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The traffic-flow system has basic dynamic characteristics. This feature provides a theoretical basis for constructing a reasonable
and effective model for the traffic-flow system. The research on short-term traffic-flow forecasting is of wide interest. Its results
can be applied directly to advanced traffic information systems and traffic management, providing real-time and effective traffic
information. According to the dynamic characteristics of traffic-flow data, this paper extends the mechanical properties, such as
distance, acceleration, force combination, and decomposition, to the traffic-flowdata vector. According to themechanical properties
of the data, this paper proposes four new models of structural parameters and component parameters, inertia nonhomogenous
discrete gray models (referred to as INDGM), and analyzes the important properties of the model. This model examines the
construction of the inertia nonhomogenous discrete gray model from the mechanical properties of the data, explaining the classic
NDGMmodeling mechanism in the meantime. Finally, this paper analyzes the traffic-flow data ofWhitemud Drive in Canada and
studies the relationship between the inertia model and the traffic-flow state according to the data analysis of the traffic-flow state.
A simulation accuracy and prediction accuracy of up to 0.0248 and 0.0273, respectively, are obtained.

1. Introduction

Traffic-flow theory is the basic theory of the intelligent
transportation system, that is, the use of mathematical and
mechanical laws to study the laws of road traffic-flow theory
[1]. By analyzing the relationship between the parameters
of the traffic-flow system, it can seek to establish the most
rational model to analyze the changes in traffic flow [2], pro-
viding a theoretical basis for rational planning and efficient
trafficmanagement.The study of traffic-flow theory promotes
the interdependence and interaction of dynamics, applied
mathematics, fluid mechanics, and traffic engineering.

Traffic-flow short-term forecasting for the intelligent
transportation system to provide traffic information is an
important basis for traffic analysis [3, 4] and control
[5]. Short-term traffic-flow forecasting has been widely
researched by scholars at home and abroad, who have

obtained many research results [6–8], and many theories and
methods [9, 10] have been applied to the study of short-
term traffic forecasting. The results of this study can be
applied directly to the advanced traffic information system
and traffic management system, which can provide real-
time and effective information for walkers, realize the route
planning, reduce the travel time of the traveler, alleviate road
congestion, reduce pollution, save energy, and so on. Traffic-
flow forecasting is also based on the dynamic acquisition of
traffic-flow time-series data to predict the future traffic-flow
status data.

The traffic-flow characteristics can be described by the
traffic-flow state, and the traffic flow exhibits different charac-
teristics in different states. In the study of urban traffic-flow
parameter models, the traffic state is divided into free flow,
congested flow, and jam flow. Usually, the traffic-flow rate,
speed, and occupancy rate are considered as parameters of the
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resulting traffic state.The interval and forecast period of time-
series data for short-term traffic-flow parameters are shorter,
usually within 15minutes.There aremanymethods for short-
term traffic-flow forecasting: chaos theory [11], time series
[12, 13], neural networks [14, 15], nonparametric regression
[16, 17], gray prediction [18], and other methods [19, 20].

However, the short-term traffic-flow system has a large
degree of similarity with the fluid systemwith respect to basic
dynamic characteristics and, at the same time, a high degree
of uncertainty. It is difficult to accurately grasp the roles of
the system factors and mechanisms due to poor information.
If the time interval for collecting traffic is 5 minutes, only
12 groups of data are obtained in one hour, resulting in a
small sample size. Therefore, it is reasonable to study the
inertial graymodel by using the gray systemwith less data and
a poor information system combined with the mechanical
properties of traffic-flow data.

The gray system theory was put forward by Deng [21].
After 30 years of development, a framework of systemanalysis
and evaluation [22], model prediction [23–25], and decision
control [26] has been established as the main technical
system. The gray prediction model is the core component
of gray system theory. Since its introduction, the gray pre-
diction model has been widely studied and continuously
developed and optimized [27–30]. GM(1, 1), as the core gray
prediction model, has also been improved [25, 31, 32] and
has been widely used in various fields. However, in practical
applications and the theoretical research process, GM(1, 1) is
not fully suitable for fitting homogenous exponential series.
The problem of transforming the GM(1, 1) from discrete
form to continuous form is solved by the proposed discrete
gray model [33]. At the same time, many scholars have
extended the properties and optimization of model param-
eters. However, the discrete gray model, like the classical
GM(1, 1), can only solve the problem of exponential growth
order, and sequences with exponential growth are very rare
in real life; comparatively speaking, more original sequence
data conform to nonexponential growth laws. The discrete
gray model of the approximate nonhomogenous exponential
sequence extends the application range of the discrete model
to approximate nonhomogenous exponential sequences
[34], which enhances the applicability of the discrete gray
model.

However, the gray prediction model of the classical
GM(1, 1), discrete gray model (DGM), and approximate
nonhomogenous discrete gray model (NDGM) is used as
the modeling mechanism of the least-squares method. These
models do not describe the modeling process from the point
of view of the data. Professor Deng proposed the inertia
GM(1, 1) in [21], emphasizing that inertia is the quality of the
materialmass of a temperament, which is the abstract amount
that has to be considered when researching material move-
ment and thought movement. At the same time, he suggested
that the data are generated by the thought movement in [35],
and the value of the thinking process is much greater than the
value of a certain function. It can be said that the number of
sequences𝑋(0) is the formation of thinking or things and that
the sequence in different minds and the processes of forming
different things have differentmeanings. He noted that, in the

GM(1, 1), 𝑥(0)(𝑘) can reflect the velocity in mechanics, the
accumulating generation operator (AGO) 𝑥(1)(𝑘) can reflect
the deposition of this process, and 𝑧(1)(𝑘) can reflect the
background, while at the same time representing the inertia
GM(1, 1) from the force resolution of the data. Traffic-flow
theory and fluid systems have a high degree of similarity, as
they both have the same basic dynamic characteristics.

Therefore, this paper introduces the basic concepts and
properties of mechanics distance, acceleration, force com-
bination, and resolution in traffic-flow data and studies
the inertia model, which is adapted to short-term traffic
forecasting. At the same time, the model structure clearly
shows the formation process of the INDGM using under-
standable structure parameters and manifestation of com-
ponent parameters. This model is also closely related to
the classical NDGM, and the modeling mechanism of the
classical NDGM from the mechanical decomposition of the
data is illustrated. Finally, the paper analyzes the state data
of traffic flow and appropriately selects the inertia model for
traffic-flow data of Whitemud Drive in Canada, which can
effectively improve the simulation and forecasting effect of
short-term traffic flow.

This paper is organized as follows. In Sections 2, the
basic concepts and properties of mechanics in the data vector
are introduced. In Sections 3, the NDGM is introduced; the
INDGM is put forward using the mechanics decomposition
of the data, and an important property of themodel is studied.
In Sections 4, traffic-flow data from Canada is used for the
fitting analysis in the empirical study. The conclusion of this
study is discussed in Section 5.

2. Basic Concepts and Properties of Mechanics
in the Data Column

Inertia is the temperament of the mass quality of the reaction
material, and it is also the property of the energy system.
The social, economic, technical, military, transportation,
ecology, and agriculture are generalized energy systems. This
section mainly introduces the basic concepts andmechanical
properties of the mechanics in the data column.

Definition 1 (see [21]). Regarding distance, the following
definitions are given:

(1) The measure of the position difference between two
points is called distance.

(2) Let F be a proposition.The distance measure under F
is the journey length.

Definition 2 (see [21]). Assume that the sequence 𝑋(0) =
(𝑥(0)(1), 𝑥(0)(2), . . . , 𝑥(0)(𝑛)) is an original data sequence
under equal-interval proposition F . If𝛼(𝑘) = 𝑥(0)(𝑘)−𝑥(0)(𝑘−
1), the sequence 𝛼 = (𝛼(2), 𝛼(3), . . . , 𝛼(𝑛)) is an acceleration
sequence under equal-interval proposition 𝐹. Let sgn𝑦 (𝑘) be
the symbol of data 𝑦(𝑘); that is,

sgn𝑦 (𝑘) = +1, 𝑦 (𝑘) ≥ 0,

sgn𝑦 (𝑘) = −1, 𝑦 (𝑘) < 0.
(1)
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Then, let 𝛽 be a nonnegative real number. 𝑓(𝑘) is the number
consistent with 𝛼(𝑘) if the following are satisfied:

(1) 𝛼(𝑘) = 𝛽𝑓(𝑘), ∀𝑘 ∈ 𝐾, 𝐾 = {1, 2, . . . , 𝑛},

(2) 𝑥(0)(𝑘) = 𝛽𝑓(𝑘) − 𝑥(0)(𝑘 − 1),

(3) sgn𝑓(𝑘) = sgn𝛼(𝑘),

(4) 𝑓(𝑘) = Value (𝑘), forR,

where 𝑓(𝑘) = value (𝑘) under criterionR.
Let F be the proposition. The distance measure under F

becomes as follows:

(1) 𝛽 is called the incentive coefficient of the sequence
𝑋(0),

(2) 𝑚, which is the inverses of 𝛽, is called the inertial
coefficient of the sequence 𝑋(0), where 𝑚 = 1/𝛽,

(3) 𝑓(𝑘) is called the external force of the sequence𝑋(0)at
the 𝑘th moment (zone).

Definition 3 (see [21]). Let 𝑋(0) be the original sequence and
let 𝛼 be the acceleration sequence of 𝑋(0).

(1) If the external force 𝑓(𝑘) of 𝑋(0) at point 𝑘 satisfies
𝑓(𝑘) = 𝛼(𝑘), then 𝛽 = 1. This relationship is called
the unit-incentive relationship, and the external force
sequence 𝑓 under 𝛽 = 1 is called the external force
sequence of unit incentive.

(2) If 𝛼(𝑘) = 𝑞𝑓(𝑘) under the criterionR, that is, 𝛽 = 𝑞,
then we call the relationship

𝛽 = 𝛼 (𝑘)
𝑓 (𝑘)

󳨐⇒

𝛽 =
𝑞𝑓 (𝑘)
𝑓 (𝑘)

󳨐⇒

𝛽 = 𝑞

(2)

the incentive relationship corresponding to the incentive
external force sequence 𝑞.

Definition 4 (see [21]). Let 𝑋(0) be the original sequence and
let 𝛼 be the acceleration sequence of 𝑋(0). Then

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) ,

𝛼 = (𝛼 (2) , 𝛼 (3) , . . . , 𝛼 (𝑛)) ,

𝛼 (𝑘) = 𝑥(0) (𝑘) − 𝑥(0) (𝑘 − 1) ,

∀𝑘 ∈ 𝐾, 𝐾 = {1, 2, . . . , 𝑛} .

(3)

Let 𝛽 ∈ {1, 𝑞} be the incentive and let 𝑀𝑓 be the transforma-

tion 𝑀𝑓 : 𝛼
𝛽
󳨀→ 𝑓, where

𝛼 = (𝛼 (2) , 𝛼 (3) , . . . , 𝛼 (𝑛)) ,

𝑓 = (𝑓 (2) , 𝑓 (3) , . . . , 𝑓 (𝑛)) ,

𝑀𝑓 (𝛼 (𝑘)) = 𝑓 (𝑘) ,

𝑓 (𝑘) = 𝛽−1𝛼 (𝑘) ,

∀𝑘 ∈ 𝐾,

(4)

and then 𝑀𝑓 is called the force transformation of data 𝑥(𝑘)
and

𝑓 = (𝑓 (2) , 𝑓 (3) , . . . , 𝑓 (𝑛))

= (𝛽−1𝛼 (2) , 𝛽−1𝛼 (3) , . . . , 𝛽−1𝛼 (𝑛)) .
(5)

Definition 5 (see [21]). Let 𝑋(0) be the original sequence and
let 𝛼 be the acceleration sequence of 𝑋(0). Suppose that the
external force sequence 𝑓 under incentive 𝛽 satisfies

𝑀𝑓 : 𝛼
𝛽

󳨀→ 𝑓, 𝑓 = (𝑓 (2) , 𝑓 (3) , . . . , 𝑓 (𝑛)) ; (6)

then

(1) Φ(𝑘) is called the first-order combination of 𝑓, where
Φ(𝑘) = ∑𝑘𝑖=2 𝑓(𝑖),

(2) 𝐹(𝑘) is called the second-order combination of 𝑓,
where

𝐹 (𝑘) =
𝑘

∑
𝑖=2

Φ (𝑖) ,

𝐹 (1) = 0,

(7)

(3) 𝐹Σ(𝑘) = ∑𝑘𝑖=2 𝐹(𝑖) is called the third-order combina-
tion of 𝑓, where

𝐹 (𝑘) =
𝑘

∑
𝑖=2

Φ (𝑖) ,

𝐹 (1) = 0,

(8)

(4) {𝑋(0), 𝛽, {𝐹}} is called the force space ({𝐹} for short),
where

{𝐹} = {𝑓 (𝑖) , Φ (𝑖) , 𝐹 (𝑖) , 𝐹Σ (𝑖)} , (9)

𝑓(𝑖) is called the first-order force element, Φ(𝑖) is called the
second-order force element, and 𝐹(𝑖) is called the third-order
force element.

Definition 6 (see [21]). 𝑥(0)(𝑘) of the original sequence
𝑋(0), AGO𝑥(1)(𝑘) (Accumulating Generation Operator), and
average sequence 𝑍(1)(𝑘), addressed as all order element,
constitute the decomposition transform of data.
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Definition 7 (see [21]). Let 𝑋(0) be the original sequence, let
AGO𝑥(1)(𝑘) of 𝑋(0) be 𝑋(1), and let the average sequence of
𝑋(1) be 𝑍(1),

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) ,

𝑋(1) = (𝑥(1) (1) , 𝑥(1) (2) , . . . , 𝑥(1) (𝑛)) ,

𝑥(1) (𝑘) =
𝑘

∑
𝑚=1

𝑥(0) (𝑚) ,

𝑍(1) = (𝑧(1) (1) , 𝑧(1) (2) , . . . , 𝑧(1) (𝑛)) ,

𝑧(1) (𝑘) = 0.5𝑥(1) (𝑘) + 0.5𝑥(1) (𝑘 + 1) .

(10)

Then one has the following:

(1) If transformation 𝑀𝑥(0) satisfies 𝑀𝑥(0){𝑥
(0)(𝑘),

𝑥(0)(1)} = Φ(𝑘), then the inverse transformation
𝑀−1
𝑥(0)

is called the decomposition transform of
𝑥(0)(𝑘).

(2) If transformation 𝑀𝑥(1) satisfies 𝑀𝑥(1){𝑥
(1)(𝑘),

𝑥(0)(1)} = 𝐹(𝑘), then the inverse transformation𝑀−1
𝑥(1)

is called the decomposition transform of 𝑥(1)(𝑘).
(3) If transformation 𝑀𝑧(1) satisfies 𝑀𝑧(1){𝑧

(1)(𝑘),
𝑥(0)(1)} = 𝜓(𝑘), 𝜓(𝑘) = 𝐹(𝑘 − 1) + 0.5Φ(𝑘),
then the inverse transformation 𝑀−1

𝑧(1)
is called the

decomposition transform of 𝑧(1)(𝑘).
(4) 𝑀 = {𝑀𝑓,𝑀𝑥(0) ,𝑀𝑥(1) ,𝑀𝑧(1)} is called the force-

transformation set.

If 𝑀𝑓 satisfies 𝑀𝑥(0){𝑥
(0)(𝑘), 𝑥(0)(1)} = Φ(𝑘), then the

inverse transformation 𝑀−1
𝑥(0)

is called the decomposition
transform of 𝑥(0)(𝑘).

According to [21], theorems related to the force-
decomposition transform can be stated as follows.

Theorem 8 (see [21]). (1) Let 𝑀−1
𝑥(0)

be the decomposition
transform of 𝑥(0)(𝑘),

𝑀𝑥(0) {𝑥
(0) (𝑘) , 𝑥(0) (1)} = Φ (𝑘) . (11)

Then

𝛽−1 (𝑥(0) (𝑘) − 𝑥(0) (1)) = Φ (𝑘) ,

𝑥(0) (𝑘) = 𝛽Φ (𝑘) + 𝑥(0) (1) .
(12)

(2) Let 𝑀−1
𝑥(1)

be the decomposition transform of

𝑥(1) (𝑘) ,𝑀𝑥(1) {𝑥
(1) (𝑘) , 𝑥(0) (1)} = 𝐹 (𝑘) . (13)

Then

𝛽−1 (𝑥(1) (𝑘) − 𝑘𝑥(0) (1)) = 𝐹 (𝑘) ,

𝑥(1) (𝑘) = 𝛽𝐹 (𝑘) + 𝑘𝑥(0) (1) ,

𝑥(1) (𝑘 + 1) = 𝛽𝐹 (𝑘 + 1) + (𝑘 + 1) 𝑥(0) (1) .

(14)

3. Inertia Nonhomogenous Discrete Gray
Model (INDGM)

The gray model is one of the core components of gray
system theory. It is characterized by its simple calcula-
tion, which is superior to traditional prediction methods.
The nonhomogenous discrete gray model (NDGM) is con-
structed based on the approximate nonhomogenous index
trend. This section introduces the relevant information
about the NDGM and inertia nonhomogenous discrete gray
model.

3.1. Nonhomogenous Discrete Gray Model (NDGM). Assume
that the sequence

𝑋(0) = (𝑥(0) (1) , 𝑥(0) (2) , . . . , 𝑥(0) (𝑛)) (15)

is an original data sequence. 𝑋(1) is an 1-AGO sequence,

𝑋(1) = (𝑥(1) (1) , 𝑥(1) (2) , . . . , 𝑥(1) (𝑛)) , (16)

where 𝑥(1)(𝑘) = ∑𝑘𝑖=1 𝑥
(0)(𝑖), 𝑘 = 1, 2, . . . , 𝑛.

Definition 9. Assuming that sequences 𝑋(0) and 𝑋(1) are
defined as in (15) and (16), respectively, the equations

𝑥(1) (𝑘 + 1) = 𝛽1𝑥
(1) (𝑘) + 𝛽2𝑘 + 𝛽3

𝑥(1) (1) = 𝑥(0) (1) + 𝛽4
(17)

define the first-order gray system-predictionmodel including
a variable, referred to as the NDGM(1, 1) [34]. Then the
recurrence function is defined as follows:

𝑥(1) (𝑘 + 1) = 𝛽𝑘1𝑥
(1) (1) + 𝛽2

𝑘

∑
𝑗=1

𝑗𝛽𝑘−𝑗1 +
1 − 𝛽𝑘1
1 − 𝛽1

𝛽3, 𝑘 = 1, 2, . . . , 𝑛 − 1,

𝑥(0) (𝑘 + 1) = 𝑥(1) (𝑘 + 1) − 𝑥(1) (𝑘) ,
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𝛽4 =
∑𝑛−1𝑘=1 [𝑥

(1) (𝑘 + 1) − 𝛽𝑘1𝑥
(1) (1) − 𝛽2∑

𝑘
𝑗=1 𝑗𝛽

𝑘−𝑗
1 − ((1 − 𝛽𝑘1) / (1 − 𝛽1)) 𝛽3] 𝛽𝑘1

1 + ∑𝑛−1𝑘=1 (𝛽𝑘1)
2

.

(18)

3.2. Parameter Space of the NDGM. Assuming that sequences
𝑋(0) and 𝑋(1) are defined as in (15) and (16), respectively, the
equation

𝛼 (𝑘) = (𝛼 (2) , 𝛼 (3) , . . . , 𝛼 (𝑛)) (19)

is called the acceleration sequence of the original sequence,
where

𝛼 (𝑘) = 𝑥(0) (𝑘) − 𝑥(0) (𝑘 − 1) . (20)

Then

𝑓 (𝑘) = (𝑓 (2) , 𝑓 (3) , . . . , 𝑓 (𝑛)) (21)

is called the external force sequence of the original sequence,
where 𝑓(𝑘) = 𝛽−1𝛼(𝑘). Let

Φ (𝑘) =
𝑘

∑
𝑖=2

𝑓 (𝑖) ,

𝐹 (𝑘) =
𝑘

∑
𝑖=2

Φ (𝑖) ,

𝐹 (1) = 0,

(22)

where Φ(𝑘) and 𝐹(𝑘) are, respectively, first-order external
force combination and second-order external force combina-
tion of 𝑓. Force decompositions of 𝑥(1)(𝑘), 𝑥(1)(𝑘 + 1) are as
follows:

𝑥(1) (𝑘) = 𝑘𝑥(0) (1) + 𝛽𝐹 (𝑘) ,

𝑥(1) (𝑘 + 1) = (𝑘 + 1) 𝑥(0) (1) + 𝛽𝐹 (𝑘 + 1) .
(23)

Definition 10. The NDGM can be defined by Definition 9.
Then one has the following:

(1) (𝛽1, 𝛽2, 𝛽3) is called the principle parameter space
of NDGM, 𝛽1, 𝛽2, 𝛽3 are called principle parameters,
and (𝛽1, 𝛽2, 𝛽3) is the I-order parameter packet of the
NDGM.

(2) Let 𝛽1 = Δ 𝛽1/Δ, 𝛽2 = Δ 𝛽2/Δ, 𝛽3 = Δ 𝛽3/Δ, let Δ 𝛽1 ,
Δ 𝛽2 , Δ 𝛽3 , Δ be structure parameters of NDGM(1, 1),
and let (Δ 𝛽1 , Δ 𝛽2 , Δ 𝛽3 , Δ) be a structure parameter
model or structure model.

(3) Let

Δ 𝛽1 = (𝐹𝑁 − 𝐺2)𝐻 + (𝐸𝐺 − 𝐷𝑁) 𝐼

+ (𝐷𝐺 − 𝐸𝐹)𝑀,

Δ 𝛽2 = (𝐸𝐺 − 𝐷𝑁)𝐻 + (𝐶𝑁 − 𝐸2) 𝐼

+ (𝐷𝐸 − 𝐶𝐺)𝑀,

Δ 𝛽3 = (𝐷𝐺 − 𝐸𝐹)𝐻 + (𝐷𝐸 − 𝐶𝐸) 𝐼 + (𝐶𝐹 − 𝐷2)𝑀,

Δ = 𝐶𝐹𝑁 + 2𝐷𝐺𝐸 − 𝐶𝐺2 − 𝑁𝐷2 − 𝐹𝐸2,

(24)

where

𝐶 =
𝑛−1

∑
𝑘=1

𝑥(1) (𝑘)2 ,

𝐷 =
𝑛−1

∑
𝑘=1

𝑘𝑥(1) (𝑘) ,

𝐸 =
𝑛−1

∑
𝑘=1

𝑥(1) (𝑘) ,

𝐹 =
𝑛−1

∑
𝑘=1

𝑘2,

𝐺 =
𝑛−1

∑
𝑘=1

𝑘,

𝐻 =
𝑛−1

∑
𝑘=1

𝑥(1) (𝑘) 𝑥(1) (𝑘 + 1) ,

𝐼 =
𝑛−1

∑
𝑘=1

𝑘𝑥(1) (𝑘 + 1) ,

𝑀 =
𝑛−1

∑
𝑘=1

𝑥(1) (𝑘 + 1) ,

𝑁 = 𝑛 − 1.

(25)

𝐶,𝐷, 𝐸,𝐻, 𝐼,𝑀 are called component parameters of
NDGM, (𝐶,𝐷, 𝐸,𝐻, 𝐼,𝑀) is called the component-
parameter space or component-parameter model of
NDGM.
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Then, second-order parameter of the component-
parameter space (𝐶,𝐷, 𝐸,𝐻, 𝐼,𝑀) is solved by substituting
(23) into 𝐶,𝐷, 𝐸,𝐻, 𝐼,𝑀, which yields

𝐶 =
𝑛−1

∑
𝑘=1

𝑥(1) (𝑘)2 =
𝑛−1

∑
𝑘=1

[𝑘𝑥(0) (1) + 𝛽𝐹 (𝑘)]
2

=
𝑛−1

∑
𝑘=1

𝑘2𝑥(0) (1)2

+ 𝛽
𝑛−1

∑
𝑘=1

2𝑘𝑥(0) (1) 𝐹 (𝑘) + 𝛽2
𝑛−1

∑
𝑘=1

𝐹 (𝑘)2

= 𝐶0 + 𝛽𝐶1 + 𝛽2𝐶2,

(26)

where 𝐶0 = ∑𝑛−1𝑘=1 𝑘
2𝑥(0)(1)2, 𝐶1 = ∑𝑛−1𝑘=1 2𝑘𝑥

(0)(1)𝐹(𝑘), 𝐶2 =
∑𝑛−1𝑘=1 𝐹(𝑘)2;

𝐷 =
𝑛−1

∑
𝑘=1

𝑘𝑥(1) (𝑘) =
𝑛−1

∑
𝑘=1

𝑘 (𝑘𝑥(0) (1) + 𝛽𝐹 (𝑘))

=
𝑛−1

∑
𝑘=1

𝑘2𝑥(0) (1) + 𝛽
𝑛−1

∑
𝑘=1

𝑘𝐹 (𝑘) = 𝐷0 + 𝛽𝐷1,

(27)

where 𝐷0 = ∑𝑛−1𝑘=1 𝑘
2𝑥(0)(1), 𝐷1 = ∑𝑛−1𝑘=1 𝑘𝐹(𝑘);

𝐸 =
𝑛−1

∑
𝑘=1

𝑥(1) (𝑘) =
𝑛−1

∑
𝑘=1

𝑘𝑥(0) (1) + 𝛽
𝑛−1

∑
𝑘=1

𝐹 (𝑘) = 𝐸0 + 𝛽𝐸1, (28)

where 𝐸0 = ∑𝑛−1𝑘=1 𝑘𝑥
(0)(1), 𝐸1 = ∑𝑛−1𝑘=1 𝐹(𝑘),

𝐻 =
𝑛−1

∑
𝑘=1

𝑥(1) (𝑘) 𝑥(1) (𝑘 + 1)

=
𝑛

∑
𝑘=2

[𝑘𝑥(0) (1) + 𝛽 (𝐹 (𝑘))]

⋅ [(𝑘 + 1) 𝑥(0) (1) + 𝛽 (𝐹 (𝑘 + 1))] =
𝑛−1

∑
𝑘=1

𝑘 (𝑘 + 1)

⋅ 𝑥(0) (1)2

+ 𝛽
𝑛−1

∑
𝑘=1

[𝑘𝐹 (𝑘 + 1) 𝑥(0) (1) + (𝑘 + 1) 𝐹 (𝑘) 𝑥(0) (1)]

+ 𝛽2
𝑛−1

∑
𝑘=1

𝐹 (𝑘 + 1) 𝐹 (𝑘) = 𝐻0 + 𝛽𝐻1 + 𝛽2𝐻2,

(29)

where 𝐻0 = ∑𝑛−1𝑘=1 𝑘(𝑘 + 1)𝑥(0)(1)2, 𝐻1 = ∑𝑛−1𝑘=1[𝑘𝐹(𝑘 +
1)𝑥(0)(1) + (𝑘 + 1)𝐹(𝑘)𝑥(0)(1)], 𝐻2 = ∑𝑛−1𝑘=1 𝐹(𝑘 + 1)𝐹(𝑘);

𝐼 =
𝑛−1

∑
𝑘=1

𝑘𝑥(1) (𝑘 + 1)

=
𝑛−1

∑
𝑘=1

𝑘 [(𝑘 + 1) 𝑥(0) (1) + 𝛽𝐹 (𝑘 + 1)]

=
𝑛−1

∑
𝑘=1

𝑘 (𝑘 + 1) 𝑥(0) (1) + 𝛽
𝑛−1

∑
𝑘=1

𝑘𝐹 (𝑘 + 1) = 𝐼0 + 𝛽𝐼1,

(30)

where 𝐼0 = ∑𝑛−1𝑘=1 𝑘(𝑘 + 1)𝑥(0)(1), 𝐼1 = ∑𝑛−1𝑘=1 𝑘𝐹(𝑘 + 1);

𝑀 =
𝑛−1

∑
𝑘=1

𝑥(1) (𝑘 + 1) =
𝑛−1

∑
𝑘=1

(𝑘 + 1) 𝑥(0) (1) + 𝛽𝐹 (𝑘 + 1)

=
𝑛−1

∑
𝑘=1

(𝑘 + 1) 𝑥(0) (1) + 𝛽
𝑛−1

∑
𝑘=1

𝐹 (𝑘 + 1) = 𝑀0 + 𝛽𝑀1,

(31)

where 𝑀0 = ∑𝑛−1𝑘=1(𝑘 + 1)𝑥(0)(1), 𝑀1 = ∑𝑛−1𝑘=1 𝐹(𝑘 + 1).
Substituting (23) into (24) for the structural parameters

yields

Δ 𝛽1 = (𝐹𝑁 − 𝐺2)𝐻 + (𝐸𝐺 − 𝐷𝑁) 𝐼 + (𝐷𝐺 − 𝐸𝐹)𝑀

= (𝐹𝑁 − 𝐺2) (𝐻0 + 𝛽𝐻1 + 𝛽2𝐻2)

+ [(𝐸0 + 𝛽𝐸1) 𝐺 − (𝐷0 + 𝛽𝐷1)𝑁] (𝐼0 + 𝛽𝐼1)

+ [(𝐷0 + 𝛽𝐷1) 𝐺 − (𝐸0 + 𝛽𝐸1) 𝐹] (𝑀0 + 𝛽𝑀1)

= (𝐹𝑁 − 𝐺2)𝐻0 + (𝐸0𝐺 − 𝐷0𝑁) 𝐼0 + (𝐷0𝐺

− 𝐸0𝐹)𝑀0 + 𝛽 [(𝐹𝑁 − 𝐺2)𝐻1 + (𝐸0𝐺 − 𝐷0𝑁) 𝐼1

+ (𝐷0𝐺 − 𝐸0𝐹)𝑀1 + (𝐷1𝐺 − 𝐸1𝐹)𝑀0]

+ 𝛽2 [(𝐹𝑁 − 𝐺2)𝐻2 + (𝐸1𝐺 − 𝐷1𝑁) 𝐼1

+ (𝐷1𝐺 − 𝐸1𝐹)𝑀1] = Δ 𝛽10 + 𝛽Δ 𝛽11 + 𝛽2Δ 𝛽12 .

(32)

Similarly,

Δ 𝛽2 = (𝐸0𝐺 − 𝐷0𝑁)𝐻0 − (𝐶0𝑁 − 𝐸20) 𝐼0 + (𝐷0𝐸0

− 𝐶0𝐺)𝑀0 + 𝛽 [(𝐸1𝐺 − 𝐷1𝑁)𝐻0

+ (𝐸0𝐺 − 𝐷0𝑁)𝐻1 + (𝐶0𝑁 − 𝐸20) 𝐼1

+ (𝐶1𝑁 − 2𝐸0𝐸1) 𝐼0 + (𝐷0𝐸0 − 𝐶0𝐺)𝑀1

+ (𝐷1𝐸0 + 𝐷0𝐸1 − 𝐶1𝐺)𝑀0]

+ 𝛽2 [(𝐸0𝐺 − 𝐷0𝑁)𝐻2 + (𝐸1𝐺 − 𝐷1𝑁)𝐻1

+ (𝐶1𝑁 − 2𝐸0𝐸1) 𝐼1 + (𝐶2𝑁 − 𝐸21) 𝐼0
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+ (𝐷1𝐸1 − 𝐶2𝐺)𝑀0

+ (𝐷0𝐸1 + 𝐷1𝐸0 − 𝐶1𝐺)𝑀1]

+ 𝛽3 [(𝐸1𝐺 − 𝐷1𝑁)𝐻2 + (𝐶2𝑁 − 𝐸21) 𝐼1

+ (𝐷1𝐸1 − 𝐶2𝐺)𝑀1] = Δ 𝛽20 + 𝛽Δ 𝛽21 + 𝛽2Δ 𝛽22

+ 𝛽3Δ 𝛽23 ;
(33)

Δ 𝛽3 = (𝐷0𝐺 − 𝐸0𝐹)𝐻0 + (𝐷0𝐸0 − 𝐶0𝐺) 𝐼0 + (𝐶0𝐹

− 𝐷20)𝑀0 + 𝛽 [(𝐷0𝐺 − 𝐸0𝐹)𝐻1

+ (𝐷1𝐺 − 𝐸1𝐹)𝐻0 + (𝐷1𝐸0 + 𝐷0𝐸1 − 𝐶1𝐺) 𝐼0

+ (𝐷0𝐸0 − 𝐶0𝐸0) 𝐼1 + (𝐶0𝐹 − 𝐷20)𝑀1

+ (𝐶1𝐹 − 2𝐷0𝐷1)𝑀0] + 𝛽2 [(𝐷0𝐺 − 𝐸0𝐹)𝐻2

+ (𝐷1𝐺 − 𝐸1𝐹)𝐻1 + (𝐷1𝐸0 + 𝐷0𝐸1 − 𝐶1𝐺) 𝐼1

+ (𝐷1𝐸1 − 𝐶2𝐺) 𝐼0 + (𝐶2𝐹 − 𝐷21)𝑀0

+ (𝐶1𝐹 − 2𝐷0𝐷1)𝑀1] + 𝛽3 [(𝐷1𝐺 − 𝐸1𝐹)𝐻2

+ (𝐷1𝐸1 − 𝐶2𝐺) 𝐼1 + (𝐶2𝐹 − 𝐷21)𝑀1] = Δ 𝛽30

+ 𝛽Δ 𝛽31 + 𝛽2Δ 𝛽32 + 𝛽3Δ 𝛽33 ;

(34)

Δ = 𝐶0𝐹𝑁 + 2𝐷0𝐸0𝐺 − 𝐶0𝐺
2 − 𝐷20𝑁 − 𝐸20𝐹

+ 𝛽 (𝐶1𝐹𝑁 + 2𝐷0𝐸1𝐺 + 2𝐷1𝐸0𝐺 − 𝐶1𝐺
2

− 2𝐷0𝐷1𝑁 − 2𝐸0𝐸1𝐹) + 𝛽2 (𝐶2𝐹𝑁 + 2𝐷1𝐸1𝐺

− 𝐶2𝐺
2 − 𝐷21𝑁 − 𝐸21𝐹) = Δ 0 + 𝛽Δ 1 + 𝛽2Δ 2.

(35)

3.3. Inertia Nonhomogenous Discrete Gray Model (INDGM).
Assuming that sequence 𝑋(0) is defined by (15), the accelera-
tion sequence is defined as follows:

𝛼 (𝑘) = 𝑥(0) (𝑘) − 𝑥(0) (𝑘 − 1) , (36)

and the acceleration sequence can be represented as

𝛼 (𝑘) = (𝛼 (2) , 𝛼 (3) , . . . , 𝛼 (𝑛)) ; (37)

𝑓(𝑘) is the external force of original sequence 𝑋(0) on point
𝑘. Let 𝑓(𝑘) = 𝛽−1𝛼(𝑘).

The incentive coefficient is 𝛽, and the inertia coefficient is
𝛽−1. At the same time,

𝑓 (𝑘) = (𝛽−1𝛼 (2) , 𝛽−1𝛼 (3) , . . . , 𝛽−1𝛼 (𝑛))

= (𝑓 (2) , 𝑓 (3) , . . . , 𝑓 (𝑛)) .
(38)

Based on (32)–(35), Definition 11 can be given.

Definition 11. Let

(𝛽1, 𝛽2, 𝛽3)

= (𝛽1 (𝛽, 𝛽2) , 𝛽2 (𝛽, 𝛽2, 𝛽3) , 𝛽3 (𝛽, 𝛽2, 𝛽3)) ,
(39)

where

𝛽1 =
Δ 𝛽10 + 𝛽Δ 𝛽11 + 𝛽2Δ 𝛽12

Δ 0 + 𝛽Δ 1 + 𝛽2Δ 2
,

𝛽2 =
Δ 𝛽20 + 𝛽Δ 𝛽21 + 𝛽2Δ 𝛽22 + 𝛽3Δ 𝛽23

Δ 0 + 𝛽Δ 1 + 𝛽2Δ 2
,

𝛽3 =
Δ 𝛽30 + 𝛽Δ 𝛽31 + 𝛽2Δ 𝛽32 + 𝛽3Δ 𝛽33

Δ 0 + 𝛽Δ 1 + 𝛽2Δ 2
,

(40)

with

Δ 0 = 𝐶0𝐹𝑁 + 2𝐷0𝐸0𝐺 − 𝐶0𝐺
2 − 𝐷20𝑁 − 𝐸20𝐹,

Δ 1

= 𝐶1𝐹𝑁 + 2𝐷0𝐸1𝐺 + 2𝐷1𝐸0𝐺 − 𝐶1𝐺
2

− 2𝐷0𝐷1𝑁 − 2𝐸0𝐸1𝐹,

Δ 2 = 𝐶2𝐹𝑁 + 2𝐷1𝐸1𝐺 − 𝐶2𝐺
2 − 𝐷21𝑁 − 𝐸21𝐹,

Δ 𝛽10

= (𝐹𝑁 − 𝐺2)𝐻0 + (𝐸0𝐺 − 𝐷0𝑁) 𝐼0

+ (𝐷0𝐺 − 𝐸0𝐹)𝑀0,

Δ 𝛽11

= (𝐹𝑁 − 𝐺2)𝐻1 + (𝐸1𝐺 − 𝐷1𝑁) 𝐼0

+ (𝐸0𝐺 − 𝐷0𝑁) 𝐼1 + (𝐷0𝐺 − 𝐸0𝐹)𝑀1

+ (𝐷1𝐺 − 𝐸1𝐹)𝑀0,

Δ 𝛽12

= (𝐹𝑁 − 𝐺2)𝐻2 + (𝐸1𝐺 − 𝐷1𝑁) 𝐼1

+ (𝐷1𝐺 − 𝐸1𝐹)𝑀1,

Δ 𝛽20

= 𝐸0𝐻0𝐺 − 𝐷0𝐻0𝑁 − 𝐶0𝑁𝐼0 + 𝐸20𝐼0 + 𝐷0𝐸0𝑀0
− 𝐶0𝑀0𝐺,

Δ 𝛽21

= (𝐸1𝐺𝐻0 − 𝐷0𝑁𝐻0 + 𝐸0𝐻1𝐺 − 𝐷0𝐻1𝑁)

− (𝐶0𝑁𝐼1 − 𝐸20𝐼1 − 𝐶1𝑁𝐼0 − 2𝐸0𝐸1𝐼0)

+ (𝐷0𝐸0𝑀1 − 𝐶0𝑀1𝐺 + 𝐷1𝐸0𝑀0 − 𝐶1𝑀0𝐺) ,
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Δ 𝛽22

= (𝐸0𝐺𝐻2 − 𝐷0𝑁𝐻2 + 𝐸1𝐺𝐻1 − 𝐷1𝑁𝐻1)

− (𝐶1𝑁𝐼1 − 2𝐸0𝐸1𝐼1 − 𝐶2𝑁𝐼0 − 𝐸21𝐼0)

+ (𝐷1𝐸1𝑀0 − 𝐶1𝑀1𝐺 + 𝐷1𝐸1𝑀0 − 𝐶1𝑀1𝐺) ,

Δ 𝛽23 = 𝐸1𝐺𝐻2 − 𝐷1𝑁𝐻2 − 𝐶2𝑁𝐼1 − 𝐸21𝐼1,

Δ 𝛽30

= (𝐷0𝐺 − 𝐸0𝐹)𝐻0 + (𝐷0𝐸0 − 𝐶0𝐺) 𝐼0

+ (𝐶0𝐹 − 𝐷20)𝑀0,

Δ 𝛽31

= (𝐷0𝐺 − 𝐸0𝐹)𝐻1 + (𝐷1𝐺 − 𝐸1𝐹)𝐻0

+ (𝐷0𝐸0 − 𝐶0𝐺) 𝐼1 + (𝐷1𝐸0 + 𝐷0𝐸1 − 𝐶1𝐺) 𝐼0

+ (𝐶0𝐹 − 𝐷20)𝑀1 + (𝐶1𝐹 − 2𝐷0𝐷1)𝑀0,

Δ 𝛽32

= (𝐷0𝐺 − 𝐸0𝐹)𝐻2 + (𝐷1𝐺 − 𝐸1𝐹)𝐻1

+ (𝐷1𝐸0 + 𝐷0𝐸1 − 𝐶1𝐺) 𝐼1 + (𝐷1𝐸1 − 𝐶2𝐺) 𝐼0

+ (𝐶2𝐹 − 𝐷21)𝑀0 + (𝐶1𝐹 − 2𝐷0𝐷1)𝑀1,

Δ 𝛽33

= (𝐷1𝐺 − 𝐸1𝐹)𝐻2 + (𝐷1𝐸1 − 𝐶2𝐺) 𝐼1

+ (𝐶2𝐹 − 𝐷21)𝑀1.
(41)

Then

(1) (𝛽1, 𝛽2, 𝛽3) = (𝛽10, 𝛽20, 𝛽30) = (Δ 𝛽10/Δ 0, Δ 𝛽20/Δ 0,
Δ 𝛽30/Δ 0) is called the competency model of NDGM;

(2) (𝛽11, 𝛽21, 𝛽31) = (𝛽1(𝛽), 𝛽2(𝛽), 𝛽3(𝛽)) = ((Δ 𝛽10 +
𝛽Δ 𝛽11)/(Δ 0+𝛽Δ 1), (Δ 𝛽20+𝛽Δ 𝛽21)/(Δ 0+𝛽Δ 1), (Δ 𝛽30+
𝛽Δ 𝛽31)/(Δ 0 + 𝛽Δ 1)) is called the first-order iner-
tia (incentive) model of NDGM, denoted as the
FINDGM;

(3) (𝛽12, 𝛽22, 𝛽32) = (𝛽1(𝛽2), 𝛽2(𝛽2), 𝛽3(𝛽2)) = ((Δ 𝛽10 +
𝛽Δ 𝛽11 + 𝛽2Δ 𝛽12)/(Δ 0 + 𝛽Δ 1 + 𝛽2Δ 2), (Δ 𝛽20 +
𝛽Δ 𝛽21 + 𝛽2Δ 𝛽22)/(Δ 0 + 𝛽Δ 1 + 𝛽2Δ 2), (Δ 𝛽30 + 𝛽Δ 𝛽31 +
𝛽2Δ 𝛽32)/(Δ 0+𝛽Δ 1+𝛽2Δ 2)) is called the second-order
inertia (incentive) model of NDGM, denoted as the
SINDGM;

(4) (𝛽13, 𝛽23, 𝛽33) = (𝛽1(𝛽3), 𝛽2(𝛽3), 𝛽3(𝛽3)) = ((Δ 𝛽10 +
𝛽Δ 𝛽11 + 𝛽2Δ 𝛽12)/(Δ 0 + 𝛽Δ 1 + 𝛽2Δ 2), (Δ 𝛽20 + 𝛽Δ 𝛽21 +

𝛽2Δ 𝛽22 +𝛽3Δ 𝛽23)/(Δ 0 +𝛽Δ 1 +𝛽2Δ 2), (Δ 𝛽30 +𝛽Δ 𝛽31 +
𝛽2Δ 𝛽32 + 𝛽3Δ 𝛽33)/(Δ 0 + 𝛽Δ 1 + 𝛽2Δ 2)) is called
the third-order inertia (incentive) model of NDGM,
denoted as the TINDGM.

3.4. Properties of the INDGM

Theorem 12. The competency model and the FINDGM of the
NDGM inertia model do not exist.

Proof. Definition 11 and (29)–(34) can be substituted into the
expressions for Δ 0 and Δ 1. Then Δ 0 = 0, Δ 1 = 0. From
Definition 11, parts (1) and (2), it is clear that the competency
model and the first-order inertia model of the NDGM inertia
model do not exist.

Theorem 13. The TINDGM is equivalent to the NDGM.

Proof. From the definition of the structure parameters of the
NDGM,

𝛽1 =
Δ 𝛽1
Δ

,

𝛽2 =
Δ 𝛽2
Δ

,

𝛽3 =
Δ 𝛽3
Δ

.

(42)

From (32)–(35), the TINDGM is equivalent to the
NDGM, which is equivalent to the NDGM. Thus, TINDGM
is equivalent to the NDGM.

From Definition 11, the four INDGM are named accord-
ing to the magnitude of the exponent 𝛽 of the inertial
coefficient. The exponent of the inertia coefficient 𝛽 is
closely related to the mechanical decomposition of the data.
Meanwhile, fromTheorem 12, the competencymodel and the
FINDGM of the inertia NDGM do not exist, and fromTheo-
rem 13, the TINDGM is equivalent to the NDGM.Thus, from
the point of view of the mechanical decomposition of the
data, the classical NDGM is an evolutionary process with four
inertial models, from the competency model, the FINDGM,
and the SIDGM to the TINDGM; however, the FINDGM
and SINDGM do not exist, which implies that there does not
exist a mechanical decomposition like this for the NDGM.
At the same time, the modeling mechanism of the NDGM
is obtained according to the data mechanical-decomposition
process of the exponent of the inertia coefficient 𝛽 from low
to high.

Theorem 14. The restored value of the INDGM is

𝑥(0) (𝑘 + 1) = 𝑥(1) (𝑘 + 1) − 𝑥(1) (𝑘) , (43)

where



Complexity 9

𝑥(1) (𝑘 + 1) = 𝛽𝑘1𝑖𝑥
(1) (1) + 𝛽2𝑖

𝑘

∑
𝑗=1

𝑗𝛽𝑘−𝑗1𝑖 +
1 − 𝛽𝑘1𝑖
1 − 𝛽1𝑖

𝛽3𝑖, 𝑖 = 0, 1, 2, 3, 𝑘 = 1, 2, . . . , 𝑛 − 1, (44)

𝛽4𝑖 =
∑𝑛−1𝑘=1 [𝑥

(1) (𝑘 + 1) − 𝛽𝑘1𝑖𝑥
(1) (1) − 𝛽2𝑖∑

𝑘
𝑗=1 𝑗𝛽

𝑘−𝑗
1 − ((1 − 𝛽𝑘1𝑖) / (1 − 𝛽1𝑖)) 𝛽3𝑖] 𝛽𝑘1𝑖

1 + ∑𝑛−1𝑘=1 (𝛽𝑘1𝑖)
2

, 𝑖 = 0, 1, 2, 3. (45)

The same sequence 𝑋(0) has different meanings under
different thoughts and processes of things. At the same time,
the data have different mechanical decompositions, depending
on the data source. Next, we examine whether changes in the
inertia coefficient 𝛽 for the same data affect the accuracy of the
model.

Theorem 15. For the same sequence𝑋(0) and different decom-
positions of the data, the second-order parameters of the com-
ponent parameters 𝐶,𝐷, 𝐸,𝐻, 𝐼,𝑀 and structure parameters
(Δ 𝛽1 , Δ 𝛽2 , Δ 𝛽3 , Δ) of the model will change, but the values of
the model parameters (𝛽1𝑖, 𝛽2𝑖, 𝛽3𝑖), 𝑖 = 0, 1, 2, 3 are invariant;
that is, the simulation accuracy of the model is not influenced
by the choice of decomposition.

Proof. Assume that sequence𝑋(0) has an incentive coefficient
of the form 𝛾 = 𝜎𝛽. Then under two different incentive
coefficients,

𝛼 (𝑘) = 𝛼𝛾 (𝑘) = 𝛽1𝑓𝛾 (𝑘) = 𝜎𝛽𝑓𝛾 (𝑘) = 𝛼𝛽 (𝑘)

= 𝛽𝑓𝛽 (𝑘) .
(46)

Therefore, the force element 𝑓 satisfies 𝑓𝛽(𝑘) = 𝜎𝑓𝛾(𝑘),

Φ𝛽 (𝑘) =
𝑘

∑
𝑖=2

𝑓𝛽 (𝑖) =
𝑘

∑
𝑖=2

𝜎𝑓𝛾 (𝑖) = 𝜎Φ𝛾 (𝑘) . (47)

Thus, the first-order combination of the force element satis-
fies (1/𝜎)Φ𝛽(𝑘) = Φ𝛾(𝑘); and

𝐹𝛽 (𝑘) =
𝑘

∑
𝑖=2

Φ𝛽 (𝑖) =
𝑘

∑
𝑖=2

𝜎Φ𝛾 (𝑖) = 𝜎𝐹𝛾 (𝑘) , (48)

It follows that the second-order combination of the force
element satisfies (1/𝜎)𝐹𝛽(𝑘) = 𝐹𝛾(𝑘).

Now, assuming that the component parameters of inertia
exponent 𝛽 are

𝐶𝛽, 𝐷𝛽, 𝐸𝛽, 𝐻𝛽, 𝐼𝛽,𝑀𝛽, (49)

the component parameters of inertia exponent 𝛾 are
𝐶𝛾, 𝐷𝛾, 𝐸𝛾, 𝐻𝛾, 𝐼𝛾,𝑀𝛾, where 𝛾 = 𝜎𝛽. From (26),

𝐶𝛽 =
𝑛−1

∑
𝑘=1

𝑘2𝑥(0) (1)2

+ 𝛽
𝑛−1

∑
𝑘=1

2𝑘𝑥(0) (1) 𝐹𝛽 (𝑘) + 𝛽2
𝑛−1

∑
𝑘=1

𝐹𝛽 (𝑘)
2

= 𝐶𝛽0 + 𝛽𝐶𝛽1 + 𝛽2𝐶𝛽2,

(50)

𝐶𝛾 =
𝑛−1

∑
𝑘=1

𝑘2𝑥(0) (1)2

+ 𝛾
𝑛−1

∑
𝑘=1

2𝑘𝑥(0) (1) 𝐹𝛾 (𝑘) + 𝛾2
𝑛−1

∑
𝑘=1

𝐹𝛾 (𝑘)
2

= 𝐶𝛾0 + 𝛾𝐶𝛾1 + 𝛾2𝐶𝛾2.

(51)

Comparing (50) with (51), (48) implies

𝐶𝛽0 = 𝐶𝛾0,

𝐶𝛽1 = 𝜎𝐶𝛾1,

𝐶𝛽2 = 𝜎2𝐶𝛾2.

(52)

Similarly,

𝐶𝛽0 = 𝐶𝛾0,

𝐶𝛽1 = 𝜎𝐶𝛾1,

𝐶𝛽2 = 𝜎2𝐶𝛾2,

𝐷𝛽0 = 𝐷𝛾0,

𝐷𝛽1 = 𝜎𝐷𝛾1,

𝐸𝛽0 = 𝐸𝛾0,

𝐸𝛽1 = 𝜎𝐸𝛾1,

𝐻𝛽0 = 𝐻𝛾0,

𝐻𝛽1 = 𝜎𝐻𝛾1,

𝐻𝛽2 = 𝜎2𝐻𝛾2,



10 Complexity

𝐼𝛽0 = 𝐼𝛾0,

𝐼𝛽1 = 𝜎𝐼𝛾1,

𝑀𝛽0 = 𝑀𝛾0,

𝑀𝛽1 = 𝜎𝑀𝛾1.
(53)

By (51), we have

Δ 0 = 𝐶𝛽0𝐹𝑁 + 2𝐷𝛽0𝐸𝛽0𝐺 − 𝐶𝛽0𝐺
2 − 𝐷2𝛽0𝑁 − 𝐸2𝛽0𝐹

= 𝐶𝛽0𝐹𝑁 + 2𝐷𝛽0𝐸𝛽0𝐺 − 𝐶𝛽0𝐺
2 − 𝐷2𝛽0𝑁 − 𝐸2𝛽0𝐹

= Δ󸀠0,

(54)

Δ 1 = 𝐶𝛽1𝐹𝑁 + 2𝐷𝛽0𝐸𝛽1𝐺 + 2𝐷𝛽1𝐸𝛽0𝐺 − 𝐶𝛽1𝐺
2

− 2𝐷𝛽0𝐷𝛽1𝑁 − 2𝐸𝛽0𝐸𝛽1𝐹

= 𝜎𝐶𝛾1𝐹𝑁 + 2𝜎𝐷𝛾0𝐸𝛾1𝐺 + 2𝜎𝐷𝛾1𝐸𝛾0𝐺

− 𝜎𝐶𝛾1𝐺
2 − 2𝜎𝐷𝛾0𝐷𝛾1𝑁 − 2𝜎𝐸𝛾0𝐸𝛾1𝐹 = 𝜎Δ󸀠1,

(55)

Δ 2 = 𝐶𝛽2𝐹𝑁 + 2𝐷𝛽1𝐸𝛽1𝐺 − 𝐶𝛽2𝐺
2 − 𝐷2𝛽1𝑁 − 𝐸2𝛽1𝐹

= 𝜎2𝐶𝛾2𝐹𝑁 + 2𝜎2𝐷𝛾1𝐸𝛾1𝐺 − 𝜎2𝐶𝛾2𝐺
2 − 𝜎2𝐷2𝛾1𝑁

− 𝜎2𝐸2𝛾1𝐹 = 𝜎2Δ󸀠2.

(56)

Similarly,

Δ 𝛽10 = Δ 𝛾10 ,

Δ 𝛽11 = 𝜎Δ 𝛾11 ,

Δ 𝛽12 = 𝜎2Δ 𝛾12 ,

(57)

Δ 𝛽20 = Δ 𝛾20 ,

Δ 𝛽21 = 𝜎Δ 𝛾21 ,

Δ 𝛽22 = 𝜎2Δ 𝛾22 ,

Δ 𝛽23 = 𝜎3Δ 𝛾23 ,

(58)

Δ 𝛽30 = Δ 𝛾30 ,

Δ 𝛽31 = 𝜎Δ 𝛾31 ,

Δ 𝛽32 = 𝜎2Δ 𝛾32 ,

Δ 𝛽33 = 𝜎3Δ 𝛾33 ,

Δ 𝛽34 = 𝜎4Δ 𝛾34 .

(59)

(1) Competency model (𝛽10, 𝛽20, 𝛽30) = (Δ 𝛽10/Δ 0, Δ 𝛽20/
Δ 0, Δ 𝛽30/Δ 0) does not include 𝛽, so (𝛽1, 𝛽2, 𝛽3) does
not change with changes in 𝛽.

(2) The FNDGM is (𝛽11, 𝛽21, 𝛽31) = ((Δ 𝛽10+𝛽Δ 𝛽11)/(Δ 0+
𝛽Δ 1), (Δ 𝛽20+𝛽Δ 𝛽21)/(Δ 0+𝛽Δ 1), (Δ 𝛽30+𝛽Δ 𝛽31)/(Δ 0+
𝛽Δ 1)), where for 𝛽 and 𝛾, 𝛾 = 𝜎𝛽, substituting (54)-
(55) into 𝛽󸀠1 = (Δ 𝛾10 + 𝛾Δ 𝛾11)/(Δ

󸀠
0 + 𝛾Δ󸀠1) yields

𝛽󸀠11 =
Δ 𝛾10 + 𝛾Δ 𝛾11
Δ󸀠0 + 𝛾Δ󸀠1

=
Δ 𝛽10 + 𝜎𝛽 ((1/𝜎) Δ 𝛽11)
Δ 0 + 𝜎𝛽 ((1/𝜎) Δ 1)

=
Δ 𝛽10 + 𝛽Δ 𝛽11
Δ 0 + 𝛽Δ 1

= 𝛽11.

(60)

Thus, 𝛽11 does not change with changes in the inertia
parameter. Similarly, it can be shown that 𝛽21, 𝛽31 do not
change with changes in the inertia parameter.

By substituting (54)–(59) into the SINDGM and
TINDGM, it can be similarly proved that model parameters
𝛽1𝑖, 𝛽2𝑖, 𝛽3𝑖, 𝑖 = 2, 3, do not change with the model
inertia parameter 𝛽. Therefore, the form of the mechanical
decomposition of the data does not affect the accuracy of the
model.

According to the modeling mechanism of the proposed
INDGM, the flow chart of the new model is presented in
Figure 1.

4. Numerical Example of the INDGM

Short-term traffic prediction is one of the well-developed
areas in transportation. The prediction models in traffic as
well as other fields are switching towards data intensive arti-
ficial intelligence models or expert systems. In this section,
taking the data of traffic flow onWhitemud Drive in Canada
as the original data, the simulation results of the INDGM are
empirically analyzed.

4.1. Traffic-Flow State Division. Traffic-flow characteristics
can be described by the traffic-flow status, and different states
of traffic flow show different characteristics. Based on the
study of the traffic-flow parameter model and traffic-flow
characteristics, the traffic-flow states can be divided into free-
flow state, congested-flow state, and blocking-flow state. The
traffic characteristics of the three traffic states are as follows.

Under the free-flow state, the traffic-flow rate is small, the
road on which the vehicle is driving is unaffected or mildly
affected by other vehicles, and the vehicle canmaintain a high
speed.

Under the congested-flow state, the speed of the vehicle
is restricted by the front, but the traffic-flow state is relatively
stable, and itself has a certain anti-interference ability. The
traffic-flow rate in this state can reach the maximum, but
when traffic demand continues to increase, traffic flows
produce greater volatility and the traffic-flow rate drops
significantly.

Under the jam-flow state, the traffic density is high, speed
is restricted strictly by the front, vehicle freedom is small,
speed stability is poor, and there is greater volatility. When
the traffic-flow rate continues to increase, traffic will exhibit a
stop-and-go phenomenon.
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System settings

Start

Initial step: Data preparation (collecting raw data set)

Step 1: Calculate the mechanical factors of the original 
data column

Step 2: Data processing
Calculate the secondary parameters of the component parameters

Minimum of one dependent variable 
meets the degree of gray incidence 

with the independent variable?

Step3: Data processing
Calculate the secondary parameters of the structural parameters

Step 5: Compute the FINGM and TINGM

Step 6: Compute the simulation values and predicted values
Compute the mean absolute percentage error

Select the model with higher accuracy

Meeting the accuracy 
requirement of the system

Stop

No

No System settings

Yes

Yes

Step 4: Estimate model parameters �훽1, �훽2, �훽3 and �훽4

Figure 1: The flowchart of the INDGM.

4.2. Establishing the INDGM to Forecast the Amount of
Traffic Flow in Canada. The data are taken from the web
site http://www.openits.cn/openData/700.jhtml#xiazai, for
the three weeks from August 8, 2015, to August 28, 2015.
These data consist of 20-second samples of traffic flow on
Whitemud Drive in Canada. This paper uses traffic flow on
Sunday, August 23, 12:00–14:00 and 13:50–15:50, and Friday,
August 28, 8:50–10:50 and 15:00–17:00. The four stages of

data decomposition represent traffic flow on nonworking
days and working days, as well as traffic in the free-flow
state and congested-flow state. The traffic flow is shown in
Table 1.

According to Table 1, the Canadian traffic-flow data show
that Canada’s traffic flow is generally only in two states,
the free-flow state and congested-flow state, and the jam-
flow state is generally rare. It can be observed that, on the

http://www.openits.cn/openData/700.jhtml#xiazai
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Table 1: Four sections of a road traffic flow in Canada on August 23 and on August 28.

Serial number
August 23, 2015 August 28, 2015

12:00–14:00 13:50–15:50 8:50–10:50 15:00–17:00
Free flow Free flow (steady flow) Congested flow (smooth traffic) Congested flow

𝑘 = 1 114.00 114.75 135.25 159.75
𝑘 = 2 116.75 112.75 134.50 171.25
𝑘 = 3 119.50 115.50 121.75 178.75
𝑘 = 4 126.00 131.25 134.50 176.00
𝑘 = 5 129.50 112.75 139.75 180.25
𝑘 = 6 125.75 123.00 137.75 184.00
𝑘 = 7 120.00 116.25 121.75 207.25
𝑘 = 8 131.00 117.25 134.75 185.50
𝑘 = 9 127.50 117.75 138.75 208.25
𝑘 = 10 117.25 113.00 140.50 221.75
𝑘 = 11 127.25 125.25 140.00 190.00
𝑘 = 12 114.75 109.75 137.00 186.00

working days, traffic is in the free-flow state and the free
flow has large fluctuations and a steady state. On the working
day, there is a significant increase in traffic flow compared
to the nonworking day, and there is a congested-flow state,
in which the congested flow also fluctuates greatly and
smoothly.

From Table 1, the first eight data of August 23, 2015,
12:00–14:00, are used for the simulation, while the 4th data
are used as a prediction. The following steps are carried
out.

Step 1. Data calculation process: the original data are listed as
follows:

𝑋(0) = (114.00, 116.75, 119.50, 126.00, 129.50, 125.75, 120.00, 131.00, 127.50, 117.25, 127.25, 114.75) ,

𝐹 = 140,

𝐺 = 28.

(61)

Step 2. Calculate the second-order parameters of the compo-
nent parameters (the values of 𝛽1𝑖, 𝛽2𝑖, 𝛽3𝑖, 𝑖 = 0, 1, 2, 3, are
independent of 𝛽, so 𝛽 = 1):

𝐶0 = 1819440,

𝐶1 = 216486,

𝐶2 = 6882.25,

𝐷0 = 15960,

𝐷1 = 949.5,

𝐸0 = 3192,

𝐸1 = 168,

𝐻0 = 2183328,

𝐻1 = 272745,

𝐻2 = 8924.81,

𝐼0 = 19152,

𝐼1 = 1275,

𝑀0 = 3990,

𝑀1 = 238.5.
(62)

Step 3. Calculate the second-order parameters of the struc-
ture parameters (Δ 𝛽1 , Δ 𝛽2 , Δ 𝛽3 , Δ):

Δ 2 = 19605.25,

Δ 𝛽12 = 3816.75,

Δ 𝛽22 = 1799889,

Δ 𝛽23 = 186933.47,

Δ 𝛽32 = 2234998.5,

Δ 𝛽33 = −171357.

(63)

Step 4. The values obtained in the second and third steps are
substituted into the SIDGM:

𝛽1 = 0.19468,

𝛽2 = 91.80648,
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Table 2: Comparison of simulative and predictive results between the SINDGM and TINDGM for August 23.

Serial number Free flow SINDGM TINDGM Free flow (steady flow) SINDGM TINDGM
Simulated data Simulated data Simulated data Simulated data

𝑘 = 1 114.00 114.00 114.00 114.75 114.75 114.75
𝑘 = 2 116.75 113.17 114.57 112.75 114.82 113.84
𝑘 = 3 119.50 113.84 123.65 115.50 114.72 121.70
𝑘 = 4 126.00 113.97 125.41 131.25 114.76 118.81
𝑘 = 5 129.50 113.98 125.76 112.75 114.75 119.87
𝑘 = 6 125.75 113.99 125.82 123.00 114.75 119.48
𝑘 = 7 120.00 114.00 125.83 116.25 114.74 119.63
𝑘 = 8 131.00 114.00 125.84 117.25 114.75 119.57
MAPE 0.0797 0.0248 0.0385 0.0427

Forecasted data Forecasted data Forecasted data Forecasted data
𝑘 = 9 127.50 114.00 125.84 117.75 114.75 119.57
𝑘 = 10 117.25 114.00 125.84 113.00 114.75 119.59
𝑘 = 11 127.25 114.00 125.84 125.25 114.75 119.58
𝑘 = 12 114.75 114.00 125.84 109.75 114.75 119.59
MAPE 0.0611 0.0485 0.0426 0.0522

𝛽3 = 114,

𝛽4 = 1.0254.
(64)

According to the TIDGMmodel, we have

𝛽1 = 0.19468,

𝛽2 = 101.34135,

𝛽3 = 105.25964,

𝛽4 = 0.2763.

(65)

Step 5. The value of the parameter obtained in Step 4 is
substituted into (44):

𝑥(1) (𝑘 + 1) = 0.19468𝑘𝑥(0) (1) + 91.80648
𝑘

∑
𝑗=1

𝑗 × 0.19468𝑘−𝑗

+ 1 − 0.19468𝑘

1 − 0.19468
× 114,

𝑘 = 1, 2, . . . , 7, 𝑥(0) (1) = 114, 𝑥(0) (𝑘) = 𝑥(1) (𝑘 + 1) − 𝑥(1) (𝑘)

𝑥(1) (𝑘 + 1) = 0.19468𝑘𝑥(0) (1) + 101.34135
𝑘

∑
𝑗=1

𝑗0.19468𝑘−𝑗

+ 1 − 0.19468𝑘

1 − 0.19468
105.25964,

𝑘 = 1, 2, . . . , 𝑛 − 1.

(66)

Step 6. Calculate the simulation values, predictions, and
errors.

Substitute the results of Step 5 into (43), and calculate the
simulation and predictive values 𝑥(0)(𝑘) for 𝑥(0)(𝑘), which is
the original data of Step 1. MAPE is defined as

MAPE = 100%1
𝑛

𝑛

∑
𝑘=2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥(0) (𝑘) − 𝑥(0) (𝑘)

𝑥(0) (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, (67)

where 𝑥(0)(𝑘) is the original data and 𝑥(0)(𝑘) is the simulation
and predictive values.

The simulation/prediction values and absolute percentage
errors for the SINDGM and TINDGM are shown in Table 2.

According to Table 2, the results of the SINDGM and
TINDGM for nonworking days of the two time periods of
traffic simulation andprediction are good; the best simulation
result is up to 0.0248, and the best predictive result is up to
0.0426. Although both are in free-flow states, the amounts of
traffic fluctuation are not the same. When the vehicle flow
fluctuates greatly, the simulation effect and the prediction
effect of the TINDGM are better. When the vehicle flow is
relatively stable, the simulation effect and prediction effect
of the SINDGM are better than those of the TINDGM.
Therefore, when the traffic flow is in the free-flow state and
the vehicle flow fluctuates greatly, the TINDGM can be used;
when the vehicle flow is relatively stable, the TINDGM can
be used. The absolute simulation and prediction percentage
errors in Table 2 of the above four models for Canada’s traffic
flow are illustrated in Figure 2.

Similarly, the above steps are also applied to other sets of
data in Table 1.The simulation/prediction values and absolute
percentage errors for the SINDGM and TINDGM are shown
in Table 3.

According to Table 3, in the two periods, the vehicle flow
is in the congested-flow state on the working day. When the
vehicle flow fluctuates less in the congested-flow state, the
simulation effect and prediction effect of the SINDGM are
better than those of the TINDGM. When the vehicle flow
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(a) The simulated and forecasted curves of the free flow on August 23
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(b) The simulated and forecasted curves of the free flow (steady flow) on
August 23

Figure 2

Table 3: Comparison of simulative and predictive results between the SINDGM and TINDGM for August 28.

Serial
number Congested flow (smooth traffic) SINDGM TINDGM Congested flow SINDGM TINDGM

Simulated data Simulated data Simulated data Simulated data
𝑘 = 1 135.25 135.25 135.25 159.75 159.75 159.75
𝑘 = 2 134.50 135.23 129.75 171.25 144.59 167.72
𝑘 = 3 121.75 135.24 132.71 178.75 149.78 176.35
𝑘 = 4 134.50 135.24 132.69 176.00 153.20 182.02
𝑘 = 5 139.75 135.24 132.70 180.25 155.44 185.75
𝑘 = 6 137.75 135.25 132.70 184.00 156.92 188.20
𝑘 = 7 121.75 135.25 132.70 207.25 157.89 189.81
𝑘 = 8 134.75 135.25 132.70 185.50 158.53 190.87
MAPE 0.0409 0.0473 0.1594 0.0335

Forecasted data Forecasted data Forecasted data Forecasted data
𝑘 = 9 138.75 135.25 132.70 208.25 158.94 191.57
𝑘 = 10 140.50 135.25 132.70 221.75 159.22 190.03
𝑘 = 11 140.00 135.25 132.70 190.00 159.40 192.32
𝑘 = 12 137.00 135.25 132.70 186.00 159.52 192.53
MAPE 0.0273 0.0456 0.2055 0.0654

fluctuates greatly, the simulation effect and prediction effect
of the SINDGM are better than those of the TINDGM.

Based on the data in Table 3, the absolute simulation and
prediction percentage errors of the above two models for
Canada’s traffic flow are illustrated in Figure 3.

According to Tables 2 and 3 and Figures 2 and 3, general
conclusions can be drawn. In the free-flow or congested-flow
state, when the vehicle flow is relatively stable, the SINDGM
is used to simulate and predict, and when the vehicle flow
fluctuates greatly, the TINDGM is used to simulate and
predict.

5. Conclusion

Short-term traffic-flow forecasting in an intelligent trans-
portation system is an important research area. Short-term
traffic-flow research results can provide traffic information
for the intelligent transportation system. Such results can
also be directly applied to the advanced traffic informa-
tion system and traffic management system, providing real-
time and effective information for travelers. In this paper,
based on the short-term traffic-flow system, which has basic
dynamic characteristics and a high degree of uncertainty,
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the traffic-flow data, which consist of the distance, speed,
and acceleration, the force synthesis and decomposition of
mechanical properties, and the use of mechanical properties
in the classic gray model NDGM, four types of INDGM are
obtained, and the inertia model is selected according to the
state of trafficflow to simulate and forecast the trafficflow.The
following main conclusions can be drawn from the results:

(1) According to the dynamic characteristics of traffic
flow, the basic properties of mechanics are extended
to the traffic-flow data column. The approach is
similar to the nonhomogenous discrete model. Using
representations of the structure parameter and com-
ponent parameter, four types of inertial INDGM are
proposed.

(2) Through the process of obtaining the four INDGM
by the force decomposition of the data, the modeling
mechanism of the classical NDGM can be explained
from the perspective of data decomposition. At the
same time, the important properties of four INDGM
are obtained.

(3) For the traffic flow at a junction in Canada, accord-
ing to the traffic-flow state, the optimal INDGM is
selected, and better traffic-flow prediction results are
achieved.
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