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Abstract: Symmetry in biological and physical systems is a product of self-organization driven by
evolutionary processes, or mechanical systems under constraints. Symmetry-based feature extraction
or representation by neural networks may unravel the most informative contents in large image
databases. Despite significant achievements of artificial intelligence in recognition and classification
of regular patterns, the problem of uncertainty remains a major challenge in ambiguous data. In this
study, we present an artificial neural network that detects symmetry uncertainty states in human
observers. To this end, we exploit a neural network metric in the output of a biologically inspired Self-
Organizing Map Quantization Error (SOM-QE). Shape pairs with perfect geometry mirror symmetry
but a non-homogenous appearance, caused by local variations in hue, saturation, or lightness within
and/or across the shapes in a given pair produce, as shown here, a longer choice response time (RT)
for “yes” responses relative to symmetry. These data are consistently mirrored by the variations in
the SOM-QE from unsupervised neural network analysis of the same stimulus images. The neural
network metric is thus capable of detecting and scaling human symmetry uncertainty in response to
patterns. Such capacity is tightly linked to the metric’s proven selectivity to local contrast and color
variations in large and highly complex image data.

Keywords: symmetry; shape; local color; self-organized visual map; quantization error; SOM-QE;
choice response time; human decision; uncertainty

1. Introduction

Symmetry in biological and physical systems is a product of self-organization [1] driven
by evolutionary processes and/or mechanical systems under constraints. It conveys a basic
feature to living objects, from molecules to animal bodies, or to physical forces acting in
synergy to create symmetrical structures [1–6]. In pattern formation, perfect symmetry is
a regularity within a pattern, the two halves of which are mirror images of each other. In
information theory and in particular human information processing [7–11], symmetry is con-
sidered an important carrier of information, detected universally by humans from an early
age on [12,13]. Human symmetry detection [14,15] in patterns or shapes involves visual
and cognitive processes from lower to higher levels of functional organization [16–24]. Ver-
tical mirror symmetry is a particularly salient form of visual symmetry [23–25], processed
at early stages in human vision and producing greater or lesser detection reliability [23]
depending on local features of the stimulus display with greater or lesser stimulus certainty.
Shape symmetry is a visual property that attracts attention [18] and determines perceived
volume [19–22] and perceptual salience [26] of objects represented in the two-dimensional
image plane. Aesthetic judgment and choice preference [27,28] are influenced by symmetry,
justifying biologically inspired models of symmetry perception in humans [29] under the
light of the fact that symmetry is detected not only by primates but also by other species,
such as insects, for example [30].
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Symmetry may be exploited in pattern detection and classification by neural networks,
which may have to learn multiple copies of the same object representation displayed in
different orientations. Encoding symmetry as a prior shape in the network can, therefore,
help avoid redundant computation where the network has to learn to detect the same
pattern or shape in multiple orientations [31]. Symmetry-based feature extraction and/or
representation [32] by neural networks using deep learning can, for example, help discover
the most informative representations in large image databases with only a minor amount
of preprocessing [33]. However, despite significant achievements of artificial intelligence in
recognition and classification of well-reproducible patterns, the problem of uncertainty still
requires additional attention, especially in ambiguous data. An artificial neural network
that detects uncertainty states, where a human observer doubts about an image interpreta-
tion has been described previously for the case of MagnetoEncephaloGraphic (MEG) image
data with significant ambiguity [34]. Here in this study, we present an artificial neural
network that detects uncertainty states in human observers with regard to shape symmetry.
To this end, we exploit a neural network metric in the output of a biologically inspired
Self-Organizing Map (SOM). The Quantization Error of the SOM (SOM-QE) [35–43] is a
measure of output variance and quantifies the difference between neural network states at
different stages of unsupervised image learning. In our previous studies, we demonstrated
functional properties of the SOM-QE such as a sensitivity to the spatial extent, intensity,
and sign or color of local image contrasts in unsupervised image classification by the neural
network. The metric reliably detects the finest, clinically or functionally relevant variations
in local image contrast contents [36–43], often invisible to the human eye [38,39,42,43].
Here it will be shown that the SOM-QE as a neural network state metric reliably captures,
or correlates with, varying levels of human uncertainty in the detection of symmetry of
shape pairs with varying local color information contents.

Previous work using human two-alternative forced choice decision has shown that
local color variations in two-dimensional pattern displays may significantly influence per-
ceived relative distances [44–47]. In the present study, we use shapes that display perfect
geometrical vertical mirror symmetry, as described further below here in Section 2.1, where
visual uncertainty about symmetry is introduced by systematic variations in color (hue)
and or saturation of local shape elements, leading to lesser or greater amounts of visual
information content. The psychophysically determined choice response time, previously
shown to directly reflect stimulus uncertainty in terms of a biological or physiological
system states [48,49], is exploited as measure of symmetry uncertainty. Response time (RT)
measurement is the psychophysical approach to what is referred to as “mental chronom-
etry” [50–52], which uses measurements of the time between a stimulus onset and an
immediate behavioral response to the stimulus. Hick’s Law [53,54], in particular, estab-
lished on the basis of experiments in traditional sensory psychophysics, was repeatedly
confirmed in studies by others [48–52]. The law directly relates response time to amount
of information in the stimulus, and amount of information in the stimulus to uncertainty
as a biologically grounded and potentially universal mechanism underlying sensation,
perception, attention and, ultimately, decision [48–53]. In its most general form, Hick’s
Law postulates that, provided the error rate in the given psychophysical task is low, RT
increases linearly with the amount of transmitted information (I) in a set of signals or, as
here in this study, a visual image configuration. The law extends to a direct relationship
between choice RT and stimulus uncertainty (SU), as plotted graphically in Figure 1 for
illustration, and predicts that, provided the response error rate is low, RT increases linearly
with stimulus uncertainty (SU)

RT = a + b (SU) (1)
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Figure 1. Hick’s Law [53,54] postulates that, provided the error rate in the given psychophysical 
task is low, sensory system uncertainty (SU) increases linearly with the amount of transmitted 
information (I) in a set (top graph). The law presumes a direct relationship between choice RT and 
sensory system uncertainty (SU) where RT increases linearly with amount of transmitted infor-
mation/stimulus uncertainty (bottom graph). 

There is no evidence that RT in low-level visual decision tasks would be influenced 
by individual variables such as gender. Inter-individual differences have been found in 
RT tasks involving higher levels of semantic processing, as in lexical decision and similar 
higher level cognitive decision tasks [55]. Biological and cognitive ageing is found to cor-
relate with longer RT due to changes in neurotransmitter dynamics in the ageing brain 
[56]. This age effect on RT is, however, subject to a certain amount of functional plasticity 
and may be counteracted by training [57]. To avoid potential effects of age in the experi-
ments here, we chose a study population of healthy young male individuals. 

  

Figure 1. Hick’s Law [53,54] postulates that, provided the error rate in the given psychophysical task
is low, sensory system uncertainty (SU) increases linearly with the amount of transmitted information
(I) in a set (top graph). The law presumes a direct relationship between choice RT and sensory system
uncertainty (SU) where RT increases linearly with amount of transmitted information/stimulus
uncertainty (bottom graph).

There is no evidence that RT in low-level visual decision tasks would be influenced
by individual variables such as gender. Inter-individual differences have been found
in RT tasks involving higher levels of semantic processing, as in lexical decision and
similar higher level cognitive decision tasks [55]. Biological and cognitive ageing is found
to correlate with longer RT due to changes in neurotransmitter dynamics in the ageing
brain [56]. This age effect on RT is, however, subject to a certain amount of functional
plasticity and may be counteracted by training [57]. To avoid potential effects of age in the
experiments here, we chose a study population of healthy young male individuals.

2. Materials and Methods

Visual system uncertainty associated with the symmetry of shape pairs was varied
experimentally in a series of two-dimensional images showing shape pairs with perfect
geometrical (vertical mirror) symmetry but varying amounts of local color information.
To quantify human uncertainty in response to the variable amounts of local color informa-
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tion, images were presented in random order on a computer screen to observers who had
to decide as quickly as possible whether two shapes in a given images were symmetrical
or not (yes/no procedure). The psychophysically measured choice response time was com-
puted as a measure of uncertainty following the rationale of Hick’s Law explained in detail
in the introduction above. The original images were submitted to SOM-QE to test whether
the algorithm reliably detects the different levels of human uncertainty reflected by the
psychophysical response time variations.

2.1. Original Images

The original images fed into the SOM one by one, as explained further below in “Section
2.4”, were generated in Photoshop 12. They are made available in the Supplementary Materials
Section under “S1”; copies thereof are shown, for illustration only, in Figure 2. All images
are identically scaled. The image size is constant (2720 × 1446 pixels). All paired shape
configurations in the images have perfect geometric mirror symmetry, with the same
number of local shape elements on the left and on the right, i.e., a total number of 12
shape elements on each side. All local shape elements are of identical size, the perimeter
of each single element, which is the sum of the lengths of the six sides, being constant at
1260 pixels, ensuring constant area size of the local elements. The local color parameters of
shape elements in the images were selectively manipulated in Adobe RGB color space to
introduce varying levels of visual uncertainty about the mirror symmetry of shape pairs
in the different images. The corresponding physical variations in color, hue, saturation,
lightness and R-G-B are given below in Table 1. The medium grey (R = 130, G = 130, B = 130)
background is identical in all the images.
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Figure 2. Copies of the test images, for illustration. Mirror symmetric shape pairs are displayed on a medium grey
background. Visual symmetry uncertainty in the shape pairs was varied by giving shape elements variable amounts of
color information resulting in variations in appearance. The condition with the highest amount of locally different color
information is MULTICOL2.
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Table 1. Physical color parameters producing local variations in pattern appearance.

Color Hue Saturation Lightness R-G-B

“Strong”

BLUE 240 100 50 0-0-255
RED 0 100 50 255-0-0

GREEN 120 100 50 0-255-0
MAGENTA 300 100 50 255-0-255
YELLOW 60 100 50

“Pale”

BLUE 180 95 50 10-250-250
RED 0 100 87 255-190-190

GREEN 120 100 87 190-255-190
MAGENTA 300 25 87 255-190-255
YELLOW 600 65 67 255-255-190

2.2. Experimental Display

The images were displayed for visual presentation on a high-resolution computer
screen (EIZO COLOR EDGE CG 275W, 2560 × 1440-pixel resolution) connected to a DELL
computer equipped with a high-performance graphics card (NVIDIA). Color and lumi-
nance calibration of the RGB channels of the monitor was performed using the appropriate
Color Navigator self-calibration software, which is delivered with the screen and runs un-
der Windows. As stated above, visual symmetry uncertainty in the shape pairs was varied
by giving the local shape elements variable color appearance in terms of hue, lightness and
saturation. We have four variations for each of the single-color shape pair configurations,
labeled as “RED” and “BLUE”, and two variations for the multicolor shape pair configura-
tions, labeled as “MULTICOL”. As explained in the introduction, we expect that multiple
local variations in appearance across shapes of a pair would be likely to produce higher
levels of visual symmetry uncertainty in a human observer compared with single local or
global variations.

2.3. Choice Response Time Test

In the test phase measuring human decision times, the 20 images were displayed
in random order in two successively repeated test sessions per human observer. Tests
were run on a workstation consisting of a computer screen (EIZO COLOR EDGE CG
275W, 2560 × 1440-pixel resolution) connected to a DELL computer equipped with a high
performance graphics card (NVIDIA). Fifteen healthy young individuals, chosen mainly
from a population of undergraduate students, participated in the test phase. All participants
had normal or corrected-to-normal visual acuity. In addition, the Ishihara plates [58] were
used prior to individual testing to ensure that all of them also had normal color vision.

The choice response tests were run in October and November 2019, and in conformity
with the Helsinki Declaration for scientific experiments on human individuals. Participants
provided informed consent prior to testing; individuals’ identities are not revealed. The
test protocol adheres to standards of good procedure stated in the ethics regulations
of the Centre National de la Recherche Scientifique (CNRS) relative to response data
collection from healthy humans in non-invasive standard tasks, for which examination of
the experimental protocol by a specific ethics committee is not mandatory. Each individual
participant was placed in an adjustable chair at a viewing distance of about 80 cm from the
computer screen. Individual positions were adjusted in order to ensure that the screen was
at eye-level. Tests were run in individual sessions and under mesopic viewing conditions.
Each participant was adapted to the ambient lighting condition for about five minutes.
Instructions given stated that images with two abstract patterns, one on the left and one on
the right, would be shown on the screen in two separate sequences. The task communicated
to each participant was to: “decide as quickly as possible and as soon as an image appears
on the screen whether or not the two patterns in the given image appear to be symmetrical
or not”. They had to press “1” for “yes”, or “2” for “no” on the computer keyboard,
their index and middle fingers of their dominant hand ready above the numbers to be able
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to press a given key without any motor response delay. Each coded response choice was
recorded and stored next to the choice response time in a labeled data column of an MS
Excel file. The choice response time corresponds to the time between an image onset and
the moment a response key is pressed. As soon as a response key was pressed, a current
image disappeared from the screen; 900 milliseconds later, the next image was displayed.
Image presentations in random order, trial sequencing, and data coding and recording
were computer controlled. The program is written in Python for Windows, and is freely
available for download [59,60].

2.4. Neural Network (SOM) Analysis

The conceptual background and method of neural network analysis follows the same
principle and protocol already described in our latest previous work on biological cell
imaging data analysis by SOM [37,43]. It is described here again in full detail, for the benefit
of the reader. The Self-Organizing Map is an artificial neural network (ANN) with a func-
tional architecture that formally corresponds to the nonlinear, ordered, smooth mapping of
high-dimensional input data onto the elements of a regular, low-dimensional array [61].
It is assumed that the set of input variables can be defined as a real vector x of n-dimension.
A parametric real vector mi of n-dimension is associated with each element in the SOM.
Vector mi is a model and the SOM is therefore an array of models. Assuming a general
distance measure between x and mi given by d(x,mi), the map of an input vector x on the
SOM array is defined as the array element mc that best matches x yielding the smallest
d(x,mi). During the learning process, an input vector x is compared with all the mi to
identify mc. The Euclidean distances ||x-mi|| define mc. Models topographically close
in the map up to a certain geometric distance, indicated by hci, will activate each other
to learn from their joint input x. This results in a local relaxation or smoothing effect on
the models in this neighborhood, which in continuous learning leads to global ordering.
Learning is represented by

m(t + 1) = mi(t) + α(t)hci(t)dx(t)−mi(t)e (2)

where t = 1, 2, 3 etc. represents an integer, the discrete-time coordinate hci(t) denotes
the neighborhood function—a smoothing kernel defined across the map points which
converges towards zero with time—α(t) is the learning rate, which also converges towards
zero with time and affects the amount of learning in each model. At the end of a winner-
take-all learning process in the SOM, each image input vector x is matched to its best
matching model within the map mc. The difference between x and mc, ||x − mc||, is
a measure indicating how close a final SOM value is to the original input value; it is
reflected by the quantization error, QE. The average QE of all x (X) within a given image is
determined by

QE = 1/N
N

∑
i=1

Xi −mci (3)

where N is the number of input vectors x in the image. The final weights of the SOM are
defined in terms of a three-dimensional output vector space representing each R, G, and B
channel. Magnitude, as well as the direction of change in any of these from one image to
another is reliably reflected by changes in the QE. SOM training consisted of 1000 iterations.
The SOM was a two-dimensional rectangular map of 4 by 4 nodes, hence capable of creating
16 models, or domains, of observation. The spatial locations, or coordinates, of each model
at different locations on the map exhibit specific characteristics, each one different from
all the others. When a new input signal is fed into the map, all the models compete; the
winner will be the model whose features most closely resemble the features of the input
signal. The input signal will be grouped accordingly into one of the models. Each model,
or domain, is an independent decoder of the same input independently interpreting the
information contained in the input, which is represented as a mathematical vector of the
same form as that of the model. Therefore, the presence or absence of an active response
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at a specific map location, rather than the exact input–output signal transformation or
magnitude of the response, generates an interpretation of the input. To define initial values
for map size, a trial-and-error procedure was implemented. Map sizes larger than 4 by 4
produced observations where some models ended up empty, meaning that these models
did not match input the end of the training. As a consequence, 16 models were sufficient
to represent all local data in the image. Neighborhood distance and learning rate were
assigned initial values of 1.2 and 0.2, respectively. These values were obtained through the
trial-and-error procedure, after testing for the quality of the “first guess”, directly deter-
mined by the value of the resulting quantization error. The smaller the latter, the better the
“first guess”. It is worthwhile pointing out that the models were initialized by randomly
picking training image vectors. This allows the SOM to work on the original data with no
prior assumptions about levels of organization within the data. This, however, requires
starting with a wider neighborhood function, and a bigger learning-rate factor than in
procedures where initial values for model vectors may be pre-selected [62]. Our approach
is economical in terms of computation times, which constitutes one of its major advantages.
The 20 images here were fed one by one into a single SOM. The training image for the SOM
prior to further input can be any of these. Since each of the 20 input images is fed into SOM
at a time, it gets subjected to all the 16 models in SOM. These 16 models compete, and
the winner ends up as the best matching model for the input vector. After unsupervised
winner-takes-all SOM learning, the SOM-QE output is written into a data file. Further steps
generate output plots of SOM-QE, where each output value is associated with the corre-
sponding input image. The output data are then plotted in increasing/decreasing orders of
SOM-QE magnitude as a function of the corresponding image variations (automatic image
classification). The computation time of SOM analysis of each of the 20 images was about
two seconds per image. The code used for implementing the SOM-QE is available online
at: https://www.researchgate.net/publication/330500541_Self-organizing_map-based_
quantization_error_from_images (accessed on 8 January 2021).

3. Results

With 20 images per individual session, two successive sessions per participant, and
15 participants, a total of 600 choice response time data were recorded. A shape pair
corresponding to a single factor level relative to shape appearance and color was presented
twice in a session with 20 images to allow for left- and right-hand side presentation of a
given appearance factor level in the shape pairs. The labels of the individual factor level
associated with each shape pair are given in Figure 1. With two repeated sessions per
participants, we have four individual response time data for each single factor level. All
data analyses relative to choice response times were run on the 15 average response times
for each factor level from the 15 participants. These data are made available here in S2 of
the Supplementary Materials Section.

Since all shape pairs in all the images were mirror-symmetric, “no” responses occurred
only very rarely in the experiment (17 of the 600 recorded choice responses signaled “no”,
which corresponds to less than three percent of the total number of observations), as would
be expected. In these rare cases, only the choice response times corresponding to a “yes”
among the four responses recorded for a given factor level were used for computing the
average. In terms of operational factor levels in the Cartesian experimental design plan, we
have four levels (1,2,3,4) of a factor termed “Appearance” (A4) associated with the colors
BLUE and RED, and two levels (1,2) of “Appearance” (A2) associated with the multiple
color case termed MULTICOL here. The three color conditions, blue, red, and multicolor,
describe three operational levels of a second factor termed “Color” (C3) herein. In a first
step, two separate two-way analyses of variance (ANOVA) were run to test for significant
effects of the factors “Appearance” and “Color”. The first ANOVA compares between
four levels of “Appearance” (1,2,3,4) in two levels (BLUE, RED) of the “Color” factor. The
second ANOVA compares between two levels of “Appearance” in three levels (BLUE, RED,
MULTICOL) of the “Color” factor.

https://www.researchgate.net/publication/330500541_Self-organizing_map-based_quantization_error_from_images
https://www.researchgate.net/publication/330500541_Self-organizing_map-based_quantization_error_from_images
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3.1. Two-Way ANOVA on Choice Response Times
3.1.1. A4 × C2 × 15

This analysis corresponds to a Cartesian analysis plan A4 × C2 × 15, with four levels
(1,2,3,4) of the “Appearance” factor and two levels (BLUE, RED) of the “Color” factor on
the 15 individual average response times (RT), yielding a total number (N-1) of 119 degrees
of freedom (DF). The results from this analysis are shown here below in the top part of
Table 2.

Table 2. Results from the two-way analyses of variance with factor-specific degrees of freedom (DF),
the corresponding F statistics, and their associated probability limits (p).

Factor DF F p

1st 2-way
ANOVA

APPEARANCE 3 68.42 <0.001
COLOR 1 0.012 <0.914 NS

INTERACTION 3 5.37 <0.01

2nd 2-way
ANOVA

APPEARANCE 1 8.20 <0.01
COLOR 2 123.56 <0.001

INTERACTION 2 0.564 <0.57 NS

The results of this analysis signal a statistically significant effect of the “Appearance”
factor on the average RT and a statistically significant interaction between the “Appearance”
and the “Color” factor for the cases BLUE and RED. A statistically significant effect of
“Color” independent of “Appearance” is not observed, leading to the conclusion that
either of these two colors produced similar effects on RT relative to shape symmetry when
their appearance was modified. This holds with the exception for statistical comparison
between BLUE3 and BLUE4, which is the only one that is not significant here, as revealed
by the post-hoc comparison (Holm–Sidak) between these two factor levels (t(1,1) = 0.32,
p < 0.75 NS). The effects can be appreciated further by looking at the effect sizes for the
different conditions, which are visualized further in Figures 3 and 4.
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3.1.2. A2 × C3 × 15

This analysis corresponds to a Cartesian analysis plan A2 × C3 × 15, with two levels
(1,2) of the “Appearance” factor and three levels (BLUE, RED, MULTICOL) of the “Color”
factor on the 15 individual average response times (RT), yielding a total number (N-1)
of 89 degrees of freedom. The results from this analysis are shown above in the bottom
part of Table 2. They signal a statistically significant effect of the “Appearance” factor on
the average RT and a statistically significant effect of the “Color” factor. A statistically
significant interaction is not observed here. Statistical post-hoc comparisons (Holm–Sidak)
reveal statistically significant differences between the factor levels MULTICOL and RED
(t(1,1) = 14.44, p < 0.001) and between the factor levels MULTICOL and BLUE (t(1,1) = 12.60,
p < 0.001), but not, as could be expected from the previous ANOVA, between the factor
levels RED and BLUE (t(1,1) = 1.84, p < 0.09 NS). The “Color” effect here is reflected by
the observation that shape pairs with multiple color elements yield significantly longer
symmetry related RT compared with shape pairs composed of any of the two single colors
here. This effect can be appreciated further by looking at the effect sizes for the different
comparisons, which are visualized further in Figure 5 below.
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Figure 5. Differences in average RT (top) for the comparison between BLUE and RED shape pairs
with appearance level 1 and the multicolored MULTICOL shape pairs with appearance levels 1 and
2. The differences between BLUE and RED shape pairs of any appearance level are not statistically
significant (see “Section 3.1.1”). The differences between image conditions BLUE1 or RED1 and
MULTICOL1 and between BLUE2 or RED2 and MULTICOL2 are highly significant, as is the difference
between MULTICOL1 and MULTICOL2 (see “Section 3.1.2”). The corresponding SOM-QE values
(bottom) from the neural network analysis are plotted in the graph below.

3.2. RT Effect Sizes

The effect sizes, in terms of differences between means, that correspond to significant
statistical differences signaled by two-way ANOVA were plotted graphically, and are
shown in the top graph in Figure 2, and in the top graphs in Figures 3 and 4 along with
the corresponding shape pairs that produced the results. The graphs show clearly that
shape pairs with non-homogenous appearance, i.e., local variations in hue, saturation, or
lightness within and/or across shapes in a given pair, produce longer choice RT for “yes”
responses relative to shape symmetry.

3.3. SOM-QE Effect Sizes

The SOM-QE metrics from the unsupervised neural network analysis of the test im-
ages were also plotted graphically and are displayed in the bottom graphs of Figures 2–4.
The graphs show clearly that the magnitudes of the SOM-QE from the neural network anal-
ysis consistently mirror the observed magnitudes of average choice RT for “yes” responses
relative to shape symmetry produced by shape pairs with varying appearance in terms of
local variations in hue, saturation, or lightness within and/or across shapes in a given pair.

3.4. Linear Regression Analyses

The results from the previous analyses show that the average choice RT for “yes”
responses relative to shape symmetry, produced by shape pairs with varying appearance
in terms of local variations in hue, saturation, or lightness within and/or across shapes
in a given pair, produce significant variations consistent with variations in decisional
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uncertainty about the mirror symmetry of the shapes in a pair. The higher the variability
in hue, saturation or lightness of single shape elements, the longer the RT for “yes” hence
the higher the stimulus uncertainty for “symmetry”. Indeed, the longest choice RT for
“yes” responses relative to shape symmetry is produced by the shape pairs MULTICOL1
and MULTICOL2. To bring the tight link between variations in RT reflecting different
levels of human uncertainty and the variations in the SOM-QE metric from the neural
network analyses, we performed a linear regression analysis on the RT data for shape pairs
with varying levels of appearance in BLUE, RED and MULTICOL shapes, and a linear
regression analysis on the SOM-QE data for exactly the same shape pairs. The results from
these analyses are plotted below in Figure 6. The linear regressions coefficients (R2) are
provided in the graph for each analysis. It is shown that RT for “yes” responses relative to
shape symmetry and the SOM-QE as a function of the same shape variations follow highly
similar and significant linear trends.

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 6. The tight link between variations in RT reflecting different levels of human uncertainty and the variations in the 
SOM-QE metric from the neural network analyses is brought to the fore here under the light of linear regression analysis 
on the RT data for shape pairs with varying levels of appearance in BLUE, RED and MULTICOL shapes, and linear re-
gression analysis on the SOM-QE data for exactly the same shape pairs. 

4. Discussion 
It is shown that mirror symmetric shape pairs with variable appearance caused by 

local variations in color information within and/or across shapes of a pair produce longer 
choice RT for “yes” responses relative to the shape symmetry. The variations in average 
choice RT for “yes” are consistent with variations in visual system uncertainty for sym-
metry, made fully operational here by the variations in amount or diversity of local color 
information (“Appearance”) in the display. Consistently, the display with the highest 
number of local variations, MULTICOL2, produces the longest choice RT. The higher the 
amount of variable information, the longer the RT for “yes” engendered by the stimulus 
uncertainty. Although color per se may be deemed irrelevant to the given task, color sin-
gletons, like the ones manipulated in this experiment to introduce variations in uncer-
tainty, can act as powerful distractors in a variety of psychophysical choice tasks [63–65]. 
This is accounted for by models where the attentional weight of any object may be con-
ceived as the product of bottom-up (visual) and top-down (expectational) components 
[63]. The higher the number of different color singletons in a given paired configuration, 
the longer the choice response time for “symmetry”, in consistency with the most general 
variant of Hick’s Law [53]. As also shown, the variations in RT are consistently mirrored 
by the variations in the SOM-QE from the unsupervised neural network analysis of the 
same stimulus images. This provides further data showing that artificial neural networks 

Figure 6. The tight link between variations in RT reflecting different levels of human uncertainty and the variations in the
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the RT data for shape pairs with varying levels of appearance in BLUE, RED and MULTICOL shapes, and linear regression
analysis on the SOM-QE data for exactly the same shape pairs.

4. Discussion

It is shown that mirror symmetric shape pairs with variable appearance caused
by local variations in color information within and/or across shapes of a pair produce
longer choice RT for “yes” responses relative to the shape symmetry. The variations in
average choice RT for “yes” are consistent with variations in visual system uncertainty
for symmetry, made fully operational here by the variations in amount or diversity of
local color information (“Appearance”) in the display. Consistently, the display with
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the highest number of local variations, MULTICOL2, produces the longest choice RT.
The higher the amount of variable information, the longer the RT for “yes” engendered
by the stimulus uncertainty. Although color per se may be deemed irrelevant to the
given task, color singletons, like the ones manipulated in this experiment to introduce
variations in uncertainty, can act as powerful distractors in a variety of psychophysical
choice tasks [63–65]. This is accounted for by models where the attentional weight of any
object may be conceived as the product of bottom-up (visual) and top-down (expectational)
components [63]. The higher the number of different color singletons in a given paired
configuration, the longer the choice response time for “symmetry”, in consistency with the
most general variant of Hick’s Law [53]. As also shown, the variations in RT are consistently
mirrored by the variations in the SOM-QE from the unsupervised neural network analysis
of the same stimulus images. This provides further data showing that artificial neural
networks are capable of detecting human uncertainty in perceptual judgment tasks [34].
The capability of the SOM-QE to capture such uncertainty in human choice responses to
the symmetry of shapes with local variations in color parameters is tightly linked to the
proven selectivity of this neural network metric to local contrast and color variations in
a large variety of complex image data [36–43]. Here, the metric is revealed as a measure
of both variance in the image input data, and uncertainty in specific human decisions in
response to such data. The neural network metric captures the effects of local color contrast
on symmetry saliency in cases where pure shape geometry signals perfect mirror symmetry.
This unambiguously shows that visual parameters beyond stimulus geometry [66–69]
influence what has previously been termed the “symmetry of things in a thing”. Such
local, non-geometrically determined effects on perceived shape symmetry have potentially
important implications for image-guided human precision tasks [70,71], now more and
more often assisted by neural network-driven image analysis. From a general functional
viewpoint, local-color-based visual system uncertainty for symmetry delaying conscious
choice response times in humans is consistent with current theory invoking interactions
between low-level visual and higher-level cognitive mechanisms in perceptual decisions
relative to symmetry [72,73]. The fully conscious detection of symmetry in choice response
tasks most likely involves information processing through brain networks with neurons
that display large receptive field areas and a massive amount of lateral connectivity [74].
Other machine learning approaches have exploited low-level and global features of natural
images or scenes to train artificial symmetry detectors on the basis of symmetry-axis
ground-truth datasets [75,76], demonstrating the importance of local features such as
color in boosting symmetry detection learning by machines compared with gray-scale
image data. In human perception, however, the attentional weight of visual information
enabling symmetry detection depends not only on the contrast of local features to their
local surroundings (saliency), but also on the importance of the features with respect to
the given task (relevance). This study deals with human perceptual system uncertainty
when geometrically defined local (feature) and global (shape) symmetry rules are satisfied.
Other types of symmetry uncertainty detection, not addressed in this study, are relevant
in image processing. For example, feature selection methods such as uncertainty class–
feature association map-based selection [77] have proven to be highly useful preprocessing
approaches for eliminating irrelevant and redundant features from complex image data
such as DNA microarray data [78,79], where the number of dimensions increase steadily
and fast. In such feature selection approaches, which are generally applied to image
clusters, the Symmetric Uncertainty Principle [77] is exploited to achieve dimensionality
reduction for optimal classification performance. The SOM used in this study operates on
the basis of the assumption that all data in the image (or a cluster thereof) are relevant; the
dimensionality of the input to be mapped is predefined and already minimized.

5. Conclusions

While symmetry detection by machines and the importance of colored features for
such purposes is an increasingly popular field of investigation, questions relating to image
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properties that may increase system uncertainty for detecting or responding to symmetry,
especially when the latter is geometrically perfect, are less often investigated. This work
shows a clear study case where increasing amount of local color information delays the
human visual system response to symmetry in consistency with predictions of Hick’s
Law [53,54]. This system uncertainty is reliably captured by the output metric of a bi-
ologically inspired artificial neural network, the SOM, which possesses self-organizing
functional properties akin to those of the human sensory system, within the limitations of
the study scope set here.
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