, Blasone et al. [26] show that the combined evolution
of two classical, dissipative harmonic oscillators results in a linear harmonic quantum
oscillator with a zero point energy.

Adler proposes that CQM is an emergent phenomenon arising from a deeper level of
dynamics via an extension of classical dynamics to non-commuting matrix variables,
with cyclic permutation inside a trace used as the basic calculational tool. CQM is
then shown to emerge as the statistical thermodynamics of this underlying theory,
with the canonical commutation-anticommutation relations derived from a generalized
equipartition theorem. State vector reduction and probabilistic interpretation of CQM
are then argued to follow from Brownian motion like corrections to the Schrédinger
equation [27,28]. Smolin considers classical matrix models with an explicit stochastic
noise giving rise to quantum behaviour [29].

Bir6 et al. [30] demonstrate that a classical (Euclidean) field theory living in five
dimensions can behave in the infrared limit like a quantum system, if it is only observed
in four dimensions. Hadley argues that the fundamental logic of CQM results from
general relativity. In his theory elementary particles are not separate objects living in
4 dimensional spacetime, but rather constituents (local deformations) of spacetime.
General relativity contains past and future in a deterministic manner. The statistical
character of CQM is then a consequence of the missing knowledge of the future [31].

A different approach is to modify the Schrodinger equation in such a way that the
collapse dynamics is included in its solution. These are the so called collapse models
[8,9,32]. For a detailed review see refs. [8,9].

It is often stated that CQM explains all known phenomena and experimental find-
ings and that experimental hints to a different physics are not available [33]. This is
clearly not true. With the advent of experimental techniques, which provide data with
time resolution and spacial resolution on the atomic scale of the dynamics of chemical
and physical processes on solid surfaces in a non-destructive way, CQM is challenged.
Within CQM collapse of the total wave function might be postulated as the process
leading to the localization of adsorbed atoms and molecules on solid surfaces, as they
are imaged in experiments with the low-temperature scanning tunnelling microscope
[34,35]. The two-dimensional periodicity of the solid surfaces means delocalization
of the wave function in two dimensional Bloch waves resulting from the time develop-
ment of the wave packets according to Schrodinger’s equation. It would imply that an
initially localized adparticle should after some time be observed anywhere on equiv-
alent sites on the surface with equal probability. This is, however, never observed. An
extension of CQM by including the system and the environment is often considered
under the heading of decoherence theory. According to this theory localization via
interaction, “permanent measurement” by environmental particles (phonons, tomon-
agons, photons, plasmons, etc.) is suggested. But it cannot be the explanation either.
This is so because at low temperatures the available environmental excitations have
very long wavelengths compared to the size of the adsorbed particles. Furthermore,
when adsorbed particles jump between two adsorption sites, the movement occurs
as telegraph-signal like jumps and not as the smooth Rabi oscillations predicted by
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Schrodinger’s equation [36]. The diffusion rates in the quantum diffusion regime of the
same adsorbate on similar metal surfaces, measured in different experiments, differ by
several orders of magnitude [35,37]. CQM, with the coupled dynamics of the adsorbate
motion and the substrate phonons taken into account, provides results, which drasti-
cally differ by nearly nine orders of magnitude from the experimental diffusion rates
[38]. The desorption reaction of CO, induced by tunnelling electrons in the scanning
tunnelling microscope [39], can be explained only by assuming that the tunnelling
electron is transiently localized in the close vicinity of the adsorbate [40]. The sur-
vival of metastable atoms in interaction with adsorbate covered solid surfaces [41,42]
presents a further problem, which cannot be resolved within CQM. The survival prob-
ability of metastable atoms He™ on a metal surface, covered with CO, is attenuated
compared to the deexcitation probability in a scattering experiment between a beam
of He* and CO in the gas phase, which is unexpected and not explained within CQM
upto now. In Ref. [43] an understanding has been suggested, based on the different
dimensionality of the scattering continua in the gas phase and on the solid surface.
This has been termed the dimensionality effect [44] and is in the spirit of the theory
developed here.

Recently, a programmable quantum annealing machine has been built which uses
quantum effects to minimize a cost function [45]. The question has been raised whether
the behaviour of this D-Wave computer [46] can be described by classical statistical
mechanics, an approach called simulated annealing, or whether CQM has to be invoked
in order to explain the operation of D-Wave. It has been established experimentally
by Chiorescu et al. [47] that a single flux qubit loses coherence within nanoseconds,
i.e. within a few nanoseconds the behaviour of a single flux qubit can no longer
be described by CQM. In Ramsey interferometry experiment a 7 microwave pulse
initializes oscillations between the macroscopic supercurrents in the flux qubit in two
reverse directions, which are interpreted as oscillating probability for occupation of
each current state. The envelope of the oscillations of this probability decays, providing
a “coherence time” of one current state of the order of 20ns. These observations are
interpreted to demonstrate that within nanoseconds the behaviour of a single flux qubit
can no longer be described by CQM.

On the other hand, Johnson et al. show that in a macroscopic system of an eight-
flux-qubit chain the quantum annealing of the system at low temperature results in
quantum tunnelling in the global energy minimum, with a temperature independent
freezing time [48]. Furthermore the experiment of Dickson et al. [49] using 16 flux
qubits of a superconducting quantum processor and quantum annealing with the help of
applied transverse magnetic fields shows that, even with annealing time eight orders of
magnitude longer than the time, determined for the decay of the oscillations described
above, the system behaves as predicted by CQM. Classical models do not reproduce
the experimental results.

We applied the theory presented in this contribution successfully to explain why
does the D-Wave computer operate as a quantum computer over minutes, despite
that the effects of the thermal environment are on a timescale of nanoseconds. An
understanding is provided in the framework of the present theory [50].

It appears that the localization of quantum particles via entanglement to environ-
mental continua of high density of states is a necessary condition for various reactions
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on solid surfaces. Particle localization in a collapse process, as suggested in CQM is,
however, not the result of the solution of Schrodinger’s equation or of any well defined
dynamics. The examples from the previous paragraph illustrate that on a nanoscale
level on solid surfaces there are dynamical processes which cannot be accounted for
by CQM. In all cases mentioned, entanglement with an environment obviously plays a
role. However, the environmental excitations usually discussed in the context of these
low temperature experiments, for instance phonons, tomonagons, plasmons etc., are
not capable to localize atoms or electrons on a solid surface because of their long
wavelength. A new explanation is needed.

We develop a theory where CQM emerges from a quantum field theory, which treats
gravitation in eleven spacetime dimensions in the weak field limit. Entanglement to soft
modes in the hidden spacial dimensions leads to particle localization, which is a nec-
essary condition for the processes on the atomic scale, listed in a previous paragraph.
Changes of localization sites occur as a telegraph like dynamics with entanglement to
low frequency modes and in the limit of vanishing interaction strength. Non-locality
in four spacetime dimensions is implicit in the theory. It also is capable of describing
and explaining the experiments on solid surfaces mentioned beforehand, which was
found impossible within CQM.

There exist many attempts to account for the effects of gravity on a quantum sys-
tem by modifying Schrodinger’s equation including stochastic attractive Newtonian
gravitational fields in 4 dimensional spacetime [51-57] or introducing a nonlinear
“Schrodinger—Newton” equation [1,51,52]. The interpretation is based on the ten-
dency of the off-diagonal elements of the reduced density matrix of a quantum system
in interaction with the external gravitational field to attenuate, and is assumed to imply
transition to classical and random behaviour. Instead, gravitation has been suggested
as the origin of the noise field in collapse models [9]. Penrose’s intensive attempts also
suggest gravitation as the origin of collapse [1-6]. With the purpose to describe local-
ization and transition of the quantum mechanical superposition of states to classical
states, even the decay mechanism is often postulated [1,51,52]. Within the frame-
work of continuous spontaneous reduction models [32] Pearle and Squires interpret
the classical scalar field, which causes collapse, as the gravitational curvature scalar,
however, gravity is treated semiclassically [58,59]. In the work of Anastopoulos the
gravitational field is considered as leading to classical behaviour, however, not for
microscopic particles [60]. Spacetime fluctuations due to stochastic backgrounds of
gravitational waves [61] or metric fluctuations [62] have also been suggested to lead
to unavoidable transition of quantum particles to classical behaviour.

The aspects of CQM are shown in this paper to emerge from entanglement due
to an extremely localized and weak interaction between matter fields and a massless
boson field of high mode density. The exact form of the Lagrangian for the interacting
fields will be developed in Sect.3-5. In Sect. 2 we investigate the structure of a theory
based on an extremely local and weak interaction with a high density continuum in
11 dimensional spacetime. This includes compactification of the hidden dimensions
(Sect.2.1.1), determination of the density of states (Sect.2.1.2) and the special kind
of solution not obtainable in perturbation theory (Sects. 2.2, 2.2.1). The properties of
the solution are exemplified for the case of diffraction from nano lattices. In Sects. 6
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and 7 the ontology of our Emerging quantum mechanics (EQM) is set in relation with
that of Copenhagen and Bohmian quantum mechanics.

2 The Structure of a Deterministic Schrodinger Theory in 11
Dimensional Spacetime Including Weak Field Gravitation

As mentioned in the introduction a possible theory for the unification of general rel-
ativity and quantum mechanics is superstring theory and/or M-theory [20,21]. The
equations of superstring theory are mathematically consistent only, if the strings
move in 10 dimensional space. According to M-theory spacetime can besides one-
dimensional strings also contain branes of various dimensions. Strings can be restricted
to subspaces of spacetime, if they are bound to branes. The physical laws depend on
the geometry and dimensions of the branes and the hidden dimensions.

2.1 Hidden Dimensions

First we briefly summarize the way we think about this subject. A single hidden
dimension can only have the shape of a circle. More extra dimensions can have a
variety of shapes (called topologies) such as spheres, tori, connected tori, etc. differing
in length and diameter. This results in a gigantic number of possible geometries. In
addition there are parameters describing the positions of the branes and the fluxes
around the tori. Each configuration of branes and hidden dimensions has a different
energy. If there are no fields in 4 dimensional spacetime this corresponds to the vacuum
energy. For a given three dimensional brane the geometry of the hidden dimensions is
determined by minimizing this vacuum energy. The multitude of possible geometries
results in the so called landscape of string theory. Our universe has to correspond to
a minimum on the landscape with a relatively small vacuum energy, the geometry of
branes and hidden dimensions corresponding to our universe is, however, unknown.
For the purpose of this investigation we assume the simplest possible case, namely
a flat 3-dimensional brane and a seven dimensional sphere representing the hidden
dimensions. All known fields except for the gravitational field are assumed to live only
on the three dimensional brane. Except for the existence of such a three dimensional
brane and the spherically compactified hidden dimensions, no other properties of
superstring theory and/or M-theory are needed.

String theory can be quantized in various ways, one possibility being string field
theory in high dimensions. This has been demonstrated by Witten, as it is described for
instance on p. 105 in the book by Becker et al. [20,21], which contains the references
to the original work. The simplest example is the Nambu—Goto string action in D
dimensions which is easily seen to be equivalent to a quantum field theory of D
massless scalar fields in two dimensional spacetime (see e.g. Zee [63, pp. 452, 453]).
Quantum field theory is conveniently treated by the path integral method and it is
explicitly proved in the book by Gross [64] that the path integral method is fully
equivalent to the Schrodinger equation. New physics which might appear at the Planck
scale is of no relevance in what we discuss here.
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2.1.1 Compactification of the Hidden Dimensions

The basic idea of how CQM emerges in our theory is that the gravitational interaction
provides a chooser that guides a diffracted matter field to a particular site on the screen.
Assume the simple case that a point like source emitting the matter field is exactly in
the center of a three dimensional sphere of radius 1 meter. The area of the sphere is
then 477 m? & 16 x 10%° bohr? & 2 x 10%! bohr?. Assuming an area of the lattice unit
cell of the screen of 20 bohr2, there will be 102 sites on the screen where the matter
field could localize (“‘collapse”). The idea is that the sites are fully equivalent but vary
slightly in energy and geometry. A realistic estimate for this is a variation in energy
of #1073 eV and a variation in geometry of ~10~! bohr.

The average spacing between two adjacent energy levels is 107> eV/1
sites=1072% eV. If the only criterion is energy then the chooser has to distinguish
energy levels on a scale of 10723 eV in order to select a single site. Analogously the
average deviation between two similar geometries will be 10~! bohr/10% sites =102
bohr. If the only criterion is geometry then the chooser has to distinguish geometry on
a scale of 10™2! bohr in order to select a single site. If we assume that the chooser is
sensitive to geometric differences of 107> bohr then 10'° sites would be available for
a choice. This means then that the chooser should distinguish on an energy scale of
1073 eV/10'¢ sites= 107! eV in order to select a single site.

The consequence is that the interaction energy between a quantum of the matter
field and a site on the screen should be of this order of magnitude. A larger interaction
energy cannot lead to site selection. A significantly smaller interaction energy would
mean that either very many quanta of the matter field have to be emitted from the
source, before a “collapse” can be registered, or that it would take months or years
before a quantum can be registered on the screen. Both cases violate strongly the
experimental findings.

The required interaction strength is much weaker than any kind of electrodynam-
ical, chemical or van der Waals interaction. This means that coupling to phonons or
electron—hole pairs, i.e. “measurement by the environment”, is not capable of describ-
ing the “collapse” or measurement process which is at the heart of the so called
wave—particle duality. On the other hand the required interaction strength is much
stronger than the gravitational interaction in 4 dimensional spacetime. Consider two
protons at a distance of » = 6 bohr and mass M = 2 x 10% a.u. Their gravitational inter-
action energy is G M?/r ~ 10736 eV, where we inserted a value of G = 10~*° atomic
units for Newton’s gravitational constant. This is 17 orders of magnitude smaller than
required. The only possibility for obtaining the required order of magnitude for the
interaction energy appears to be a gravitational field in 11 dimensional spacetime with
compactified hidden dimensions.

The gravitational potential provided by a pointlike mass M in 4 dimensional space-
time is:

020

v oy M (1
r

grav

In 11 dimensional spacetime (10 space dimensions) the gravitational potential is:
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G M

Vi ===
T'r

grav
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The gravitational law Eq. (2) cannot be valid for large separations r as this would violate
the experimentally verified classical law Eq. (1). Therefore the hidden dimensions are
rolled up (compactified) to a diameter 2a so that at large distances the separation in the
hidden dimensions never exceeds 2a. Equating the classical and the 11 dimensional
gravitational law at large distances, we obtain

GM GUOMm
r " Qan)r = G = @am)'G )

This choice makes the two laws Eqs. (1) and (2) agree at separations larger than 2a.
Inserting Eq. (3) in Eq. (2) yields at » = 1 bohr:

vaD ¢ =1) = —GM2a)’ 4)

grav

This means that at » = 1 bohr the gravitational interaction is (2a)’ times stronger than
predicted by the classical law Eq. (1).
The dependence of G!) on the compactification radius is then:

a(bohr) GV /77 (a.u.)

10* 10710
103 10717
10° 107
10 10731
. o . . (1 .
From the selection criterion described above we require Gﬂ7r£’[ ~ 10720 atomic
. an (11 3 (1n
units at # = 6 bohr and M = 2 x 103, hence G M G 2x10° 9 107362 ~
7’68 77100 7’

10~20 which implies G;171> ~ 5 x 1018, For our chooser we would therefore need a
compactification radius of roughly 103 bohr. This is enormously larger than the Planck
length. A chooser needs large extra dimensions. In the theory of Arkani-Hamed et al.
it is also claimed that the hidden dimensions need not be compactifed on the Planck

scale, they can be as large as a fraction of a millimeter or even infinite [65,66].
2.1.2 Graviton Mode Density

The chooser can only work, if gravitons are available at an energy separation which
is of the order of the gravitational interaction strength for any kind of matter field
quantum. This is only possible, if the density of graviton modes is sufficiently large.
The density of graviton modes has been calculated in Ref. [67]. Due to its importance
the argument is repeated here. The calculation runs parallel to the evaluation of the
mode density in the electromagnetic case. We expand the gravitational radiation field in
the eigenmodes of resonators with fixed frequency, polarization, and field distribution.
Although the selection of modes is in principle arbitrary, the most popular expansion
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uses the eigenmodes of rectangular boxes with perfectly reflecting walls. The mirrors
at position 0 and a impose the boundary conditions that the field vanishes at those
positions. The eigenmodes have field distributions that vary with sin(nmx/a), where
n is the mode number, x the spacial variable and a the separation of the two mirrors.
The spatiotemporal variation of the field is

F, = sin(nmx/a)e!’ 5

The wave number k = (n7r/a) determines the angular frequency w, = “2<. The one
dimensional density of modes in k-space is

ok = (6)

a
-
Using the dispersion relation for gravitons €, = kc, with c the velocity of light,
K = \/ k% + k% + k% + kf + -4 kﬁ and d the dimension of gravitational k-space,
we write for the graviton mode density

puran(E) = S 3(E ~ ) = [ dlepld(E - e0). )

Transforming to spherical coordinates 7 one obtains [68]:

dJ2

ravE: d dilaE_K dn—~ 8
Pgrav(E) /nn ( e)p"r(1+%’) (3)

Specializing to 10 spacial dimensions and substituting dn = de/c one obtains

1 7.[5 d—l
peranE) = 1! / deS—5(E o) ©)
ES7S (L 3 a\’
:@5(;) () (10)

where L is the normalization length of the macroscopic three dimensional space and
a is the normalization length of the hidden dimensions.

The density of states for the two dimensional movement of an adparticle of mass M

is pop = 2M L2 which is of the order of 10'7 for a proton. Therefore the relationship

between the mode density of gravitons at energy E and the two dimensional adparticle
motion is

E® 7
Pgrav. _ 10 n° La ~ 103

= 11
02D 2M 5! nf (I
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For the wave vector of the graviton we assumed « ~ 10 bohr™!, which corresponds
to a wave length of 1 bohr (A = 27 /k ~ 1 bohr), and L ~ 107 bohr. With the choice
a ~ 10* bohr and M = 2000 a.u., the graviton energy is of order of €, ~ 10> Hartree.

In conclusion the graviton continuum appears infinitely dense compared to the
continua describing any particle motion in our three dimensional space.

2.2 Characteristics of the Solution

In quantum field theory the standard way of solving a problem is via perturbation theory
(Feynman diagrams). This approach does not work at all in our case. The reason is that
the solution we are looking for appears in the limit of very small (vanishing) interaction
strength (cf. Sect.2.1.1). Expanding in terms of powers of a coupling constant, which
then tends to zero, yields zero in every order and for the final summation. This problem
is known in quantum field theory, where topological (soliton) solutions appear for
coupling constant tending to zero (cf. e.g. Zee [63] who refers to this situation as
“breaking the shackles of Feynman diagrams”). In our case the entanglement between
the matter field and gravitons becomes maximal in the (mathematical) limit, where
the interaction strength V.4, tends to zero while at the same time the graviton density
of states pgrqy tends to 0o so that Vg,qy 0grqv Stays non-zero and finite.

The method we have to pursue is solving the Schrédinger equation in configura-
tion space. In quantum field theory the wave function becomes a wave functional,
i.e. it depends directly on the fields. Considering for illustrative purposes only
two boson fields, the scalar matter field ¢ (¢, x1, x2, x3) and the gravitational field
¢(t, x1,x2,...,X10), we have to solve the Schrédinger equation

.0
IE\D (@(t, x1,x2, x3), £(t, X1, X2, ..., X10))

= HV (¢(t, x1, x2, x3), £ (¢, X1, X2, ..., X10)) . (12)

Reasonable solutions can be obtained by adapting techniques, which have been devel-
oped in theoretical quantum chemistry under the heading of “configuration interaction”
(CD.

Consider the set of fields {¢"¢"*} forming a Hilbert space. Expanding the fields in
modes ¢y and g:

¢ = Cuta (13)
a=1

¢ =2 Dpig (14)
B=1

we write the wave functional in Dirac notation as

W)= D Aping®a; | na)®F% | np) (15)
(na)fng)
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with
| ne) = (¢ (x))"™ (16)
| ng) = (p(x)"? (17)
Qqei I 1e) = [n1)® | 12)® | n3)® | n4) ® (18)
{ng} = ninynsngns . .. (19)

The time dependence of the modes ¢, and ¢z is just an arbitrary phase factor which
can be set equal to unity. The time dependence arising from the relative phases is then
contained in Ay, )(ns}- A scalar product ({nq H{ng} | {ny }{ns}) is defined by

({”a}{nﬂ} | {ny}{nS}) = 1_[ (Snanyfsnﬂna (20)

a.pB,y.6=1

We refer to | {nq}{ng}) as a (field) configuration. Introducing creation and annihi-
lation operators a;{ , Ay, b;’, bg in the usual way, one writes for the field configuration

| {na}ng)) = H [T@hm @5y | (na = 0}ng = 0}). 1)
a=1 =1

The solution of the time dependent Schrodinger equation is
WD) =e | W(r = 0) (22)

where H is the Hamiltonian derived in Sects.3-5. The time dependent amplitude
becomes

At 0 = (Ina}ng) | e | Wt = 0)). 23)
The initial functional | W (¢ = 0)) can be expanded in the field configurations:

W@ =0)= D By | {ny}ns)). (24)

{ny Hns}

For the amplitude one obtains then

Aot O = D By (e} ng) |7 [ i }ns)). 25)

{ny Hns}

The CI matrix elements in the last equation have to be evaluated using the Hamil-
tonian H which consists of terms like iggaf ag, vysb bs, hapysa, aghl bs and their
hermitian conjugate. The operation a,jakblj‘bv | {no}{np}) is defined by Eq. (21).
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2.2.1 Telegraph Signals ( “Quantum Jumps”)

Whereas the theory is relativistic, i.e., Lorentz invariant, the interesting solutions
emerge in the non-relativistic limit. If the time dependent wave functional is calcu-
lated along the lines just outlined, one finds that configurations | {ny, = 1}{ng = 0})
restricted to four dimensional spacetime (“three dimensional configurations”) become
heavily entangled with configurations living essentially in eleven dimensional space-
time. The reason is that due to the high density of “gravonon configurations” (i.e.
configurations where gravonons in the hidden dimensions have been excited, cf.
Sect. 3.2) a particular four dimensional configuration will always be practically degen-
erate with gravonon configurations and, as it is well known, the Schrodinger equation
will mix degenerate configurations even for vanishingly small interaction strength.

In the problem of diffusion of an adsorbed particle on a solid surface the Hamiltonian
has been chosen as [69,70]:

H= Hgas atom + ngavilon + Hgas atom—graviton
2

= Eging, + Egyng, + Ew iy + Euyltw, + Z Vi

loc
i=1

2
+ Z Egrav; b grav berav; + ng bk by,
i=1 k

+ +
(ag,'awi + awl‘ agi)

+ Z I:Vgrav;,winw; b;rav,' bki + Vw,-,grav,'nw,- b/j;bgrav,':l . (26)
k

The meaning of the symbols is: ng, , 1y, : gas particle field strength in the vibrationally
ground and excited (parallel to the surface) core movement states and in the “warp
resonance” where interaction with the gravonons occurs; al.+ , a;j: creation and annihi-
lation operators for the gas particle field in the respective core movement states; Vli’c
interaction strength between a gas particle state and the warp resonance; €grqy; , £k;:

energy quanta of local and continuum gravonon fields; bgmu , bgray;: creation and

annihilation operators for the local gravonon field; bk,-’ by, : creation and annihilation
operators for the continuum gravonon field; Vg;qy;,w;: interaction between the gas
particle and the gravonons within the warp resonance.

The field configurations taken into account are the following:

{ne} = ngingonyiny: 27
with ng; = 0, 1, n,; =0, 1 fori = 1,2.
{ng} = nring (28)
withng; =0,1,...,00fori =1, 2.

The solution of the Schroédinger equation for this Hamiltonian results in the adpar-
ticle being fixed near a particular substrate atom as long as the excited gravonons
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Fig. 1 Adsorbate telegraph-signal-like quantum jumps between two adsorption sites as a function of time
obtained as a solution of the Schrodinger equation. The entanglement with the gravonon field is included.
The quantity plotted is the sum of the squared coefficients of the field configurations containing gravonons
at site 1 and site 2, respectively. The full curve (red) is site 1, the dashed curve (blue) is site 2 (Color figure
online)

are moving around in the large hidden dimensions. If after the recurrence time the
gravonons return to the four dimensional brane where they have been excited, the
adparticle is suddenly free to leave this site. When arriving at a neighbouring site the
adparticle will excite gravonons here and will be captured to this new site as long as
the excited gravonons are moving around in the large hidden dimensions. This leads
to the telegraph signal like adsorbate movement, which is observed in experiment.
A calculation of this movement within the present theory is depicted in Fig. 1 and
has been published in Ref. [70]. The analytical derivation of why and how telegraph
signal like changes in the state of a quantum system, entangled with gravonons in the
environment, occur, is presented in Ref. [71].

Flat two dimensional surfaces present ideal systems for experimental studies of
gravonon coupling. They can be experimentally prepared with high accuracy. Their
two dimensional translational symmetry is observed, e.g. for surface states on the (111)
faces of Cu, Ag and Au and for well ordered adsorbate layers. Delocalized movement
is observed, for instance, for electrons in the surface state on Cu(111) and it has also
been predicted as solution of Schrodinger’s equation in four dimensional spacetime
for weakly adsorbed atoms and molecules (e.g. rare gas atoms). However, delocalized
adsorbate movement has not been verified experimentally, as it was demonstrated for
instance in the STM experiment of Eigler with adsorbed Xe on Ni(110) [34]. The reason
is that the substrate surface provides a close packed array of massive centers (the sub-
strate atoms). A massive adsorbate has always a short distance from the nearest massive
substrate center and, therefore, substantial coupling to the gravonons which leads to
entanglement. Thus the entanglement is between the two dimensional surface, existing
in four dimensional spacetime, and the gravonons in eleven dimensional spacetime.
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In fact single atom diffusion on cold, flat surfaces with alternating localization and
telegraph signal like motion (sudden jumps) cannot be explained either by decoherence
theory or spontaneous collapse theories. Of course, the interpretation within CQM
can be reconciled with these experimental observations, if localization and jumps are
interpreted as collapses of unknown origin and reason.

2.2.2 The Chooser Mechanism (“Collapse”)

The scattering of a matter field from a double slit and the “wave—particle duality”
observed in these experiments is in our theory interpreted as follows. If there is a
site on the screen which is energetically degenerate with the initial wave functional
| Q0) =| W(r = 0)) the configuration | Kk ;) with the scalar matter field ¢
having significant strength on this site will get strongly entangled with the degenerate
gravonon configurations. As the excitations of the gravonons in the hidden dimensions
depend on the matter field being extremely localized near the chosen site, the matter
field strength cannot drift away as long as the excited gravonons are moving around in
the large hidden dimensions. If this takes time long enough for other physical-chemical
processes to be initiated, it will result in an experimentally detectable event. Such an
event would be called “collapse” in the framework of CQM.

To treat this situation theoretically in a simplified manner we set up the Hamiltonian
H in matrix form

[ Q0) | RO) | Kkproj)

(00 | 0 1% 0
(RO | 1% 0 w
(Kiproj | 0O W 0

Figure?2 illustrates the many-particle states involved and their interactions.
| RO) =| R)® | Ogrqyp) is a a state where the matter field is localized on the screen but
not yet entangled with the gravonons. In the state | K« ;) the matter field experiences
the interaction with the gravitational field. All three states are degenerate at energy
E = 0 which defines the energy zero. The interaction V allows the matter field to
penetrate into the localized state | RO) on the screen and W is the potential connecting
| RO) to the resonance | K« pro;) where gravitational interaction becomes important.

Diagonalizing the Hamiltonian leads to the characteristic equation

det(E—H)=E>— (W>*+V»)E=0 (29)

which has the solutions E, = 0, Ex = ++/ W2 4 V2, Only the eigenstate | 00) of
energy zero is of interest in the following. It has the coefficients

w
Coo = ——— (30)
T VI we
Cro=0 3D
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|QO0> |RO> K Kpro>

Fig. 2 Field configurations and their interactions: | Q0) =| Q)® | Ogrqy) initial field configuration with
the gravitational field in the ground state and the matter field in the source; | RO) =| R)® | Ogrqy) with the
matter field localized on the screen but not yet entangled with the gravonons, which are in the ground state;
| Kk proj) with the matter field localized on the screen and a gravonon state projected out of the gravonon
band {| k)} according to the criterion of strongest interaction

Vv

Ckicproj = N (32)

In the limit where the coupling to the gravonons becomes very weak (% — 0) Coo =

0 and Ckg,,,,; = 1. The coefficients of the “zero-state” | 00) in the eigenstates of the
total system become then approximately

(00 | K+) = (00 | G () (Wgraw + V + W) | Kk) (33)

~ (KKproj | G+(€K)(Wgrav +V+W)| KK) (34)

= (KKproj | G+(€K) | KKproj)(KKpmj | Werav | KK) (35)

=Gy, (€W (36)

where GT is the Green operator, Wg,qy is the gravitational potential, G;Kpmj =

(Kkproj | Gt | Kk proj) and Wye = (Kkproj | Werav | Kk). | k) is one of the states
in the gravonon band, generating | «+) after the interaction with the matter field is
included. €, is the eigenenergy of the eigenstate | Kk+). We have here applied the
Lippmann—Schwinger equation [72] to construct the eigenstates | K«+). The Green

function GJIQK has the form
proj

1
+ —
O () = o @) F il (o) o0

where « and I' are the real and imaginary parts of the self-energy, respectively, with

Pex) =7 D | W [P 8(E — &) (38)
K
U2
=n— if | & |[< A. 39
N (39)
The last line indicates an approximation where W, = JLN is non-zero and energy

independent over an energy range of length A and zero otherwise. N is the number
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of gravonons in the energy interval A. Defining the density p. of gravonon levels at
€ =0

1
N3 (40
1 +
= ——mGf,, (41)
1
== (42)

yields A = z[". In order to study the time dependence due to the coupling to the
gravonons we start from the formal solution of the time dependent Schrodinger equa-
tion

| W(r) =e M| 00)
= > e % | Kie+)(Kx+ | 00)

K

= Ze—iskt | KK+)G;KWI, (e) Wy
K

. W,
_ —i€,t K
- ;e e a0 — T (e @

where we assumed W, to be real. For the projection (K« ,0j | W (1)) we obtain:

. W,
(KKproj | W(t)) = e KK poi | Kk+) - . 44)
e Z e € —a(ee) — il (€)
From Eq. (38), with W, assumed to be independent of ¢, , we have:
U
(Kkproj | Kk+)W, = N (45)
Inserting in Eq. (44) we obtain
U efie,(l

(Kkcproj | W(1)) = (46)

N ZK: € —aley) —il(er)

\/Lﬁ is assumed to be independent of ¢,. We have to

where (Kkproj | Kk+) =
emphasize at this point that the summation index « is not the graviton wave vector.
The sum runs over the energy levels of the gravonon states (cf. Sect.3.2). The sum in

Eq. (46) can therefore be transformed into an integral by writing

o0 efie,(t

U
(Kkproj | W(1)) = N/_oo dEKPGEK —a(e) —il(ee)’

(47)
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(pe, the level density of gravonon states, is constant according to Eq. (40).) We assume
a and T" to be independent of energy. The time dependent wave functional | W(¢)) and
its component involving the localized matter state | K) is then obtained by integration
yielding [73]

U .U _
(Kicproj | W(0)) = im - pee™ ' =im—e™l, (48)

where in the weak interaction limit we assumed ¢« — 0 and p, = % (Eq.40).
In order to clarify the complete character of the state | W(¢)) we have also to
calculate its projections on | R0), | Q0) and | KA+).

(RO | Kk+) = (RO | G*(Wgrap +V + W) | Kk+) (49)
= G%(RO | (Weray + V + W) | Kic+) (50)
= G(j)m(RO | Werav +V + W) | Kkproj){(Kkproj | Kic+) (51)
w 1
=—1 52
\/_ GE)I}) € + i€ (52)
w 1
Y Ipd) ~imsce )} (53)
\/N|: €k g
Using this in Eq. (43) yields then with Wy = U/+/N and p. = N/A
uw
RO|V()=m0—v 54
(RO W) =73 s (54)
(Q0 | Kk+) = (00| G | KKproj><KKproj | Wgrav | Ki) (55)
U
= —=(00| G | Kkproj) (56)
\/N proj
Inserting the Born series
o
G =G"+ D (G'(V+W)G)" (57)
n=0

one has

W o
(00| Kk+) = ﬁnzz(:)(@o | G 1 Q0)(QO | V| ROYRO | G”| Kkproj))"
(58)

which is zero at every order and hence (Q0 | Kk+) = 0. Requiring unitarity and
setting « = 0 one gets
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Fig. 3 The chooser at work: the numerical solution of the model of Sect.2.2.2 in the basis displayed in
Fig. 2 (full curve) in comparison to the analytical approximation Eq. (61) (dashed curve)

D KA W@ P = 1= | (Kieproj | W) [P
A

— (RO [ W(D)) |* — | (QO | W()) | (59)

U2 UWw\?
=1-n2 |:p€2rt + (E) + O:| (60)
_ w?
%l—ezrt—m (61)

The last line is valid, because from Eq. (38) UKZ =TI/ and A = nT" (Eq.40).

Neglecting off-shell components, the initial state | Q0), by propagating through
the nano lattice (or double slit), becomes the state | 00), which for weak gravitational
interaction strength merges into the state | K« ;) and thenis completely extinguished
with time according to Eq.(48). The whole field strength is captured in the states
{| Kx+)}, representing a localized matter field, strongly entangled with gravonon
states, which live mainly in the hidden dimensions.

InFig. 3 the sum of the weights of the gravonon configurations (squared coefficients)
in the wave functional shows that as the system, displayed in Fig. 2, develops with time
the weight of the field configurations with gravonon components increases, tending
to 1. This means that the matter field is localized and a “collapse” occurs on a single
site | K) where the entanglement with the gravonons is effective. The oscillations in
the exact numerical calculation arise, as the off-shell states with E4 are also mixed in
because of the finite energy spread of the gravonons.

A closer inspection including exact numerical result shows that energetical degener-
acy between the chooser and the initial state is not a sufficient condition. The gravonon
structure is a further condition for the chooser. At time ¢ the wave packet describ-
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ing the screen contains for every site, i.e. for every substrate atom, the momentary
configuration, in particular the position distribution and the corresponding gravonon
configuration. Only for one site it can be expected that it meets the condition of being
the choice for adsorbate capture. This point is detailed in Ref. [74]. The wave packet
describing the screen is perfectly determined and if the experimenters were able to
prepare it accurately, they could determine the site where the diffracting molecule
sticks. But for practical reasons this is impossible and, therefore, the choice of the site
appears random. In principle, however, an experimenter would be able to determine in
physical space which choice is made. The situation is similar to classical mechanics
where an accurate knowledge of all initial conditions would allow a precise prediction
of all trajectories. Uncertainties in the knowledge of the initial conditions, however,
can make the trajectories appear random and even chaotic.

In the present theory the experimentally detectable event is uniquely determined
already at the moment of the emission of the matter field quantum from the source,
because energetical degeneracy is needed and, as outlined in Sect.2.1.1, due to the
weakness of the interaction there is only one site of suitable energy and gravonon
structure available on the screen.

2.2.3 Beables and Non-locality

Following Bell [75-77] we exclude the notion of observables in favour of beables.
The local beables in Bohmian mechanics are the particle positions. As time elapses
the particle positions follow a trajectory which in the double slit experiment passes
through one or the other slit. In collapse models the probability amplitude for finding
the particle at particular positions is spread throughout space. In these models the
individual spot on the screen does not reflect where the particle position was just before
the spot forms. An ontology for collapse models can then be constructed by either
interpreting the modulus squared of the probability amplitude as a matter density or
by the so called flash ontology where local beables, associated with particles, exist only
when a collapse of the wave function occurs. The flash ontology permits a completely
relativistic version of the Ghirardi—Rimini—Weber theory [78]. The beables [75-77] of
our theory are the field configurations where matter fields extremely localized in three
dimensional space are entangled to gravonons moving in 11 dimensional spacetime.
These beables emerge in the non-relativistic limit within a preferred Lorentz frame,
corresponding to the rest frame of the investigated system, the laboratory and the
experimenter.

Unlike CQM where few “observables” have to be chosen from an infinite set of
hermitian operators by using criteria which lie outside the realm of CQM, namely by
being found suitable for the interpretation of experiments, the beables which define
measurement are uniquely defined within our theory, based on the Schrodinger equa-
tion.

It is interesting that our definition of a beable is compatible with Kant’s ideas about
observations [79]. According to Kant, knowledge rests on our sensual contact with the
world, and our sensibility has its limits. The sensual limits Kant called the forms of
intuition. He argued that the forms are space and time [80]. All intelligible experiences
involve the general concept of the objective world. The general concept is a sponta-
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neous product of human understanding. The general concept of the objective world is
associated with the category of substance which in our theory is represented by the
beables, consisting of matter fields localized in four dimensional spacetime and entan-
gled to gravonons in eleven dimensional spacetime. Kant makes great effort to justify
the objective validity of the general concept. The most important argument is the “’tran-
scendental deduction”. We have experiences, this requires certain conditions which,
therefore, are real (a priori). Einstein commented on this point as follows: *This con-
ceptual model refers precisely to the “real” (by definitions), and every further question
concerning the “nature of the real” appears empty’ [81]. Kant’s general concepts are
intrinsic to all objective experiences as their presuppositions, hence they are a priori.
In the general conceptual structure of experiences, the forms of intuition [“Anschau-
ung”’] are incorporated as the schematization that introduces particulars. According to
our understanding this Kantian construction resembles the way our beables, i.e. our
category of substance, are related to the eleven dimensional spacetime, i.e. the forms
of intuition in our theory. Although it is not possible for us to gain a complete intuition
of spaces with more than three dimensions we are able to investigate all details we
would experience in spaces of higher dimensions. The intuitive nature of our beables
is in marked contrast to the artificial constructs which are sometimes necessary in
CQM to define e.g. the measured expectation values of the electromagnetic field (see
Ref. [80, Note 43]).

The transition from configuration space to the three dimensional space experienced
by the experimenter is unambiguously provided by the localization in three dimen-
sional space of the matter field. The beables are experienced in our three dimensional
brane space as matter fields localized at different space points. Beables localized in this
sense at different points in three dimensional brane space can appear simultaneously,
if we describe the three dimensional space in the rest frame.

Consider Einstein—Podolsky—Rosen paradox. The particle with spin up (just "up”
in the following) is simultaneously at Alice’s and Bob’s place, respectively, as is
the particle with spin down (just ”down” in the following). If ”up” is chosen (by
whatever chooser Alice has) at Alice’s place, i.e. the "up” field becomes localized
and entangled to gravonons there, only “down” remains in a delocalized wave packet
which is simultaneously at Alice’s and Bob’s place, respectively. This becomes true
at the very moment when “up” is chosen at Alice’s place, also if Alice and Bob are
separated by thousands of kilometers. This is referred to as non-locality.

Hence, non-locality is a phenomenon which persists in our theory, as it does in the
Copenhagen interpretation.

The fact that the beables only emerge in the non-relativistic limit and are neither
defined nor empirically accessible for relative velocities (between experimenter and
physical event), approaching the velocity of light, resolves the apparent paradox of
“real collapses in Minkowski spacetime” [82]. According to this paradox beables
which appear simultaneously in one Lorentz frame appear at different times in another
Lorentz frame. This difference in time is noticeable only, if the relative velocity of the
two Lorentz frames approaches the velocity of light.

As both the experimenter and the physical event which she is to observe consist of
beables, according to the present theory the beables representing “collapses” and/or
“quantum jumps” are not empirically accessible as such by the experimenter, if the
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physical event moves with a velocity near to the velocity of light relative to the experi-
menter. This is associated with the fact that our theory does not contain “collapses” or
“quantum jumps” as additional processes compared to CQM, where these processes
occur in all Lorentz frames immediately. In our theory collapses are replaced by deter-
ministic localization processes which can occur and switch in a telegraph signal like
way. These telegraph signal like processes occur in the rest frame of the experiment
within a very short time, but they are not immediate. If the observer moves with a high
velocity relative to the experimental setup, the telegraph signal like processes slow
down and can no longer represent “collapses” or “quantum jumps” of the CQM type.

This is the well established time dilatation which is present in our Lorentz invariant
theory. As is common in popular presentations of special relativity this can be described
in the way that for high relative velocity the observer experiences an increased mass of
the matter and gravonon fields which leads to a slower movement. Processes, which in
the rest frame of the experimental setup appear immediate and simultaneous, are real-
ized in a boosted Lorentz frame as blurred in time and simultaneity of the experiments
is no longer defined.

We can elaborate on this aspect in the following way. Assume that Alice and Bob
perform an EPR-experiment [83] in earth bound laboratories and measure at distant
locations but simultaneously the spins of two particles bound in a singlet state, thus
verifying the established non-locality emanating from the Schrodinger equation. At
the moment when they measure the spins (i.e. simultaneously) each one sends a light
signal to a rocket, which moves with a velocity near to the velocity of light above them
in the direction from Bob to Alice. The observer in the rocket registers the light signal
from Alice earlier than that from Bob and therefore concludes in the rocket bound rest
frame that the two measurements have not been performed simultaneously.

Why does the apparent paradox in Minkowski space exist? This is the kind of
reasoning that leads to it. The observer in the rocket would say that in the time interval,
which starts, when she “sees” that Alice measures the spin of particle 1, and ends,
when she “sees” that Bob measures the spin of particle 2, the spin of particle 2 is
not determined. In this time interval it is therefore not guaranteed that the system,
consisting of the two particles, is in a singlet state, i.e., that the total spin is conserved.
This means, the observer in the rocket finds that the rules of CQM are violated (cf.
e.g. [84]). The Schrodinger equation, however, requires that there can be no temporal
gap between the measurement of the spin of particle 1 and the time, when the spin
of particle 2 acquires a definite value. One further reasons that the rest frame of the
earth and of the rocket are connected by a Lorentz transformation and, hence, are fully
equivalent. It is deduced then that the two events (measuring the spin of particle 1
and measuring the spin of particle 2) are real and immediate and their existence is
independent of the chosen Lorantz frame. However, the existence of an event in the
rocket, (i.e. the recording of the photons in the rocket bound reference frame), and
events in the earth bound reference frame, (i.e. the measurement of the spin of particle
1 by Alice simultaneously with the measurement of the spin of particle 2 by Bob),
are associated with different beables, hence with further events. The fact that events
additional and different from Alice’s and Bob’s measurements have to occur (the light
signals hitting the retina or some registration device and initiating a physical-chemical
process) is not considered to be of importance and is not discussed.
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In our theory, however, every measurement is a beable of the kind defined at the end
of the first paragraph in the present chapter. If the rocket stays far off the laboratories
on earth, the judgement of the observer in the rocket has to rely on the information
contained in the light signal as born out by the beables it generates in the rocket. The
light emission process which is immediate in the rest frame of the experimental setup
appears extended in time in the rocket.

The reasoning presented here is only valid, because in the first place the beables do
not emerge independent of the reference frame and in the second place measurement
is a consequence of the Schrodinger equation. In our theory all events, i.e. beables,
in the rest frame of the rocket (including those constituting the observer) emerge
from the Schrodinger equation in the rest frame of the observer. Therefore, there is
no paradox, i.e., no contradiction either to the observed facts, or to the symmetry of
Lorentz invariance, or to the predictions of the Schrddinger equation.

In our theory the wave functional | ) yields a complete description of the world.
The beables, which constitute both observables and measurements, are generated by
solving the Schrodinger equation for the wave functional in the non-relativistic limit.
All measurements of various physical quantities can be traced back to determining the
location of the particles [85].

2.2.4 A Remark on Entropy

Our world wave functional is unique and a solution of the Schrdédinger equation.
Therefore the von Neumann entropy associated with this wave functional is zero.
Entropy, however, in its statistical and /or thermodynamic applications is clearly a
quantity which should be defined in four dimensional spacetime. As the events in four
dimensional spacetime are entangled to events in the seven hidden dimensions, an
evaluation of entropy in four dimensional spacetime would be conventionally tried by
using the entanglement entropy.

To define entropy in our theory by means of the density matrix is, however, not
possible, because | W) does not have the meaning of a probability amplitude. It is
rather a description of the various fields (matter, electromagnetic, gravitational) in
configuration space. A configuration | {nqy}{ng}) is a distribution of the fields in 10
dimensional space.

Entropy has then to be defined as being proportional to the logarithm of the number
of microscopic field configurations, representing a macroscopic field configuration.
In our case this is then the logarithm of the number of initial conditions (source of
matter field, number of gravonon structures {ng}) which lead to the state | ny) for the
matter field in four dimensional spacetime.

Compared to CQM we switch from a probabilistic interpretation of | {ny}) to a
statistical interpretation. Beables can be experienced in the four dimensional world in
exactly the same way, if they differ only by slight variations in the gravonon config-
uration in the hidden seven dimensions. There are numerous such variations for each
beable, which appear identical in their four dimensional part. It is principally impos-
sible for us to know, if a particular beable will be realized. Statistics means that we
can predict the occurrence of a particular beable, if we start from a precisely defined
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initial condition. Due to limited experimental resolution we have a sample of many
initial conditions which permits only statistical statements.

Clearly the entropy increases steadily as further beables are created. The entangle-
ment between the matter fields and the gravonons persists forever, because there is
nothing like a “collapse” of the total wave functional or any other external influence.
The total (world) wave functional develops continuously and deterministically accord-
ing to the dynamics dictated by the Schrodinger equation. The second law is thus a
consequence of our theory and need not be introduced as an additional postulate.

3 Effective Hamiltonian for Matter-Graviton Interaction

In this section the effective Hamiltonian of our EQM is derived from first principles to
describe the matter-graviton interaction. The Hamiltonian describes the matter field as
a scalar boson field (denoted ¢ later on) in interaction with a gravonon field (denoted
Zoo later on) in the presence of gravitational interaction. This derivation shows how
the gravonon field emerges from linearized general relativity.

3.1 Weak Field Gravity

The following introduction to gravity as a field theory is in the spirit of Zee [63]. Units
areh =c=1.
The Einstein—Hilbert action for gravity in N spacetime dimensions is

1
167 GN)

/de«/—gR, (62)

Sgrav =

where g = detg,,, denotes the determinant of the curved metric g, of spacetime,
R is the scalar curvature, and G®) is the gravitational constant in N dimensional
spacetime. The sign convention varies widely in the literature [86], we use the sign
convention of [63].

In addition to gravity there are matter fields embedded in curved spacetime, for
instance the electromagnetic field which lives only in four dimensional spacetime, as
contributions S,,,4:z¢r to the total action:

Stor = Sgrav + Smatter (63)

S;or 18 assumed to describe the real world, if the theory is properly quantized. Quan-
tization is only possible for weak gravitation. This is the procedure adopted here.

Alternatively one could treat quantum fields in a classical gravitational background.
This is, however, a semi-classical approximation, which does not define a unique
vacuum state and/or a unique world wave function. It would not allow to describe
the entanglement of matter fields with gravitons which is proposed to contribute in a
significant way to effects observed in experiment. Therefore the semi-classical theory
is not followed here.

@ Springer



982 Found Phys (2015) 45:959-999

The stress-energy tensor of the matter fields is derived from the action S;,4¢1er

le(x) _ 2 (SSmatter

=8 88uv(x)

2 SSmutter
T, =—— . 64
() = == (64)
x is a N-dimensional vector denoting a point in N dimensional spacetime. The sig-
nature is (+, —, —, —, —, —, —, —, ..., —). These equations are valid in general. The

weak field limit is defined by a linear deviation from the Minkowski metric 1, :

&uv = Ny + My (65)

Our philosophy is that this form of the metric is the correct one for the physics we
want to investigate. Expanding Sy, ss¢, to first order in 8g,,, = hy

Smatter (h;w) = Smatter (h;w = O) + SSmatter (66)

and plugging in §S,,4¢¢r from Eq. (64) one obtains:

1
5Smatter = _/de\/ _gEthTMV

1
= —/de\/—_gEh‘“’T,w. (67)
+/—g is expanded as
~ Iv—¢8 v
Using the following general relationship (Palatini method)
0/—¢8 1
Sg = 3/ s (69)
together with
0v/—8  9—¢
e (70)
agep Ohop

and ./—g = 1, we obtain:

0v—g 1 (l N EL/—ghW

ahF — 2 dhr ) (Rap + hap) D

1 1 = N
E it s — = E vy,

e e N VAT N AT

(72)

@ Springer



Found Phys (2015) 45:959-999 983

1 1 1 v 1 v
N o—==Nap — _haﬂ + Z(nuv + huv)h Nop + Z(’Iu,v + h;w)h ho:f}-

2 2
(73)

Omitting terms of higher order than linear in hqg and plugging this into Eq. (68)
yields

1 1 1
J—g=1- Enwh”” - 5h,wh/“ + Zna,gh“ﬁnwh’“. (74)

Inserting this in Eq.(67) we obtain, neglecting the last two terms in the previous
equation:

1 1
dSmatter = — / dezhulew (1 - Enaﬂhaﬁ) : (75)

A matter field is any field that is not the graviton field. Imposing the harmonic gauge
condition (cf. refs. [63,87])

1
3 ht = Eauhﬁ (76)

(hYy = h,eg*") the action for the weak field gravity becomes (Ref. [63]):
Swfg = Sgrav(8uv = Npv + hyv) + 8Smarter
= /de% [m (amﬂ“a*h,w - %akhﬁakhﬁ)
Ty TH (1 — %naﬂhaﬂ)] ) (77)
The total action is then:
Sior = Swfg + Smarter (hyy = 0). (78)

Varying Eq.(77) with respect to 4, we obtain the textbook result for the Euler—
Lagrange equation of motion (Ref. [63]):

3%h,, = —161G™) (T,w - %nwi‘) (79)

where we define:
Ty = Ty (1 - %naﬁh“ﬁ) (80)
For (1 - %naﬁhaﬂ) (81)
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and T = n,, TH" is the scalar stress-energy. In 3 space dimensions Eq. (79) is readily
solved to yield the Newtonian potential [87]:

(82)

4G® Ty (xr, 11y — S W T (xr, 7
h,uv(X, [) = 3 /d3x/ MV( ) 27711,11 ( )
c

| x — x|

where t/ = t — lxz—’”' If Too = pc? is the only non-vanishing element (po: mass

. ©)
density), one has hgg = C%CDNEW,M = C%% [88].

3.2 Emerging Gravonons: the Massive Particles of a Non-relativistic Gravity
Field

For a free gravitational field the Euler—Lagrange equation (79) reduces to
3%hyy =0 (83)

As particles of molecular size couple only to short wavelength gravitons (i.e., quantized
gravitational waves) we can write the relativistic energy E of the gravitons as

E =kc+e (84)

with k =| k | and k labelling the Fourier component of /. (In this section the
velocity of light ¢ will be explicitly displayed.) With k around 10 bohr~! E will be
of the order of 103 Hartree, whereas € characterizes the energy scale with which the
boson matter field ¢ couples to the gravitons and is of the order of 10~!? Hartree. (We
need short wavelength gravitons with A & 1 bohr for the localization of particles of
atomic size.) The energy E and the length k of the wave vectors involved are therefore
defined with a relative precision of 10~13. This motivates us to write for the graviton
field:

Iy (¥) = €759 (). (85)
The gravonons &, contain the gravitational potential and are, of course, not simple

number operators. Writing Eq. (83) (Klein—Gordon equation for the field &, with
m = 0) as

92 22
m —c°V hpw =0 (86)
and, plugging in Eq. (85), yields the following relationships:

a . ey O
Ehuv = (—ikc)hyy +e lkcrgguv (87
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The second derivative is then

2

oo . G] 192
mhﬂv — (—ikc)e iket I:—lkcé‘lw + Zgg’w, + —— i| . (88)

(—m@aﬂgw

With 2 e ;,w being of order €2 a2 10~2* Hartree? this term can safely be omitted and
we obtam for Eq. (86):

: d ¢ 2
— ke + 25(#1} = _EV Cpv- (89)

Multiplying by % yields the Schrédinger equation:

i e ( v: +V, ) ¢ (90)
POLYA N e o 7Y
at 2myg

with mg = % the mass of the emerging gravonon and V,, = —]‘7 a constant potentlal

cancelling the zero point energy of the light cone graviton /1, (k). With k = 10 bohr™
the mass m of the gravonon is roughly a tenth of the mass of an electron.

3.2.1 The Free Gravonon Action

In this section the action of the free and the perturbed gravonon field via 8S,,4¢ter
is derived. The Schrédinger equation (90) can be obtained by varying the following
non-relativistic action with respect to {[L"V:

Sgravonon:/d[Lgravonon:/dthx |:i€;w {;w+ ;upvzé—;w é‘/j_])vf)gﬂl)}
oD

in D spacial dimensions. This is, however, not the action obtained by inserting Eq. (85)
in Sy e — 6Smarrer (cf. Eq.77). One has:

2mg Sgravonon = Swfg — 8Smatter- (92)

Determining ;ljv, {uv from Eq. (91) yields results for ,/2m¢,,,. Therefore such a
solution has to be divided by ,/2m before plugging into To.

Potential terms can be constructed from Eq.(75) together with Eq.(95) yielding
expressions like &, Luqrrer, Which contain terms linear and quadratic in &,,,. The
linear terms will then be taken into account by shifting the gravonon operator whereas
the quadratic terms are inserted into Eq. (90) before solving for £,,,.
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3.3 Matter Fields

A massive scalar boson field ¢ representing the matter fields is introduced as [63]
4 1 v + 1 2+
Smarter = = [ d'xy/=g | 587 0ud” ¢ — 5m$7¢ ). 93)

¢ lives only in four dimensional spacetime. It is extended to N dimensional spacetime
by setting all values of ¢ (x) having x* > 0 for A > 3 to zero.

The stress-energy tensor is obtained from Eq.(64) by varying the action of the
matter fields with respect to the metric:

1 1
7hv=3u¢+m¢-—guu(§g“6p¢+m¢——5nﬂ¢+¢). (94)

This is a textbook result and it is valid in general before linearization. Before plugging
this into Eq.(79) we linearize the stress-energy tensor by utilizing Eq.(65) in the
following way:

1 1
Tpo = 8" 3u¢p — (Myw + hyun) [E(WA +hP)0,0" ¢ — §m2¢+¢} - (95)

For operations on the field ¢ the indices run from zero to 3, for n and 4 they run from
0 to N. In this linearized form the stress-energy tensor retains contributions from the
gravitational field %, and the interaction term Eq.(75) of the action contains terms
quadratic in the gravitational field /. This kind of self-interaction of the gravitational
field turns out to be essential for understanding adsorbate diffusion on solid surfaces
and telegraph like quantum jumps (cf. the analysis in Ref. [69] and Sect.5.1.)

4 Non-relativistic Limit of the Massive Scalar Boson Field

The following argument is taken from Ref. [63]. The Klein—Gordon equation for a
free scalar boson field of mass m is:

0% +m?)¢ = 0. (96)
For a non-relativistic particle (in the sense of special relativity) the kinetic energy is
much smaller than its mass m (the velocity of light c is unity in our notation, as well
as 1) and the relativistic energy E is written as
E=m+e. 7)
A boson field ¢ varying slowly in time can then be defined:

P(x) = e My (x). (98)
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Setting
82
— =0, 99
v (99)
Schrodinger’s equation is obtained
2 v v v (100)
i—Y=——
ot 2m
with V = (axl’ iz s axil’) for D spacial dimensions. For more details see Ref.

[63].

As the matter field ¢ lives only in four dimensional spacetime, the Schrodinger
equation can be obtained by varying the following non-relativistic action with respect
toyt:

Smatterfnonrel = /dtd3x£matter7nonrel Z/dthatterfnonrel
3 . +8 1 +2
= [ dtdx |iyt =y + —yFV2y . (101)
at 2m

This form of the action linear in a - is obtained by partial integration (cf. Ref. [63]).
This is, however, not the action obtained by inserting Eq.(98) in Syasrer (hpy = 0)
(Eq.93). One has:

2mSmatter7nonrel = Smatter (h/w = 0)- (102)

The variation of the action Eq. (101) yields a solution for /2m . The solution obtained
in this way must hence be divided by +/2m before plugging into Tgy.

4.1 The Matter—Gravonon Coupling

The Lagrangian of the matter-gravonon interaction is the focus in the present section.
In the non-relativistic limit only /oo and 7o need to be considered, all other compo-
nents being smaller by a factor (%)2 where v is the non-relativistic velocity. Plugging
Egs. (98) and (85) into Eq. (95) yields (noo = 1):

Too = o™ dogp — (130¢+30¢ - %m2¢+¢)
—hoo ( do¢ ™ 20 — —m ¢>+¢) h°°ao¢+ao¢
= do¢p™ dogp — (anqs*aw - %m%w) - hoo%m%w
= %30¢+30¢ + %m2¢+¢ + hoo%m2¢+¢ (103)
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(We use hoo = —h; yagy™ = Y0y ¢ (x) = e My (x); ¢ (x) = ™y T (x);

—ikct

hoo =e Zoo.) Lines 1 and 2 are the standard textbook result. Line 3 contains terms
arising from 4, in Eq. (95). From line 3 to line 4 we used h% = —hgy which follows
from
(14+hoo) = 1+n%
~ 1 — hgo. (104)

Up to here the expression is relativistically invariant. We now insert the definition
Eq.(98).

1 . .
Too = Slm* Y™y + 8oy dowr + imy~ oy — imyrdoy ]
1 1 _,
+om* ¢ g + ST qom® ¢
1 1 _.
= m*Y Y+ S0y 0oy + e doom® YTy
1 .
~mPyty (1 + Ee_lkaé“oo) . (105)
In the first two lines of Eq. (105) we used Eq. (85). From lines 1 and 2 to line 3 we
used the ansatz Eq.(98). In the last line we used that ¥ is slowly varying in time and
hence %aow(’)m// is much smaller than m2y 1.
Now in the lowest order, the Newtonian limit, the expectation value of Ty has to
be
(W | Top | W) = pc? = m* (Y Fy) (106)

with | W) the world wave function. However, using Eq. (105),

(W | Too | W) = (W | m>y Ty | W) =m>(W | ¢y | W)

1
AN \/;w. (107)

If ¥ in Eq. (105) is obtained from Eq. (101), then ¥ is too large by a factor of ~/2m
and Eq. (105) has to be divided by 2m. If {yo in Eq. (105) is obtained from Eq.(91),
then ¢ is too large by a factor of \/2m, and 50+0§00 in Eq. (105) has to be divided by
2myg.

The interaction Lagrangian (matter field with gravitational field), i.e., the integrand
in Eq.(75), using Eq. (105), is then:

1 1 1 1
ZheaTO (1= 2p00) = 2007y 2500
> oo ( > > Too 2
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1 ikct .+ 1 00
= 561 C[CO()TOO (1 - El’l
lm2w+,¢f eikCt;*F + l§+§ 1 — lhOO
) 00 T 5500500 )

1, 1 1 oo |1 00
=m vy (hoo + 5&%500 - Ehooh - Zi(;(r){ooh
(108)

&

where Eq.(85) has been used in the second line, % is real:

_hOO — _hOO* —ikcté-oo — eikcté-o+0 (109)

hoo = hgy = =e
implying hooT® = KTy and hooh®® = ;65;00. In 4 dimensional spacetime Ay is
proportional to the Newtonian potential obtained from Eq. (82) and according to Ref.

5) .
[88] should be equal to oo = 5 2 D Newron = 22 % Observe that there is no term

linear in ¢oo in Eq.(108), i.e., there is no dlpole interaction between the matter field
and the gravonons. The terms involving C(;{)Coo (arising from terms 2°°2% and ;“OJ(r)hOO)
signify gravonon-gravonon interaction. They contain the square of the gravitational
potential.

The Lagrangian describing the interaction of the scalar boson with Newton’s poten-
tial and the gravonon field is then (omitting the higher order term proportional to /g2

. (D)
and setting hop = c% ¢ er/If” andc=1):

Lin; :/deEint

GP'mM,,
= / dPx [Lwﬂ// n —;oozooww -

1GPmM,,
#goog ¢+¢:|

(110)

D is the number of spacial dimensions. The first term in the second line might be
termed the Schrodinger—Newton contribution as in four dimensional spacetime it is the
interaction term in the Schrodinger—Newton equation [ 1]. The second term is the scalar
boson—gravonon interaction. The third term describes the interaction between the
Schrodinger—Newton term and the gravonons and renormalizes Schrodinger—Newton
term:

GPmM,, 1
Lin = /de [% (1 - Z;J)zoo) VARES %cmw*w} (11

4.2 Effective Schrodinger Equations

Adding L;,; (Eq. 111) to the Lagrangian density L,;4rer—nonret Of Eq.(101) and vary-
ing with respect to ¥ yields the Schrédinger equation
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vZ  GPmM,, 1 m
—I/f |: 2m - TJ (1 - Zé‘(;(r)gm) - E{(%{OO:| v (112)

which we have to solve simultaneously with the Schrodinger equation arising from
varying Lgravonon (Eq.91) and L;,,; of Eq.(111) with respect to {56

9 V2 1G® mM ke
. + ext +
latfoo |: 2y 21ﬂ ¥+ 7 ¥ 1//] {00+( 0= oo) )

(113)
4.3 Effective Lagrangian

The effective Lagrangian is now constructed by adding the Lagrangians contained in
the actions of Egs. (91), (101) and (111)

Leff = Luatter—nonrel + Lgr(wom)n + Lip:. (114)

From this the effective Hamiltonian is deduced with the help of the familiar relation-
ship

aL - aL
H.s =/deMal¢+/deMa,goo—Leff, (115)

(3 V) 3(9:%00)
yielding:
Heff = H;ravonon + Hr(r)mtter — Lint
v? ke
D + + +
= /d X [_‘ﬂ %W — %00 om, oo + (Vo - Ehoo) Cooéoo] — Lip;.

(116)

This is the quantum field theoretical Hamiltonian which we have to solve, as it is
described in Sect. 2.2, for the problems of quantum particles localization, the diffusion
problem, wave-to-particle transition, etc.

5 Model for the Non-interacting and the Matter-induced Gravonon
Structure

The gravonon field in the second and third terms of the effective Hamiltonian Eq. (116)
is a free field in a constant potential. The adsorbate motion, which we want to investi-
gate, occurs, however, in the presence of other masses, which have already induced a
structure in the gravonon field. The modelling of the pre-existing gravonon structure
has been described in a previous paper [70].

The modification of the gravonon structure induced by matter fields has also been
described in Ref. [70] and refers to the generation of soft gravonons. The soft gravonon
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mode is an adsorbate induced coherent motion within a spacetime deformation involv-
ing 5 to 10 atoms in the solid surface. The local intrinsic gravonon coherence is retained
unless it is destroyed by other fields in the environment.

In Eq. (116) we develop the gravonon fields as follows:

foo = szé(l)) Verav(xi)0
é‘OO = Zb+§*(l Verav(xi)0. (117)

g“éf)) ;’Jél) are functions localized near the positions x; of the atomic cores. The gravi-

tational potential Vg4, (x;) has been extracted from the localized fields. The factor 6
serves to make the expansion coefficients b;, b.Jr dimensionless. The effective Hamil-
tonian Eq. (116) provides for the term H?

gravonon*

v? ke
D
Hg(')ravonon = /d xf(;f) (_% + Vo — ?hO()) 00

() v ke i\ g2, +
Z | Vgrav(xl) _%‘i‘vo—?h()o ngv(x]) | 0o bi bj
8
(118)
=D Qjbfb (119)

where (- - -) indicates the volume integration in the D-dimensional space and €2;; is
defined by comparing the last two lines. This is a mode expansion as it is common in
quantum field theory. b;, bjr are boson operators obeying the commutation relations

[b;, b;r] = §;;. 6 is such that ;; has dimension of energy.
If we diagonalize at this place, we obtain a collection of independent harmonic
oscillators:

gruvom)n Z kak by. (120)

The €% have to be modelled according to the physical situation under investigation. For
this purpose we write the boson operators by, b,j' in terms of generalized coordinates

and momenta:
—1i ok
A (s S T )
k ( e Dk 5 qk

b _( L [ ) (121)

The diagonal form Eq. (120) is in the present context considered to represent the eigen-
modes of oscillating spacetime deformations centered around atomic cores coupled
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to each other by terms quadratic in the displacements of the cores. In this case we have
from Eqs. (117) and (121):

Zon () + Loo(x¥) = D~ 2qig(x — xi) (122)
with
glx —x;) = \/g{(éovgrav(xi)e (123)

where we now assume that {60 isreal. These last two equations should replace Egs. (12)
and (13) in Ref. [70]. For the “potential term* in {56 (x)Zoo(x) we have then from
Eqgs.(117) and (121):

Lo ()L0(x) = -+ + D qiq;8(x — xi)g(x — x;). (124)
iJj

This equation should replace Eq.(14) in Ref. [70]. In order to describe effects due to
mass motion one has to add terms to Eq. (124) which are not solely a function of x —x;
(many-body forces). This has been described in Ref. [70].

5.1 Induced Scattering in the Gravonon Continuum Leads to Quantum Jumps

The equations derived in Sects.4 and 5 have been applied to problems of adsorbate
localization [69], adsorbate diffusion [70], scattering of massive particles from nano
lattices [74], behaviour of quantum computers [50]. In the case of adsorbate diffusion a
discrepancy of nearly nine orders of magnitude between the results of CQM and exper-
iment could be removed. Our theory allows to determine the adsorbate—surface dis-
tances from the experimental diffusion rates which are then found to be in good agree-
ment with distances determined from ab-initio density functional calculations [70]. In
these model studies quantum jumps arise as sudden changes of the weights of two or
more configurations with time. In CQM collapses of the wave function are postulated
to result in quantum jumps, whereas in the present EQM they appear as solutions of
Schodinger’s equation within a unitary coherent quantum description [71]. In the limit
of a very local and weak interaction with the gravonons the dynamics of an adsorbed
atom between two adsorption sites & and 8 on a solid surface was described by the time
development of the occupation of the sites. The occupation of each site was expressed
as the sum of the weights of those configurations which involve site « or g site, respec-
tively. The time variation of these configurations exhibits the telegraph character and
warrants that the occupation of each site jumps between two values (cf. Fig. 1).

6 Interpretation and Ontology of Emerging QM

Emerging QM emerges from a quantum field theory which is Lorentz invariant:
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— The world wave functional is a result of the entanglement between local massive
particles and the gravonon field in hidden spacial dimensions. The wave functional
in Emerging QM does not have the meaning of a probability amplitude. No density
matrix and tracing out are needed or involved.

— Massive non-relativistic locally modified soft modes named gravonons are gener-
ated in all spacetime dimensions, including the hidden dimensions, due to local
gravitational interactions. They modify the time development of the local system in
the real 3+1 dimensional world. Beables constitute the connection to experience.

— Observables are not needed since measurement is treated as a quantum process.

— Quantum jumps are intrinsic to the wave functional of Emerging QM and they result
from the solution of the time dependent Schrédinger equation in high dimensional
spacetime. They are due to the entanglement of the local system to gravonons of
high density of states which propagate in hidden spacial dimensions.

— How do we come to the real 3+1 dimensional world? In all experiments discussed
in the introduction we see effects which occur locally: either probe particles in the
experimental source (electrons, photons, adsorbed particles) or electrons and pho-
tons on oscillograph screens and photographic plates, adsorbed particles localized
on definite adsorption sites, etc. We do not see these particles in their flight from
the source to the target. And if we would try to see them (to “measure” them) on
their way to the target the result of the final measurement would be different. Hence
we may conclude that what we see occurs locally and then it is in the 3+1 dimen-
sional world. The transition from the high-dimension configuration space to the
3+1 dimensional real world in Emerging QM occurs because of the localization of
particles via entanglement to gravonons. Just those local components of the wave
functional defined in high-dimensional configuration space, which are entangled
with the gravonons, define the beables and represent real particles in the 3+1 real
world.

— “Measurement” in Emerging QM is the occurrence of entanglement of a local
system with the gravonons. Different outcomes are the result of different initial
states. Apparent statistics in the outcome is the consequence of different initial
states and hence different experimental conditions.

— Nonlocality is in the high-dimensional wave functional defined in configuration
space.

— Emerging QM is Lorentz invariant.

— Emerging QM explains: telegraph signals (quantum jumps), low temperature
adsorbate diffusion, adsorbate desorption induced by the current in the scanning
tunnelling microscope, Penning ionization at surfaces, etc. (cf. the Introduction).

7 Comparison Between Emerging QM and Copenhagen and Bohmian
oM

The major ontological features of Emerging QM are compared with those of Copen-
hagen and Bohmian QM [18,89] in Table 1. The key double-slit experiment can be
used to illustrate the points of view in the three theories.
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— Copenhagen QM: Wave-particle duality, collapse and probability interpretation are
used in a phenomenological way to provide the explanation of how the diffraction
pattern is created on the detection screen. Schrodinger’s wave function interferes
with itself. At different screen positions the “measurement” consists of instanta-
neous transformation of waves into particles (called collapses) with probabilities,
determined by Born’s rule, namely by the modulus squared of the amplitude of
the wave function at that position. The interference pattern in the wave function is
imprinted on the detection screen via probabilistic collapses of the wave function
at different positions on the screen at different times.

— Bohm'’s theory: The wave function due to standard quantum mechanics develops
the interference pattern when it interferes with itself. Single particle trajectories
pass through one slit only, however the interference pattern, which develops in
the wave function, guides the particles in regions of constructive interference,
avoiding regions of destructive interference. The final position of a particle on the
screen and which slit it will choose to pass through is determined by the initial
position of the particle (which is not controlled by the experimenter) and by the
time development of the wave function. In the 3+1 real world this is expressed
by the existence of regions where particle trajectories are dense and regions with
less dense particle trajectories, providing the diffraction pattern on the detection
screen.

— Emerging QM describes the double-slit experimental result as due to the world
wave functional propagating through both slits and interfering with itself. The
interference pattern is built into the wave functional already in the vacuum region
between the source, the slits and the detection screen. On the screen, where matter
density is high, components of the world wave functional entangle locally with
the gravonons, leading to particles localizing on the screen. This occurs more
often with components, which have high amplitude in the total wave functional,
i.e. particle localization at selected positions on the screen occur more often for
repeated experiments, giving rise to the diffraction pattern.

InTable 1 an attempt is made to identify similarities and differences in the ontologies
of CQM, Bohm’s QM and Emerging QM.

As it is evident from Table | there are many features shared by Bohmian QM and
Emerging QM. We emphasize two point: (i) Both for Bohmian QM and Emerging
QM the measurement problem and collapse do not exist and (ii) Particles in 3+1
dimensional space exist, i.e. local realism is implicit. In Emerging QM these are the
configurations which entangle with the gravonons and where the particles are localized
at definite positions at definite time. In Bohmian QM these are particles on definite
trajectories.

An important difference is that Bohmian QM is not, whereas Emerging QM is
Lorentz invariant, being the non-relativistic limit of Quantum field theory. Super-
luminal changes of particle position are possible in Emerging QM in the absolute
non-relativistic limit of extremely weak interactions between the local system and
environmental gravonons of zero frequency which eventually might violate causality.
However, in all practical situations a large but finite velocity in the behaviour of the
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Table 1 Comparison between the ontology within Copenhagen QM, Bohm’s QM and Emerging QM

Ontological property Copenhagen QM Bohm’s QM Emerging QM
Determinism No Yes Yes
Chooser No (“God plays Yes (particle Yes (gravonons)
dice®) positions)
Collapse Yes No No
Measurement problem Yes No No
Probabilistic interpretation Yes No No
Statistical distribution in initial state No Yes Yes
Hidden physical quantities No Yes (positions) Yes (gravitons in
hidden
dimensions)
Definite outcome No Yes Yes
Pre-existing realism in 3+1 dimensions ~ No Yes Yes
Particles in 341 dimensions No Yes Yes
Quantum equilibrium No Yes No
Wave function is complete description No, needs No Yes
probabilistic
interpret
Lorentz invariance No No Yes (it is the limit of
a Lorentz

invariant theory)

New results compared to Copenhagen QM No Yes

local system is obtained in the 3+1 world as solution of the time dependent Schrédinger
equation.

A noteworthy difference with CQM is that, whereas Emerging QM is falsifi-
able, Copenhagen QM and in particular the notion of random collapse phenomena
it assumes, is not.

Emerging QM provides the description of many other experiments which is not
possible for Bohmian QM. To mention some of them:

— Adsorbate localization and slow down of diffusion on solid surfaces.

— Telegraph like quantum jumps of adsorbates between adsorption sites in the
regime of quantum diffusion at low temperatire, resulting from the time depen-
dent Schrodinger equation.

8 Conclusion

Emerging QM, the focus of the present article, is derived from Quantum field theory
in the non-relativistic limit. It complies therefore with Lorentz invariance and does
not suffer from this deficit in Copenhagen QM and Bohmian QM. Quantum jumps in
Emerging QM do not violate causality.
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The theory accounts for nonlocal correlations as a result of local entanglement of
particles with the high-dimensional gravitational field. Weak and local interaction with
the gravitational field of high density of states leads to particle localization and local
realism. Starting from high-dimensional configuration space, we can go to the 3+1
spacetime as a result of particle localization via entanglement with the gravitational
field and explain experimental observations in the real 3+1 dimensional world, not
violating Lorentz invariance.

Emerging QM is realistic in a sense similar to Bohm’s quantum mechanics. At
the same time it is capable of reproducing and explaining experimental results which
are outside the scope of Copenhagen QM and Bohmian QM. Within Emerging QM
particle localization, adsorbate diffusion on solid surfaces and quantum jumps, as they
are experimentally measured in the real 3+1 world, are the result of the solution of
Schrodinger’s time dependent equation for a local system which entangles with the
high density of states of the gravitational field.

A message of the present contribution is that there is no probabilistic element in the
time development resulting from the time dependent Schrodinger equation. The time
development of a local quantum system entangled to quantum fields in its environment
of high dimensions and high density of states, though it resembles telegraph signal-like
quantum jumps, is deterministic. The conditions for the quantum jumps are: weak and
local interaction with the environmental degrees of freedom (the gravitational field)
with high density of states. Statistical appearance of experiments arises due to different
initial states which are not controlled in experiment.

The connection from the high-dimensional configuration space to the real 3+1 world
arises because coupling to the gravitational field occurs only for matter fields localized
in three dimensional space and this reproduces the results of experiments in the real
world without the need of collapse and state reduction, just as a result of the time
development of a local system entangled with the gravitational field continuum, as
Schrodinger’s equation requires. In the extreme non-relativistic limit of vanishingly
weak interaction with gravitational field modes of zero frequency the theory may lead
to superluminal quantum jumps. But in all practical situations this is not the case.
Being derived from quantum field theory, Emerging QM is Lorentz invariant and is
not in conflict with the concept of causality.

The derivation of the equations of Emerging QM and their application to reproduce
and understand concrete experiments leads to the conclusion that Schrodinger quan-
tum mechanics has emerged. Furthermore Emerging QM allows the interpretation of
quantum mechanics in the real 3+1 world without the concepts of collapse and Born’s
probability. The crucial feature of Emerging QM is the localization of quantum parti-
cles due to entanglement with the modes of the gravitational field in high-dimensional
spacetime.
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