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In two previous papers, the electron was described in terms of 
a periodic structural model, namely a four-dimensional “helix” 
or “stationary wave” of spin ½ symmetry. That specific model 
generates most first-order properties of the electron as 
observed, and is stable in a Casimir sense where inward 
vacuum pressure balances outward inertial motion. It predicts 
a large electrical self-repulsion equal to 1/137 of mc2 across 
the helical diameter 2r, or a small electrical self-repulsion 
equal to 1/(137 × 2π) of mc2 along the curved helical path 4πr. 

Here it will be shown how those two finite electrical self-
repulsions, when used together, can explain the magnetic 
moments of an electron or muon to second or third order in 
powers of 1/(137 × π). The small self-repulsion of 
1/(137 × 2π) represents a stable part of the electron mass, and 
accounts for a first-order Lamb shift in atoms. By contrast, the 
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large self-repulsion of 1/137 contributes only temporarily to 
electron mass, and accounts for the probability of any electron 
to emit or absorb light. 

A periodic structural model may also explain the quantized 
nature of magnetism in atoms, on the hypothesis that a bound 
electron can only join to itself using an integral number of spin 
½ double-turns. The electron paths can then be considered as 
resonant, non-radiating rings whose net angular momenta 
explain the magnetic energies s, p, d, f of atomic fine-structure 
spectra. 

Keywords: finite models for electron and muon magnetism, 
finite model for the Lamb shift, closed electron paths in atoms  

1. Review of Past Work 

“An integer spin particle is unchanged by 2π  rotation, 
whereas a half-odd-integer spin particle requires 4π 
rotation to return to itself. Since s = ½ particles actually 
occur in nature, this result cannot be dismissed as a 
mathematical curiosity.” L. Schiff, Quantum Mechanics 
(1968) 

In two previous papers, we described the electron in terms of a 
periodic structural model, namely a four-dimensional “helix” or 
“stationary wave” of spin ½ symmetry, when studied over very brief 
intervals of time near 10−20 seconds (1,2). This contrasts with the 
conventional view of an electron as some kind of randomly-moving 
point that fills a probabilistic cloud, of mean radius r = 2 × 10−13 
meters when calculated from vacuum QED theory (3). 

The conventional view has been explained in many places, for 
example Section 11.5 of ref. 3 where it is stated: “the electron in some 
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respects behaves as though it were spread out over a distance on the 
order of its Compton wavelength or 2r = 4 × 10−13 meters. It is 
nevertheless regarded in QED as a point-particle, that jiggles around 
as a consequence of vacuum fluctuations.” 

On the contrary, our four-dimensional model asserts that periodic 
rather than random motion may generate that same finite radius of 
r = 2 × 10−13 meters. Also, our model asserts that two turns of rotation 
rather than one may represent the internal symmetry of this spin ½ 
helix. 

The series of logical steps by which we arrived at a four-
dimensional periodic model cannot be restated here in complete 
detail. But to summarize briefly, we argued first that Lorentz-
covariant special relativity is a theory of “perception” rather than a 
theory of “dynamics”. Hence it may be applied usefully to 
experimental phenomena which involve reciprocal light-signals; yet it 
cannot be applied beyond the realm of its original derivation to 
experimental phenomena which involve particle dynamics, without 
causing a series of paradoxes and incorrect predictions: for example 
paradoxes concerning time, length or spin; and an incorrect prediction 
concerning the measurability of Thomas precession (2,4). 

For experimental phenomena concerning particle dynamics, 
therefore, one should consider other theoretical formulations that are 
not “covariant” but rather “invariant,” with respect to dynamic 
changes of the particle due to its motion through a surrounding 
medium (1). Authors such as T. Phipps and G. Galeczki have 
commented similarly (4-6). 

Next in order to choose the best model for electron structure and 
dynamics, we argued that most or all intrinsic properties of the 
electron (e.g., spin ½ symmetry, spin angular momentum h/4π , fine-
structure constant 1/137 for electricity, 1/(137 × 2π) for anomalous 
magnetism, g = 2 for total magnetism, de Broglie diffraction, right-
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hand rule for magnetism) can be explained through the use of fewest 
independent postulates, by starting from a doubly-rotating periodic 
structure in four dimensions. 

The point-like size of an electron near 10−17 meters as measured by 
high-energy scattering would be interpreted in this framework as the 
diameter of some underlying electron filament, which extends locally 
through space and time; whereas the finite size of an electron near 
10−13 meters as inferred from de Broglie waves in diffraction or 
vacuum QED theory would be interpreted as the diameter of some 
higher- level coiling of that tiny filament, which extends globally 
through space and time (1). 

Our use of the word “helix” to describe such a strange, periodic 
four-dimensional structure may not be entirely appropriate, since the 
model which we favour does not actually exist in commonsense 
reality as perceived with our senses. For example, one could call the 
atomic electron instead a four-dimensional “stationary 
electromagnetic scalar wave” as in the paper of Simulik and Krivsky 
(7) or work cited therein. Its key feature in any case would be a 
double rotation within two mutually orthogonal planes, where the 
radii for rotation about its major versus minor planes would differ by 
a factor of two. 

2. General Versus Specific Advantages of the 
New Model 

From a general point of view, this new model seems attractive for two 
reasons: (i) it remains continuous through both space and time, 
thereby removing a source of false infinities from the point-like 
model; and (ii) it seems to account for many experimental properties 
of the electron in a natural and unforced way, whereas the jiggling 
point-like model does not. 
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From a specific point of view, the new model seems to possess 
several distinct advantages over other schemes which have been 
proposed previously. First, if we consider the electron spin symmetry 
of ½ to be a real and not just a mathematical attribute (as in the Pauli 
spin matrices, which say simply that two turns of rotation provide for 

 
Figure 1. A four-dimensional periodic electron shows two separate planes of 
rotation called “major” and “minor” in accord with spin ½ symmetry. It also 
shows two discrete energies of electrical self-repulsion equal to 1/137 of mc2 
across the helical diameter 2r, or 1/(137 × 2π) of mc2 along the curved helical 
path 4πr. 
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identity), then such symmetry can be generated only by simultaneous 
rotation within two separate planes given four dimensions or more. 
For example, it could be generated by rotation in the planes xy or zt 
for a four-dimensional space x,y,z,t  (Fig. 1, upper left). 

Two independent planes of rotation are not possible in three 
dimensions alone, or for a randomly-moving point. Yet they represent 
the most fundamental symmetry in four dimensions (8) known as 22. 
In other words, once 22 symmetry is postulated as the simplest 
symmetry which is unique to four dimensions or higher, then many 
other attributes of the electron, such as spin ½, a non-classical g = 2 
for total magnetism, and squaring of the wave function, can be 
deduced without further postulate (1). It does not seem plausible that 
those two orthogonal planes could be physically linked, say for 
overlapping planes xy and yz in a three-dimensional space xyz, 
because the electron remains isotropic in space with regard to 
properties such as mass and charge which would depend on rotation 
by a finite model. 

As just mentioned, the total magnetism (g = 2) of an electron 
would follow from that same symmetry of ½, if charge e were to 
rotate half as frequently in one plane versus the other, say by 180° 
versus 360° over some small interval of time. Two separate 
frequencies of rotation would then generate twice the radius r at 
constant speed c, for 180° motion in a minor magnetic plane versus 
360° motion in a major electrical plane (Fig. 1, upper right). 

Similarly, the tendency of any electron to diffract can be explained 
by our model in terms of its periodic and particulate structure on a 
very small scale. Does not the very nature of diffraction have to do 
with the re-assembly of many small constituent precursors to the 
electron, after any interference event? And would not such re-
assembly proceed as the square of the wave function, if the 
underlying structure to be re-assembled is dimeric in nature (1)? 
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Lastly, the finite size of an electron in our scheme generates two 
finite energies of electrical self-repulsion, which may be calculated as 
either 1/137 of mc2 through space across the helical diameter 2r, or 
1/(137 × 2π) of mc2 through time along the curved helical path 4π r 
(Fig. 1, lower). Those two well-defined self-energies would seem to 
account for the electricity and anomalous magnetism of an electron to 
first order, as either 1/137 or 1/(137 × 2π) respectively in the same 
units, even though those values did not form part of the original 
assumptions. In the case of total magnetism, a relative value of 1 in a 
classical sense (given g = 2) increases slightly to 1 + 1/(137 × 2π) 
upon the inclusion of a small self-repulsion through time. 

 
Figure 2. Local motion of the point-like charge e that is associated with any 
electron may describe: (a) a random path through space and time, in which 
case infinite QED theory follows; or (b) a periodic path through space and time, 
in which case some finite theory follows. Any point-like charge e may prefer to 
adopt a periodic structure due to Casimir vacuum pressure, if there exist fewer 
modes of electrical self-energy inside of the structure than in the zero-point 
vacuum outside. 
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3. Two Possible Models for Motion of Electric 
Charge e 

Here we will try to extend the predictions of our new model to an 
accuracy of second or third order, when compared with well-tested 
experimental attributes of the electron such as anomalous magnetic 
moment or Lamb shift. Also, we will try to show how an electron of 
finite size may interact with external light waves in a well-defined 
fashion, without generating any false infinities of energy as in QED 
(3,9,10). On what conceptual basis might this new scheme be based? 

As shown in Fig. 2, the local motion of electric charge e over any 
brief interval of time near 10−20 seconds allows for two logical 
possibilities. First, if the point-like charge e describes purely random 
motion through space and time, as shown in Fig. 2 (left), then its 
electric self-repulsion e2/r becomes infinite and undefined since r = 0. 
Also, it will interact with an infinity of external photons of all possible 
frequencies in an equally undefined fashion. Only if we assign a small 
and precise value of 1/137.036 to each charge-light interaction, as 
taken empirically from experiment , will those interactions become 
amenable to mathematical calculation. 

Even after adding 1/137.036 to our point-like scheme, such 
charge-light interactions may still proceed to infinity for other 
reasons: for example, if we include photons of infinitely high or low 
frequency, or if we include infinitely small separations in space down 
to r = 0 between charge e and an external photon. That is the scenario 
found today for QED: the 1/137 is added by arbitrary postulate, and 
many different false infinities arise from the various causes listed 
above. Those infinities must then be removed by renormalization (i.e., 
the division of one infinite quantity by another) or by cut-offs (i.e., the 
arbitrary termination of divergent infinite series). 
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As a second possibility, the point-like electric charge e may 
describe some sort of periodic motion through space and time, as 
shown in Fig. 2 (right). In that case, its electric self-repulsions e2/r 
will remain finite and well-defined, for example as shown in Fig. 1 
(lower). Thus, since radius r remains finite, and since the entire 
structure is rotating in a periodic fashion, only certain small parts of 
the structure will repel with an integral difference of phase near 360° 
(about either the major or minor axes), to create a virtual light particle 
for self-repulsion. It can be shown (1) that those small parts yield just 
two significant self-repulsions of 360° phase-difference to first order, 
as either 1/137 or 1/(137 × 2π) in units of mc2. 

The interaction of a periodically-revolving charge e with external 
photons may also remain finite and well-defined, if it occurs mainly 
by means of two-way exchange between virtual light which is present 
already within an electron, and light from the outside world. One can 
deduce from the spectrum of hydrogen, for example, that a large self-
energy of 1/137 or integral undertones thereof (such as 1/137n) may 
be exchanged through space between a proton and an electron, to 
yield discrete electrical energies equal to 1/1372 for n = 1 (or 1/1372 n2 
in the general case). 

A value of 1/137.036 for the charge-light interaction therefore 
follows naturally from our model, and is not an ad hoc postulate as in 
the random point- like scheme. Such a number may even be calculated 
plausibly from first principles (not shown). Nor will external photons 
of infinitely high or low frequency create infinities of energy, because 
the periodic electron shown in Fig. 2 (right) cannot interact with them, 
unless it already contains a self-energy of similar size. Nor will small 
distances of separation near r = 0 cause infinities, because the electron 
diameter of 2r sets a maximum energy of 1/1372 to any typical 
electrical exchange. 
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4. Why a Helix? The Casimir Model of 1953 
But why might charge e prefer to follow a periodic path as shown in 
Fig. 2 (right), rather than a random path as shown in Fig. 2 (left)? One 
relevant observation here, is that any closed periodic structure will 
contain far fewer modes of electrical self-energy than for an exposed, 
randomly-moving point. This well-known reduction of internal 
energy for any microscopic closed system (e.g., between two nearby 
plates) leads to an observable effect known as the Casimir force 
(11,12). Thus, if many more modes of vibration exist outside of a 
closed system than inside, due to a vacuum zero-point energy of 
E = hf/2, that difference will generate an inward vacuum pressure 
which could conceivably cause a finite electron to fold back on itself. 
By analogy, consider the van der Waals force in chemistry which 
causes polypeptides in water to fold as periodic coils. 

In fact, the original Casimir model seems relevant here (11). For 
simplicity, let us consider a four-dimensional periodic electron when 
projected into three-dimensional space as a neutral shell of radius r, 
whose electrical self-repulsion e2/2r equals just 1/137 of mc2, rather 
than a full mc2 as suggested by Casimir in 1953. Then the inward 
vacuum pressure due to an external zero-point wave of frequency 
f = c/2π  r, which is equivalent to one turn around the helix or shell at 
speed c, yields E(in) = hf/2 = hc/4π r. Meanwhile, the outward inertial 
motion of mc2 yields E(out) = 137 × (e2/2r). Next, using the familiar 
relation hc/2π   = 137 × e2, we find that those two terms are essentially 
equal as E(in) = E(out). 

Hence our new model with electrical self-repulsion 1/137 seems 
stable in a dynamic sense, unlike the earlier Casimir model, which 
was unstable due to its very-high electrical self-repulsion of mc2; and 
unlike the point model, which is unstable due to its electrical self-
repulsion of infinity. Since the probability for any electron to emit or 
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absorb light equals 1/137, it would seem that our new model provides 
both for Casimir stability and also simple electrodynamics. 
Interestingly enough, the electron diameter in our scheme of 
2r = 3.8 × 10−13 meters is the smallest distance over which a screened 
charge of 1/137 still applies. For any distance less than 2r, one sees a 
bare charge of 1/129. In other models, the electron dynamics have 
been presumed to be purely electromagnetic without invoking mass 
or inertia (13). 

Having explained the underlying conceptual basis for our periodic 
electron, in terms of its double rotation, Casimir stability and finite 
self-energies, we will next: (a) repeat a few of the infinite QED 
calculations using a finite model, namely for electron magnetic 
moment, muon magnetic moment and Lamb shift; (b) show how an 
electron which is periodic and continuous through space and time 
may form closed paths which can potentially explain the magnetic 
fine-structure energies s, p, d, f seen in atomic spectra. 

5. Two Possible Models for Anomalous 
Magnetic Moment 

Now we will proceed to the first novel part of our paper, where we 
calculate anomalous magnetic moments and the Lamb shift from a 
periodic model. The magnetic moments of an electron or muon are 
known experimentally (3) to very high accuracies of 
1.001159652188(4) or 1.00116592(1) respectively in units of 
eh/4πmc. Can our finite scheme calculate both values as observed? 
Yes, but first we need to understand more about the mechanisms of 
anomalous magnetism before embarking onto lengthy mathematics. 

To a low accuracy of first order, both the electron and muon show 
similar magnetic moments near 1.00116 = 1 + 1/(137 × 2π), where 1 
is the classical part (for g = 2) and 1/(137 × 2π) the extra anomalous 



 Apeiron, Vol. 9, No. 4, October 2002 36 

© 2002 C. Roy Keys Inc. 

part. Obviously there will be no trouble in calculating 1, but how 
might we calculate 1/(137 × 2π)? 

This can be understood in the context of a four-dimensional helix, 
and its two mutually orthogonal planes of rotation, which were shown 
in Fig. 1. As shown in Fig. 3 (left), the major plane lies “horizontally” 
in space across a helical diameter of 2r, and is responsible for 
electricity by means of its exchangeable self-repulsion of 1/137. 
Alternatively as shown in Fig. 3 (centre), the minor plane lies 
“vertically” in time across a twofold-larger diameter of 4 r, and is 
responsible for magnetism by means of its exchangeable self-
repulsion of 1/(2 × 137). 

Now that exchangeable self-repulsion of 1/(2 × 137) for 
magnetism evidently lies parallel to the curved helical path 4π  r, and 
hence may self-repel along that path by an extra 1/(137 × 2π), so as to 
generate a slightly larger total of 1/(2 × 137) × (1 + 1/(137 × 2π)). Yet 

Figure 3. By our model, the self-energy of 1/137 for electricity lies 
perpendicular to 1/(137 × 2π), while the self-energy of 1/(2 × 137) for 
magnetism lies parallel to 1/(137 × 2π). Hence that self-energy for magnetism 
should increase by 1 + 1/(137 × 2π) if it repels itself slightly along the curved 
helical path. Yet according to infinite QED, some internally-bound photon may 
produce altered momentum of a point-like charge e, so as to change its 
frequency of interaction with external light by 1 + 1/(137 × 2π) as for a Doppler 
shift. 
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the analogous self-repulsion of 1/137 for electricity lies perpendicular 
to the curved helical path, and hence should not self-repel along it at 
all. The total magnetic moment therefore increases in our scheme 
from a relative 1 to 1 + 1/(137 × 2π), on account of a cross-interaction 
between two different self-energies within a periodic electron. (Total 
electricity as 1/137 may be influenced by cross-interactions of another 
kind, as noted in Fig. 8a below.) 

Meanwhile according to infinite QED, the extra anomalous factor 
of 1/(137 × 2π) comes about due to a microscopic Doppler shift as 
shown in Fig. 3 (right). There the emission and absorption of some 
internal photon changes the electron momentum mv in a temporary 
sense, and thereby causes a point-like electric charge e to interact 
differently with an external photon by f'/f = (1 + mv/mc) = 
1 + 1/(137 × 2π). 

But why should a change of electron momentum be directed in the 
same sense as that of an external photon? Secondly, how might that 
change become well-defined as 1/(137 × 2π) if the electron has no 
periodic structure? Thirdly, how can a Doppler shift remain linear in 
(1 + mv/mc) without any relativistic gain of mass by v2/(2 × c2)? A 
historical review (3,9,10) reveals that QED was only meant as a 
provisional, and not a final answer to these difficult questions. 

6. Anomalous Electron and Muon 
Magnetisms by Infinite QED 

Having described two possible mechanisms for anomalous 
magnetism, let us ask next: how do modern theorists calculate the 
magnetism of an electron or muon to second or third-order accuracy 
by infinite QED? First, they represent any magnetic moment as a 
linear series in powers of 1/(137 × π)n, namely 1 + C1/(137 × π) + 
C2/(137 × π)2+ C3/(137 × π)3+ ... Each term in this series represents a 
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Doppler shift of order n by infinite QED, or a self-repulsion of order n 
by finite methods. Next, they assign different values to the constants 
C1, C2, C3, etc., by adding up over all space and time, the many ways 

 
Figure 4. Model for anomalous electron magnetism by infinite QED. To first 
order in C1, a single internally-bound photon alters the magnetic moment by 
1/(137 × 2π) as for a Doppler shift. To second order in C2, a second photon may 
interact with the first in various ways, while the first photon may split temporarily 
into an electron-positron pair. 
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by which an electron or muon can exchange light so as to alter its 
magnetism slightly (14,15). 

For example, the first constant C1 describes all possible influences 
on the magnetic moment due to one-photon events (Fig. 4, upper). 
Essentially, it is first assumed that the electron will exchange light 
with itself at two different points in time, to obtain a probability of 
(1/√137)2 = 1/137 for the product of two charge-light junctions. Next, 
it is argued that the electron will move with altered momentum, 
essentially 1/(137 × 2π), once it has emitted or absorbed internal light. 
Yet both of the QED probabilities for propagation of an electron: (i) 
with or (ii) without internal light, become infinite on a small scale, 
since infinitely many paths are allowed. Hence the entire calculation 
must be renormalized to reduce C1 to a small 0.50000, and first-order 
magnetism to 1 + 0.50000/(137 × π) = 1.0011614. For any order n in 
powers of 1/(137 × π), all of mass, charge and a quantum wave 
function become infinite and must be renormalized to yield a finite 
answer. 

Next in order to calculate the constant C2, one has to take into 
account all possible ways by which an electron can emit and absorb 
two photons at once. There are three general geometries (a, b, c) by 
which this can happen (Fig. 4, lower). Also there is a small 
probability (d) for the first photon to fall apart temporarily into an 
electron-positron pair. By adding up amplitudes and probabilities for 
all four events and renormalizing as before, one calculates C2 = 
-0.328479 for the electron or +0.765858 for the muon. The value of 
C2 for an electron is negative, because any second photon may 
interfere destructively with the first; while C2 for a muon is positive, 
because light within a muon may fall apart not only to muon-
antimuon pairs of low magnetism, but also to electron-positron pairs 
of high magnetism. 
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Using those constants C2, one can calculate magnetic moments of 
1 + 0.50000/(137 × π) - 0.328479/(137 × π)2 = 1.0011596375 for an 
electron, or 1 + 0.50000/(137 × π) + 0.765858/(137 × π)2 = 
1.00116554 for a muon. Such second-order values compare well with 
experiment as 1.0011596522 for the electron or 1.00116592 for the 
muon. 

In order to get a constant C3, which describes the simultaneous 
exchange of three photons, and various two-photon events which 
create a matter-antimatter pair, one must analyze 72 kinds of event. 
Then to get a constant C4, one has to analyze 891 kinds of event. The 
final calculated values are C3 = +1.18 for an electron, so as to raise the 
last three digits of its theoretical magnetism from 375 to 522 (versus 
522 by data); or C3 = +24.1 for a muon, so as to raise the last three 
digits of its theoretical magnetism from 554 to 584 (versus 592 by 
data). Such values are the best that can be achieved today, since the 
fine-structure constant is known to an accuracy of only 
137.035989(6). 

Might there exist another way to calculate anomalous magnetic 
moments for an electron or a muon? Let us now try to carry out such 
calculations, based on our periodic model and its finite electrical self-
repulsions (1,2). The final values of C1, C2, C3 and C4 as derived from 
our model are listed in Table I along with analogous values from 
QED. 
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Table I. Calculated Values of Magnetic Constant Cn for 
the Electron or Muon 

 
Constant Electron model Muon model 

 finite periodic  infinite QED finite periodic  infinite QED 
C1 +0.50000 +0.50000 +0.50000 +0.50000 

C2 -0.32836 -0.32848 +0.773 +0.766 

C3 +1.12 +1.18 +19.4 +24.1 
C4 -0.8 -0.8 —- —- 

7. Anomalous Electron Magnetism from a 
Model of Finite Size 

The electron by our finite scheme contains a small self-energy of 
1/(137 × 2π) which, as an internally exchanged light through time, 
increases both the total mass and also the exchangeable magnetic self-
repulsion from a relative 1 to 1 + 1/(137 × 2π). 

So far we have treated 1/(137 × 2π) as a single kind of electrical 
self-repulsion e2/r, where r = 4πR after two turns along a curved 
helical path (Fig. 5, upper left). But now for greater accuracy, we will 
treat it as the sum over many different electrical self-repulsions 
through time: as e2/r = 1/(137 × 2π) after two turns (360° minor), or 
1/(137 × 4π) after four turns, or 1/(137 × 8π) after eight turns, etc. 
(Fig. 5, upper right). 

Each successive term in this series 4π , 8π , 16π, etc. shows half the 
frequency and twice the wavelength of its predecessor 2π , 4π, 8π, 
etc., just as for the same note played at successively lower octaves on 
a musical instrument. Hence those frequencies 2π , 4π , 8π, 16π, etc. 
would seem to represent the natural vibrations of a periodic electron 
along its curved helical path. Other possible values of n × 360° such as 
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6π  or 10π will not enter into this series, because their predecessors 3π 
or 5π  show an odd phase of n × 180°. 

The anomalous self-repulsion of an electron, in excess over its 
classical amount of 1, may therefore be calculated as a convergent 

 
Figure 5. Finite model for anomalous electron magnetism. To first order in C1, 
the extra anomalous part of magnetic self-energy represents an infinite series 
which includes self-repulsions (or vibrations) over many different frequencies: 
namely 1/(137 × 2π), 1/(137 × 4π), 1/(137 × 8π) etc. To second order in C2, a 
second self-repulsion (or vibration) may cancel the first 1 in either of two 
locations 2a, 2b , while the first photon 1 may split temporarily into an electron-
positron pair. To third order in C3, a third self-repulsion may cancel the second 
or else reinforce the first in any of eight locations 3a to 3h; while the first two 
photons may share an electron-positron pair with an external magnetic field by 
photon-photon scattering. 
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infinite series of the kind e2/r = (½ + 1/4 + 1/8 + ...) × (1/137π) = 
1/(137 × π). When total energy e2/r is converted into net energy e2/2r 
as for any dynamic system in equilibrium, the same series produces 
just e2/2r = (½) × 1/(137 × π). That yields C1 = +½ = +0.50000 to first 
order, and (using 137.03599) a magnetic moment of 1.0011614098 
which is the same as for QED. 

To second order, the constant C2 must take into account two 
processes: (a) the probability that a second photon will bind (or self-
repel) near the first, but with a phase difference of 180° so as to cancel 
any effect of the first on magnetism; and (b) the probability that any 
first photon will dissociate temporarily into an electron-positron pair, 
so as to create an extra pair of charges e+ and e− at the same radius r 
(Fig. 5, centre). 

The probability (a) that some second photon will bind near the first 
may be calculated from a sum of the squares in that previous series 
as: 1/(2 × 2) + 1/(4 × 4) + 1/(8 × 8) + ... × 1/(137 × π)2= 
(1/4 + 1/16 + 1/64 + ...) × 1/(137 × π)2 = ?  × 1/(137 × π)2. Here many 
different second-order self-repulsions of frequency 1/(137 × 2π) or 
1/(137 × 4π) or 1/(137 × 8π) lie close to a first-order self-repulsion of 
the same kind; but they will be located one turn away or 180° out of 
phase, so as to cancel any effect of the first on magnetism. Now that 
second-order self-repulsion may occupy either of two locations 2a, 2b 
relative to the first 1, as one turn ahead of it (+180°) or else behind it 
(-180°) along the curved path (Fig. 5, centre left). Our preliminary 
value of e2/r = -?  must therefore be doubled to –2/3, in order to 
account for those two possible locations. Finally, when converted 
from e2/r to e2/2r, this model predicts for part (a) of C2 a value of 
(½) × (-2/3) = -0.33333. 

A slight correction must still be made for the extra self-repulsion 
of e’ = 1 + 1/(137 × 2π), which was added by the first series of 
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photons. That will increase e2/4πR for any second photon to cancel 
the first by 1 + 1/(137 × π) = 1.002324. Thus part (a) will increase 
slightly from -0.33333 to -0.334108, or from –17984.9 × 10−10 to  
–18026.8 × 10−10. 

The probability (b) that some first-order photon will fall apart 
temporarily into an electron-positron pair may be calculated, from the 
net electrical energy of all first-order photons as (½) × 1/(137 × π), 
when that series is multiplied by a net probability of 1/(2 × 1372) to 
yield +309.23 × 10−10. Here two virtual charges as electron e− and 
positron e+ exchange light across a helical diameter of 2 r, with a 
probability of 1/137 at one end of a closed loop through time, then 
again with a probability of 1/137 at the other end, by a schematic 
process L—e−,e+—L (Fig. 5, centre right). For the loop as a whole, we 
find a combined probability of 1/1372 for e2/r, or 1/(2 × 1372) for 
e2/2r. That increases the magnetism by +309.23 × 10−10, since two 
new charges are formed which were not present earlier, while half as 
much first-order light is lost. 

A slight correction for e’ will increase e2/2r by 1.002324 to 
+309.95 × 10−10. Part (b) as +309.95 × 10−10 then adds to C2 a fraction 
of +0.005745, once it is converted into units of 1/(137 × π)2 = 
53954.9 × 10−10. The total value for C2 as (a) plus (b) equals 
(-0.334108 + 0.005745) = -0.328363, or equivalently,  
–17716.9 × 10−10. This may be used to calculate an overall electron 
magnetism to second order of 1.0011614098 - 0.0000017717 = 
1.0011596381, versus 522 by experiment in the last three digits. The 
analogous value for C2 by QED (15) is a very similar -0.32848 or  
–17723 × 10−10, which our finite calculation matches to within 0.03%. 

Now to third order, the constant C3 for an electron must take into 
account two major processes: (a) the probability that some third 
photon will bind (or self-repel) so as to cancel the second, or reinforce 
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the first in phase; and (b) the probability that two photons as already 
bound, will share a single electron-positron pair with an external 
magnetic field (Fig. 5, lower).  

Part (a) may be calculated from the same series used to obtain C2 
as (1/4 + 1/16 + 1/64 + ...) × 1/(137 × π)2, once each term is 
multiplied by 1/(137 × 2π) or 1/(137 × 4π) or 1/(137 × 8π), etc. for an 
additional photon of third order, which can cancel a photon of second 
order, or reinforce a photon of first order. That yields 
(1/8 + 1/64 + 1/512 + ...) × 1/(137 × π)3 for any single photon to third 
order, but how many will there be? 

Each photon 2a or 2b may be cancelled by two different photons 
3a, 3b or 3c, 3d respectively, which are shifted in phase by +180° or  
–180° (Fig. 5, lower left). In addition, photon 1 when cancelled by 
either 2a or 2b may be reinforced by two different photons 3e, 3f or 
3g, 3h respectively, which are shifted in phase by +360° or –360° (Fig. 
5, lowermost). Hence we find eight photons which may increase 
magnetism to third order, in accord with a general formula 
Cn-1 × (n - 1) × 2 = 2 × 2 × 2 = 8. 

Also, if both photons to first and second order are of frequency 
1/(137 × 2π), then an additional photon to third order may be of the 
same frequency 1/(137 × 2π), or else of half the frequency 
1/(137 × 4π). For C1 and C2 the half-frequency 1/(137 × 4π) 
constitutes an independent term, yet for C3 it overlaps with the C1-C2 
pair to create a new cross-term. Each 1/(137 × 4π) cross-term will 
increase magnetism by one-half; and since there are eight photons of 
that kind, we find in total 8 + (8 × ½) = 12. 

Our single-photon series for C3 can therefore be multiplied 
plausibly by a factor of 12, to yield (3/2 + 3/16 + 3/128 + ...) × 
1/(137 × π)3 = (12/7) × 1/(137 × π)3. That suggests a value of +12/7 
for e2/r, or +6/7 for e2/2r. When multiplied further by 
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1/(137 × π)3 = 125.33 × 10−10, it adds +107.43 × 10−10 to the electron 
magnetism of third order versus +115 × 10−10 by QED (14). Finally, a 
slight correction for e’ as added by both C1 and C2 series of photons 
gives e2/4πR = 1.004651, and increases part (a) to +107.93 × 10−10. 

Part (b) of C3 may be calculated from a net energy of 
18026.8 × 10−10 for the first two photons as already bound, once that 
term is multiplied by another probability of 1/(4 × 137) to yield 
+32.89 × 10−10. Here a single electron-positron pair is shared between 
two internal photons with a probability of e2/r = 1/(2 × 137), before it 
exchanges light with an external magnetic field, by a process 
L,L(internal)—e−,e+—L(external) which is called photon–photon 
scattering (Fig. 5, lower right). 

The probability for two internal photons to share an electron-
positron pair remains large as 1/137 instead of 1/1372, since the 
second exchange is to external light which is in excess and hence not 
counted. Still, we have to take into account that only one electron-
positron pair is shared rather than two, giving e2/r = 1/(2 × 137). 
Finally, when we convert to a net energy of e2/2r = 1/(4 × 137), we 
find (18026.8 × 10−10) × 1/(4 × 137) = +32.89 × 10−10 versus 
+46 × 10−10 by QED (14). A slight e’ will increase part (b) by 
1.004651 to +33.04 × 10−10. 

Two minor processes include: (c) forming an electron-positron 
pair within either photon of the C1-C2 pair, with probability 
2/(2 × 1372) × (18027 × 10−10) = +0.96 × 10−10; or (d) closing an 
electron-positron pair to light within the first photon, with probability 
1/(2 × 137) × (309.9 × 10−10) = –1.13 × 10−10. 

A total value for C3 as (+107.93 + 33.04 + 0.96 –
 1.13) = +140.8 × 10−10 may be used to calculate an electron 
magnetism to third order of 1.0011596381 + 0.0000000141 = 
1.0011596522, which matches experiment 522 precisely in the last 
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three digits (or 5219 precisely). Note that C3 = +1.12 by our model 
matches C3 = +1.18 by QED (15) to within 5%. 

To fourth order, the constant C4 will include six terms, but only 
three (a), (b) and (c) are significant. Term (a) describes the probability 
that some fourth-order photon will cancel a photon of third order, or 
reinforce a photon of second order, or cancel a photon of first order 
(there are 48 + 24 = 72 fourth-order photons in total, or Cn-1 × 
(n - 1) × 2 = 8 × 3 × 2 = 48 for any frequency); while term (b) 
describes the probability that three internal photons 1, 2, 3 will 
exchange a single electron-positron pair with an external magnetic 
field; and term (c) describes the probability that two internal photons 
1, 2 will exchange a single electron-positron pair with an external 
magnetic field, that later closes to light. 

It can be shown that the sum of (a), (b) and (c) equals 
(-0.70 + 0.59 – 0.12) = -0.23 × 10−10, which leaves the electron 
magnetism almost unchanged. The constant C4 by our model equals –
0.8, which is identical to QED (15). See Table I for a detailed 
comparison between our model and QED. Our C1 and C2 terms 
should be fairly reliable, yet our C3 and C4 terms may be only 
approximate, owing to the lengthy calculations involved. This 
calculation in any case demonstrates the feasibility of calculating 10-
digit QED quantities from a finite model. 

8. Anomalous Muon Magnetism from a Model 
of Finite Size 

The anomalous magnetic moments of an electron or muon remain the 
same to first order, where C1 = +0.50000. Yet the anomalous 
magnetism of a muon differs greatly from that of an electron to 
second or third order (16,17), because any internal light of self-
repulsion may convert not only to muon-antimuon pairs of low 
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magnetism, but also with equal probability to electron-positron pairs 
of high magnetism. 

Let us see how the overall magnetism of a muon will be affected 
by these processes, to second order in the constant C2. Recall that the 

 
Figure 6. Finite model for anomalous muon magnetism. To second order in C2, 
a second photon may cancel the first in either of two locations 2a, 2b, while the 
first photon may split temporarily into either a muon-antimuon or an electron-
positron pair. To third order in C3, a third photon may cancel the second or else 
reinforce the first in any of eight locations; while the first two photons may share 
either a muon-antimuon or an electron-positron pair with an external magnetic 
field by photon-photon scattering. 
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probability for cancellation of a first internal photon by some second 
internal photon equals ?  × 1/(137 × π)2 = 180.3 × 10−8 (including e’). 
That two-photon term remains the same within a muon as within an 
electron, and reduces magnetism to (1.00116141 - 0.00000180) = 
1.00115961 (Fig. 6, upper left). 

But within a muon, the other term for C2 could become much 
larger than before, as (½) × 1/(137 × π) × 1/(2 × 1372) = 
+3.0995 × 10−8 within an electron (including e’), but potentially 
(3.0995 × 10−8) × (206.77 + 1.00) = +644.0 × 10−8 within a muon. 
Here it has been assumed that each electron-positron pair will 
contribute to magnetism 206.77 times more strongly than each muon-
antimuon pair, for an electron of mass 1.00 and a muon of mass 
206.77 (Fig. 6, upper right and centre). Now that extra term of 
+644.0 × 10−8 enables us to estimate the magnetism of a muon as 
(1.00115961 + 0.00000644) = 1.00116605, which turns out to be a 
little larger than observed or 1.00116592. 

Yet we have neglected to account so far for the increased mass of 
our electron-positron pair (16,17), when it is bound to an internal 
photon rather than free in space. One can calculate this increased 
mass when the pair is bound to a first-order, muon- like photon as 
2m’ = 2 + 206.77/(137 × 2π) = 2.24014 for the 2π term, or 2.12007 
for the 4π  term, or 2.06004 for the 8π  term, etc. A magnetism-
weighted sum of (½) × (2.24014) + (1/4) × (2.12007) + (1/8) × 
(2.06004), etc. gives 2.1534. Thus any electron-positron pair in C2 
should generate less magnetism than expected, due to its increased 
mass as 2m’ = 2.1534 instead of 2.0000. The correction to either 
particle separately equals m’ = 1.0767. 

The mass-corrected magnetism of electron-positron and muon-
antimuon pairs in C2 therefore equals (3.0995 × 10−8) × 
[(206.77/1.0767) + 1.00] = +598.3 × 10−8, which is slightly less than 
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before. An expansion using individual frequencies gives 
+597.4 × 10−8. 

The overall second-order contribution to muon magnetism may 
therefore be calculated as (+597.4 × 10−8 - 180.3 × 10−8) = 
+417.1 × 10−8. When divided by 1/(137 × π)2 = 539.55 × 10−8, it 
yields C2 for the muon as +0.773, which matches +0.766 by QED to 
within 1% (17). Finally, the total muon magnetism to second order 
equals (1.00116141 + 0.00000417) = 1.00116558, versus 592 by data 
in the last three digits. 

To third order, the constant C3 for a muon will be affected by three 
major processes: (a) any cancellation of a second-order photon by a 
third-order photon, or reinforcement of a first-order photon by a third-
order photon, which will increase magnetism by +1.08 × 10−8 
(including e’); and (b, c) any sharing of a muon-antimuon or electron-
positron pair between two internal photons and an external magnetic 
field (Fig. 6, lower). The latter processes (b, c) might increase 
magnetism by a large (33.04 × 10−10 × 207.77) = +68.6 × 10−8 
(including e’) for an assumed electron mass of 1.00. 

But still we have to take into account the increased mass of our 
electron or positron, when it is bound to three photons rather than free 
in space. Such increased mass equals in this case 
m’ = 1 + 2 × (206.77)/(137 × 2π) + (206.77/137) = 2.99 for the 2π 
term, or 2.75 for the 4π term, or 2.63 for the 8π  term, etc. Here each 
electron or positron is bound to two internal muon-like photons of the 
kind 1/(137 × 2π), and to a single external muon-like photon of the 
kind 1/137. A magnetism-weighted sum of 2π , 4π,  8π, etc. yields 
m’ = 2.92. After making that mass-correction, we find a revised 
contribution to magnetism by (b, c) of just (33.04 × 10−10) × 
[(206.77/2.92) + 1.00] = +23.7 × 10−8, which now matches well the 
+23 × 10−8 of QED (18). 
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As a minor process (d), formation of an electron-positron pair 
within either photon of the C1-C2 pair gives a probability of 
(180.3 × 10−8) × 2/(2 × 1372) × (206.77/1.16 + 1.00) = +1.7 × 10−8. As 
a minor process (e), some of the electron-positron pairs formed in C2 
may close to light with a probability of (597.4 × 10−8) × 1/(2 × 137) = 
–2.2 × 10−8. 

All five terms (a, b, c, d, e) yield in total (+1.1 + 23.7 + 1.7 –
 2.2) = +24.3 × 10−8 for C3. Hence the muon magnetism may be 
calculated to third order as (1.001165581 + 0.000000243) = 
1.00116582, versus 592 by data in the last three digits. The value of 
C3 by our model equals +19.4, which is slightly less than +24.1 for 
QED (17-19). See Table I for a summary: our values for C1 and C2 
should be more reliable than for C3, owing to lengthy calculations in 
the latter case. 

To fourth order, the constant C4 for a muon will be influenced by: 
(a) sharing of a single electron-positron pair between three internal 
photons 1, 2, 3 and an external magnetic field; and (b) sharing of a 
single electron-positron pair between two internal photons 1, 2 and an 
external magnetic field, that later closes to light. It can be shown that 
a fourth-order term of (0.42 – 0.09) = +0.33 × 10−8 leaves the 
magnetism almost unchanged at 1.00116583. 

Finally, other kinds of matter-antimatter pair will show a moderate 
influence on muon magnetism in C4. For example, a pion-antipion 
pair might increase the magnetism by (3.0995 × 10−8) × 
(206.77/273.14) =+2.3 × 10−8, while a kaon-antikaon pair might 
contribute +0.8 × 10−8. The QED estimate (14,15) for all such pairs is 
+7 × 10−8. This last term (c) increases our calculated muon magnetism 
to 1.00116590, which lies fairly close to data as 592 in the last three 
digits; or 5916(1) by latest measurements, which emphasize that “real 



 Apeiron, Vol. 9, No. 4, October 2002 52 

© 2002 C. Roy Keys Inc. 

observable muons are surrounded by many different virtual particles, 
that briefly pop in and out of existence in the quantum vacuum” (20). 

9. The First-Order Lamb Shift of Electrons in 
Atoms 

We have seen above how the anomalous magnetic moments of an 
electron or muon may be calculated plausibly in a finite fashion, using 
a periodic structural model for particles. Might it be possible also to 
explain other phenomena in terms of our scheme? 

For example, could the Lamb shift of spectral lines in atoms be 
explained, in terms of the small self-energy of an electron as 
1/(137 × 2π)? That tiny shift of spectral lines is thought to measure 
how much mass is lost, when an electron overlaps a charged nucleus 
and feels the full force of electricity (3,21). Hence if 1/(137 × 2π) is 
actually the small fraction of stable mass due to electrical self-
repulsion, that should be the amount which is lost when such 
repulsion disappears. 

Let us see first how infinite QED deals with the Lamb shift, and 
then compare that with our scheme. According to QED, the electron 
as a randomly-moving, dimensionless point will overlap the charged 
nucleus for some tiny fraction of the time, whenever it lies at an 
orbital radius of precisely r = 0. While in direct contact with the 
nucleus, it will lose just Z/(2 × 1372) of its electrical self-energy, 
where Z is the nuclear charge. Finally, the total self-energy of an 
electron in this scheme, as a sum over all charge-light frequencies 
from 0 to mc2, is postulated to equal a large 8 × mc2 (Fig. 7a). 

Now when such a large self-energy of 8 × mc2 is multiplied, both 
by the fractional loss of electricity as Z/(2 × 1372), and also by the 
probability that an electron will lie at r = 0, one obtains an estimate 
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for the Lamb shift of hydrogen 2s as 1050 × 106, which lies close to 
experiment as 1085 × 106. 

Let us see next how our finite scheme deals with the Lamb shift. 
First, we can imagine that an electron of radius re = 1.92 × 10−13 

 
Figure 7. Models for the Lamb shift as infinite from QED, or finite by the 
present scheme. By infinite QED, a point-electron with self-energy 8 × mc2 
loses Z/(2 × 1372) of its electrical energy when it contacts the proton at r = 0. 
Yet by finite theory, a periodic electron with stable self-energy 1/(137 × 2π) 
loses almost all of that electrically derived “mass” as Z × mc2 when it contacts 
the proton at r = re or less. To be precise, just 0.887 of the total electrical mass 
of 1/(137 × 2π) is lost, due to screening by partial charges from the vacuum. 
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meters will overlap the nucleus with a small probability, that can be 
calculated from its 1s,  2s or 2p wavefunctions. Next, if such an 
electron lies within a distance re of the nucleus, we can postulate that 
it will lose precisely Z/(137 × 2π) of its mass, due to loss of its 
electrical self-repulsion through time as e2/(4π  × re) on account of the 
p+ contact (Fig. 7b). 

The probability that any electron will lie within a sphere of radius 
re from a point- like nucleus may be calculated as P(1s) = 1/(6 × 1373), 
P(2s) = 1/(48 × 1373), or P(2p) = 1/(1280 × 1375) for a hydrogen 
atom with Z = 1. The third probability P(2p) is essentially zero, in 
accord with the observation that a Lamb shift affects mainly orbitals 
such as 1s or 2s but not 2p. 

Hence we can calculate for hydrogen 2s an estimate of its Lamb 
shift as P(2s) × (electron mc2 as light) × (1/137 × 2π) = 
1/(48 × 1373) × (1.23 × 1020) × 1/(137 × 2π) = 1157 × 106 which 
compares fairly well to data as 1085 × 106. For hydrogen 1s, our 
model predicts a Lamb shift which is eight times larger as 
(8 × 1157) × 106 versus data (8 × 1046) × 106. For nuclei of Z = 2 or 
3, the Lamb shift as predicted for 2s should increase by Z4 = 16 or 81. 
Thus we obtain values of (16 × 1157) × 106 or (81 × 1157) × 106 
respectively, which still match data fairly well as (16 × 905) × 106 or 
(81 × 802) × 106. 

Yet our predicted values do seem somewhat too large: by 10% for 
Z = 1, or 20% for Z = 2, or 30% for Z = 3. The most likely source of 
error in this preliminary model, would be the assumption that any 
direct proton-to-electron contact can reduce the internal electron self-
repulsion by a full amount as 1/(137 × 2π). In fact, any direct proton-
to-electron contact should reduce that self-repulsion at most by 
1/(1 + 2/5π) = 0.887, due to a phenomenon known as vacuum 
polarization (21,22). Essentially, some of the electricity from a direct 
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contact may be screened or not transmitted, due to its interaction with 
partial charges from the vacuum that lie between a proton and an 
electron along the curved helical path 4π  × re (Fig. 7c). 

If one postulates a loss of self-energy by just (0.887)Z/(137 × 2π), 
one can calculate improved values for the Lamb shift of 2s as 1026, 
910 or 807 when Z = 1, 2 or 3, which now lie very close to 
experiment as 1046-1085, 905 or 802. 

The reality of a small self-repulsion through time, equal to 
1/(137 × 2π) of the electron mass at rest, is seemingly confirmed. 
Interestingly enough, the large self-repulsion of 1/137 through space 
does not contribute to this stable mass, but remains only a temporary 
part of the structure that can be exchanged electrically with other 
particles. Other calculations of the Lamb shift may include second or 
third-order terms, most of which do not arise from self-energy per se 
(21). 

10. A Finite Periodic Electron Versus 
Probabilistic Quantum Theory 

It should be clear now from the derivations given, that the internal 
periodic structure of an electron may perhaps determine its outward 
properties such as electric charge, magnetic moment or Lamb shift. 
But how can we reconcile our finite periodic model with probabilistic 
quantum theory? 

The electrical energies between proton and electron may be 
reconciled easily with our scheme, since they equal just 
e2/r = 1/(1372n2), as would be expected for the two-way exchange of 
internal electrical self-repulsions of size 1/137n between interacting 
particles. But how can we explain the magnetic fine-structure 
energies? Also, how can the electron paths remain point- like and 
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probabilistic by quantum theory, yet finite and well-defined by our 
scheme? 

Here we suggest that a finite periodic electron may form closed 
paths of well-defined end-to-end linkage as it wraps continuously 
about a proton through space and time. By this view, it is the 
underlying periodic structure of an electron which actually causes 
those electrical and magnetic energies to become quantized: through 
finite self-energies of 1/137n for electricity, or through various closed 
paths for magnetism. Such closed paths then seem to explain well the 
variations of magnetic energy s, p, d, f as observed for a hydrogen 
atom, but they do not specify any deterministic geometries in space or 
time, because a wide range of geometries will be possible for any 
given end-to-end linkage. 

Nor will an electron when wrapped into one of those closed paths 
emit light due to its accelerated state, because it is in a condition of 
resonant exchange with the proton, where discrete internal energies of 
1/137n have been shared reciprocally. 

Finally, when any bound electron exchanges light with the outside 
world, it can re-assemble into a new path of either higher or lower 
energy, whose probability for formation will vary in proportion to the 
square of the concentration of its constituent precursors in space, 
owing to the dimeric spin ½ nature of the underlying electron filament 
(1,2). This process seems analogous to “squaring of the wave 
function” as a complex conjugate in quantum theory or diffraction. 

11. A Closed-Path View of Magnetic Fine-
Structure Spectra 

“It seemed to him absurd to claim that there was an 
electron path in the cloud-chamber, but none in the 
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interior of the atom.” W. Heisenberg, Encounters With 
Einstein (1974). 

A closed-path interpretation of magnetic fine-structure spectra may be 
illustrated through an analysis of the Sommerfield-Dirac model for 
hydrogen (23,24). There the total energy of any proton-electron 
interaction can be expressed by a series of terms of decreasing size 
(equation 53.27 of ref. 24): 

E/mc2=1-1/(2×1372n2)+1/(2×1374n4)×(3/4)-1/(2×1374n4)×n/(1+c). 
At first glance it might appear that nothing more remains to be done, 
since the mathematical expression shown above explains all spectral 
lines with excellent accuracy. Yet the underlying synthesis of 
quantum theory with special relativity which was used to derive that 
equation suffers from three internal contradictions: (a) a dynamic 
(q.m.) versus perceptive (s.r.) view of nature; (b) a probabilistic (q.m.) 
versus definite (s.r.) description of coordinates; and (c) an assumption 
of accelerated (q.m.) versus linear (s.r.) motion. Hence there still 
remains much to do in a physical sense, to understand the true 
conceptual nature of electron paths in atoms. 

The first term of the expression above describes electricity at rest, 
which follows from a two-way exchange of internal self-repulsions of 
the kind 1/137n. That process represents a kind of resonant exchange, 
which should not cause any electron to emit light due to its orbital 
motion per se. The second term describes a constant but small loss of 
electricity within any shell n, due to minor influences which will be 
discussed below. Finally, the third term describes an irregular but 
precise magnetism of the electron as it moves through space and time, 
by modulations of the kind n/(1 + c) to a classical magnetic energy of 
1/(2 × 1374n4). Let us analyze those second and third terms to see how 
they come about. 
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The second term in the Sommerfield-Dirac formula describes a 
slight loss of electricity as (3/8) × 1/(1374n4) of mc2. Recall from 
calculations of electron magnetism that the probability for light to 
dissociate into an electron-positron pair equals (½) × 1/(1372) for 
n = 1. Hence that same expression should equal (½) × 1/(1372n2) for 
n = 2, 3, etc., and so two-thirds of the second term is accounted for as 
1/(4 × 1374n4) when multiplied by total electricity (Fig. 8a, upper). 
The remaining one-third of lost electrical energy may come about if 

 
Figure 8. A finite model where crossovers c within any closed electron path 
determine magnetic energies in atoms. The Sommerfield-Dirac formula shows 
to second order: (a) a constant loss of electricity for any shell n, due to the 
formation of electron-positron pairs by a first-order photon, or cancellation of the 
first-order photon by a second; and (b) a gain of magnetism which increases 
with shell n, where n de Broglie waves add together to produce a path of 
greater angular momentum mvr. 
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the proton and electron exchange two photons at once, where one 
photon cancels the other in phase (Fig. 8a, lower). Since the 
probability for exchanging a single photon equals 1/(2 × 1372n2), then 
the probability for exchanging two photons should equal 
e2/2r = 1/(8 × 1374n4). 

Now the third term in the formula above of size 1/(2 × 1374n4) × 
n/(1 + c) is the main term of interest here, since it describes an extra 
energy of magnetism which is generated by the complex and poorly 

 
Figure 8 (cont.). But then those magnetic energies n are reduced by another 
factor of 1/(1 + c), where c is a integral parameter which tells how many times 
the closed electron path “crosses  over itself” through space and time. Each 
crossover reduces net angular momentum by 1/(1 + c), and thereby reduces 
the energy of magnetism by a proportional amount as n/(1 + c). 
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understood motion of any electron about a proton (23,24). In a 
classical sense, one might expect an increase of electricity by 
(e2/2r) × (1 + v2/c2) or else mc2 × (v2/2c2) × (1 + v2/c2). For simple 
circular motion, the extra magnetic part would then equal 
v4/(2 × c4) = 1/(2 × 1374n4). 

Yet that classical value of 1/(2 × 1374n4) is multiplied in the 
Sommerfield-Dirac formula by another term n/(1 + c) (often written 
as n/k), which generates increased values of magnetism by n = 1, 2, 3, 
4, etc. for different shells n; or decreased values of magnetism by n/1, 
n/2, n/3, n/4, etc. for different paths s, p, d or f which show different 
values of c. 

It seems clear why the magnetic energies should increase with n, 
since each successive shell by a de Broglie view will contain a greater 
number of spin (or orbital) waves as one for n = 1, two for n = 2, or 
three for n = 3. Hence multiple waves within any shell n may add 
together in phase, to produce a path of larger radius r or larger 
magnetic moment evr (Fig. 8b). 

But why should that magnetic energy vary further as 1/(1 + c), 
where the joint contribution of n waves may be reduced by a factor of 
1/1, ½, ? , 1/4, etc. depending on c? To understand the physical 
situation more clearly, we can think of c in terms of the number of 
times by which any electron path “crosses over itself” within a 
continuous closed domain, in order to relieve any torsional stress 
imposed by end-to-end joining. For example c = 0 for an idealized 
open circle, or c = 1 for a singly-crossed figure-eight, or c = 2 for a 
doubly-crossed figure-eight. Each crossover will reduce the net 
angular momentum by 1/(1 + c), and hence should reduce the 
magnetism essentially as observed. 

Let us see how this scheme might work for various kinds of closed 
path such as s, p or d. Within any s path (Fig. 8c, upper), the electron 
may join to itself in a relaxed stress-free fashion, thereby producing 
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an approximate open circular shape with no crossovers or c = 0. 
Hence each extra wave n should contribute to magnetism by its full 
amount as L = 2S (where L and S are orbital or spin momenta, giving 
equal magnetism for g = 2); and so the net angular momentum will 
equal simply n/1, or specifically 1/1 for 1s, 2/1 for 2s, etc. This agrees 
well with experimental data, since s paths show in general a greater 
attractive magnetic energy than any other path p, d, etc. for any given 
shell n. 

Next within any p path, the electron may join to itself after having 
lost one turn of 360° rotation or phase about its minor magnetic axis 
(equivalent to two turns of 720° about its major electrical axis). This 
will provide for either of two approximate shapes: (a) an open-circle 
which remains torsionally stressed with c = 0; or (b) a figure-eight 
which has crossed-over itself to remove that torsional stress by means 
of one crossover or c = 1 (Fig. 8c, centre). 

In the former case, net angular momentum will equal n/1 = 2/1 as 
its maximum possible value L = 2S. But in the latter case, net angular 
momentum will be reduced by one-half to n/2 = 2/2, since it will add 
in phase over only half of the contour length at the two semicircular 
ends (shaded in Fig. 8c, centre left). Within all other parts of the path, 
vectors for angular momentum will cancel, owing to opposing 
directions of motion as produced by a single crossover at the centre. 
Those are the two kinds of p path as proposed by Dirac, which he 
called 2p(½) for c = 0 or 2p(3/2) for c = 1. The c = 0 path 2p(½) 
shows the same magnetic energy as c = 0 for 2s(½), while that of 
c = 1 for 2p(3/2) is only half as great. 

One might imagine that the relative direction of angular motion 
within those two end-loops could be reversed, when the path crosses 
over itself to give c = 1 instead of c = 0. Yet a single crossover by one 
turn about the minor magnetic axis actually requires two turns of 
phase or rotation about the major electrical axis, due to spin ½ 
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symmetry. Hence the vectors for angular momentum within each of 
those two end-loops will continue to add in phase, with a reduced 
value of n/(1 + c) for any values of n and c found in atoms. 

Similar arguments could be made concerning the d path, where the 
electron may join to itself after having lost either one or two turns of 
rotation or phase, about its minor magnetic axis (equivalent to two or 
four turns about the major). That situation yields either one or two 
crossovers as c = 1 or c = 2 (Fig. 8c, lower), which represent the two 
kinds of d path proposed by Dirac as 3d(3/2) or 3d(5/2). The c = 1 
path 3d(3/2) shows the same magnetic energy as c = 1 for 3p(3/2), 
while that of c = 2 for 3d(5/2) is only two-thirds as great. 

In summary, the experimental nature of magnetic fine-structure 
spectra suggests most simply a “closed-path interpretation,” where the 
electron may join to itself end-to-end for various values of n and c. 
The parameter n tells how many orbital or spin waves have joined in 
phase to create an open circle; while the parameter c tells how many 
times that open circle may have crossed over itself to reduce any 
torsional stress of end-to-end joining, and to reduce the net angular 
momentum and magnetism in discrete steps as observed (cf. the 
instability of twisted magnetic fields). Certain details of this model 
will require further study, yet the overall picture seems clear at 
present. 

11. Wr-Lk-Tw and Entanglement 
When written in terms of the symbols used for topology (25-27), the 
parameter c = (l + s - ½) as taken from the Dirac equation for a 
hypothetically closed electron path seems to provide for a relation 
similar to Wr = Lk - Tw of a closed ribbon or ring. Here c = Wr 
describes any integral writhe or crossover of the ring through space 
and time (i.e., the extent to which coiling of the path has replaced 
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local twisting); while l = Lk describes its total loss of end-to-end turns 
or linkage when joined; and (s - ½) = -Tw = 0 or –1 describes any 
remaining torsional stress or twist not cancelled by Wr. 

The loss of turns Lk would equal 0 for s, 1 for p, or 2 for d, etc. We 
argue here that the integral nature of Lk, and similarly the quantized 
nature of magnetic energies in atoms, may arise due to an underlying 
periodic structure for the electron on a very small scale, where the two 
ends of any closed path can only join using an integral m × 360° of 
phase or rotation about its minor magnetic axis. We argued previously 
that the quantized nature of electrical energies in atoms could be 
derived similarly from an underlying periodic electron structure, due 
to a reciprocal exchange between separate particles at a distance, of 
finite electrical self-energies equal to 1/137n. The extent of crossover 
Wr may in fact adopt quantized values for certain three-dimensional 
shapes in general (27), but no specific studies have yet been done on 
higher-dimensional topological isomers to look for a quantization 
such as 1/(1 + c). 

Other authors have suggested that the electron paths may be well-
defined and not purely random. For example, Bohm and Hiley (28) 
refer to a “quantum wholeness” which permits action-at-a-distance 
between different parts of the electron that are widely separated in 
space. According to the present model, any two parts of an electron 
which are widely separated in space may still be linked in a 
topological sense; so that any action which is taken on one part may 
affect the other without concern for light-speed c. 

For example, the action-at-a-distance effects as seen for 
“entanglement” (29,30) could come about, if two entangled photons 1 
and 2 somehow remain linked in a topological sense over great 
distances, to yield Lk = 0 for the pair as a whole. Disentanglement of 
that 1-2 pair due to measurement at a detector might then release a 
pre-existing topological linkage, to leave Lk = -1 for photon 1 but 
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Lk = +1 for photon 2 (or vice-versa) in an apparently instantaneous 
fashion. The very phenomenon of entanglement argues strongly for a 
continuity of photon structure over long distances through space, in 
accord with the present model. 

This work is not intended by any means to be the last word on 
finite periodic structures, but merely a naïve and somewhat 
controversial starting point for others to continue both theoretically 
and experimentally (31). For example, a detailed particulate model for 
the electron, which postulates 128 monomers for every two turns, 
leads to a calculation of bare electric charge as 1/129 and screened 
electric charge as 1/137.036. 
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