
DOI 10.1007/s11238-008-9102-6
Theory and Decision (2010) 68:367–391 © The Author(s) 2008

BRAM DRIESEN, ANDRÉS PEREA, and HANS PETERS

ON LOSS AVERSION IN BIMATRIX GAMES

ABSTRACT. In this article three different types of loss aversion equi-
libria in bimatrix games are studied. Loss aversion equilibria are Nash
equilibria of games where players are loss averse and where the refer-
ence points—points below which they consider payoffs to be losses—
are endogenous to the equilibrium calculation. The first type is the fixed
point loss aversion equilibrium, introduced in Shalev (2000; Int. J. Game
Theory 29(2):269) under the name of ‘myopic loss aversion equilibrium.’
There, the players’ reference points depend on the beliefs about their
opponents’ strategies. The second type, the maximin loss aversion equi-
librium, differs from the fixed point loss aversion equilibrium in that the
reference points are only based on the carriers of the strategies, not on
the exact probabilities. In the third type, the safety level loss aversion
equilibrium, the reference points depend on the values of the own payoff
matrices. Finally, a comparative statics analysis is carried out of all three
equilibrium concepts in 2 × 2 bimatrix games. It is established when a
player benefits from his opponent falsely believing that he is loss averse.
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1. INTRODUCTION

Since von Neumann and Morgenstern (1944) developed
expected utility theory, it has been the dominant approach
in decision-making under uncertainty. However, the use of
expected utility in the economics of uncertainty has also been
challenged on empirical grounds. One of the earliest examples
is the Allais paradox (Allais, 1953).1

Several alternative models for decision-making under uncer-
tainty have been proposed. One of the most successful non-
expected utility theories is ‘prospect theory,’ developed by
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Kahneman and Tversky (1979). This theory assumes that eco-
nomic agents make choices between lotteries in two phases: an
editing phase and an evaluation phase. In the editing phase,
agents observe and interpret the options between which they
must choose using several simple heuristics, one of which is
the framing of payoffs as gains or as losses, using a reference
point. In the evaluation phase, an agent modifies his utility
function to a reference-dependent utility function, to account
for the perception of the payoffs. That is, perceived losses are
weighted downwards, a phenomenon frequently referred to as
loss aversion. The agent then transforms the probabilities with
which payoffs are realized by using a probability weighting
function, and uses these modified probabilities to calculate the
expected reference-dependent utility of the lottery. The latter
aspect is ignored in this article.

Although expected utility theory remains the standard
model for rational decision-making in mainstream economic
theory, the non-expected utility theories—and prospect the-
ory in particular—have proved to be successful challengers of
the expected utility paradigm. Many of these theories have
an equally solid mathematical basis as expected utility theory,
making them acceptable alternatives for economists. More
importantly, they tend to incorporate a number of behavioral
patterns, documented in the psychology literature2 that better
explain the decisions of economic agents, and as a conse-
quence, are better able to provide a theoretical basis for sev-
eral empirically observed phenomena that do not fit with the
standard theory of rational choice.3

Although a number of these behavioral aspects have been
applied to the specific field of non-cooperative game theory,4

the effects of loss aversion in non-cooperative games have
not been extensively studied. There is some work in which
the outcomes of certain well known examples of games
are showed to be consistent with experimental or empirical
observations, if the players are assumed to be loss averse.5

However, this literature focuses on specific examples, and fur-
thermore, usually assumes that the players’ reference points
are given by some exogenous status quo value. This does not
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fully reflect the idea of reference-dependence as it was orig-
inally intended: Tversky and Kahneman (1981) defined the
framing of payoffs as ‘the decision-maker’s conception of the
acts, outcomes, and contingencies associated with a particu-
lar choice’ (p. 453). This implies that the reference points of
players playing a non-cooperative game should not be fixed
ex ante, but must be based on their own strategies (the acts),
their payoffs (the outcomes), and the strategies of their oppo-
nents (the contingencies). Thus, game theory adds another
dimension to the issue of framing payoffs, and to loss aver-
sion in general, that is often ignored.

One paper in which reference-dependence is treated con-
sistently with Tversky and Kahneman’s definition is Shalev
(2000). There, an equilibrium concept is developed in which
each player transforms his basic utility payoffs with a refer-
ence point such that his expected reference-dependent equilib-
rium payoff is exactly equal to that reference point. Thus, the
players’ reference points can be interpreted as their expected
payoffs in equilibrium. In line with Tversky and Kahneman’s
definition, the reference points thus depend on the equilib-
rium strategies and on the players’ individual basic utility pay-
off matrices.

We develop two other equilibrium concepts that take into
account the players’ loss aversion in a way that is consis-
tent with Kahneman and Tversky’s definition. We restrict our-
selves to bimatrix games, i.e., two-player games in which each
player has finitely many pure strategies. The first new con-
cept, called ‘maximin loss aversion equilibrium,’ assumes that
each player’s reference point is equal to his pure maximin
value, taking into account only those pure strategies of the
opponent that are played with positive probability. This dif-
fers from Shalev’s equilibrium concept in two significant ways:
first, a player’s reference point depends on the carrier of the
opponent’s strategy. In addition, it assumes that players are
cautious, in the sense that they base their reference points on
‘worst-case’ values. Since a player’s reference point depends on
the carrier of his opponent’s strategy, it can exhibit disconti-
nuities when the opponent’s carrier changes. Indeed, maximin
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loss aversion equilibrium may fail to exist. Nonetheless, we
show existence if at least one player has at most two pure
strategies.

For the second new concept, the idea of loss aversion safety
level is central. The loss aversion safety level of a player is
the value of the matrix game, derived from the basic payoff
matrix with that value as reference point. A safety level loss
aversion equilibrium is an equilibrium in the bimatrix game
obtained by transforming the basic payoffs with these loss
aversion safety levels as reference points. This type of equi-
librium shares the fixed point idea with Shalev’s loss aver-
sion equilibrium and the ‘cautious player’ property with the
maximin loss aversion equilibrium. However, it is based on
reference points that no longer depend on the opponent’s
equilibrium strategy, and that represent the payoff that a
player can guarantee.

We conclude the article with a comparative statics analy-
sis of the three equilibrium concepts in 2×2 bimatrix games.
Specifically, we assume that both players are loss neutral, but
that player 2 believes that player 1 is loss averse. We study
the effect this has on the equilibrium payoff of player 1, and
establish under which condition this is beneficial to player 1.

The article continues as follows. After preliminaries in Sec-
tion 2, we discuss the ‘myopic loss aversion equilibrium’ of
Shalev (2000) in Section 3. Section 4 discusses the maximin
loss aversion equilibrium, and Section 5 the safety level loss
aversion equilibrium. In Section 6 we present the comparative
statics results mentioned above.

2. PRELIMINARIES

Before introducing the different equilibrium concepts we define
bimatrix games and Nash equilibrium, and indicate how loss
aversion of the players can be incorporated.
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2.1. Bimatrix games and nash equilibria

Players 1 and 2 have sets of pure strategies I ={1, . . . ,m} and
J = {1, . . . ,n}, respectively. If player 1 plays i and player 2
plays j , then player 1 (2) receives ai j (bi j ), the number in the
payoff matrix A (B) in row i and column j . The pair (A, B)

is called a bimatrix game.
The (k −1)-dimensional unit simplex �k is defined as

�k :=
{

ω∈R
k :

k∑
l=1

ωl =1 and ωi �0 for all i =1, . . . , k

}
.

A mixed strategy for player 1 (2) is an element of �m (�n). A
pure strategy l is identified with the mixed strategy el , where
el is the vector with a one in position l and zeros otherwise.
The carrier of a player’s strategy is the set of pure strategies
that a player plays with positive probability. That is,

Car(p) := {i ∈ I : pi >0} and Car(q) := { j ∈ J :q j >0}.
A Nash equilibrium in an m ×n bimatrix game (A, B) is a pair
(p∗,q∗)∈�m ×�n such that p∗ Aq∗ � p Aq∗ for all p ∈�m and
p∗Bq∗ � p∗Bq for all q ∈�n.6

2.2. Loss aversion

Following Shalev (2000), we introduce loss aversion in two-
player games (A, B) by specifying nonnegative loss aversion
coefficients λ1 and λ2, respectively measuring player 1’s and
player 2’s degrees of loss aversion. A loss aversion bimatrix
game is an object of the form ((A, B), (λ1, λ2)).

In addition to his loss aversion coefficient, player 1 (2) has
a number r1 (r2) below which he considers the basic utility
payoff entries of A (B) to be losses. These points, r1 and r2
are the players’ respective reference points. The idea of loss
aversion is captured by transforming the players’ basic utility
payoffs as follows:

aλ1,r1
i j =ai j −λ1 max{r1 −ai j ,0},

bλ2,r2
i j =bi j −λ2 max{r2 −bi j ,0}.
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Observe that this transformation preserves the ordering over
deterministic payoffs. That is, a decision-maker prefers basic
utility payoff x to y if and only if he prefers xλ,r to yλ,r for
all λ�0 and r ∈R.

For each equilibrium concept to be considered below, we
require that it is a Nash equilibrium in the bimatrix game
(Aλ1,r1, Bλ2,r2), where the reference points r1 and r2 are endog-
enous. The three equilibrium concepts differ in the way the
reference points are determined.

3. FIXED POINT LOSS AVERSION EQUILIBRIA

In Shalev (2000), a concept of loss aversion equilibrium
is introduced where the players’ reference points are found
through a fixed point calculation. First, define

r :=min
{

min
(i, j)∈ I×J

ai j , min
(i, j)∈ I×J

bi j

}

and

r :=max
{

max
(i, j)∈ I×J

ai j , max
(i, j)∈ I×J

bi j

}
.

In words, r and r are the lowest resp. the highest payoffs in
A or B. Then, for a strategy profile (p,q) and a reference
point r1 ∈ [r , r ], player 1 has an expected payoff of p Aλ1,r1q.
Observe that

p Aλ1,r q = p Aq � min
(i, j)∈ I×J

ai j � r

and that

r � max
(i, j)∈I×J

ai j � p Aq � p Aλ1,r q.

This and the fact that p Aλ1,r1q is a continuous function of
r1 implies that there is an r∗

1 ∈ [r , r ] such that r∗
1 = p Aλ1,r∗

1 q.
Furthermore, r∗

1 is unique because r1 is strictly increasing
on [r , r ], while p Aλ1,r1q is non-increasing on [r , r ]. Similarly,
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there is a unique r∗
2 ∈ [r , r ] such that r∗

2 = pBλ2,r∗
2 q. Clearly,

these ‘fixed point’ reference points can be interpreted as the
utilities players expect to realize given the strategy profile
(p,q).

Next, Shalev introduces a non-empty, compact- and con-
vex-valued correspondence β : �m × �n × [r , r ]2 → �m × �n ×
[r , r ]2 where

β( p̂, q̂, (r̂1, r̂2)) := {(p,q, (r1, r2))∈�m ×�n ×[r , r ]2 :
r1 = p Aλ1,r̂1 q̂ � p′ Aλ1,r̂1 q̂ for all p′ ∈�m,and
r2 = p̂Bλ2,r̂2q � p̂Bλ2,r̂2q ′ for all q ′ ∈�n}.

Since the (Nash) best reply-correspondence is upper semi-
continuous and the players’ payoff functions are continu-
ous in their respective reference points, it follows that the
correspondence β is also upper semicontinuous. Hence, by
the Kakutani fixed point theorem there exists a fixed point
(p∗,q∗, (r∗

1 , r∗
2 )). Note that the strategy pair (p∗,q∗) is a Nash

equilibrium in the bimatrix game (Aλ1,r∗
1 , Bλ2,r∗

2 ). Since the
reference points are determined through a fixed point calcu-
lation, we refer to this equilibrium concept as fixed point loss
aversion equilibrium.

DEFINITION 3.1. A fixed point loss aversion equilibrium
(p∗,q∗) ∈ �m × �n in a loss aversion bimatrix game ((A, B),

(λ1, λ2)) is a Nash equilibrium in the game (Aλ1,r∗
1 , Bλ2,r∗

2 ) such
that

r∗
1 = p∗ Aλ1,r∗

1 q∗ and r∗
2 = p∗Bλ2,r∗

2 q∗.

Although this is an effective way of dealing with loss aver-
sion, it is certainly not the only possible approach. One of the
less attractive features of this concept is that reference points
are not unique: two loss aversion equilibria generally do not
yield the same expected payoffs to the players. Furthermore,
a player’s reference point depends heavily on his own beliefs
about the opponent’s strategy. In what follows, we discuss two
alternative equilibrium concepts which—to a greater or lesser
extent—respond to these issues.
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4. MAXIMIN LOSS AVERSION EQUILIBRIA

In maximin loss aversion equilibrium, each player chooses
his reference point in such a way that his maximin payoff
w.r.t. the strategies he believes his opponent plays with pos-
itive probability is exactly equal to that reference point. The
Nash equilibria in the game that results from using these con-
sistent reference points are maximin loss aversion equilibria.

Maximin loss aversion equilibria are similar to fixed point
loss aversion equilibria, because in both concepts the players
base their reference points on the carriers of their opponents’
strategies. In a fixed point loss aversion equilibrium the ref-
erence points depend on the exact probabilities used in these
strategies. In a maximin loss aversion equilibrium, the refer-
ence points depend only on the carriers of the strategies of
the opponents. Each player considers the pure strategies of
the opponents that can be realized with positive probability,
and his reference point is the pure maximin value over those
strategies.

4.1. Definition of maximin loss aversion equilibria

Formally, for a strategy combination (p,q) ∈ �m × �n, the
players’ reference points are defined by7

r∗
1 :=max

i∈I
min

j∈Car(q)
ai j and r∗

2 :=max
j∈J

min
i∈Car(p)

bi j . (1)

Observe that this implies

r∗
1 :=max

i∈I
min

j∈Car(q)
a

λ1,r∗
1

i j and r∗
2 :=max

j∈J
min

i∈Car(p)
b

λ2,r∗
2

i j .

In other words, these reference points do not change after
the basic payoffs are transformed according to loss aversion
with these reference points.

Note that these reference points are unique for each carrier
played by the opponent.

Since a player’s reference point only depends on the car-
rier of the strategy played by his opponent, rather than the
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strategy itself, reference points are more robust against wrong
beliefs a player may have about his opponent.

DEFINITION 4.1. A maximin loss aversion equilibrium in a
loss aversion bimatrix game ((A, B), (λ1, λ2)) is a Nash equi-
librium (p∗,q∗)∈�m ×�n in the bimatrix game (Aλ1,r∗

1 , Bλ2,r∗
2 )

such that r∗
1 and r∗

2 are the reference points for (p∗,q∗) defined
by (1).

Note that this concept of maximin loss aversion equilib-
rium does not solve the problem of multiple reference points.
Furthermore, because reference points no longer depend con-
tinuously on the strategies played by the opponent, maximin
loss aversion equilibria may fail to exist.

4.2. Existence of maximin loss aversion equilibria

We show by a counter example that maximin loss aversion
equilibria may fail to exist. Next, we show existence if one of
the players has no more than two pure strategies.

4.2.1. An example showing non-existence

Consider the following 3×3 bimatrix game:

A =
⎡
⎣8 1 0

1 8 0
4 4 −1

⎤
⎦ B =

⎡
⎣1 2 1

2 1 1
0 0 1

⎤
⎦ .

Let player 2 be loss neutral, i.e., λ2 =0, and assume λ1 =1.
Due to player 2’s loss neutrality, r2 has no influence on the
equilibrium. That is, B = Bλ2,r2 for all values of r2. Observe
that player 1’s best reply against player 2 playing e1 is e1, and
player 2’s best reply against this is e2. Hence, e1 can never be
an equilibrium strategy for player 2. Similarly, we can exclude
e2 as one of player 2’s equilibrium strategies. This implies that
player 1’s equilibrium reference point is never equal to 8. This
leaves two possibilities: r1 =0 or r1 =4.
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• r1 =0: In this case, we have

Aλ1,0 =
⎡
⎣8 1 0

1 8 0
4 4 −2

⎤
⎦ .

The unique Nash equilibrium in (Aλ1,0, B) is ((.5, .5,0),

(.5, .5,0)), implying r1 =4.
• r1 =4: In this case, we have

Aλ1,4 =
⎡
⎣ 8 −2 −4

−2 8 −4
4 4 −6

⎤
⎦ .

The unique Nash equilibrium in (Aλ1,4, B) is
((

1
3 , 1

3 , 1
3

)
,(

1
3 , 1

3 , 1
3

))
, implying r1 =0.

Each of player 1’s possible reference points implies a loss
aversion game in which the carrier of player 2’s equilibrium
strategy is such that another reference point should be cho-
sen. Hence, there is no maximin loss aversion equilibrium.8

4.2.2. Existence in m ×2 and 2×n games

Although maximin loss aversion equilibria do not exist in gen-
eral, we do have existence in the case where one of the players
has no more than two pure strategies.

PROPOSITION 4.2. For all λ1, λ2 � 0 and all m × 2 or 2 × n
matrices A and B, the loss aversion bimatrix game ((A, B),

(λ1, λ2)) has a maximin loss aversion equilibrium.

Proof. Let λ1, λ2 � 0 and let A, B be m × 2 matrices, and
consider the game ((A, B), (λ1, λ2)). Define

r̃ :=max
i∈I

min
j∈J

ai j ,

and let (p∗,q) be a Nash equilibrium in the game (Aλ1,r̃ , B).
We distinguish three (exhaustive) cases:
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i. q = et where t ∈ J . This implies there is an s ∈ Car(p∗)
such that bst = max j∈J bs j , since otherwise et would not
be a best reply of player 2 against p∗. Since loss aversion
preserves the agent’s preference ordering over pure alter-

natives, this implies b
λ2,bst
st = max j∈J bλ2,bst

s j . From the fact

that s ∈ Car(p∗), it follows that aλ1,r̃
st = maxi∈I aλ1,r̃

i t , and
thus also aλ1,ast

st = maxi∈I aλ1,ast
i t . Hence, (es, et) is a pure

loss aversion equilibrium in ((A, B), (λ1, λ2)).
ii. (p∗,q) = (es, (β,1 − β)) where s ∈ I and β ∈ (0,1). This

implies

βaλ1,r1
s1 + (1−β)aλ1,r1

s2 �βaλ1,r1
i1 + (1−β)aλ1,r1

i2

for all i ∈ I with r1 = r̃ . Furthermore, it implies bs1 =bs2 =:
b from which it follows that bλ2,r2

s1 = bλ2,r2
s2 with r2 = b.

Hence, (es, (β,1 − β)) is a maximin loss aversion equilib-
rium in ((A, B), (λ1, λ2)).

iii. p∗ and q satisfy |Car(p∗)|�2 and |Car(q)|=2. Then there
exist pure strategies s and s′ in Car(p∗) such that [bs1 >

bs2 and bs′1 < bs′2] or [bs1 = bs2 and bs′1 = bs′2]. In both
cases, there exists an α ∈ (0,1) such that both player 2’s
pure strategies are best replies against player 1’s strategy
(αes + (1 −α)es′

), with payoffs given by Bλ2,r2 where r2 =
max j∈J mini∈{s,s′} bi j . But then ((α,1−α),q) is a maximin
loss aversion equilibrium in the game ((A, B), (λ1, λ2)).

This completes the proof of the m ×2 case. The 2 ×n case is
analogous. ��

Note that the proof of this proposition provides a method
to calculate maximin loss aversion equilibria. One can mod-
ify player 1’s payoff matrix under the assumption that player
2 plays both his strategies with positive probability, and
calculate the Nash equilibria in the resulting game. These
Nash equilibria can then be transformed into maximin loss
aversion equilibria.
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5. SAFETY LEVEL LOSS AVERSION EQUILIBRIA

In a safety level loss aversion equilibrium, a player’s reference
point is the value of the matrix game which is obtained by
adapting his basic payoff matrix to account for loss aversion.
If this basic payoff matrix is C and the loss aversion coeffi-
cient is λ, then this reference point is equal to the number r
if r is the value of the matrix game Cλ,r . Details are spelled
out below.

This reference point does not depend on a player’s belief
about the strategy of the opponent in equilibrium. Instead, a
player computes what he can obtain for sure and considers
payoffs below this number as losses. Moreover, these refer-
ence points are unique, and safety level loss aversion equilib-
ria always exist.

5.1. Definition and existence of safety level loss aversion
equilibria

The safety level is a concept that dates back to von
Neumann’s (1928) analysis of zero-sum games.

Formally, for a bimatrix game (A, B), the players’ safety
levels are defined by

v1(A) := max
p∈�m

min
q∈�n

p Aq, and v2(B) := max
q∈�n

min
p∈�m

pBq.

Since a player can guarantee his safety level, it would make
an intuitively appealing reference point in a loss aversion bim-
atrix game ((A, B), (λ1, λ2)). However, in the payoff matrices
adapted by loss aversion the safety levels may change. There-
fore, we look for reference points which in the transformed
matrices are equal to the safety levels. That is, we wish to find
r∗

1 and r∗
2 such that r∗

1 = v1(Aλ1,r∗
1 ) and r∗

2 = v2(Bλ2,r∗
2 ). Such

reference points are called loss aversion safety levels.
In order to show that there is a unique r∗

1 such that r∗
1 =

v1(Aλ1,r∗
1 ), it is sufficient to show that v1(Aλ1,r ) is a contin-

uous, non-increasing function of r on the interval [r , r ], and
that
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v1(Aλ1,r )� r , and v1(Aλ1,r )� r .

It is obvious that v1(Aλ1,r ) is continuous in r . In order to
show that it is non-increasing in r on the interval [r , r ], let r1
and s1 be reference points in [r , r ] with r1 > s1, and let

p∗∈arg max
p∈�m

min
q∈�n

p Aλ1,r1q, and

q∗∈arg min
q∈�n

p∗ Aλ1,s1q.

Then

v1(Aλ1,s1)= max
p∈�m

min
q∈�n

p Aλ1,s1q

� min
q∈�n

p∗ Aλ1,s1q

= p∗ Aλ1,s1q∗.

Note that p Aλ1,r q is non-increasing in r for any given strategy pair
(p,q). Therefore, p∗ Aλ1,s1q∗ � p∗ Aλ1,r1q∗. Now observe that

p∗ Aλ1,r1q∗ � min
q∈�n

p∗ Aλ1,r1q

= max
p∈�m

min
q∈�n

p Aλ1,r1q

=v1(Aλ1,r1).

This shows that v1(Aλ1,r ) is non-increasing in r . Furthermore,

v1(Aλ1,r )=v1(A)� min
(i, j)∈I×J

ai j � r ,

and since v1(Aλ1,r ) is non-increasing in r , we also have

v1(Aλ1,r )�v1(Aλ1,r )=v1(A)� max
(i, j)∈I×J

ai j � r .

Thus, there must be a unique r∗
1 ∈ [r , r ] such that r∗

1 =
v1(Aλ1,r∗

1 ). Similarly, there exists a unique r∗
2 ∈ [r , r ] such that

r∗
2 =v2(Bλ2,r∗

2 ).
The players transform their payoff matrices using their

degrees of loss aversion and their loss aversion safety lev-
els. The safety level loss aversion equilibria are the Nash
equilibria in the transformed game, i.e., the bimatrix game
(Aλ1,r∗

1 , Bλ2,r∗
2 ).
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DEFINITION 5.1. A safety level loss aversion equilibrium in
a loss aversion bimatrix game ((A, B), (λ1, λ2)) is a Nash equi-
librium (p∗,q∗)∈�m ×�n in the bimatrix game (Aλ1,r∗

1 , Bλ2,r∗
2 )

such that

r∗
1 =v1(Aλ1,r∗

1 ) and r∗
2 =v2(Bλ2,r∗

2 ).

5.2. Strict dominance when players are loss averse

In a safety level loss aversion equilibrium the determination
of the equilibrium strategies is not related to the determina-
tion of the reference points. Hence, in contrast to the previ-
ous equilibrium concepts, reference points may also depend
on strategies that are not played in equilibrium. Suppose for
instance that player 2 has a strictly dominated column in his
payoff matrix B, say bi,n−1 > bi,n for all i = 1, . . . ,m. Then,
whatever the reference level and the adapted payoff matrix are
going to be, player 2 will not put any probability on column
n in an equilibrium. One could argue that player 1, in deter-
mining his loss aversion safety level, should take into account
that player 2 is not going to play column n. More generally,
one could argue that, before actually computing loss aversion
safety levels, first strictly dominated strategies should be itera-
tively eliminated. This raises the question which strategies are
strictly dominated in the loss aversion context. The remainder
of this section is devoted to studying this question.

We say that a pure strategy i ∈ I is strictly dominated in A if
there is a strategy p ∈�m with pi =0, such that p Ae j >ei Ae j

for all j ∈ J . A pure strategy i ∈ I is said to be strictly domi-
nated in (A, λ1), if it is strictly dominated in Aλ1,ρ for all ρ ∈
[r , r ]. Then, to eliminate a pure strategy i ∈ I from the game,
it is no longer sufficient that it is strictly dominated in A. In
order to see this, consider the following example:

A =
⎡
⎣5 0

0 5
2 2

⎤
⎦ .
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Observe that player 1’s pure strategy e3 is strictly dominated
by the mixed strategy (0.5,0.5,0). Now let λ1 = 1 and r1 = 2.
Then the transformed payoff matrix is

A1,2 =
⎡
⎣ 5 −2

−2 5
2 2

⎤
⎦ .

Clearly, strategy e3 is no longer strictly dominated in A1,2,
even though it was in A.

Since A = Aλ1,r , ei being strictly dominated in A is still a
necessary condition for ei to be strictly dominated in (A, λ1).
The following proposition gives a necessary and sufficient
condition.

PROPOSITION 5.2. In the game ((A, B), (λ1, λ2)) where λ1 >0,
a strategy p ∈ �m strictly dominates the pure strategy i ∈ I in
(A, λ1) if and only if p strictly dominates i in Aλ1,ρ for all

ρ ∈
[

min
j∈J

ai j , max
(i ′, j)∈Car(p)×J

ai ′ j

]
.

Proof. Let a pure strategy i be strictly dominated by a
strategy p in the payoff matrix A. Then define ρ :=min j∈J ai j
and ρ :=max(i ′, j)∈Car(p)×J ai ′ j .
⇐: Let the pure strategy i be strictly dominated in (A, λ1).
Then it is strictly dominated in Aλ1,ρ for all ρ ∈ [r , r ]. Since
[ρ,ρ] ⊆ [r , r ], strategy i is strictly dominated in Aλ1,ρ for all
ρ ∈[ρ,ρ].
⇒: Let the pure strategy i be strictly dominated by p in Aλ1,ρ

for all ρ ∈[ρ,ρ]. Then p strictly dominates i in Aλ1,ρ . That is,

p Aλ1,ρe j > ei Aλ1,ρe j

for all j ∈ J . Let ρ ∈ [r , ρ]. Then ei Aλ1,ρe j = ei Aλ1,ρe j . Fur-
thermore, p Aλ1,ρe j � p Aλ1,ρe j since ρ �ρ. Hence, p Aλ1,ρe j >

ei Aλ1,ρe j as well. So p strictly dominates i in Aλ1,ρ for all ρ ∈
[r , ρ].
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Similarly, p strictly dominating i in Aλ1,ρ for all ρ ∈
[ρ,ρ] implies that p strictly dominates i in Aλ1,ρ . That is,
p Aλ1,ρe j > ei Aλ1,ρe j for all j ∈ J . Observe that for all ρ ∈
[ρ, r ], we have that

p Aλ1,ρe j= (1+λ1)p Ae j −λ1ρ.

Note that for all j ∈ J there is an i ′ ∈ Car(p) such that
ei Aλ1,ρe j � ei ′ Aλ1,ρe j . Hence, for all j ∈ J we have that
ei Aλ1,ρe j �ρ for all ρ ∈[ρ, r ], implying

ei Aλ1,ρe j = (1+λ1)e
i Ae j −λ1ρ

for all j ∈ J and ρ ∈ [ρ, r ]. Hence, (1 + λ1)p Ae j − λ1ρ > (1 +
λ1)ei Ae j −λ1ρ for all j ∈ J , and the inequality is preserved if
we replace ρ by any ρ ∈ [ρ, r ]. But then p Aλ1,ρe j > ei Aλ1,ρe j

for all j ∈ J and ρ ∈ [ρ, r ]. That is, p strictly dominates i in
Aλ1,ρ for all ρ ∈[ρ, r ].

Thus, p strictly dominates i in Aλ1,ρ for all ρ ∈[r , r ], which
means that p strictly dominates i in (A, λ1). ��
REMARK 5.3. It could happen that none of the l strate-
gies p1, . . . , pl ∈ �m dominates a pure strategy i in (A, λ1),
while taken together they do. Suppose none of the strategies
p1, . . . , pl dominates i in (A, λ1). Then for each pk there is an
interval Rk ⊆ [r , r ] such that pk does not strictly dominate i
in Aλ1,ρ for any ρ ∈ Rk . Then, as long as

⋂l
k=1 Rk = ∅, there

is always some strategy pk strictly better than pure strategy i .

Thus, when considering safety level loss aversion equilibria
in a loss aversion bimatrix game ((A, B), (λ1, λ2)), we could
assume that the payoff matrices A and B are the result of iter-
ated elimination of strategies that are either strictly dominated
in (A, λ1) and (B, λ2) respectively, or strictly dominated in the
weaker sense, explained in the above remark.

6. COMPARATIVE STATICS

In this section we consider the effect of loss aversion on the
equilibrium payoff of a player. Specifically, suppose that both
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players are loss neutral but player 2 thinks that player 1 is
loss averse. This makes player 2 change his equilibrium strat-
egy and we investigate when this is beneficial for player 1.

6.1. Preliminaries

For reasons of tractability we only consider 2 × 2 bimatrix
games.9 The basic utilities are represented by the following
matrices:

A :=
[

a11 a12
a21 a22

]
and B :=

[
b11 b12
b21 b22

]
.

Since pure Nash equilibria are equivalent to the pure ver-
sions of all three types of loss aversion equilibrium considered
above, we can restrict ourselves to mixed equilibria. Following
Berden and Peters (2006), we exclude the case where player 1
has a weakly dominant strategy, implying a11 �=a21 and a12 �=
a22. W.l.o.g. assume a11 > a21, a12 < a22, and a11 � a22. This
leaves three exhaustive cases:

i. a21 �a22;
ii. a22 �a21 �a12;
iii. a12 �a21.

In addition, we assume b11 < b12 and b21 > b22. Hence, also
player 2 has no weakly dominant strategy. These assumptions
imply that the game has a unique, completely mixed Nash
equilibrium (p∗,q∗), with

p∗ =
[

γ

1−γ

]
and q∗ =

[
δ

1− δ

]
,

where

γ = b21 −b22

b12 −b11 +b21 −b22
and δ = a22 −a12

a11 −a12 −a21 +a22
.

Assume that player 2 does not have any information about
his opponent’s attitude towards losses, allowing him to form
a wrong belief about it. That is, player 2 may falsely believe
that player 1 is loss averse, which causes player 2 to play dif-
ferently in order to make player 1 indifferent between his pure
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strategies in equilibrium. Specifically, player 2 plays a strategy
q̃ = (δ̃,1 − δ̃) where δ̃ ∈ (0,1). Player 1 knows the utility func-
tion of his opponent, so he keeps playing his previous strategy
p∗. Thus, if player 2 misperceives λ1, the mixed loss aversion
equilibrium becomes (p∗, q̃).10

The equilibrium under player 2’s wrong perception of λ1
can be explained in two ways. First, player 1 could be naive
in the sense that he does not know that player 2 does not per-
ceive his degree of loss aversion correctly. Thus, player 1 plays
his equilibrium strategy and is surprised by player 2’s action.
A second explanation would be that player 1—knowing that
player 2 does not have any information about λ1—intention-
ally misrepresents his degree of loss aversion, but is myopic in
the sense that he is not able to determine the strategy he has
to play in order to optimally exploit player 2’s action.

Clearly, starting from a situation where both players are
loss averse but player 2 overestimates player 1’s loss aversion
is not really different from the present case.

6.2. Result

We say that player 2’s wrong perception of λ1 benefits player
1 if p∗ Aq̃ � p∗ Aq∗, and hurts him if p∗ Aq̃ � p∗ Aq∗.11 The fol-
lowing theorem presents the comparative statics result.

THEOREM 6.1. In case i. player 1 benefits from player 2
misperceiving λ1. In cases ii. and iii. player 1 benefits from
player 2 misperceiving λ1 if and only if

b21 −b22

b12 −b11 +b21 −b22
� a22 −a21

a11 −a12 +a22 −a21
. (2)

The proof can be found in the appendix.
Note that the left-hand side in (2) is equal to γ , i.e., the

probability that player 1 puts on the first row in equilibrium.
If non-negative, the right-hand side γ ′ = a22−a21

a11−a12+a22−a21
in (2)

is the probability that player 1 would have to put on the first
row in order to be indifferent between the actions of player 2.
In that case, playing the mixed strategy p′ = (γ ′,1−γ ′) would
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yield player 1 the Nash equilibrium payoff p∗ Aq∗. Thus, as
long as player 2 plays his Nash equilibrium strategy q∗, then
player 1 is indifferent between playing p∗ and p′. However,
if player 2 plays q̃, i.e., erroneously believes player 1 is loss
averse, then player 1 obtains the Nash equilibrium payoff by
playing p′, but could receive more or less by playing p∗.

If condition (2) on the payoffs of the players is satisfied,
we thus obtain that pretending to be more loss averse makes
a player better off. The comparative statics of the fixed point
loss aversion equilibrium were also investigated in Shalev
(2000), with different results however. Shalev investigated how
a player’s reference point moves with his own degree of loss
aversion. As this reference point equals a player’s equilibrium
payoff by definition, this yields associated comparative statics
results. It is not clear what the proper interpretation of these
results is since payoffs for players with different utility func-
tions are compared. For our approach this difficulty does not
arise since we compare payoffs of one and the same player 1:
only player 2’s belief about player 1 changes, but not player 1
himself.

7. SUMMARY

In this article we have argued that in order to correctly incor-
porate the concept of loss aversion into non-cooperative game
theory, it is necessary to let the reference points of the players
depend on the strategies the players play. We have examined
three different loss aversion equilibrium concepts that satisfy
this requirement. Then we have established that in 2×2 bim-
atrix games, a simple condition on the payoffs is sufficient
for a player to benefit from his opponent overestimating his
(the player’s) degree of loss aversion.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.
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APPENDIX A: PROOF OF THEOREM 6.1

A player’s reference point is in between the lowest and the
highest payoff in his payoff matrix. In the 2×2 case, there are
three intervals which could contain r1: the upper, the middle
and the lower interval. Let π ∈R

4 with

π =

⎧⎪⎨
⎪⎩

(a12, a22, a21, a11) in case i.
(a12, a21, a22, a11) in case ii.
(a21, a12, a22, a11) in case iii.

The following lemma says that the reference point in a fixed
point loss aversion equilibrium lies in the middle interval.

LEMMA A.1. If (p∗,q∗, (r1, r2)) is a fixed point loss aversion
equilibrium in ((A, B), (λ1, λ2)), then r1 ∈[π2, π3].

Proof. For any basic utility payoff x let x̂ denote trans-
formed payoff as a consequence of loss aversion. The expected
payoff r1 under the mixed fixed point loss aversion equilib-
rium is a convex combination of â21 and â22. Therefore, r1 �
max{â21, â22}�max{a21,a22} and thus, r1 �π3.

In order to see that the reference point can never be in the
lower interval, we consider each case separately.

Case i.: Here, a21 � a22 and a22 > a12. Assume r1 ∈ [a12,a22).
Note that a22 − a21 � 0 and â12 − a22 < 0, and thus (a22 −
a21)(â12 −a22)�0. By an elementary computation it follows
that

a11a22 −a21â12

a11 − â12 −a21 +a22
�a22.

In other words, player 1’s expected payoff under loss aver-
sion is larger or equal than a22, contradicting r1 < a22.
Thus, r1 �π2.

Case ii.: Here, a11 > a21 and a22 � a21. Assume r1 ∈ [a12,a21).
Now (a11 −a21)(a22 −a21)�0, which implies

a11a22 −a21â12

a11 − â12 −a21 +a22
�a21,
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contradicting r1 <a21. Hence, r1 �π2.
Case iii.: Repeating the argument from case ii., with a21

replaced by a12, and â12 by â21, yields the desired contra-
diction for case iii.

It follows from the above that r1 ∈[π2, π3]. ��
For the other loss aversion equilibrium concepts we have

similar results.

LEMMA A.2. If (p∗,q∗, (r1, r2)) is a maximin loss aversion
equilibrium in ((A, B), (λ1, λ2)), then r1 =π2.

Proof. Since the equilibrium is completely mixed we have in
Case i.: maxi∈I min j∈J ai j = max{a12,a22} = a22; and in Cases
ii. and iii.: maxi∈I min j∈J ai j = max{a12,a21} = a21. Thus,
r1 =π2. ��
LEMMA A.3. If (p∗,q∗, (r1, r2)) is a safety level loss aversion
equilibrium in ((A, B), (λ1, λ2)), then r1 ∈[π2, π3].

Proof. Recall that for any 2×2 matrix A, we have

v1(A)= max
p∈�2

min
q∈�2

p Aq �max
i∈I

min
q∈�2

ei Aq =max
i∈I

min
j∈J

ei Ae j .

Assume r1 <π2. Then

π2 =max
i∈I

min
j∈J

ei Aλ1,r1e j.

In safety level loss aversion equilibrium we have r1 =v1(Aλ1,r1).
Then

v1(Aλ1,r1)<π2 =max
i∈I

min
j∈J

ei Aλ1,r1e j ,

which is a contradiction. Hence, r1 �π2.
The safety level, v1(Aλ1,r1), can be interpreted as player 1’s

Nash equilibrium payoff in the zero-sum game (Aλ1,r1,−Aλ1,r1).
By a similar reasoning as above, we have that player 2’s pay-
off, −v1(Aλ1,r1), is above −π3, implying v1(Aλ1,r1)�π3. Hence,
r1 ∈[π2, π3]. ��
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Recall that q̃ = (δ̃,1 − δ̃). We now compute δ̃ for the three
different cases.

Case i.: Here, we have a11 > a21 � a22 > a12, and by Lemmas
A.1–A.3, r1 ∈[a22,a21]. Thus,

δ̃= a22 −a12 −λ1(r1 −a22)+λ1(r1 −a12)

a11 −a12 −a21 +a22 +λ1(r1 −a12)−λ1(r1 −a22)

= (1+λ1)(a22 −a12)

a11 −a21 + (1+λ1)(a22 −a12)
.

Case ii.: Here a11 >a22 �a21 >a12 with a11 >a22, a22 >a21, or
both. By Lemmas A.1–A.3, we have r1 ∈[a21,a22]. Hence,

δ̃= a22 −a12 +λ1(r1 −a12)

a11 −a12 +λ1(r1 −a12)−a21 +λ1(r1 −a21)+a22

= a22 −a12 +λ1(r1 −a12)

a11 −a12 −a21 +a22 +λ1(2r1 −a12 −a21)
.

Case iii.: Here a11 >a22 �a12 >a21. By Lemmas A.1–A.3, r1 ∈
[a12,a22], which implies that δ̃ has the same value as in case
ii. That is,

δ̃ = a22 −a12 +λ1(r1 −a12)

a11 −a12 −a21 +a22 +λ1(2r1 −a12 −a21)
.

Having specified q̃, player 2’s equilibrium strategy associ-
ated with a wrong belief about λ1, for each case, we now
investigate how it compares to q∗, player 2’s equilibrium strat-
egy associated with the correct belief about λ1.

LEMMA A.4. Let (p∗, (δ,1 − δ)) be the Nash equilibrium in
(A, B), and let (p∗, (δ̃,1 − δ̃)) be the Nash equilibrium in
(Aλ1,r1, B), where r1 is the equilibrium reference point associ-
ated with either of the three loss aversion equilibrium types.
Then

δ̃ � δ

in all three cases.
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Proof. Let x :=a22 −a12 and y :=a11 −a21 −a12 +a22. Note
that x and y are strictly positive, and that δ = x/y. Assume
λ1 >0. Again we consider the different cases.
Case i.: Here we have

δ̃ = (1+λ1)(a22 −a12)

a11 −a21 + (1+λ1)(a22 −a12)
= (1+λ1)x

y +λ1x
.

Since y > x this implies δ̃ >δ.
Cases ii. and iii.: Here we have

δ̃ = a22 −a12 +λ1(r1 −a12)

a11 −a12 −a21 +a22 +λ1(2r1 −a12 −a21)

= x +λ1(r1 −a12)

y +λ1(2r1 −a12 −a21)
.

Now δ̃ � δ follows by straightforward computation, using r1 ∈
[a21,a22]. ��

Proof of Theorem 6.1. We have

p∗ Aq∗ = [
γ a11 + (1−γ )a21 γ a12 + (1−γ )a22

] [
δ

1− δ

]
,

and

p∗ Aq̃ = [
γ a11 + (1−γ )a21 γ a12 + (1−γ )a22

] [
δ̃

1− δ̃

]
.

From Lemma A.4, we have δ̃ � δ. Then p∗ Aq̃ � p∗ Aq∗ if and
only if γ a11 + (1 − γ )a21 � γ a12 + (1 − γ )a22, which is equiv-
alent to (2). Observe that in case i. this condition is trivially
satisfied. This concludes the proof. ��

NOTES

1. For surveys of the literature on violations of expected utility theory,
see Schoemaker (1982) or Machina (1987)

2. See for instance Kahneman and Tversky (1979), and Hershey et al.
(1982), and others.

3. An overview of puzzles and the solutions proposed by prospect the-
ory is provided in Camerer (2002).
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4. Examples are Crawford (1990), Dekel et al. (1991), and Eichberger
and Kelsey (1999).

5. For example, Fershtman (1996) studies an incumbency game,
Berejikian (2002) a.o. the game of chicken and the prisoners’
dilemma, and Butler (2007) an ultimatum game.

6. Note that we do not use the transposition notation for vectors and
matrices if there is no confusion what is meant.

7. For simplicity of notation we do not use different symbols for the
various reference point concepts in this article.

8. It can be checked—see Driesen et al. (2007)—that the appropri-
ate best reply- correspondence is not upper semicontinuous, so that
(indeed) the Kakutani fixed point theorem cannot be applied. In
fact, it can be shown that the Kakutani fixed point theorem only
applies in 2×2 games.

9. As an additional advantage there is no existence problem for maxi-
min equilibria.

10. In this 2×2 framework, players keep playing strategies with full car-
riers for each type of loss aversion equilibrium.

11. Note that player 2’s wrong belief about his opponent’s loss attitude
neither hurts nor benefits himself. That is, p∗ Bq∗ = p∗ Bq̃.
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