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Crude oil, which is an important part of energy consumption, can drive or hinder economic development based on its production
and consumption. Reasonable predictions of crude oil consumption in China are meaningful. In this paper, we study the grey-
extended SIGM model, which is directly estimated with differential equations. This model has high simulation and prediction
accuracies and is one of the important models in grey theory. However, to achieve the desired modeling effect, the raw data
must conform to a class ratio check. Unfortunately, the characteristics of the Chinese crude oil consumption data are not
suitable for SIGM modeling. Therefore, in this paper, we use a least squares estimation to study the parametric operation
properties of the SIGM model, and the gamma function is used to extend the integer order accumulation sequence to the
fractional-order accumulation generation sequence. The first-order SIGM model is extended to the fractional-order FSIGM
model. According to the particle swarm optimization (PSO) mechanism and the properties of the gamma function of the
fractional-order cumulative generation operator, the optimal fractional-order particle swarm optimization algorithm of the
FSIGM model is obtained. Finally, the data concerning China’s crude oil consumption from 2002 to 2014 are used as
experimental data. The results are better than those of the classical grey GM, DGM, and NDGM models as well as those of the
grey-extended SIGM model. At the same time, according to the FSIGM model, this paper predicts China’s crude oil
consumption for 2015–2020.

1. Introduction

Energy is an important material basis for global economic
growth and human social development. As an important
component of energy consumption, the production and
consumption of crude oil can drive or hinder economic
development. At present, China is facing rapid economic
growth, changes in consumer spending structures, and an
economic development with an increasing dependence on
crude oil resources [1, 2]. Crude oil supply and demand
imbalances are becoming increasingly prominent. Low
utilization of crude oil, irrational consumption structures,
serious pollution, and other issues can restrict the develop-
ment of China’s economy. With China’s industrialization,
its urbanization, energy, and environmental constraints will

increase. The settling of the contrast between the energy
and economic development is related to the sustainable
development of China’s economy and society.

Crude oil demand forecasting is an important part of the
development of crude oil development strategies and the
scientific, reasonable, and accurate analysis of China’s crude
oil demand, which is needed not only to protect China’s
energy security and effectively prevent the bottlenecking of
crude oil supplies but also for the realization of China’s
economic health. Sustainable and rapid development will
have important impacts on these processes. China’s rapidly
growing energy consumption and its structural changes
continue to challenge China’s energy supply security.
Therefore, effective methods of addressing the demand for
crude oil are expected to become the basis for the policy
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formulation of China’s energy supply security and will
directly affect the stability of social production and national
energy security in addition to helping the Chinese gov-
ernment establish an independent demand forecasting
mechanism for crude oil and the energy sector to achieve
an effective market transformation.

There are many ways to forecast crude oil demands,
including the autoregressive moving average (ARMA) model
[3], autoregressive conditional heteroscedasticity (ARCH)
model [4], generalized ARCH (GARCH) model [5], and
other time series methods as well as via artificial neural
networks [6], fuzzy theory predictions [7, 8], and grey system
methods [9, 10]. Liu et al. [11] used a time series approach to
forecast the US West Texas Lightweight (WTI) crude oil
prices based on crude oil demands. Liang et al. [12] predicted
China’s crude oil price using wavelet decomposition. Zhang
[13] used the quadratic moving average method to predict
the annual consumption of the next five years of oil
consumption. Guo et al. [14] used soft computing and hard
computing to forecast China’s crude oil demand. Azadeh
et al. [15] analyzed the oil consumption of Canada, United
States, Japan, and Australia from 1990 to 2005 using fuzzy-
regression data envelopment. Azadeh et al. [16] predicted
the crude oil prices using a fuzzy-regression algorithm. Park
and Yoo [17] studied the dynamics of oil consumption and
economic growth in Malaysia.

The grey model is simple and adaptable, can handle muta-
tions of parameters, and does not require many data points for
predictive updates. The forecasting model GM (1,1) [18] has
been widely used in many fields, such as those of transporta-
tion, medicine, industry, agriculture, and military [19–21],
since its introduction. Researchers have expanded a variety
of new models, such as DGM (1,1), NDGM (1,1), and GM
(1, N) [22–28], from the classic GM (1,1) model. Concur-
rently, the grey prediction model has been studied in detail,
including its background value, modeling mechanism, combi-
natorial model, and model optimization [29–33]. Grey
forecasting models have been successfully applied for crude
oil demand forecasting: Huang et al. [34] have used the grey
prediction model to predict global crude oil consumption.
Xu [35] used the grey model to forecast China’s crude oil
consumption. Mu Hailin et al. also used the grey model to
predict China’s crude oil consumption.

The SIGM model [10] is an extended version of the
classical GM (1,1) model. The SIGM model can optimize
the model parameters, which are directly estimated from
the differential equation, making its simulations and
predictions more accurate. However, the parameters in the
literature [10] are too cumbersome to estimate, so this paper
uses the least squares estimation method to simplify the
parameter estimations of the SIGM model and to obtain
the corresponding formula. At the same time, the modeling
data of the SIGM model is a first-order cumulative genera-
tion sequence. To achieve the desired modeling results, the
raw data must conform to the class ratio test, but the data
characteristics of China’s crude oil consumption do not meet
the class ratio test. Therefore, this paper will promote the use
of the SIGM model, which uses the gamma function to
extend the integer order cumulative generation operator into

the fractional-order cumulative generation operator, to extend
the first-order cumulative generation sequence to the
fractional-order cumulative sequence and to establish the
FSIGM model of the fractional-order operator. At the same
time, by using the mechanism of the particle swarm optimiza-
tion (PSO) and the properties of the gamma function of the
fractional-order generation operator, the optimal fractional
particle swarm optimization algorithm of the FSIGM model
is obtained, and the optimal fractional order is obtained using
different data. Finally, the data describing the consumption of
the crude oil in China from 2002 to 2014 are analyzed. The
results show that the newly proposed FSIGM model has an
improved accuracy and prediction accuracy over those of the
original SIGM; however, its simulation accuracy is much
higher than the classic GM, DGM, and NDGM models. The
accuracy of the prediction is not much different from that of
the GM and FSIGM models, but the simulation accuracy is
obviously better than the DGM and NDGM models.

The sections of this paper are organized as follows: In
Section 2, the basic concepts and properties of the GM (1,1)
and SIGM models are introduced. In Section 3, the
fractional-order SIGM model is proposed and its important
properties are analyzed. Based on the mechanisms of the
particle swarm optimization, the particle swarm optimiza-
tion algorithm is obtained. In Section 4, the crude oil
consumption in China from 2002 to 2014 is used for empir-
ical analysis. The simulation results and prediction results of
the FSIGMmodel are compared with the classical grey model
GM, DGM, and NDGM models and the grey-extended
SIGMD model. In Section 5, conclusions are drawn.

2. Preliminaries

This section mainly introduces the definition and basic
properties of the GM (1,1) model and the definition of the
SIGMmodel. The least squares estimation is used to estimate
the parameters of the SIGMmodel, which is simpler than the
method used in the literature [10].

2.1. GM (1,1) Model. Assume that the sequence:

X 0 = x 0 1 , x 0 2 ,… , x 0 n 1

is an original data sequence, and the sequence:

X 1 = x 1 1 , x 1 2 ,… , x 1 n 2

is the accumulated generation sequence of X (0), where
x 1 k =∑k

i=1x
0 i , k = 1, 2,… , n

Z 1 is the mean sequence of X 1 .

Z 1 = z 1 1 , z 1 2 ,… , z 1 n , 3

where z 1 k = 0 5 x 1 k + x 1 k − 1 , k = 2, 3,… , n

Definition 1. Assume that the sequence X 0 , X 1 , and Z 1 is
shown as (1), (2), and (3), then

x 0 k + az 1 k = b 4
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is a first-order equation with a variable grey system predic-
tion model, which is referred to as GM (1,1) model [18]. Its
parameter estimation:

a

b
= BTB

−1
BTY , 5

where

B =

−z 1 2 1

−z 1 3 1

⋮ ⋮

−z 1 n 1

,

Y =

x 0 2

x 0 3

⋮

x 0 n

6

The intrinsic reduction value of the GM (1,1) model is

x̂ 1 k + 1 = x 1 1 + b
a

e−ak + b
a

7

2.2. SIGM Model

Definition 2 (see [10]). For X 0 , X 1 , and Z 1 given by (1),
(2), and (3), and c is a constant, then the following equation:

x 0 k + az 1 k = kb + c 8

is the expanded form of GM (1,1) model.

By definition, we can get the following.

Property 1. The parameter vector of SIGM model is â =
a, b, c T, using least squares estimation.

â = ATA
−1
ATX, 9

where A, X are

A =

−z 1 2 2 1

−z 1 3 3 1

⋮ ⋮ ⋮

−z 1 n n 1

,

X =

x 0 2

x 0 3

⋮

x 0 n

10

Definition 3. The equation:

dx 1

dt
+ ax 1 = bk + c 11

is the whitening equation of FSIGM model x r−1 k +
az r k = bk + c.

Thus, we can get the following theorem.

Theorem 1. Assume that B, Y , and â are given by Definition 1
and Property 1, and

(1) The time response function of the whitening (12) is

x̂ 1 t = x 1 1 +
b
a2

−
c
a

e−at +
b
a
t −

b
a2

+
c
a

12

(2) The time response function of the whitening (28) is

x̂ 1 k = x 1 1 +
b
a2

−
c
a

e−a k−1 +
b
a
k −

b
a2

+
c
a

13

(3) Restore value is

x̂ 0 k = x̂ 1 k − x̂ 1 k − 1 14

Proof 1. From (11):

x 1 t = e− adt bt + c e adtdt + C

= Ce− adt + e− adt bt + c e adtdt

= Ce−at +
b
a
e−at teat −

1
a
eat + e−at

c
a
eat

= Ce−at +
b
a
t −

b
a2

+
c
a

15

When t = 0, there is C = x 1 1 + b/a2 − c/a. Thus, we
can get (12), then from Definition 2, we can get (13) and (14).

3. The FSIGM Model

In this section, we propose a new FSIGM model based on
fractional-order accumulation generation, which uses the
gamma function [36] to represent the parameter estimation
of the fractional-order cumulative generation sequence and
finds the optimal order using the adaptive particle swarm
optimization [37] method.
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3.1. Fractional Extension Operator. In Section 2.1, we have
assumed that X 1 is 1-AGO; the r-order cumulative genera-
tion sequence is defined below.

Definition 4. Let X r = x r 1 , x r 2 ,… , x r 3 by (1) be
r-AGO, where

x r k = 〠
k

i=1
x r−1 i = 〠

k

i=1
〠
i

j=1
x r−2 j , r ∈ R+, k = 1, 2,… , n

16

Equation (16) can be expressed as

x r k = 〠
k

i=1

k − i + 1 k − i + 2 ⋯ k − i + r − 1
r − 1

x 0 i ,

r ∈ Z+, k = 1, 2,… , n
17

When r ∈N , X r is called as integer order accumulation
sequence; when r ∈ R+, X r is called as fractional-order
accumulation generation sequence.

In order to express the r-order cumulative generation
sequence with the gamma function, the definition and nature
of the gamma function are given below.

Definition 5. n ∈ R and n ∉ 0, −1, −2, −3,… ; Γ n is the
gamma function of the real number n defined as

Γ n =
∞

0
e−t tn−1dt 18

Through the integral points, we can deduce the
properties of the gamma function as follows:

Property 2. Γ n + 1 = nΓ n , when n ∈N , Γ n + 1 = ∞
0 e−t

tndt = n

Through Definition 5 and Property 2, (17) can be
expressed as

x r k = 〠
k

i=1

Γ r + k − i
Γ k − i + 1 Γ r

x 0 i , r ∈ Z+, k = 1, 2,… , n

19

Particularly, when r ∈ Z+, x r k expanded coefficient is

ak =
Γ r + k − i

Γ k − i + 1 Γ r
=

r + k − i − 1
k − i r − 1

20

The grey reducing generation corresponds to the grey
accumulating generation, which can be viewed as a process
of grey release; it is the grey cumulative generation sequence
to restore. Therefore, the grey accumulating generation

operator and the grey reducing generation operator must
satisfy the reciprocity.

Definition 6 (see [36]). ForX 0 given by (1), an r-order reduc-
ing generation operator (RGO) sequence X −r = x −r 1 ,
x −r 2 ,… , x −r n , r ∈ R+ can be generated by r-RGO
as follows:

x −r k = 〠
k−1

i=1

Γ r + 1
Γ i + 1 Γ r − i + 1

x 0 k − i 21

X −r is called as fractional reducing generation operator
r-RGO (r ∈ R+).

3.2. The FSIGM Model. This section mainly introduces the
fractional-order SIGM model, which is the FSIGM model,
and studies its important properties. First, define the
FSIGM model.

Definition 7. Let X 0 be the original sequence, from
Definition 1, and X r is the r-order accumulation generation
sequence of X 0 , which is given by Definition 4.

x r−1 k + az r k = bk + c 22

is called as FSIGM model, where x r k is given by (19) and

x r−1 k = x r k − x r k − 1 , z r k

=
1
2

x r k + x r k − 1
23

Specifically, when r = 1, (19) becomes x 0 k + az 1

k = kb + c; it is the original form of the SIGM model.
According to the definition of the model FSIGM model,

we can get the following properties.

Property 3. The parameter vector of the FSIGM model
â = a, b, c T , using least squares estimation:

â = BTB
−1
BTY , 24

where B, Y are

B =

−z r 2 2 1

−z r 3 3 1

⋮ ⋮ ⋮

−z r n n 1

,

Y =

x r−1 2

x r−1 3

⋮

x r−1 n

,

25

then
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Property 4. The matrix B, Y in Property 3 and Property 4 can
be represented by the gamma function as follows:

Definition 8.

dx r

dt
+ ax r = bk + c 28

is the whitening equation of FSIGM model x r−1 k +
az r k = bk + c. The following theorem:

Theorem 2. B, Y , and â are given by Definition 7 and
Definition 5, then

(1) The time response function of the whitening (28) is

x̂ r t = x r 1 +
b
a2

−
c
a

e−at +
b
a
t −

b
a2

+
c
a

29

x r−1 k = x r k − x r k − 1 = 〠
k

i=1

Γ r + k − i
Γ k − i + 1 Γ r

x 0 i − 〠
k−1

i=1

Γ r + k − i − 1
Γ k − i Γ r

x 0 i , k = 1, 2,… , n,

z r k =
1
2

x r k + x r k − 1 =
∑k

i=1 Γ r + k − i /Γ k − i + 1 Γ r x 0 i +∑k−1
i=1 Γ r + k − i /Γ k − i + 1 Γ r x 0 i

2
26

B =

−z r 2 2 1

−z r 3 3 1

⋮ ⋮ ⋮

−z r n n 1

=

−
x r 1 + x r 2

2
2 1

−
x r 2 + x r 3

2
3 1

⋮ ⋮ ⋮

−
x r n − 1 + x r n

2
n 1

=

−
1
2
〠
2

i=1

Γ r + 2 − i
Γ 2 − i + 1 Γ r

x 0 i + 〠
1

i=1

Γ r + 2 − i
Γ 2 − i + 1 Γ r

x 0 i 2 1

−
1
2
〠
3

i=1

Γ r + 3 − i
Γ k − i + 1 Γ r

x 0 i + 〠
2

i=1

Γ r + 3 − i
Γ 3 − i + 1 Γ r

x 0 i 3 1

⋮ ⋮ ⋮

−
1
2
〠
n

i=1

Γ r + n − i
Γ n − i + 1 Γ r

x 0 i + 〠
n−1

i=1

Γ r + n − i
Γ n − i + 1 Γ r

x 0 i n 1

=

−
1
2

r + 1 x 0 1 + x 0 2 2 1

−
1
2

r r + 3
2

x 0 1 + r + 1 x 0 2 + x 0 3 3 1

⋮ ⋮ ⋮

−
1
2
〠
n

i=1

Γ r + n − i
Γ n − i + 1 Γ r

x 0 i + 〠
n−1

i=1

Γ r + n − i
Γ n − i + 1 Γ r

x 0 i n 1

,

Y =

〠
2

i=1

Γ r + 2 − i
Γ 2 − i + 1 Γ r

x 0 i − 〠
1

i=1

Γ r + 2 − i − 1
Γ 2 − i Γ r

x 0 i

〠
3

i=1

Γ r + 3 − i
Γ k − 3 + 1 Γ r

x 0 i − 〠
2

i=1

Γ r + 3 − i − 1
Γ 3 − i Γ r

x 0 i

⋮

〠
n

i=1

Γ r + n − i
Γ n − i + 1 Γ r

x 0 i − 〠
k−1

i=1

Γ r + n − i − 1
Γ n − i Γ r

x 0 i

=

r − 1 x 0 1 + x 0 2

r r − 1
2

x 0 1 + r − 1 x 0 2 + x 0 3

⋮

〠
n

i=1

Γ r + n − i
Γ n − i + 1 Γ r

x 0 i − 〠
k−1

i=1

Γ r + n − i − 1
Γ n − i Γ r

x 0 i

27
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(2) The time response function of the whitening (28) is

x̂ r k = x r 1 +
b
a2

−
c
a

e−a k−1 +
b
a
k −

b
a2

+
c
a

30

(3) Restore value is

x̂ 0 k = x̂ r −r k = 〠
k−1

i=0
−1 i Γ r + 1

Γ i + 1 Γ r − i + 1
x̂ r k − i ,

31

where k = 2, 3,… , n, x̂ 0 1 = x 0 1

Proof 2. The FSIGM and SIGM models have the same
structures, such that the SIGM model is a special case of
FSIGM. The difference between the two models is that the
FSIGM model uses the r-order cumulative sequence X r of
the original sequence X 0 as its modeling sequence, and the
SIGM model uses the first-order accumulation sequence
X 1 of the original sequence X 0 as the modeling sequence,
so the conclusion is true.

3.3. Optimization of the FSIGM Model. Particle swarm
optimization (PSO) is a type of global optimization evolution
algorithm and was proposed by Kennedy and Eberhart in
1995 [36]. The concept of the PSO algorithm is simple,
needing adjustments of a small number of parameters, and
is also easy to program. The method has been widely used
in function optimization, neural network training, and
other fields.

From Theorem 2, the restored value x̂ 0 k can be
calculated. Next, the mean absolute percentage error
(MAPE) is defined.

MAPE =
1

n − 1
〠
n

k=2

x 0 k − x̂ 0 k

x 0 k
× 100%, 32

where in x 0 k represents the raw data and x̂ 0 k
represents a simulation value or a predicted value.

We want to obtain the optimal order r, which minimizes
the MAPE between x 0 k and x̂ 0 k , by solving the
following optimization problem:

min  f r =
1

n − 1
〠
n

k=2

x 0 k − x̂ 0 k

x 0 k
, r ∈ R+

33

The PSO algorithm based on adaptive mutation of
population fitness variance [37] is used to optimize the order,
such that (33) is used as the fitness of the particle. The order
of the minimum mean relative error can then be obtained.
The adaptive mutation particle swarm optimization algo-
rithm of the optimal sequence is as follows:

Step 1. Randomly initialize the position and velocity of the
particle swarm, taking pBest = 1, which is the mean of the
FSIGM model.

Step 2. Set pBest in the particle to the current position;
thus, gBest is set to the best particle position in the
initial population.

Step 3. Calculate the average relative error of the fractional
operator FSIGM model when r = pBest. The specific steps
are as follows:

(1) Calculate the r-order cumulative generation
sequence X r of the original sequence X 0 , produce
the mean generation sequence with consecutive
neighbors of X r , and calculate the first-order cumu-
lative generation operator X r−1 of X r .

(2) Solve the parameter â = a, b, c T and then calculate
the reduction value x̂ 0 k according to (31) to find

the simulation value X̂
0
of X 0 .

(3) Calculate the average relative error of (pBest)
according to (32).

(4) Determine whether ∣f pBest − f gBest ∣ is less than
the given convergence value λ; if this condition is
satisfied, then implement the ninth step; otherwise,
implement the fourth step.

Step 4. For all particles of the particle group, do the following.

(1) Update the position and speed of the particle:

V = ϖ ×V + d1 × rand × pBest − present + d2
× rand × gBest − present ,

34

where present = present +V , ϖ = ϖmax − run ϖmax −
ϖmin /run max

(2) If the particle fit is better than the fit of pBest, pBest
can be set as the new position.

(3) If the particle fit is better than the fitness of gBest, g
Best can be set as the new position.

Step 5. Calculate the population variance fit λ2 and f pBest

λ2 = 〠
n

i=1

f i − f avg
f

,

f =
max ∣f i − f avg ∣ , max ∣f i − f avg ∣ > 1,

1, others
35
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Step 6. Calculate the probability of the variation pm,
where

pm =
k, λ2 < λ2d , f gBest > f d ,

0, others
36

Step 7. Generate a random number ε ∈ 0, 1 ; if ε < p, perform
a mutation operation according to (36); otherwise, perform
the eighth step.

Step 8. Determine whether the algorithm convergence
criteria are met; if these conditions are satisfied, perform
the ninth step; otherwise, return to the third step.

Step 9. Output gBest such that r is the optimal value.
Output r = gBest. At the same time, determine the predic-
tive value of the FSIGM model and the average relative
error MAPE.

It can be seen that the modeling steps of the FSIGM
model are shown in Figure 1.

Original sequence X(0) = {x(0) (1), x(0)(2,…,x(0)(n)}

Parameter estimation 𝛼 = (BT B)−1 BTY, accumulating a,b,c

Prediction values x(0) (n + 1), x(0)(n + 2),…

Error inspection MAPE = 1
n−1

Whether to pass the inspection

Calculate the simulative value sequence X(r) corresponding to X(r)

Get r − AGO sequence X(r) = {x(r)(1), x(r)(2),…,x(r)(n)}

Optimizing the order number r and min f (r) =

Particle swarm optimization (PSO) algorithm

Accumulating generation operator (AG O)

The least square method

Reducing generation operator (RGO)

Yes

No

× 100%

Restore to get X(0) = {x(0)(1),x(0)(2),…, x(0)(n)}

1 |x(0) (k) − x(0)(k)|
n

k = 2n−1 x(0)(k)

x(0)(k)

n

k = 2

The time response function of the whitening equation

Mean absolute percentage error MA PE

ˆ

|x(0) (k) − x(0)(k)|ˆ

ˆ ˆ ˆ ˆ

ˆ

ˆ

ˆ ˆ

Figure 1: The flowchart of the FSIGM model.
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4. Simulating and Forecasting the Demand of
China’s Crude Oil

This section mainly analyzes the current situation of crude oil
consumption. FSIGM model of crude oil consumption data
were analyzed. Based on the analysis results, it gives some
policy suggestions.

4.1. Current Situation of China’s Crude Oil Consumption. In
recent years, with the sustained and rapid development of
China’s national economy, energy construction has also
developed by leaps and bounds, such that the annual output
of crude oil now ranks fifth in the world. However, with the
demand for continued expansion, China has now become
the world’s third largest oil consumer, and China’s output
cannot fully meet the consumption demand. Since the
1990s, crude oil consumption has increased at an average
annual rate of 5.77%. Crude oil self-sufficiency has become
an important reason for the imbalance between the supply
and demand of crude oil in China, which is only by strength-
ening the forecasts of crude oil demands. However, we can
prevent future possible energy security problems.

China’s crude oil demand forecast work is conducive to
promoting China’s crude oil industry with market-oriented
reform and industry restructuring. At present, China’s oil
industry and its domestic market are undergoing profound
historical changes. China’s crude oil resources that will be
available for exploitation are forecasted at 16 billion tons,
with the remaining recoverable reserves of 2.38 billion tons.
According to the China National Petroleum Corporation
forecast analysis, the domestic crude oil self-sufficiency rate
of 82% in 2000 will have been reduced to 60% in 2020.

4.2. Data Analysis. With the limited historical data available,
the grey prediction model becomes suitable for use with
this small sample size. Lists of statistics concerning China’s
crude oil consumption may be found via the following
links: http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=
A070E&sj=2016. We use the actual data from 2002 to

2011 as a modeling sample (Table 1), using only 10 data
points to meet the “small sample” features. Meanwhile,
in order to verify the model’s predictive performance, the
real data from 2012 to 2014 will be used as the benchmark
data for comparing model performances.

4.3. Simulation and Forecasting. According to the original
data of the crude oil consumption shown in Table 1 for
2002 to 2011, the model FISGM has the smallest average
relative error when the optimal fractional r = 2 0175 is
obtained by the PSO algorithm. The model iterates according
to the following steps:

Step 1. Data processing.

By (17), we can obtain the 2 0175-AGO sequence:

X r = 2 2544 7 0429 14 7740 25 6051 39 7706 57 4667 78 8563 104 2173

37

Step 2. Parameter estimation.

â = a, b, c T = BTB
−1
BTY =

1 0609

2 6509

−0 6540

38

Step 3. Construct the FSIGM model:

x̂ r k = −8 4845 × 1 0609k−1 + 2 6509〠
k−2

j=0
k − j

× 1 0609 j + 10 7389, k = 2, 3,… , n

39

Step 4. Compute the simulated values X̂
r
.

X̂
r = 2 2544 7 0396 14 7674 25 6170 39 7788 57 4544 78 8582 104 2173

40

Step 5. Compute the simulated values X̂
0
.

x̂ 0 k = x̂ r
−r

k = 〠
k−1

i=0

Γ r + 1
Γ i + 1 Γ r − i + 1

x̂ r k − i ,

k = 2, 3,… , n
41

Step 6. Compute and compare the simulation/prediction
errors.

The predicted values x̂ 0 k of the amount of Chinese
crude oil consumption and the mean absolute percentage
error are taken from (33). To compare the simulation/
prediction performances, FSIGM model and SIGM model
are employed to simulate the amounts of crude oil consumed
in China during 2012–2014, and their simulative and predic-
tive errors are shown in Table 2.

As seen in Table 2, the simulation accuracy of the
fractional-order FSIGM model is significantly improved

Table 1: China’s crude consumption (units: 100 million tons)
during 2002–2014.

Year Crude consumption

2002 2.2544

2003 2.4922

2004 2.8749

2005 3.0086

2006 3.2245

2007 3.4032

2008 3.5498

2009 3.8129

2010 4.2875

2011 4.3966

2012 4.6679

2013 4.8652

2014 5.1547

8 Complexity

http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A070E&sj=2016
http://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A070E&sj=2016


compared with those of the classical grey GM, DGM, and
NDGM models. The FSIGM model has a high prediction
accuracy, which is much higher than those of the DGM and
NDGM models. The simulations and predictions of the
MAPE values of the FSIGM model and grey-extended SIGM
model are lower than those of the SIGM model, giving a
better overall effectiveness. When r = 2 0175, the simulated
MAPE value of the FSIGMmodel is 0.4949 and the predicted
value is 3.1401. These values increase when r = 1, such that
the simulated MAPE value of the SIGM model is 1.2526
and the predicted MAPE value is 10.9054, which are signifi-
cantly improved in the newmodel. To further see the obvious
effects of the two models that were first shown in Table 2, the
absolute simulation and prediction percentage errors of the
above two models for China’s crude oil consumption are
illustrated in Figure 2.

Figure 2 shows that the simulations and predictions of
the fractional-order FSIGM model at r = 2 0175 are much
better than the simulations and predictions of the SIGM
model at r = 1. At the same time, we can see that the precision
of the FSIGM model is higher than that of the classical grey
GM, DGM, and NDGM models. SIGM and NDGM overlap
almost exactly. When r = 2 0175, the data coincide with the
original data, and the predicted value is close to the original
data. To further see the simulation and prediction effects of
the two different models, the detailed graphs are shown in
Figures 3(a)–3(e).

In Table 2 and Figures 2 and 3(e), the average errors
of the simulations and predictions for FSIGM are shown
to be 0.4949% and 3.1401%. It can be determined from
therefore table of the precision grades of the grey

Table 2: The simulation/prediction values and MAPE of the models for China’s crude oil consumption.

(a)

Year Actual value
FSIGM SIGM GM DGM NDGM

Simulation value Simulation value Simulation value Simulation value Simulation value

In-sample

2002 2.2544 2.2544 2.2544 2.2544 2.2544 2.2544

2003 2.4922 2.4889 2.5374 2.6229 2.6235 2.5374

2004 2.8749 2.8749 2.7897 2.7941 2.7945 2.7897

2005 3.0086 3.0305 3.0204 2.9764 2.9766 3.0204

2006 3.2245 3.2019 3.2314 3.1706 3.1707 3.2313

2007 3.4032 3.3868 3.4243 3.3774 3.3774 3.4243

2008 3.5498 3.5848 3.6007 3.5978 3.5975 3.6007

2009 3.8129 3.7962 3.7620 3.8325 3.8320 3.7260

MAPE (in) 0.4949% 1.2526% 1.9179% 1.9145% 1.2525%

(b)

Prediction value Prediction value Prediction value Prediction value Prediction value

Out-of-sample

2010 4.2875 4.0215 3.9094 4.0826 4.0818 3.9095

2011 4.3966 4.2612 4.0443 4.3490 4.3479 4.0444

2012 4.6679 4.5160 4.1676 4.6327 4.6313 4.1678

2013 4.8652 4.7869 4.2804 4.9350 4.9332 4.2806

2014 5.1547 5.0746 4.3835 5.2569 5.2548 4.3837

MAPE (out) 3.1401% 10.9054% 2.0069% 9.1817% 10.9031%
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Figure 2: Simulation and prediction value of China’s crude
consumption with two models.
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prediction models [38] that the precision grade of the
FSIGM model for forecasting China’s crude oil is between
class I and class II and is proposed to hold for the short-
term projections. China’s crude oil demand during 2015–
2020 in the FSIGM model can be employed to predict the
median real demand, and this forecast can be implemented
using the MATLAB program of FSIGM. The predictive
results are shown in Table 3.

In Table 3, we can see that, in 2015–2020, China’s crude
oil demand will maintain a rapid growth rate. In this case, the
Chinese government should implement any strategy or
measures to maintain a balance between China’s crude oil
supply and its demand, which we will be discussed in detail
in the next section.

4.4. Policy Suggestions. We can see from Table 3 that the
FSIGM model forecast of China’s 2015–2020 crude oil
consumption can provide the likely demands of the next
few years. On this basis, the government can determine
domestic production according to the predicted supply
and demand characteristics and take some preventive mea-
sures to maintain the balance of the supply and demand
of crude oil. The specific measures include establishing a
certain scale of national strategic crude oil reserve, which
can reduce the impact of international crude oil market
volatility on China’s development. This will be one of
the important strategic tasks of China’s national economic
development, which can prevent a disruption of the supply
of crude oil. At the same time, international oil prices can
remain stable or reach lower prices, reducing the holdings
or ability to sell at higher prices. Thus, the proposed mea-
sure cannot only reduce foreign exchange spending but
can also stabilize China’s oil price fluctuations, stabilizing
China’s domestic economy.

5. Conclusion

Crude oil demand forecasting is an important part of setting
crude oil development strategies. Scientific, reasonable, and
accurate analyses of China’s crude oil demand can protect
China’s energy security, providing an effective way to solve
the bottlenecking problem of crude oil. Based on the features
of the grey prediction model and the fractional extension
operator, this paper proposes a new FSIGM model from the
expansion of the SIGM expansion of the classic GM (1,1)
model. The details are as follows:

(1) The least squares estimation method is used to
simplify the SIGM model parameter calculation
method from the literature [10].

(2) A new FSIGM model is proposed based on the
fractional extension operator. The parameters of the

model are calculated by using the least squares esti-
mation method. The reduction value is obtained by
using the differential equation. The fractional-order
generation operator is expressed using the properties
of the gamma function, and the representation of the
gamma function of the FSIGM model is obtained.

(3) According to the characteristics of China’s crude oil
consumption data, the new model FSIGM is more
flexible and intelligent, and based on the optimiza-
tion mechanism of particle swarm optimization
(PSO) and the properties of the gamma function of
the fractional-order generation operator, the optimal
particle swarm optimization algorithm of the FSIGM
model is obtained. According to the original data,
which is used to select the greatest fractional order,
this method improves the adaptability of the model.

(4) According to the experimental analysis of China’s oil
consumption, the new FSIGM model is more accu-
rate than the classical grey GM, DGM, and NDGM
models, and the simulation and prediction accuracy
of the grey-extended SIGM model is also higher.
Based on this, China’s crude oil consumption in
2015–2020 was forecasted. Based on the results of
the forecast, establishing a certain scale of national
strategic oil reserves could be an effective preemptive
measure to take.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by National Natural Science
Foundation of China (Grant nos. 71540027, 71271226, and
61472056) and The Science and Technology Research
Program of Chongqing Municipal Educational Committee
(Grant no. KJ1600425).

References

[1] J. Z. Wang, “A study on the theory of international oil price,”
Journal of Jianghan Prtroleum Institute, Social Science ED,
vol. 2, no. 1, pp. 34–36, 2000.

[2] Y. He, S. Wang, and K. K. Lai, “Global economic activity and
crude oil prices: a cointegration analysis,” Energy Economics,
vol. 32, no. 4, pp. 868–876, 2010.

[3] G. Box and G. Jenkins, Time Series Analysis: Forecasting and
Control, Holden-Day, San Francisco, CA, USA, 1976.

[4] R. F. Engle, “Autoregressive conditional heteroscedasticity
with estimates of the variance of United Kingdom inflation,”
Econometrica, vol. 50, no. 4, pp. 987–1007, 1982.

Table 3: The predictive values of China’s crude demand (units:
100 million tons) during 2015–2020.

Year 2015 2016 2017 2018 2019 2020

Crude demand 5.3802 5.7047 6.0492 6.4149 6.8031 7.2151

11Complexity



[5] T. Bollerslev, “Generalized autoregressive conditional het-
eroskedasticity,” Journal of Econometrics, vol. 31, no. 3,
pp. 307–327, 1986.

[6] A. Song and J. Lu, “Evolving Gaussian RBF network for
nonlinear time series modelling and prediction,” Electronics
Letters, vol. 34, no. 12, p. 1241, 1998.

[7] A. Hatami-Marbini and F. Kangi, “An extension of fuzzy
TOPSIS for a group decision making with an application to
tehran stock exchange,” Applied Soft Computing, vol. 52,
pp. 1084–1097, 2017.

[8] F. Gaxiola, P. Melin, F. Valdez, and O. Castillo, “Interval
type-2 fuzzy weight adjustment for backpropagation neural
networks with application in time series prediction,” Informa-
tion Sciences, vol. 260, pp. 1–14, 2014.

[9] L. Wu, S. Liu, D. Liu, Z. Fang, and H. Xu, “Modelling and
forecasting CO2 emissions in the BRICS (Brazil, Russia, India,
China, and South Africa) countries using a novel multi-
variable grey model,” Energy, vol. 79, pp. 489–495, 2015.

[10] B. Zeng and C. Li, “Forecasting the natural gas demand in
China using a self-adapting intelligent grey model,” Energy,
vol. 112, pp. 810–825, 2016.

[11] J. P. Liu, L. Sheng, G. Tao, and H. Y. Chen, “A nonlinear time
series prediction model and prediction of crude oil price,” Jou-
nal of Mnangement Science, vol. 24, no. 6, pp. 104–112, 2013.

[12] Q. Liang, Y. Fan, and Y. Wei, “A long-term trend forecasting
approach for oil price based on wavelet analysis,” Chinese
Journal of Management Science, vol. 13, no. 1, pp. 30–36, 2005.

[13] W. Q. Zhang, “Prediction model of world oil consumption,”
Science and Technology Economy, vol. 29, pp. 105-106, 2016.

[14] L. Wu, S. Liu, L. Yao, S. Yan, and D. Liu, “Grey system model
with the fractional order accumulation,” Communications in
Nonlinear Science and Numerical Simulation, vol. 18, no. 7,
pp. 1775–1785, 2013.

[15] A. Azadeh, O. Seraj, S. M. Asadzadeh, and M. Saberi, “An
integrated fuzzy regression-data envelopment analysis
algorithm for optimum oil consumption estimation with
ambiguous data,” Applied Soft Computing, vol. 12, no. 8,
pp. 2614–2630, 2012.

[16] A. Azadeh, M. Khakestani, and M. Saberi, “A flexible fuzzy
regression algorithm for forecasting oil consumption estima-
tion,” Energy Policy, vol. 37, no. 12, pp. 5567–5579, 2009.

[17] S.-Y. Park and S.-H. Yoo, “The dynamics of oil consumption
and economic growth in Malaysia,” Energy Policy, vol. 66,
pp. 218–223, 2014.

[18] J. L. Deng, Estimate and Decision of Grey System, Huazhong
University of Science and Technology Press, Wuhan, 2002.

[19] L. Wu, S. Liu, and Y. Yang, “Grey double exponential smooth-
ing model and its application on pig price forecasting in
China,” Applied Soft Computing, vol. 39, pp. 117–123, 2016.

[20] H. Guo, X. Xiao, and F. Jeffrey, “Urban road short-term traffic
flow forecasting based on the delay and nonlinear grey model,”
Journal of Transportation Systems Engineering and Informa-
tion Technology, vol. 13, no. 6, pp. 60–66, 2013.

[21] A. Bezuglov and G. Comert, “Short-term freeway traffic
parameter prediction: application of grey system theory
models,” Expert Systems with Applications, vol. 62, pp. 284–
292, 2016.

[22] L. Wu, S. Liu, Y. Yang, L. Ma, and H. Liu, “Multi-variable
weakening buffer operator and its application,” Information
Sciences, vol. 339, pp. 98–107, 2016.

[23] J. Liu and X. P. Xiao, “The relationship of discrete grey
forecasting model DGM and GM(1,1) model,” Journal of Grey
System, vol. 26, no. 4, pp. 14–31, 2014.

[24] H. Guo, X. Xiao, and J. Forrest, “A research on a comprehen-
sive adaptive grey prediction model CAGM(1,N),” Applied
Mathematics and Computation, vol. 225, pp. 216–227, 2013.

[25] M. X. He and Q. Wang, “New algorithm for GM(1,N) model-
ing based on Simpson formula,” Systems Engineering - Theory
& Practice, vol. 33, no. 1, pp. 199–202, 2013.

[26] K. T. Hsu, “Using GM(1,N) to assess the effects of economic
variables on bank failure,” Journal of Grey System, vol. 23,
no. 4, pp. 355–368, 2011.

[27] Z. X. Wang, “A GM(1,N)-based economic cybernetics model
for the high-tech industries in China,” Kybernetes, vol. 43,
no. 5, pp. 672–685, 2014.

[28] Z. X. Wang, “Multivariable time-delayed GM(1,N) model and
its application,” Control and Decision, vol. 30, no. 12,
pp. 2298–2304, 2015.

[29] L. Wu, S. Liu, and Y. Yang, “A gray model with a time varying
weighted generating operator,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 46, no. 3, pp. 427–433,
2016.

[30] Y. Wei and Y. Zhang, “An essential characteristic of the
discrete function transformation to increase the smooth
degree of data,” Journal of Grey System, vol. 19, no. 3,
pp. 293–300, 2007.

[31] B. Zeng, H. Duan, Y. Bai, and W. Meng, “Forecasting the
output of shale gas in China using an unbiased grey model
and weakening buffer operator,” Energy, vol. 151, pp. 238–
249, 2018.

[32] N. Xie and S. Liu, “Interval grey number sequence prediction
by using non-homogenous exponential discrete grey forecast-
ing model,” Journal of Systems Engineering and Electronics,
vol. 26, no. 1, pp. 96–102, 2015.

[33] X. Ma and Z.-b. Liu, “The kernel-based nonlinear multivariate
grey model,” Applied Mathematical Modelling, vol. 56,
pp. 217–238, 2018.

[34] S. P. Huang, L. Zhang, M. H. Wang, R. Wang, and CJ Univer-
sity, “Analysis of global oil consumption based on grey predic-
tion model,” Science and Technology Innovation Herald,
vol. 34, pp. 118–121, 2016.

[35] R. S. Xu, “Research on China’s oil consumption demand
forecast based on Grey System Theory,” Statistics and Deci-
sion, vol. 320, pp. 98–101, 2010.

[36] J. Kennedy and R. Eberhart, Particle Swarm Optimization,
Proceedings of IEEE International Conference on Neural
Network, 1995.

[37] Z. X. Lv and Z. R. Hou, “Adaptive mutation particle swarm
optimization algorithm,” Journal of Electronics, vol. 32, no. 3,
pp. 416–420, 2004.

[38] S. F. Liu and Y. Lin, Grey Systems Theory and Applications,
Springer-Verlag, Berlin Heidelberg, 2010.

12 Complexity



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

