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Abstract
We show that true colors as defined by Chevreul (1839) produce unsuspected simultaneous brightness in-
duction effects on their immediate grey backgrounds when these are placed on a darker (black) general
background surrounding two spatially separated configurations. Assimilation and apparent contrast may
occur in one and the same stimulus display. We examined the possible link between these effects and the
perceived depth of the color patterns which induce them as a function of their luminance contrast. Patterns of
square-shaped inducers of a single color (red, green, blue, yellow, or grey) were placed on background fields
of a lighter and a darker grey, presented on a darker screen. Inducers were always darker on one side of the
display and brighter on the other in a given trial. The intensity of the grey backgrounds varied between trials
only. This permitted generating four inducer luminance contrasts, presented in random order, for each color.
Background fields were either spatially separated or consisted of a single grey field on the black screen.
Experiments were run under three environmental conditions: dark-adaptation, daylight, and rod-saturation
after exposure to bright light. In a first task, we measured probabilities of contrast, assimilation, and no ef-
fect in a three-alternative forced-choice procedure (background appears brighter on the ‘left’, on the ‘right’
or the ‘same’). Visual adaptation and inducer contrast had no significant influence on the induction effects
produced by colored inducers. Achromatic inducers produced significantly stronger contrast effects after
dark-adaptation, and significantly stronger assimilation in daylight conditions. Grouping two backgrounds
into a single one was found to significantly decrease probabilities of apparent contrast. Under the same
conditions, we measured probabilities of the inducers to be perceived as nearer to the observer (inducers
appear nearer on ‘left’, on ‘right’ or the ‘same’). These, as predicted by Chevreul’s law of contrast, were
determined by the luminance contrast of the inducers only, with significantly higher probabilities of brighter
inducers to be seen as nearer, and a marked asymmetry between effects produced by inducers of opposite
sign. Implications of these findings for theories which attempt to link simultaneous induction effects to the
relative depth of object surfaces in the visual field are discussed.
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1. Introduction

Almost two centuries ago, the French chemist Michel Eugène Chevreul published
his observations on the perceptual modifications produced by the mutual proxim-
ity of colors (De la loi du contraste simultané des couleurs et de l’assortiment des
objets colorés, Chevreul, 1839). He therein defined what later has become known
as simultaneous color contrast (e.g. Beck, 1966; De Weert, 1984; De Weert and
Spillmann, 1995; Dresp and Fischer, 2001; Gerrits and Vendrik, 1970; Heinemann,
1955; Helson, 1963; Pinna, 2008; Shapley and Reid, 1985) or color context effects
(e.g. Long and Purves, 2003; Reeves et al., 2008; Shevell and Kingdom, 2008).
Observing how colors placed side by side or surrounding each other change in ap-
pearance according to which color is put next to which other, Chevreul suggested
how they needed to be displayed in space to produce specific effects on the per-
ception of the human observer. His laws of color and contrast provide valuable
intuitions about the effects of color on processes of perceptual organization that
have inspired artists, architects, designers and visual scientists ever since. Two such
laws describe what Chevreul (1839) invoked in terms of a law of true color and a
law of contrast, both relevant to our study here.

The law of true color states that for any color to truly appear to the observer as
that particular color, the background must be grey, implying that a color on a grey
background should be the least likely to produce mutual interactions that alter the
appearance of either. From his observations “on the juxtaposition of colored bodies
with grey”, reported in Chapter VI of his essay, Chevreul concludes:

“. . . it may be conceived that grey bodies, judiciously selected with regard to their
depth in tone, would, by contiguity to colored bodies, exhibit the color in a more strik-
ing manner than either black or white bodies would; . . .colors in juxtaposition with
grey being more perceptible than when juxtaposed with white or black” (Chevreul,
1839, translated by Spanton in 1854, Chapter VI).

This conclusion summarizes Chevreul’s idea that all primary colors would gain
‘purity’ and ‘brilliancy’ by the proximity of grey, rather than white or black, which
tend to affect a color’s brightness and thereby alter the perception of its tone. When
placed nearby other so-called inducing colors, the appearance in either brightness
or tint of the so-called test color often changes dramatically (e.g. Livitz et al., 2011).
Such changes may be reflected by a contrast effect, where the perceived brightness
or tone of the test color changes away from that of the inducing color, or by an
assimilation effect, where the perceived brightness or tone of the test color changes
toward that of the inducing color (Wyszecki, 1986). Interaction of a similar kind
occurs between achromatic stimuli of positive and negative contrast polarities, pro-
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ducing either contrast, where a bright surface makes an adjacent one look darker
and a dark one makes an adjacent one look brighter, or assimilation, where a bright
surface makes an adjacent one look brighter and a dark surface makes an adjacent
one look darker (e.g. Beck, 1966; Festinger et al., 1970; Hamada, 1985; Heine-
mann, 1955; Helson, 1963). Chevreul’s law of true color has never been challenged
by induction studies, and mutual interactions where colors change the appearance
of nearby or surrounding grey fields, or where grey fields change the appearance of
nearby or surrounding colors, have up to date not been investigated.

For a color to be seen as standing out in depth against the background, or to
be seen as figure rather than as ground, the difference in luminance or brightness
between the color and its background must be strong, as stated in Chevreul’s law
of contrast. This intuition that differences in luminance would act as a cue to rel-
ative depth in the visual field has been confirmed since by psychophysical studies
showing that surfaces with the stronger luminance contrast in the two-dimensional
plane tend to be perceived as figure rather than as ground, or as nearer to the human
observer than surfaces with the weaker luminance contrast (Bugelski, 1967; Dresp
et al., 2002; Guibal and Dresp, 2004; O’Shea et al., 1994; Oyama and Yamamura,
1960; Rohaly and Wilson, 1999; Schwartz and Sperling, 1983). Mutual interactions
between colors in terms of assimilation and contrast may be linked to their capacity
for generating effects of relative depth or, in other words, to the likelihoods that they
will be perceived as belonging to the same or as belonging to different surfaces in
the visual field (Long and Purves, 2003), a possibility that was not made explicit by
Chevreul at the time.

The effect of frames on the appearance of tones and their brightness, or “the
difference between the effect of a framed picture and the effect of that same picture
when seen through an opening” was considered critical by Chevreul, who observed
that the “contiguity of the frame” could alter any of the perceptual effects produced
by any of his laws under conditions where no frame is present. His intuition that
distinct object borders influence our perception of color and contrast is consistent
with studies showing interactions between color appearance and the spatial profile
of surface contours, or the geometric configuration of the visual display (Devinck
et al., 2006; De Weert and Spillmann, 1995; Dresp and Fischer, 2001; Fach and
Sharpe, 1986; Pinna, 2008, 2011; Pinna and Reeves, 2006).

Here, we present a new kind of induction phenomenon where true colors in the
sense of Chevreul, placed on grey background fields presented on a black screen,
produce changes in the appearance of their immediate grey backgrounds (Fig. 1).
When spatially distributed sets of small squares, all of the same color and darker
on one side of the display and brighter on the other, are placed on spatially sepa-
rated grey fields of homogenous intensity presented on a dark (black) screen, the
grey background to the colors may be seen as brighter on one side. The induc-
tion can switch from contrast, where the grey field containing the darker inducers
appears brighter, to assimilation, where the grey field containing the brighter induc-
ers appears brighter. Such effects are absent when the grey background fields do
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Figure 1. The stimulus configurations here consisted of patterns of colored inducers of a single color,
with a brighter luminance on one side and a darker luminance on the other, placed on grey back-
grounds. Background intensity varied between trials, between a lighter and a darker luminance, and
backgrounds were presented as either spatially separate fields (top and lower middle) or as single fields
(upper middle and bottom) placed on a uniformly darker screen. (This figure is published in colour in
the online version of this paper.)

not contain any inducers at all (Fig. 2), or when the background fields consist of
a single uniformly grey surface (Fig. 3). Conversely, when the green inducers of a
stronger and a weaker luminance are placed on grey background fields of identical
luminance which themselves have an even darker background, the colored squares
produce simultaneous induction effects in terms of apparent contrast and assimila-
tion, where the grey background on either side of the display may appear brighter
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Figure 2. Two grey fields of identical luminance presented on a uniformly dark screen generally
appear equal in brightness to the human observer, i.e. the probability of one being seen as brighter
than the other is considered zero.

Figure 3. When the colored inducers are placed on a single uniformly grey background, the induction
effects shown in Fig. 1, top and lower middle, are weakened or abolished, as in Fig. 1, upper middle
and bottom. (This figure is published in colour in the online version.)

than on the other side (Fig. 1, top). When two grey backgrounds are grouped into
a single one on a dark screen, they are then seen as if surrounded by a single dark
frame. The simultaneous induction effects are considerably weakened or abolished
in such a configuration (Fig. 1, upper middle), which closely approaches the exam-
ple shown in Fig. 3. Changes in inducer contrast do not seem to affect the induction
effects (Fig. 1, lower middle and bottom), but alter the perception of relative depth
in a way that is consistent with Chevreul’s law of contrast. Brighter squares tend to
be seen as standing out in front of the grey backgrounds, while darker ones tend to
be seen in the same plane with the background. Grouping the backgrounds into a
single one (Fig. 1, upper middle and bottom) does not appear to change this appar-
ent depth effect.

To quantify this new phenomenon, we presented several such configurations
with colored inducers on grey generating varying inducer luminance contrasts, in-
vestigating their probability of producing brightness induction effects in terms of
contrast and assimilation. Given that such induction effects often occur together
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with changes in the perceived depth of either the inducing field or the test field, as
in the watercolor illusion (e.g. Pinna and Reeves, 2006; von der Heydt and Pierson,
2006), we compared probabilities of simultaneous induction with the probabilities
that the patterns which generate them are seen as nearer to the observer. In fact,
inducers with a stronger tendency to be perceived as separated in depth from their
immediate backgrounds may also have a stronger tendency to produce induction
effects in terms of apparent contrast. This assumption relates to a theoretical frame-
work that searches for a universal explanation of color context effects in terms of
statistical properties of natural scenes. Similarly toned, with regard to either lu-
minance or color or both, objects would have a tendency to generate assimilation
because they would have a higher probability of belonging to the same surface and,
therefore, to lie in the same depth plane. Strongly contrasting ones would have a ten-
dency to generate contrast because they would be more likely to belong to different
surfaces and, therefore, to lie in different depth planes (e.g. Katz, 1911; Long and
Purves, 2003). If such a prediction holds, then a strong positive correlation between
the luminance contrast of colored objects, the apparent contrast effects induced by
these objects, and their perceived depth is to be expected.

The induction effects produced by the complex spatial configurations displayed
here are likely to originate from mechanisms of neural processing well beyond the
receptor level (e.g. De Weert and Spillmann, 1995; Dresp and Fischer, 2001; Long
and Purves, 2003). The relative contributions of rods and cones determines both
the appropriate luminance input (photopic or mesopic) and the input stream to the
visual cortex. Also, color and luminance may be affected by rod-cone interactions at
the low brightness levels typical of computer monitors (e.g. Cao et al., 2008; Stabell
and Stabell, 1975). To assess the contribution of rods relative to that of cones, we
tested observers under three different conditions of light-dark adaptation, in both
experimental tasks.

2. Materials and Methods

Experiments were run on a PC computer equipped with a mouse device and a high
resolution color monitor. Selective combinations of RGB increments generating
the colors of the stimuli were calibrated with a spectrophotometer (Cambridge Re-
search Instruments). Subjects were seated at a distance of 75 cm from the screen,
their heads comfortably resting on a head-and-chin support.

2.1. Subjects

Eight observers, most of them students at NU, with normal or corrected-to-normal
vision and fully functional color vision were run in the simultaneous contrast task.
Eight observers, most of them also students at NU, with normal or corrected-to-
normal vision and fully functional color vision, were run in the relative distance
task. Three of the sixteen subjects were run in both tasks.
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2.2. Stimuli

The stimuli (see Fig. 1A, B, C and D for illustration) consisted of pairs (as in Fig. 1,
top and lower middle), the spatially separated configurations, or singles, the re-
grouped configurations (as in Fig. 1, upper middle and bottom). Colored inducers
were placed on light grey and dark grey background fields, displayed on the con-
siderably darker (5.45 cd/m2, with the color guns of the screen at R = 0, G = 0 and
B = 0) background of the computer screen. Twenty small squares, the so-called
inducers, of a given color were placed on the darker (Fig. 1, lower middle and
bottom) and lighter grey immediate backgrounds (Fig. 1, top and upper middle)
backgrounds. Five different inducer colors were generated (red, green, blue, yel-
low, and white) in different configurations, with always the same color in a given
configuration. The luminance of red inducers was 56.7 cd/m2 for the brighter ones
(color guns of the screen at R = 255, G = 0, B = 0) and 27.2 cd/m2 for the darker
ones (R = 100, G = 0, B = 0). Green inducers were displayed at 69.8 cd/m2 (R =
0, G = 255, B = 0) and 27.7 cd/m2 (R = 0, G = 100, B = 0), blue inducers at
70.9 cd/m2 (R = 0, G = 0, B = 255) and 44.3 cd/m2 (R = 0, G = 0, B = 125)
yellow inducers at 81.6 cd/m2 (R = 255, G = 255, B = 0) and 43.7 cd/m2 (R =
100, G = 100, B = 0), and grey inducers at 148.6 cd/m2 (R = 190, G = 190, B =
190) and 54.3 cd/m2 (R = 100, B = 100, G = 100). The luminance of the light grey
background was 72.7 cd/m2 (R = 150, G = 150, B = 150), the luminance of the
dark grey background was 23.2 cd/m2 (R = 50, G = 50, B = 50). Inducers were al-
ways darker on one side of the display, and brighter on the other in a given trial. The
intensity of their grey backgrounds varied between trials only. Combining inducing
patterns with two luminance intensities with the light and dark grey backgrounds
produced four different inducer contrasts for each color. Table 1 gives these inducer
contrasts, expressed in terms of (Linducer − Lbackground)/(Linducer + Lbackground), for
a given color with a given luminance on a background of a given intensity. Brighter
inducers appeared on the left and on the right of a given configuration in random
order, with always a set of darker inducers on the other side. The horizontal distance
between two spatially separated squares on the screen was 3.5 cm. The height of
each such square was 9.7 cm, the width 10 cm. The height of regrouped grey back-
grounds was 9.7 cm, their width 13.2 cm. Each type of configuration was displayed
centrally on the screen. The smallest horizontal distance between colored inducers
was 0.4 cm, the smallest vertical distance 0.5 cm. All colored inducers had identical
height (0.9 cm) and width (1 cm).

2.3. Task Instructions

Three response alternatives (‘left’, ‘right’ or ‘same’) were given to subjects in each
of the two tasks. In the simultaneous contrast task, they were asked to indicate on
which side of a given configuration (‘left’ or ‘right’) the grey background appeared
brighter to them, or whether both sides appeared equal in brightness (‘same’). It
was made clear to the subjects that they should judge the relative brightness of the
background, not that of the inducers. In the relative distance task, subjects had to
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Table 1.
The configurations of colored inducers on light and dark grey backgrounds, used as stimuli in the
experiments here, generated four inducer contrasts of varying intensity and polarity for each color,
expressed here in terms of (Linducer − Lbackground)/(Linducer + Lbackground). These contrasts and
their sign (negative or positive) are given here, for each inducer color, inducer luminance (a higher
one and a lower one), and background intensity (light grey and dark grey)

Red Green Blue Yellow Achromatic

The brighter inducer
on dark grey background +0.42 +0.50 +0.51 +0.56 +0.72
on light grey background −0.12 −0.02 −0.01 −0.06 +0.34

The darker inducer
on dark grey background +0.08 +0.09 +0.31 +0.31 +0.40
on light grey background −0.45 −0.44 −0.24 −0.25 −0.14

decide on which side of a given configuration (‘left’ or ‘right’) the colored inducers
appeared nearer to them, or whether all seemed equally near or distant (‘same’).

2.4. Procedure

The experiments were run in a room with no windows, under three separate con-
ditions of visual adaptation. In the first (‘daylight’), subjects were run under con-
ditions similar to daylight, generated by diffuse, soft-white, 60 W tungsten light
(General Electric). In the second condition (‘dark-adapted’ observers), subjects
were dark-adapted for 25 min and then tested with all room lights off. The only
illumination was provided by the screen. In the third condition (‘rod-saturated’ ob-
servers), subjects were pre-exposed to an intense, full-field, white adaptation light
from a model PS22 Grass Photonic Stimulator run at 45 Hz, which was progres-
sively intensified to 1 500 000 candelas, where it was held before the subject’s open
eyes for one minute. Subjects were then dark-adapted for two minutes to permit
cones to recover, but leave rods relatively inactive for the next ten to fifteen min-
utes, knowing that a given set of experimental trials for a given adaptation level
lasted for about three to five minutes. In each of these conditions, the grouped and
ungrouped configurations with a given background intensity and inducer color were
presented in random order for about one second each. Inter-stimulus intervals typ-
ically varied from one to three seconds and were placed under the control of the
subject to allow for individually experienced after-images to vanish before the next
trial was initiated. Subjects were instructed to fixate the center of the screen and
to blink between trials to check for residual after-images, which were especially
noticeable in the dark adapted condition, in which a few subjects took as long as
six seconds between trials to recover (after-images were rarely experienced in the
daylight and rod-saturated conditions). In stimulus displays with spatially sepa-
rated backgrounds, a small, dim fixation mark was displayed in the center of the
screen (as shown in Fig. 1, top and upper middle) to remind subjects where to look,
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and between stimulus presentations, subjects were exposed to a uniformly dark
(5.45 cd/m2) screen, with the fixation mark still displayed in the center. They were
allowed to break fixation and look left or right when comparing two backgrounds.
Each individual session consisted of 40 trials per adaptation level, giving a total
of 120 trials per subject within a 3 × 4 × 2 × 5 experimental design, with three
adaptation levels, four inducer contrasts, two types of spatial configuration, and five
colors.

3. Results

The data from the two tasks were analyzed as a function of adaptation level, inducer
contrast, spatial configuration (‘grouped fields’ versus ‘separate fields’), and in-
ducer color. Probabilities of inducers of a given color to produce effects of apparent
contrast, assimilation, and relative depth were computed for each experimental con-
dition and subjected to repeated measures analyses of variance (ANOVA). Given
that the levels of the factor inducer contrast were not identical for different colors
(see Table 1), separate ANOVA were performed for each level of the color factor
and a 3 × 4 × 2 factorial design, with three levels of the adaptation factor, four
levels of inducer contrast, and two levels of spatial configuration. Average results,
summed over the adaptation level factor, will be shown here for each inducer color
given that no significant effect of visual adaptation, or interaction of this factor with
inducer contrast or type of spatial configuration, was found with inducers of any of
the four colors studied here. Only the achromatic configurations varied significantly
with conditions of visual adaptation, as will be shown here.

The probabilities of GREEN inducers to produce effects of apparent contrast, as-
similation, or relative depth (‘nearness’) are shown as a function of the luminance
contrast of the inducers (Fig. 4, top left). Green inducers systematically gener-
ated higher probabilities of assimilation compared with probabilities of contrast,
at all levels of inducer contrast. Effects of the luminance contrast of green induc-
ers on either the probability of assimilation or the probability of apparent contrast
are not statistically significant. Conversely, the effect of inducer contrast on the
probability of green inducers to be seen as nearer to the observer is highly signifi-
cant (F(3,23) = 45.12, p < 0.001). Inducers with the strongest positive luminance
contrast produced the highest probability to be seen as nearer. The probabilities of
‘near’ generated by green inducers reveal an asymmetry between negative and pos-
itive contrast signs, where green inducers of negative contrast (here C = −0.02 and
C = −0.44) failed to produce an effect of relative depth, while roughly equivalent
positive contrasts (here C = +0.09 and C = +0.50) produced probabilities of ‘near’
between 0.75 and 0.90. Grouping the backgrounds into a single field had no signif-
icant effect on probabilities of relative depth (Fig. 4, top right), but significantly
influenced induction effects, in terms of contrast (F(1,23) = 82.33, p < 0.001).
Induction effects are significantly stronger, producing higher probabilities of appar-
ent contrast, in configurations where the background fields are spatially separated
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Figure 4. Probabilities of contrast, assimilation, and relative depth (‘near’), averaged over the adap-
tation level factor, are shown as a function of the luminance contrast of the GREEN inducers and the
type of background configuration.

(Fig. 4, bottom left). The effect of grouping on assimilation tends in the same di-
rection, but was not statistically significant for the green inducers (Fig. 4, bottom
right). There is no significant interaction between grouping and the luminance con-
trast of the green inducers.

The probabilities of BLUE inducers to produce effects of apparent contrast, as-
similation, or relative depth (‘nearness’), as a function of the luminance contrast of
the inducers, are shown next (Fig. 5, top left). As observed with the green induc-
ers, blue inducers also systematically generated higher probabilities of assimilation
compared with probabilities of contrast, at all levels of inducer contrast. Effects of
the luminance contrast of blue inducers on either the probability of assimilation or
the probability of apparent contrast are not statistically significant. Interestingly, the
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Figure 5. Probabilities of contrast, assimilation, and relative depth (‘near’), averaged over the adapta-
tion level factor, are shown as a function of the luminance contrast of the BLUE inducers and the type
of background configuration.

blue inducers with zero luminance contrast (equiluminant color contrast) produced
the strongest induction effects, in terms of summed probabilities of assimilation and
apparent contrast (P ‘assimilation’ + P ‘contrast’ = 0.78), but the lowest proba-
bility of standing out in depth from the background (P ‘near’ = 0.09). The effect
of inducer contrast on the probability of inducers to be seen as nearer to the ob-
server is, again, highly significant (F(3,23) = 77.86, p < 0.001). Inducers with the
strongest positive luminance contrast produced the highest probability to be seen as
nearer. The probabilities of ‘near’ generated by blue inducers reveal the same kind
of asymmetry between negative and positive contrast signs observed with the green
inducers, where blue inducers of negative contrast (here C = −0.24) failed to pro-
duce an effect of relative depth, while similar positive contrasts (here C = +31
or C = +0.51) produced probabilities of ‘near’ between 0.60 and 0.90. Group-
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Figure 6. Probabilities of contrast, assimilation, and relative depth (‘near’), averaged over the adapta-
tion level factor, are shown as a function of the luminance contrast of the RED inducers and the type
of background configuration.

ing the backgrounds into a single field had no significant effect on probabilities of
relative depth (Fig. 5, top right), but significantly influenced induction effects in
terms of apparent contrast (F(1,23) = 24.33, p < 0.01). In configurations where
the background fields are spatially separated, the probabilities of apparent contrast
are significantly higher (Fig. 5, bottom left). As with the green inducers, the effect
of grouping on assimilation was not statistically significant for the blue inducers
(Fig. 5, bottom right). Again, there was no significant interaction between grouping
and the luminance contrast of the inducers.

The probabilities of RED inducers to produce effects of apparent contrast, as-
similation, or relative depth (‘nearness’), as a function of the luminance contrast
of the inducers, are shown next (Fig. 6, top left). As observed with green and blue,
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red inducers also systematically generated higher probabilities of assimilation com-
pared with probabilities of contrast, at all levels of inducer contrast. Effects of the
luminance contrast of red inducers on either the probability of assimilation or the
probability of apparent contrast are not statistically significant. The effect of inducer
contrast on the probability of inducers to be seen as nearer to the observer is, again,
highly significant (F(3,23) = 58.18, p < 0.001). Inducers with the strongest pos-
itive luminance contrast produced the highest probability to be seen as nearer. The
probabilities of ‘near’ generated by red inducers reveal the same kind of asymme-
try between negative and positive contrast signs observed with the green and blue
inducers, with red inducers of negative contrast (here C = −0.45) producing only
a weak effect of relative depth, while similar positive contrasts (here C = +0.42)
produced probabilities of ‘near’ higher than 0.90. Grouping the backgrounds into a
single field had no significant effect on probabilities of relative depth (Fig. 6, top
right), but significantly influenced induction effects in terms of apparent contrast
(F(1,23) = 24.33, p < 0.01). In configurations where the background fields are
spatially separated, the probabilities of apparent contrast are significantly higher
(Fig. 6, bottom left). Again, the effect of grouping on assimilation was not statis-
tically significant (Fig. 6, bottom right), and there was no significant interaction
between grouping and the luminance contrast of the inducers.

The response probabilities generated by the YELLOW inducers are shown next
(Fig. 7, top left). As observed with the green, blue, and red inducers, yellow in-
ducers also systematically generated higher probabilities of assimilation compared
with probabilities of contrast, at all levels of inducer contrast. Effects of the lumi-
nance contrast of yellow inducers on either the probability of assimilation or the
probability of apparent contrast are not statistically significant. Again, it is shown
that inducers with a luminance contrast near physical equiluminance (here C =
0.06) produced the strongest induction effects, in terms of summed probabilities of
assimilation and apparent contrast (P ‘assimilation’ + P ‘contrast’ = 0.79), but
the weakest probability of standing out in depth from the background (P ‘near’ =
0 here). The effect of inducer contrast on the probability of inducers to be seen as
nearer to the observer is, again, highly significant (F(3,23) = 36.29, p < 0.001).
Inducers with the strongest positive luminance contrast produced the highest proba-
bility to be seen as nearer. The probabilities of ‘near’ generated by yellow inducers
reveal the same kind of asymmetry between negative and positive contrast signs
observed with green blue and red inducers. Yellow inducers of negative contrast
(here C = −0.25) produced no effect of relative depth here, while a similar posi-
tive contrast (here C = +0.31) produced a probability of ‘near’ higher than 0.80.
Grouping the backgrounds into a single field had no significant effect on probabili-
ties of relative depth (Fig. 7, top right), but significantly influenced induction effects
in terms of apparent contrast (F(1,23) = 17.02, p < 0.01). In configurations where
the background fields are spatially separated, the probabilities of apparent contrast
are significantly higher (Fig. 7, bottom left). Again, the effect of grouping on as-
similation tends in the same direction, but was not statistically significant (Fig. 7,
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Figure 7. Probabilities of contrast, assimilation, and relative depth (‘near’), averaged over the adapta-
tion level factor, are shown as a function of the luminance contrast of the YELLOW inducers and the
type of background configuration.

bottom right). Again, there was no significant interaction between grouping and the
luminance contrast of the inducers.

The probabilities of ACHROMATIC inducers to produce induction effects were
markedly influenced by the visual adaptation conditions, with significant effects of
adaptation level on probabilities of apparent contrast (F(2,23) = 5.46, p < 0.05)
and on probabilities of assimilation (F(2,23) = 10.50, p < 0.01). Probabilities of
achromatic inducers to produce effects of apparent contrast, assimilation, or relative
depth (‘nearness’) are shown as a function of the luminance contrast of the inducers
and the adaptation level (Fig. 8). Achromatic inducers produce the highest probabil-
ities of apparent contrast in dark-adapted observers, and the lowest probabilities of
apparent contrast in daylight, while the reverse is observed for assimilation, with the
highest probabilities of assimilation in daylight and the lowest after dark-adaptation
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Figure 8. Probabilities of contrast, assimilation, and relative depth (‘near’) are shown as a function
of the luminance contrast of the ACHROMATIC inducers (top) and the adaptation level (bottom).
The dotted lines in the graph on top suggest the theoretical drop to zero of all effects at physical
equiluminance of achromatic inducers and backgrounds (see Fig. 1).

(Fig. 8, bottom). The luminance contrast of the achromatic inducers had a signifi-
cant effect on induction, in terms of apparent contrast (F(3,23) = 4.47, p < 0.05)
and in terms of assimilation (F(3,23) = 11.09, p < 0.01). For a luminance con-
trast of negative sign (here C = −0.14), the probability of apparent contrast is
higher than the probability of assimilation, while the reverse is found to hold for
strong inducer contrasts of positive sign. The effect of inducer contrast on the prob-
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ability of inducers to be seen as nearer to the observer is, again, highly significant
(F(3,23) = 32.95, p < 0.001). Inducers with the strongest positive luminance con-
trasts produced the highest probability to be seen as nearer. Adaptation level had no
significant effect on perceived relative depth. No significant interaction between
adaptation level and inducer contrast was found for any of the three dependent
variables. Grouping the backgrounds into a single field had no significant effect on
probabilities of relative depth (Fig. 8, top), but significantly influenced induction ef-
fects in terms of apparent contrast (F(1,23) = 17.02, p < 0.01). In configurations
where the background fields are spatially separated, the probabilities of apparent
contrast are significantly higher (Fig. 8, middle). As with the colored inducers, the
effect of grouping on assimilation is not statistically significant in configurations
with achromatic inducers (Fig. 8, bottom). Again, there was no significant interac-
tion between grouping and the luminance contrast of the inducers.

Interestingly, green and yellow inducers with a low luminance contrast of posi-
tive sign (Figs 4 and 7, upper left) produced noticeably stronger depth effects than
red inducers with a low luminance contrast of positive sign (Fig. 6, upper left).
Otherwise, there are no noticeable differences between the different colors in terms
of their probability to produce apparent contrast, assimilation, or relative depth ef-
fects, as shown here when the probabilities, averaged over the adaptation level and
inducer contrast factors, are plotted as a function of the inducer color and type of
background configuration (Fig. 10).

4. Discussion

Repetitive patterns of a single color placed on achromatic backgrounds of a lighter
and a darker tone induce simultaneous contrast effects where the background’s
brightness may be altered either towards apparent contrast or towards assimilation.
The observation that perception can switch from one to the other in one and the
same configuration is consistent with psychophysical data on achromatic config-
urations of positive and negative contrast polarities (Beck, 1966; Hamada, 1985;
Heinemann, 1955; Helson, 1963), sometimes described in terms of a ‘brightness
paradox’ (De Weert and Spillmann, 1995). These effects have been interpreted in
terms of non-linear spatial interactions, and their potential neural origins, ensur-
ing the discounting of changes in global illumination to facilitate the perception
of complex objects under variable lighting conditions (Gerrits and Vendrik, 1970;
Grossberg, 1997; Reid and Shapley, 1988; Shapley and Reid, 1985). Such an inter-
pretation is fully consistent with our observations here, and accounts well for the
insensitivity of the simultaneous induction effects to either visual adaptation or lu-
minance contrast of the colored inducing patterns. Roughly equiluminant chromatic
inducers often produced the strongest brightness induction on their grey back-
grounds, with systematically more assimilation than contrast, as previously found
in other geometrically complex displays (Wyszecki, 1986). We conclude that chro-
matic patterns, regardless of their luminance contrast and under any condition of
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Figure 9. Probabilities of contrast, assimilation, and relative depth (‘near’) are shown as a function of
the luminance contrast of the ACHROMATIC inducers (top) and the type of background configuration
(bottom).
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Figure 10. Probabilities of contrast, assimilation, and relative depth (‘near’), averaged over the adap-
tation level and the inducer contrast factors, are shown as a function of the color of the inducers and
the type of background configuration.
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light-dark adaptation of the eye, alter the appearance of achromatic backgrounds by
producing unsuspected ‘paradoxical’ (e.g. De Weert and Spillmann, 1995) changes
in their perceived intensity. These observations shed a new light on Chevreul’s law
of ‘true’ color, bearing in mind that it is based on the idea of an absence of mutual
interaction between color and grey. Here we show that colored patterns may have
an either suppressive or enhancing effect on the perceived brightness of their im-
mediate grey backgrounds when these latter are placed on an even darker general
background. At or near physical equiluminance with the grey backgrounds, colors
produced effects similar or identical to those of colors with strong luminance con-
trasts. Significant variations in either assimilation or contrast as a function of the
luminance contrast of a given color were not found.

We are confident that individual differences in equiluminance, although we did
not measure them, had little or no effect on our results as the average psychophys-
ical equiluminance for ten or more subjects, selected from the same population as
in this study, approaches physical equiluminance (Dresp and Fischer, 2001; Guibal
and Dresp, 2004), and differences at the threshold level are unlikely to be relevant
here. Configurations with spatially separated background fields, where the inducers
are seen as belonging to two different visual objects separated by a gap in the mid-
dle, produced significantly higher probabilities of apparent contrast compared with
the regrouped configurations, where inducers and background form a single object.
Here, we observe that the grey object surfaces separated by the wide gap in the
middle have a significantly higher probability to induce apparent contrast. Devinck
et al. (2006) observed a significant increase in assimilation in the watercolor il-
lusion with increasing width of the contour separating the assimilated field from
its surround. Such effects are the direct perceptual consequence of what Chevreul
called “the contiguity of the frame”, which he believed could destroy or alter the
perception of any attribute of a scene when observed “without the frame”. Visual
configurations may thus be seen as pictures, hung side by side when separated by
distinct borders, or unified into a single one when the backgrounds are regrouped.
Chevreul’s concept points towards a structural analysis of visual configurations at
higher levels of perceptual and cognitive processing. Object borders and pattern
contours have previously been found to influence induction effects, produced by
colors or achromatic surfaces, in often unsuspected ways (Devinck et al., 2006;
De Weert and Spillmann, 1995; Dresp, 1992; Dresp and Fischer, 2001; Grossberg,
1997; Pinna, 2008; von der Heydt and Pierson, 2000) and no single explanation
suffices to account for them all. Given the insensitivity of the brightness induction
effects produced by the colors here to adaptation levels and luminance contrast,
low-level explanations in terms of critical interactions at the receptor levels can be
safely excluded.

In marked contrast with the induction effects produced by colors, the effects
generated by achromatic inducers, in terms of either contrast or assimilation, were
found to vary significantly with the luminance contrast of the inducers and the visual
adaptation level, with apparent contrast being the strongest after dark-adaptation,
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assimilation the strongest under daylight conditions. This may suggest that the si-
multaneous induction effects produced by the achromatic inducing patterns arise at
different levels of visual processing than the induction effects produced by the col-
ored patterns. While these latter are likely to involve complex interactions between
chromatic and achromatic visual pathways (e.g. Hong and Blake, 2009), the induc-
tion effects produced by grey inducers would involve only the achromatic pathways,
or the contrast sensitive on-center-off-center pathways of the brain. Interestingly,
with achromatic inducers on grey backgrounds, the probability of contrast was
found to be higher than the probability of assimilation when inducer contrasts bear
a negative sign, while the reverse holds for inducer contrasts of positive sign. This
observation is reminiscent of conclusions from earlier experiments by Magnussen
and Glad (1975) on brightness and darkness enhancement during flicker assessed
by human observers and their potential neural correlates, assessed on the basis of
firing activities in the contrast selective on-center-off-center pathways of cat cortex.
Functional asymmetries for contrasts of negative and positive sign consistent with
our observations were found, originating in the retina and communicated to visual
cortex through ‘straight-through’ neural pathways. Contrast-sensitive asymmetries
in the processing of visual objects of negative and positive sign (see also Dresp and
Langley, 2005) have been reported in various earlier studies. Many of these results
have remained unexplained (see McCormick et al., 2012, for a deeper analysis).

Although the bright inducers with the highest luminance contrasts are the most
likely to be seen as nearer, they turn out to be the most unlikely to induce appar-
ent contrast effects. Yet, a strong positive correlation between apparent contrast and
relative inducer depth is to be expected if a direct functional link between such in-
duction effects and the relative depth of inducing and test surfaces in the visual field
exists, as suggested by Long and Purves (2003) or, a century ago, by Katz (1911).
We find, instead, that the perceived relative distance of inducers appears to be inde-
pendent of the induction effects they produce in terms of either apparent contrast or
assimilation. The perception of the relative distance of the colored inducing patterns
is determined solely by their luminance contrast under conditions where no cues to
depth are made available, as predicted by Chevreul’s law of contrast. However, in
our experiments here the law only holds for contrasts of a strong positive sign.
Colors with luminance contrasts of a strong negative sign did not generate strong
probabilities to be perceived as nearer. This may be explained if the three surface
planes in the visual field (as here in Fig. 1) compete for perceptual organization
into foreground and background. Given that the general background of the screen
is always darker than the immediate background fields of the inducers (as here in
Fig. 1), inducers with a strong negative sign may generate some probability of be-
longing to that darker general background, of lying behind their immediate inducing
fields, in other words. Post-experimental discussions with the subjects revealed that
some of them had, indeed, the feeling that “sometimes the darker inducers seemed
to lie behind their background fields”. With two surface planes only (as here in
Fig. 3), this ambiguity disappears, and competition for perceptual organization pre-
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dicts that inducers of strong and equivalent negative and positive contrast signs will
generate equal likelihoods to be perceived as nearer to the observer than inducers
with weaker contrasts. Simultaneous induction effects, however, are unlikely with
the two-surface displays, as indicated by our results with the regrouped background
fields. These considerations deserve attention in further research.

Also, the tendency of red inducers with a low luminance contrast of positive
sign to produce weaker depth effects than green and yellow inducers with a low
luminance contrast of a positive sign calls for further testing. Additional exper-
iments with a tighter sampling of inducer contrasts in the lower positive range
would be needed to help determine whether a particular effect of low contrast green
and yellow exists in the perceptual genesis of relative depth of chromatic induc-
ers with weak positive luminance contrast. The effects reported here are insensitive
to visual adaptation levels. They definitely do not involve chromatostereopsis (e.g.
Dengler and Nitschke, 1993; Simonet and Campbell, 1990), as we chose configura-
tions where the chromatic or wavelength characteristics of the stimuli were always
constant in a given display, only the luminance contrast of the inducers varied.
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