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Abstract
A critical view of the alleged significance of Belnap four-valued logic for reasoning under inconsistent and incomplete
information is provided. The difficulty lies in the confusion between truth-values and information states, when
reasoning about Boolean propositions. So our critique is along the lines of previous debates on the relevance of
many-valued logics and especially of the extension of the Boolean truth-tables to more than two values as a tool
for reasoning about uncertainty. The critique also questions the significance of partial logic.

1 Introduction

There have been many discussions as to the actual significance of many-valued logics. It is
not indeed very obvious, at first glance, to see what they can be useful for, what kind of
phenomena they may account for (see [45] for a critical view and [31] for a more optimistic
discussion). Part of this difficulty lies in the controversial interpretation of partial truth
in terms of incomplete knowledge. Hähnle [32] faces this difficulty in the field of formal
specification of software systems where modeling non-termination and error values in terms
of many-valued logic turns out to be problematic.
From the inception of many-valued logics [37], there have been attempts to attach an

epistemic flavor to truth degrees. This has led to a very confusing state of facts, and
has probably hampered the development of applications of these logics. If we look at the
applications of classical logic, there are three main trends in the XXth century. First,
classical logic has been proposed as a foundation for mathematics. This program is known
to have partly failed after Goedel’s incompleteness theorem. Further on, the advent of
computers and digital technology has prompted the need for synthetizing Boolean func-
tions. A great deal of results was produced based on this motivation. More recently the
emergence of Artificial Intelligence and Logic programming has re-instated classical logic
as a tool for knowledge representation and reasoning, a role logic had had since the
Antiquity.
The position of many-valued logics in this landscape looks less strong. Although some
may be tempted to found new mathematics on many-valued logics [3], this grand pur-
pose still looks out of reach if not delusive. It sounds like a paradox of its own since
we use classical mathematics to formally model many-valued logic notions. What could
be named “many-valued mathematics” essentially looks like an elegant way of expressing

∗This paper is based on an invited talk entitled “Some remarks on truth-values and degrees of belief” given at
the Workshop “The Challenge of Semantics” Vienna, Austria, July 2004.
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196 On Ignorance and Contradiction Considered as Truth-values

properties of many-valued extensions of Boolean concepts in a Boolean-like syntax. For
instance, the transitivity property of similarity relations is valid in �Lukasiewicz logic, and,
at the syntactic level, exactly looks like the transitivity of equivalence relations, but should
be interpreted as the triangular inequality of distances measures. The research program
of the “many-valued mathematics” school differs from intuitionism, that was motivated
by the search for constructive proofs in mathematics and the rejection of the proof by
refutation.
Besides, there have been some works proposing to use many-valued logics so as to extend
switching logic to analogical devices (especially 3-valued logics). However it is not clear
that the current technology of computers will soon move to that direction. Recent works by
Mundici and colleagues nevertheless bridge the gap between �Lukasiewicz logic and
the concise representation and approximation of real-valued functions [1]. Lastly, it is
tempting to assume that many-valued logics would provide a more flexible setting for
knowledge representation than classical logic. However it is patent that many-valued logics
had a very limited impact in Artificial intelligence so far, despite the significant progress
recently made in the mechanization of automated reasoning in basic many-valued logics
(especially �Lukasiewicz logic) [30]. In contrast, Artificial Intelligence has triggered research
in symbolic non-classical practical logics (nonmonotonic or modal logics) where truth remains
two-valued. Interestingly, notions like belief or knowledge, that pervade these logics
are often modelled in an all-or-nothing way (even if they are naturally a matter of
degree).
Only fuzzy set and fuzzy logic after the pioneering papers of Zadeh [47] [49] seem to have

considered many-valued logics as their natural underpinnings. Fuzzy logic is often attacked
because it is truth-functional. There is a whole sequence of such papers, perhaps culminating
with Elkan [21]’s best paper prize at the 1993 National U.S. AI conference. Looking at these
critiques more closely, it can be seen that the root of the controversy lies in a confusion
between degrees of truth and degrees of belief (an instance of this confusion is between
membership grades and degrees of probability). Indeed, belief is never truth-functional [17],
but fuzzy logic is not specifically concerned with belief representation, only with gradual
(not black or white) concepts [33]. However this misunderstanding seems to come a long
way, and can be traced back to the words the founders of many-valued logics used when
speaking of their invention. For instance, a truth-value strictly between true and false was
named “possible” [39], a word which refers to uncertainty modelling and modalities. While
founders of many-valued logics built a beautiful mathematical and conceptual object, they
seem to have been less clear about its purpose.
This paper recalls some elements pertaining to the history of this flaw, and shows that we
still suffer from it, not only through the debates around fuzzy logic, but also in some other
unrelated attempts at building logics of incomplete knowledge or inconsistency-tolerant for-
malisms. More specifically, we restrict our attention to partial logic, and Belnap’s allegedly
useful four-valued logic. This paper relies on a previous one which tried to clarify the con-
fusion between many-valued logic and possibility theory [19]. Our contention is basically
that degrees of truth are a matter of convention, while uncertainty handling is a matter of
consequencehood and validity, hence a meta-notion with respect to truth-values, be they
non-extreme ones. We claim here that we cannot consistently reason under incomplete or
conflicting information about Boolean propositions by augmenting the set of Boolean truth-
values true and false with epistemic notions like “unknown” or “contradictory”, modeling
them as additional genuine truth-values of their own.
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On Ignorance and Contradiction Considered as Truth-values 197

2 The meaning of intermediate truth-values: digging into the
history of many-valued logics

In the following, 1 stands for true and 0 stands for false. It is known that �Lukasiewicz [39]
suggested an interpretation for his third truth-value 12 , added to the set {0,1}. The third
truth-value is supposed to be read as possible. The idea comes from a debate about future
contingents in the Greek Philosophy1. It was noticed that statements about future events
cannot be assigned a truth-value 1 or 0, unless we live in a predetermined world. So, the fact
that, for a proposition p referring to the future, like for instance The UK will be a republic in
year 3000, one may have both p and its negation ¬p possible, led �Lukasiewicz2 into rejecting
the excluded-middle law and building a truth-table for his three-valued logic, reflecting this
rejection. In particular, t(p)= t(¬p)= 1

2 , for future contingents.
It should be clear that, in the above debate, the epistemic notion of possible is not restricted
to future events, but also applies to past and present events that are unknown by a reasoning
agent. Namely, the fact that the statements under concern refer to an unpredictable future
or to an ill-known past is immaterial. Even if, contrary to the future, the past is entirely
determined, both may be equally unknown to an agent.
The epistemic understanding of truth-functional many-valued logics has been criticized,
for instance by Urquhart [45]. Since the main primitive connective in �Lukasiewicz logic
is the implication → (see table 1), the claim that possible is a third truth-value leads to
the question of assigning a proper truth-value to sentences of the form p→p, when the
truth-value t(p)= 1

2 . Commonsense suggests that p→p should be maintained as a tautology
so that in particular 12→ 1

2=1, as proposed by �Lukasiewicz, in so far as modus ponens
is going to be used as an inference rule. It is legitimate to consider likewise that p→¬p
should not be true when t(p)= t(¬p)= 1

2 . But since
1
2→ 1

2=1, t(p→¬p)=1, which sounds
debatable in this case, since p is not acknowledged as false. Now, postulating that 12→ 1

2= 1
2

(an assumption made in Kleene’s 3-valued logic) is not very exciting as, to quote Urquhart:
“there would be no 3-valued tautologies”.
The conclusion here is that, in order to capture the status of future contingents, and more
generally any unknown proposition, the very assumption of truth-functionality (building
truth-tables for all connectives) is debatable. Combining two propositions whose truth-values
are unknown may result in tautological or contradictory statements, whose truth-value can
be asserted from the start, even without believing in a predetermined world. As long as p will
eventually be either true or false, even if this truth-value cannot be computed or prescribed
as of to-day, the proposition p∧¬p can be unmistakably at any time predicted as being false

TABLE 1. �Lukasiewicz implication

→ 0 1
2 1

0 1 1 1
1
2

1
2 1 1

1 0 1
2 1

1between Chrysippus school and Epicureans.
2adopting the position of Epicureans against Chrysippus.
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198 On Ignorance and Contradiction Considered as Truth-values

and p∨¬p as being true3, while p∧p and p∨p remain contingent. So there is no way of
defining a sensible truth-table that accounts for the idea of possible. This notion of possible
is in fact a modality and not what is usually understood as a truth-value. In modal logic
the fact that possibly p and possibly ¬p can be true at the same time is not surprizing nor
does it question the excluded-middle law. The conjunction of possibly p and possibly q is in
particular not equivalent to the statement that p∧q is possible (the latter is a contradiction
if p=¬q). Adopting this equivalence usually trivializes modal systems.
In fact, �Lukasiewicz seems to have persisted in his view of truth-functional modalities,
as he later proposed a 4-valued modal logic in which the modality possible (♦) obeys
♦p∧♦q = ♦(p∧q). Details about this logic are provided by Font and Hájek [22] who show
its counterintuitive behaviour, and conclude that it is very difficult to interpret this system
as a modal logic.
The basic issue is that the truth or falsity of unknown propositions (such as future
contingents) is a matter of belief4 held by an agent and pertains to the representation of
uncertainty. This is the point made very early by De Finetti [15], as a critique of �Lukasiewicz’s
interpretation of his third truth-value. To wit5: “Even if, in itself, a proposition cannot be
but true or false, it may occur that a given person does not know the answer, at least at a
given moment. Hence for this person, there is a third attitude in front of a proposition. This
third attitude does not correspond to a third truth-value distinct from yes or no, but to
the doubt between the yes and the no (as people, who, due to incomplete or indecipherable
information, appear as of “unknown sex” in a given statistics. They do not constitute a third
sex. They only form the group of people whose sex is unknown)”.
For De Finetti, believing or not a statement about an event is an epistemic notion that
encapsulates the statement. The lack of knowledge about truth-values is to be faced and
coped with whether one likes it or not. In contrast, what is called a truth set and the number
of allowed truth-values are a matter of representation conventions. For the purpose of rep-
resenting knowledge, we decide to use entities, we call propositions, that are assumed to be
only true or false, even if these values may be currently unknown because the corresponding
statements pertain to the future, or to any ill-known circumstances, be they past or present.
Using Boolean variables or not to represent knowledge is a modeling decision. People working
in probability theory do use Boolean propositions, but they attach numerical probabilities
to them. These probabilities are not truth-values. They are degrees of belief about the truth
or falsity of Boolean propositions, interpreted as lottery ticket prices to be paid to gain one
money unit if the corresponding events occur. Not knowing in advance if p= The UK will
be a republic in year 3000, and not having decisive arguments in favor of this statement nor
its contrary, the probability 12 will be assigned to both assertions that p and that ¬p (more
explicitly, to each of the statements p is true and p is false).
Note that some authors like Reichenbach [41], more recently Nilsson [40], seemed to
consider probabilities as truth-values. The source of this confusion seems to lie in the fact
that the negation of probably true is probably false (while the negation of possibly true is not

3The case of intuitionism remains to be further discussed along that line. The point of intuitionism is a critique
of some notions of proof in mathematics, namely refutation-style proofs, whereby an existence theorem can be
proved without exhibiting an example where this theorem holds. Then the loss of the excluded-middle law seems to
be due to the decision not to use this property when developing proofs rather than the will to change the Boolean
nature of propositional variables.

4or knowledge; here we are not concerned by the fact that the beliefs of the agent are or not in agreement with
the real world. So, we shall use the words “belief” and “knowledge” indifferently in this paper.

5Our translation from the French, already cited in [19].
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On Ignorance and Contradiction Considered as Truth-values 199

TABLE 2. Kleene strong disjunction

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

possibly false, but certainly false). So the truth set {0,1} looks superseded by the unit interval
of probabilities. As pointed out by Carnap [12], what is superseded by the probability scale
are the notions of verified and falsified, not the truth-values per se.
Adopting Boolean variables to describe past, present or future states of facts, we are forced
to take all tautologies and contradictions of classical logic for granted. It does not presuppose
any philosophical attitude regarding the issue of determinism, nor on the nature of truth. It
is just a mathematical consequence of our modelling convention. Other conventions may be
adopted (as acknowledged by De Finetti himself) like defining a proposition as a 3-valued
entity, where the third truth-value 12 genuinely means half-true. For instance, I can see a
bottle on a table and declare that the statement the bottle is full has truth-value 12 . By
this claim, I precisely mean the bottle is half-full. Note that in this example, there is no
uncertainty involved (I can see the bottle and measure the amount of liquid in it). Moreover
it is clear that an infinite truth-set looks natural since the bottle may be in many more states
than full, empty, and half-full. Here the use of a Boolean variable is not natural because the
negation of full is not empty (the latter is the antonym of full).
Three-valued logics other than �Lukasiewicz’s propose different truth tables and different
views of the third truth-value. Kleene’s three-valued logic [35] considers truth-values as the
result of a computation by a machine. The third truth-value is used when the machine
fails to provide an answer. Even if the reference to a computer makes the third truth-value
more down-to-earth than the philosophical standpoint of �Lukasiewicz, the point of view on
propositions after Kleene remains the same: if the machine cannot compute the truth-value
of a proposition couched in terms of Boolean variables, the agent who runs the computation
ends up not knowing this truth-value. The truth-table for strong disjunction in Kleene’s
logic (see table 2) stipulates that 12∨ 12= 1

2 . So, this logic implicitly presupposes that if the
machine fails to compute the truth-value of p and the one of ¬p then it cannot compute the
truth-value of the syntactic expression p∨¬p. But the latter being a well-known tautology
inside a Boolean modeling framework, there is no need to use the machine to compute its
truth-value. It does not question the fact that determining if a proposition with complex
syntactic format is a tautology or not can be difficult in practice, nor that it may be useful
to handle complex syntactic entities in a distinguished way. It only suggests that for any
proposition that possesses the syntactic form p∨¬p, the decision problem is straightforward,
even if the truth-value of p and the one of ¬p are not known. Unfortunately, truth-tables do
not seem to be the right tool to make the difference between Boolean tautologies expressed
as complex well-formed formulas (wffs) that can hardly be proved tautological in practice,
and obviously tautological wffs. It means that Kleene truth-tables cannot straightforwardly
apply to this problem (see also [32]). So the interpretation of the third truth-value in Kleene’s
logic seems to suffer from the same defects as in �Lukasiewicz logic.
In Bochvar system [11], the third truth-value means meaningless. A formula is assigned

this truth-value if one of its component is considered meaningless. This seemed to be
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200 On Ignorance and Contradiction Considered as Truth-values

motivated by mathematical issues concerning Russell’s paradox that are not relevant here.
However the issue of meaningless statements may be of interest in the scope of database
research as one possible view of null-values. This aspect is not considered further in this
paper.

3 Truth vs. belief in propositional logic

In a previous paper [19] we pointed out that while classical (propositional) logic is always
presented as the logic of the true and the false, this description neglects the epistemic
aspects of this logic. Namely, if a set B of well-formed Boolean formulae is understood
as a set of propositions believed by an intelligent agent (a belief base) then the underlying
uncertainty theory is ternary and not binary: it is conceivable that some proposition is
neither believed nor is disbelieved by a particular agent. Moreover, belief is not compositional
even in propositional logic.
Building a belief base can be achieved by, for instance, querying an agent about what he
believes to be true. Note that, in this respect, asking the agent whether a proposition p is
true is misleading (even if this is the way such questions are formulated usually). The right
question it stands for is : “does the agent BELIEVE p to be true?”6 Hence, responses to this
question do not directly provide access to truth, only to the agent’s beliefs about the truth
or falsity of propositions. So, in order to lay bare this epistemic ingredient at the syntactic
level, propositions in B should be prefixed by a modality like knowledge or belief, attached
to the agent. This is done in modal epistemic logic [34]. However, in the works of many
authors, like Gärdenfors [26], for instance, who defines a belief set as a deductively closed
set of formulas, such modalities are omitted.
Insofar as the agent supplied all of his knowledge in B, and up to the logical omniscience

assumption, the logical consequences of B can be considered as a faithful description of all
that is known by the agent. As an agent usually has but limited knowledge, the epistemic
status of each proposition in the language is not Boolean, but three-valued:

• p is believed (or known), which is the case if B implies p
• its negation is believed (or known), which is the case if B implies ¬p
• neither p nor ¬p is believed, which is the case if B implies neither ¬p nor p
It is clear that belief representation refers to the notion of validity of p in the face of

B and is a matter of consequencehood, not truth-values. In fact, one can represent belief
by means of subsets of possible truth-values enabled for p by taking propositions in B for
granted. Full belief in p corresponds to the singleton {1} (only the truth-value “true” is
possible); full disbelief in p corresponds to the singleton {0} (only the truth-value “false”
is possible); the situation of total uncertainty relative to p for the agent corresponds to
the set {0,1}. This set is to be understood disjunctively (both truth-values for p remain
possible due to incompleteness, but only one is correct). Under such conventions, the char-
acteristic function of {0,1} is viewed as a possibility distribution π (Zadeh [48]). Namely,
π(0)=π(1)=1 means that both 0 and 1 are possible. It contrasts with other uses of subsets
of truth-values, interpreted conjunctively, whereby {0,1} is understood as the simultaneous
attachment of “true” and “false” to p (expressing a contradiction, see Dunn [20] and the
section on Belnap’s logic in this paper). This is another convention based on necessity degrees

6or equivalently: “Is the agent sure that p is true?”
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On Ignorance and Contradiction Considered as Truth-values 201

N (0)=1−π(1);N (1)=1−π(0). Then clearly, N (0)=1=N (1) indicates a strong contradic-
tion. However we shall not use the latter convention7, and {0,1} attached to p stands for
lack of knowledge about p.
It must be emphasized that {0},{1}, and {0,1} are not truth-values of propositions in B.

They express what can be called epistemic values whereby the agent believes p, believes
¬p, or is ignorant about p respectively. They are like modalities. Attaching the epistemic
annotation {1} to p is like asserting �p using a necessity modality interpreted as belief or
knowledge. Clearly, the negation of the statement p is believed (inferred from B) is not the
statement ¬p is believed , it is p is not believed. However, the statement p is not believed
cannot be written in B because the syntax of classical logic does not allow for expressing
ignorance in the object language. The latter requires a modal logic, since in classical logic
¬p means �¬p, not ¬�p (that cannot be expressed).
The fact that epistemic modalities {0},{1}, and {0,1} do not behave compositionally like

genuine truth-values is simply examplified by the fact that �(p∨q) is generally not equiva-
lent to �p∨�q in modal logic. So, p∨q is believed does not mean that either p is believed
or q is believed. Attaching {1} to p∨q is actually weaker than attaching {1} to one of p or
q. In the case of ignorance about p, {0,1} is attached to p and to ¬p, yet, only {1} can be
attached to their disjunction (since it is a tautology). This fact only reminds us that the
union of deductively closed belief sets need not be deductively closed. Assuming composi-
tionality of epistemic annotations by means of truth tables of connectives in a three-valued
logic provides only an imprecise approximation of the actual Boolean truth-value of complex
formulas (using Kleene logic, see De Cooman, [14]).
Interestingly the representation of beliefs in classical logic can be cast inside the usual
modal epistemic logic KD45, as shown by the following result

Proposition 3.1 (Dubois, Hájek Prade [16]) : In the KD45 system, if B is a propositional
belief base and �B={�p,p∈B}, where � is the belief modality then B implies p classically if
and only if �B implies �p.8

Note that the above embedding of classical logic inside a modal logic is not the usual
one: Usually, modal logics contain propositional logic as a fragment without modalities. The
above theorem concerns another fragment, namely all wffs made of classical propositions
prefixed by �.
Embedding epistemic notions in a modal object language brings us back to a (higher-
order) truth-functional setting for reasoning about belief-prefixed propositions. Indeed, the
truth-value of �p tells whether p is believed or not: �p is true precisely means that {1} is
the subset of truth-values left to p, i.e. it is true that p is believed (to be true). So, what belief
internally means may be captured by a kind of external truth-set, say {0,1}. Mind that the
value 1 in t(�p)=1 and the value 1 in t(p)=1 refer to different truth-sets (and different
propositions). This trick can be used for probability theory and other non-compositional
uncertainty theories (see Godo Hájek et al. [29], [28]) and leads to legitimating many-valued
logic approaches to uncertainty management, where the lack of compositionality of belief

7The convention based on necessity degrees hardly extends to truth-sets T with more than two truth-values:
when more than two truth-values are allowed, the degrees of necessity of singletons N ({t})=1−�(T \{t}) are all
zero, generally, as soon as more that one truth-value is possible.

8In fact not all axioms of KD45 are needed to get this result. Any modal logic where the K axiom �(p→q)→
(�p→�q) holds verifies this embedding property.
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202 On Ignorance and Contradiction Considered as Truth-values

is captured in the object language. For instance, the degree of probability Prob(p) can be
modeled as the truth-value of the proposition “Probable(p)” (which expresses the statement
that p is probably true), where Probable is a many-valued predicate, but it is not the allegedly
multivalued truth-value of the (Boolean) proposition p.

4 Partial Logic vs. Supervaluations

Partial logic starts from the claim that truth-values of propositions can be left open, and
that such undefinedness may stem from a lack of information. This program is clearly in
the scope of our investigation, as theories of uncertainty and partial belief were precisely
introduced as well to cope with limited knowledge. Other interpretations of partiality exist,
that are not considered here. From a historical perspective, the formalism of partial logic is
not so old, but has its root in Kleene [35]’s three-valued logic, where the third truth-value
expresses the impossibility to decide if a proposition is true or false. The reader is referred
to the dissertation of Thijsse [42] and a survey paper by Blamey [10].
At the semantic level, the main idea of partial logic is to change interpretations into par-
tial interpretations (also called coherent situations) obtained by assigning a Boolean truth-
value to some (but not all) of the propositional variables forming a set Prop={a,b,c,...}.
A coherent situation can be represented as any conjunction of literals pertaining to distinct
propositional variables. Denote by s a situation, S the set of situations, and V (a,s) the par-
tial function from Prop×S to {0,1} such that V (a,s)=1 if a is true in s, 0 if a is false in s,
and is undefined otherwise. Then, two relations are defined for the semantics of connectives,
namely satisfies (|=T ) and falsifies (|=F ):
• s |=T a if and only if V (s,a)=1;
• s |=F a if and only if V (s,a)=0;
• s |=T ¬p if and only if s |=F p;
• s |=F ¬p if and only if s |=T p;
• s |=T p∧q if and only if s |=T p and s |=T q;
• s |=F p∧q if and only if s |=F p or s |=F q;
• s |=T p∨q if and only if s |=T p or s |=T q;
• s |=F p∨q if and only if s |=F p and s |=F q.
In partial logic a coherent situation can be encoded as a truth-assignment ts mapping each
propositional variable to the set {0, 12 ,1}, understood as a partial Boolean truth-assignment
in {0,1}. Let ts(a)=1 if a appears in s, 0 if ¬a appears in s, and ts(a)= 1

2 if a is absent from
s. Thus, ts encodes a partial interpretation where only part of the propositional variables
are assigned truth-values 0 and 1. The basic partial logic can thus be described by means
of a three-valued logic. The truth set is {0, 12 ,1}, where 12 (again) means unknown. The
connectives can be expressed by means of the following functions: 1−x for the negation,
max for disjunction, min for the conjunction, and max(1−x,y) for the implication. Note
that if ts(p)= ts(q)= 1

2 , then also ts(p∨q)= ts(p∧q)= ts(p→q)= 1
2 in this approach.

Since these definitions express truth-functionality in a three-valued logic, a situation
may fail to satisfy classical tautologies (Thijsse, 1992). But this anomaly stems from the
same difficulty again, that is, no three-element set can be endowed with Boolean algebra
structure! A coherent situation s can be interpreted as a special set A(s) of standard
Boolean interpretations, and can be viewed as a disjunction thereof. Namely, s is of the form
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∧{ai ∈Prop+(s)}∧∧{¬ai ∈Prop−(s)} where Prop+(s) (resp. Prop−(s)) is the set of proposi-
tional variables assigned to 1 (resp. 0) in situation s. Then A(s) contains all models of this
formula, that can be built just completing s by all possible assignments of 0 or 1 to the
variables not in Prop+(s)∪Prop−(s). A coherent situation is thus an attempt to model an
epistemic state reflecting a lack of information.
If this view is correct, the equivalence s |=T p∨q if and only if s |=T p or s |=T q cannot
hold under classical model semantics. Indeed s |=T p supposedly means A(s)⊆[p] and s |=F p
supposedly means A(s)⊆[¬p], where [p] is the set of interpretations where p is true. But
while A(s)⊆[p]∪[q] holds whenever A(s)⊆[p] or A(s)⊆[q] holds, the converse is invalid,
as already seen!
This is the point made by Van Fraassen [46] who first introduced the notion of supervalua-
tion to account for this situation. A supervaluation SV over a coherent situation s is (in our
terminology) a function that assigns, to each proposition in the language and each coherent
situation s, the super-truth-value SV (p,s)=1 (0) to propositions that are true (false) for
all Boolean completions of s. It is clear that p is “super-true” (SV (p,s)=1) if and only if
A(s)⊆[p], so that supervaluation theory recovers missing classical tautologies by again giv-
ing up truth-functionality: p∨¬p is always super-true, but SV (p∨q,s) cannot be computed
from SV (p,s) and SV (q,s).
One interesting question is whether we can preserve truth-functionality for partial logic, in
special cases, under partial information. Clearly, if p=a1 and q=a2 are independent literals,
the property holds because A(s)⊆[p∨q] implies either s=a1∧a2 or a1 or a2. It is not clear
if we can go beyond this case without losing classical tautologies.
Lastly, note that interpreting s |=T p as A(s)⊆[p] points out the relationship between

partial logic and the belief calculus of propositional logic in the previous section (of which it
is a special case). Indeed it is clear there is a classical belief base B(s) such that s |=T p if and
only if B(s) classically implies p. Namely B(s) is semantically equivalent to the conjunction
of literals appearing in s. The term “super-true” in the sense of Van Fraassen stands for
“certainly true” in the scope of belief management in possibility theory. In partial logic, the
set A(s) formed by completions of s is a very special subset of interpretations. It is a con-
junction of literals, a Cartesian product within 2n . Hence partial logic only captures special
types of situations of partial knowledge: those where ignorance only pertains to the truth-
values of some propositional variables, not linked with any dependence relation. Note that
not all subsets of the set of Boolean interpretations, viewed as incomplete epistemic states
can be modeled by a three-valued (partial) interpretation. For instance if Prop={a,b}, then
the set of coherent situations corresponding to proper partial models is {	,a,b,¬a,¬b}9. But
an epistemic state captured by the knowledge base B={¬a∨¬b,a∨b} cannot be expressed
by means of a coherent situation in partial logic. In contrast, we claim that the belief calcu-
lus at work in propositional logic is doing the job and covers the semantics of partial logic
as a special case. It exactly coincides with the semantics of the supervaluation approach.

5 A Critical Discussion of Belnap Four-Valued Logic

Two seminal papers of Belnap([4], [5]) proposed an approach to reasoning both with incom-
plete and with inconsistent information. It relies on a set of truth-values forming a bilattice,
further studied by scholars like Ginsberg [27] and Fitting [23]. The aim of this section is

9where 	 denotes tautology. This set excludes complete models.
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204 On Ignorance and Contradiction Considered as Truth-values

to focus on the two papers of Belnap, showing that his approach, considered as a sys-
tem for reasoning under imperfect information, suffers from the same difficulties as partial
logic, and for the same reason. Indeed one may consider this logic as using the three epis-
temic values already considered in the previous sections (certainly true, certainly false and
unknown), along with an additional epistemic value. The latter accounts for epistemic con-
flicts, namely the situation where the agent hears that a proposition p is claimed to be true
by one source and false by another source. Belnap proposes truth-tables for this calculus, and
they are extensions of Kleene’s truth-tables for three-valued logic, adding an extra truth-
value standing for the contradictory epistemic value. It turns out that adding contradiction
to incompleteness, this truth-functional logic is not better off. A similar critique of Belnap
already appears in a short note by Fox [25], who also relies on the Boolean nature of propo-
sitions to question the legitimacy of losing classical tautologies in the face of incompleteness
and contradiction.

5.1 The contradiction-tolerant setting
The initial idea behind Belnap’s logic is very attractive. The author considers an artificial
information processor capable of answering queries on propositions of interest. The system
is fed from a variety of sources. It is clear that in a multisource environment, inconsistency
threatens, all the more so as the information processor is supposed never to subtract informa-
tion. So the basic assumption is that the computer receives information about atomic propo-
sitions in a cumulative way from outside sources, each asserting for each atomic proposition
whether it is true, false or being silent about it. The notion of epistemic set-up is defined as
an assignment of one of four values, denoted T,F,BOTH,NONE, to each atomic proposition
a,b,...:

• Assigning T to a means the computer has only been told that a is true.
• Assigning F to a means the computer has only been told that a is false.
• Assigning BOTH to a means the computer has been told at least that a is true by one
source and false by another.
• Assigning NONE to a means the computer has been told nothing about a.

The whole approach relies on the approximation lattices proposed by Scott. In an approx-
imation lattice, the ordering relation reflects the idea of approximation of an element by
another element : x≤y means that x approximates y. For instance, if x and y are inter-
vals, x≤y means interval x is less precise than (= contains) interval y. Of importance are
monotonic functions f , that respect the ordering in the lattice. Again, in terms of intervals,
one expects that if x contains y then f (x) contains f (y) for well-behaved functions. The
set 4={T,F,BOTH,NONE} is equipped with an ordering � that is viewed by Belnap as an
approximation lattice. According to this ordering: NONE�T�BOTH;NONE�F�BOTH.
This ordering reflects the inclusion relation of the sets ∅, {0},{1}, and {0,1} in the sense
of the approximation lattice. These sets respectively encode NONE, F, T, BOTH, respec-
tively, under Dunn [20]’s convention (conjunctive sets, opposite the convention in possibility
theory 10). NONE is at the bottom because (to quote) “it gives no information at all”. BOTH
is at the top because (following Belnap) it gives too much information. So the ordering �

10In possibility theory NONE={0,1},BOTH=∅, as pointed out in Section 3; these subsets represent mutually
exclusive truth-values, one of which is the right one. Dunn’s convention uses Boolean necessity degrees.
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On Ignorance and Contradiction Considered as Truth-values 205

TABLE 3. Belnap disjunction

∪ F NONE BOTH T
F F NONE BOTH T
NONE NONE NONE T T
BOTH BOTH T BOTH T
T T T T T

TABLE 4. Belnap conjunction

∩ F NONE BOTH T
F F F F F
NONE F NONE F NONE
BOTH F F BOTH BOTH
T F NONE BOTH T

could be dubbed information acquisition ordering since it intends to reflect the amount of
(possibly conflicting) data provided by the sources.
In a further step, connectives of negation, conjunction and disjunction are defined truth-
functionally on the approximation lattice. Belnap truth-tables are rigorously derived from
mathematical principles present in approximation lattices, and the coincidence with classical
logic for F, T. Namely

1. Keep the usual connectives for the restriction of negation ∼, conjunction ∩ and disjunc-
tion ∪ to {T,F};

2. Assume monotonic connectives w.r.t. ordering �;
3. Assume A∩B=A if and only if A∪B=B;
4. Commutativity, associativity of ∪,∩, De Morgan laws.

The first requirement enforces ∼T=F and ∼F=T and then, the monotonicity require-
ment forces the negation ∼ to be such that ∼BOTH=BOTH,∼NONE=NONE11. The
tables for ∩ and ∪ are also uniquely determined (see tables 3 and 4). As announced above,
the restrictions of all connectives to the subsets {T,F,NONE} and {T,F,BOTH} coincide
with Kleene’s three-valued truth-tables, encoding BOTH and NONE as 12 . For instance,
T is the identity for ∩, absorbing for ∪. In other words there is a second ordering on
{T,F,BOTH,NONE}, say �, that Belnap calls the logical lattice ordering, according to
which T�BOTH�F and T�NONE�F reflecting the truth-set of Kleene’s logic. So �
means “truer than”. Note that Belnap’s conjunction and disjunction operations ∪ and ∩
exactly correspond to the lattice meet and joint for the lattice defined by the logical lattice
ordering, and not by the approximation lattice defined by �. In fact, BOTH and NONE
cannot be distinguished by � and play symmetric roles in the truth-tables.
The major new point is the result of combining conjunctively and disjunctively BOTH
and NONE. The only possibility left for such combinations is that BOTH∩NONE=F and
BOTH∪NONE=T. This looks surprising12, but there is no other choice. For instance,

11In [5], p. 13, the truth-table for negation is different and such that ∼BOTH=NONE; this must be a typo-
graphical mistake.
12Belnap acknowledges it.
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206 On Ignorance and Contradiction Considered as Truth-values

monotonicity w.r.t. � and the natural assumption that F∩NONE=F allow the following
derivations:
Since F�BOTH, F∩NONE=F�BOTH∩NONE; but BOTH∩NONE�BOTH∩F=F

since NONE�F; so, BOTH∩NONE is exactly F (using antisymmetry)13.

5.2 This is not really how a computer should think
Belnap’s calculus is an extension of partial logic to the truth-functional handling of incon-
sistency. In his paper, Belnap does warn the reader on the fact that the four values are not
ontological truth-values but epistemic ones. But what is exactly meant by this phrase “epis-
temic truth-values” is left to the reader. In any case, they are qualifications referring to the
state of knowledge of the agent (here the computer). But then T and F are not truth-values
in the usual sense: assigning T to an atomic proposition expresses the idea that the computer
is prone to assert the truth of this proposition because only evidence in its favour has been
collected. Of course, F is interpreted likewise. NONE expresses ignorance about truth and
falsity due to lack of any evidence, and BOTH describes a confused state of knowledge due
to an overflow of information some being evidence for the proposition, some being evidence
against it. Since ultimately a proposition is true or false here, part of the information jus-
tifying the value BOTH is erroneous, even if the computer has no tool for testing it. The
information accumulation ordering indicates that each of the three assignments T, F and
NONE are provisional, in the sense that they may change with the arrival of new evidence,
and the direction of change is indicated by the ordering in the approximation lattice. So,
for instance, T, F may become BOTH and thus differ from usual truth-values, which, in a
static world, cannot change.
Additionally, the set-representation Dunn [20] suggested for the alleged truth-values in

Belnap’s logic 4 (T={1},F={0},NONE=∅,BOTH={0,1}), is in agreement with the idea of
accumulation of information. This notation (like the dual one in possibility theory) rather
comforts the idea that these are not truth-values. For instance {1} is a subset of {0,1} while
1 is an element thereof. Interpreting Belnap’s epistemic truth-values as genuine truth-values
comes down to confusing elements of a set and singletons included in it.
Belnaps explicitly claims that the systematic use of the truth-tables of 4 “tells us how the

computer should answer questions about complex formulas, based on a set-up representing
its epistemic state”([4], p. 41). However, if one admits that T,F,BOTH,NONE are not
genuine truth-values, the use of truth-functional connectives becomes again problematic.
Indeed, since the truth-tables of conjunction and disjunction extend the ones of partial logic
so as to include the value BOTH, Belnap’s logic inherits all difficulties of partial logic pointed
out in the previous section in the way the computer should handle Boolean formulas that
are, regardless of their epistemic status, true or false. Mathematical soundness and depth are
no guarantee for the appropriateness of a theory in a practical problem. It is not clear that
incompleteness and inconsistency are properly modelled in this logic. Denoting E(p),E(q)
the assignment of epistemic values to propositions p,q (previously computed), and letting
� be a connective, can E(p�q) be determined non-ambiguously by combining epistemic
values of atoms E(p) and E(q)? In other words, can an epistemic value on p and one on q
13The non-modal fragment of the four-valued modal logic �L of �Lukasiewicz studied by Font and Hájek [22] is

defined via truth-tables for negation and implication→. The conjunction is p∧q=¬(p→¬q). The truth-table for
negation in �L differs from the one in Belnap logic. In fact, the truth-set of �L is {0,1}×{0,1} where operations act
coordinatewise, hence not a biliattice.

D
ow

nloaded from
 https://academ

ic.oup.com
/jigpal/article/16/2/195/722200 by guest on 10 April 2024



On Ignorance and Contradiction Considered as Truth-values 207

characterize a single epistemic value for p�q? The discussion in the previous sections has
warned us that this is impossible unless a high price is paid, that is, the loss of classical
tautologies, which induces paradoxes for reasoning based on Boolean variables. For instance
NONE∩NONE=NONE, NONE∪NONE=NONE. So if asked about the status of formulas
such as p∧¬p and p∨¬p, where p is NONE, a computer following Belnap logic is bound to
say that p∧¬p and p∨¬p are both NONE. But this is not what is expected since, even if
no information has been received by the computer regarding the truth or falsity of atom p,
the former should be false and the latter should be true, if the domain of p is two-valued.
Belnap truth-tables should not be used to compute the epistemic status of formulas involving
logically dependent components.
Some may object that the computer is not aware of the strong link between p and ¬p and

that applying the truth-table (i.e., returning NONE for p∧¬p and p∨¬p) merely expresses
that the computer did not receive any information about this dependence. However, it means
the computer has too little information about what a proposition is: even if the computer
never received information about atomic facts, it sounds reasonable to assume that the most
elementary rules of classical logic (like being aware that formulas of the form p∧¬p are ever
false, etc.) are part of its background knowledge.
The same anomaly will be observed with the epistemic value BOTH because it plays the

same role as NONE for the logical lattice ordering. Claiming that BOTH∩BOTH=BOTH,
BOTH∪BOTH=BOTH is hardly acceptable when applied to propositions of the form p
and ¬p. It is strange for a tautology like p∨¬p to receive epistemic value BOTH.
Another issue is how to interpret the results BOTH∩NONE=F and BOTH∪NONE=

T. These results sound quite counterintuitive14. One may rely on bipolar reasoning and
argumentation to defend that when p is BOTH and q is NONE, p∧q should be BOTH∩
NONE=F. Suppose there are two sources providing information, say S1 and S2. Assume S1
says p is true and S2 says it is false. This is why p is BOTH. Both sources say nothing about
q, so q is NONE. So one may consider that S1 would have nothing to say about p∧q, but
one may legitimately assert that S2 would say p∧q is false. In other words, p∧q is F: one
may say that there is one reason to have p∧q false, and no reason to have it true.
However, this part of the truth-table also leads to debatable epistemic value assignments.
Suppose two atomic propositions a and b with E(a)=BOTH and E(b)=NONE. Then E(a∧
b)=F. But since Belnap negation is such that E(¬a)=BOTH and E(¬b)=NONE, we also
get E(¬a∧b)=E(a∧¬b)=E(¬a∧¬b)=F. Hence

E((a∧b)∨(¬a∧b)∨(a∧¬b)∨(¬a∧¬b))=F

using table 3, that is E(	)=F which is hardly acceptable again.
One might thus argue that the combination of epistemic values has no unique result. So one
might think of using set-valued connectives on the bilattice, a technique recently suggested
by Avron [2], which is a genuine way of capturing the partial lack of information pervading
the agent’s knowledge at the level of truth-tables. Namely, it “saves” truth-functionality
while admitting that the combination of two truth-values may result in a set of possible
truth-values. However one may suspect that the price paid by this form of non-deterministic

14Even to Belnap, as it seems, considering his insistance to present them as unavoidable consequences of his
formal setting. This is an example of a theory supposed to supersede commonsense reasoning, as when the use of
Bayesian priors in statistical reasoning delivers conclusions that challenge our intuition.
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208 On Ignorance and Contradiction Considered as Truth-values

truth-functionality is a loss of precision (still not recovering tautologies of classical logic for
instance).

5.3 Does the bilattice structure capture belief ?
It may be tempting to interpret the epistemic truth-values of Belnap as describing the state
of knowledge of an intelligent agent, viewing the idea of information accumulation in terms
of belief. Suppose we take Belnap’s word “epistemic” for granted and go ahead interpreting
T as “(at least provisionally) surely true”, F as “surely false”, and NONE as “unknown” for
the agent. Then according to the information acquisition ordering �, BOTH appears as more
surely true than T and more surely false than F, which may not be Belnap’s intention. Indeed,
moving upward according to � in the lattice may misleadingly suggest an improvement in
the epistemic state of the agent.
However while inconsistency does result from an excess of information, the computer’s
epistemic position about the truth or the falsity of an atom is certainly not strengthened by
receiving a denial on the truth-state of an atom, that forces a move from T or F to BOTH.
While NONE is an epistemic vacuum, BOTH is an epistemic hell. So BOTH might as well
be viewed as epistemically less comfortable (hence weaker) than T or F since hearing that
p is false when p is already known to be T tends to harm the agent’s certainty about the
truth of p and to make its falsity dubious as well. One might even consider that BOTH is
a less comfortable epistemic value than NONE, as the simultaneous presence of opposite
arguments may lead to more perplexity than the absence thereof. While NONE means “in
expectation of more information”, BOTH may mean “in expectation of clarification”. So,
BOTH is an epistemic value where the strength of belief in a proposition is weak.
When a proposition is in the BOTH status, an agent should be careful before drawing
consequences from it. The idea that inconsistency should prevent inferences, just like the
lack of knowledge, is an alternative to the more usual assumption that anything follows in
the presence of inconsistency. It stresses the indistinguishability between NONE and BOTH
according to the logical lattice order �. For instance, the treatment of local inconsistencies in
propositional logic using variable forgetting [36] goes along this line of equating contradiction
with ignorance, while taking dependence between literals into account.

6 Beyond 4
It seems that a meaningful handling of incompleteness and inconsistency in classical logic
cannot be properly achieved by Belnap 4-valued logic, because it does not take into account
semantic constraints bearing on Boolean variables in complex formulas. There is no doubt
that Belnap logic is correct in its formal development, and that the ensuing bilattice structure
is of interest. But the truth-functionality assumption (insofar as the truth-tables are applied
without any restriction) is not appropriate when dealing with inconsistency and incomplete
knowledge in classical logic. Actually, there is a stream of papers generated by Belnap’s logic,
and the bilattice structure [9], with applications to logic programming [23] and nonmonotonic
reasoning [27]. However, these approaches seem to avoid the difficulties pointed out here
because they do not always take truth-functionality for granted. In this section, we briefly
outline possible extensions or refinements of Belnap approach and point out to some existing
literature.
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On Ignorance and Contradiction Considered as Truth-values 209

6.1 Refining epistemic truth-values
The four “epistemic truth-values” are actually not enough to capture the set of possible
situations induced by the presence of only two sources of information S1 and S2 forming a
society semantics [13] for the logic. Indeed, since each source has three possible attitudes
(to say 1, 0 or nothing (?)) there are nine situations. Assuming symmetry between (equally
reliable) sources yields six possible situations

(0,0),(0,1),(0,?),(1,1),(1,?),(?,?)

and Belnap assumes four (see also the discussion by Slaney [43]). In fact, T stands for any
of the two situations (1,1) and (1,?), the former being a stronger epistemic state than the
latter. Indeed when sources provide (1,?), one cannot prevent the mute one from supplying
0, eventually. So that T represents a very brittle notion of truth. This would call for a many-
valued logic with more than 4 truth-values, even if treating the epistemic value (?,?) as a
genuine truth-value would still lead to paradoxes.

6.2 Inconsistency-tolerant inference from multiple sources
One may reformulate the problem posed by Belnap in the setting of classical logic as follows:
Given a set of (independent) propositional variables a1,...,ap informed by n sources, what
can be said about the truth-status of a given formula p? The type of answer expected in
Belnap setting concerns the potential assertions of the set of sources regarding formulas
p, based on information possessed by each source about the truth-value of propositional
variables. As previously, a source declares each atom ai true, false or does not provide
information. Each source j is then characterized by a partial model (a coherent situation sj)
based on information on atoms. Then, exploiting the synergy between sources, one of the
four following responses (corresponding to the 4 epistemic truth-values) can be expected:

• at least one consistent group of sources asserts p and no other one asserts ¬p;
• at least one consistent group of sources asserts ¬p and no other one asserts p;
• there is a consistent group of sources that asserts p and another that asserts ¬p;
• no consistent group of source asserts p nor ¬p.
It corresponds to a mode of argumentative inference under inconsistency proposed by
Benferhat et al [6], applied to the (generally inconsistent) knowledge base B={si,i=1,...,p}.
Denote by C ,C ′ consistent subbases of B (hence of sources). The assignment of epistemic
values to complex propositions is then carried out as follows:

• p is considered T if ∃C |=p, but C ′ |=¬p for no C ′;
• p is considered F if ∃C |=¬p, but C ′ |=p for no C ′;
• p is considered BOTH if ∃C |=p, and ∃C ′ |=¬p;
• p is considered NONE if � ∃C |=p, and � ∃C ′ |=¬p.
Clearly, as this approach relies on classical inference steps, classical tautologies will be
assigned T and contradictions F, contrary to what results from the Belnap truth-tables.
Moreover, if the procedure assigns BOTH to p it does so for its negation, and similarly for
NONE. Moreover, because the above setting follows a kind of “society semantics” view [13],
we do find that if p is BOTH and q is NONE, where p and q are logically independent, then
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p∧q will be F. Indeed since � ∃C |=q, it follows � ∃C |=p∧q; and since ∃C |=¬p, C |=¬p∨¬q
as well. Contrary to what happens with Belnap logic, if p is F and q is F, it does not imply
p∨q is F, because when ∃C |=¬p and ∃C ′ |=¬q, maybe � ∃C ′′ |=¬p∧¬q. Similarly, when p is
T along with q is T, it does not imply p∧q is T, because when ∃C |=p and ∃C ′ |=q, maybe
� ∃C ′′ |=p∧q. So, this approach, close to argumentation, seems to avoid the pitfalls of Belnap
truth-tables.

6.3 Probabilistic interpretations of Belnap setting
One may also adopt a probabilistic view of the refinement when more than 2 sources are
involved. There is indeed an intuitively appealing connection between the epistemic values
and (frequentist) probabilities. If we decide to count the number of times an atomic propo-
sition a is said to be true or false by independent external sources, it is clear that BOTH
could be refined by attaching frequentist probabilities to a and ¬a, like in a coin flipping
game. Then NONE corresponds to the idea of total uncertainty (no toss of the coin made
yet, so no probability is available), T to the case where the coin has so far only shown heads,
F to the case where the coin has so far only shown tails. In practical situations BOTH can be
expected to be by far the most likely situation; it summarizes all different situations where
the probabilities are positive on both sides. Then, the other epistemic values might not be
very often met in practice. In the same vein as our present criticism, it is well-known that
probabilistic logic cannot be construed as a truth-functional many-valued logic [19].
Due to the presence of ignorance as one possible epistemic value, a frequentist extension
of Belnap’s approach would actually lead to an imprecise probability setting. The weakest
probabilistic interpretation of Belnap epistemic values could be as in table 5. The reader can
check that the truth-table for the conjunction (of logically independent propositions only!)
obtained with such qualitative probabilities (Table 6) differs from Belnap conjunction in
several respects: while it confirms that BOTH∩NONE=F (since from 0<Prob(p)<1 and
Prob(q) unknown, if follows that Prob(p∧q)<1), the following discrepancies compared to
Belnap truth-tables can be observed:

• BOTH∩BOTH=F; indeed, from 0<Prob(p)<1 and 0<Prob(q)<1, it follows that
Prob(p∧q)<1, since Prob(p∧q)≤min(Prob(p),Prob(q)) only15.
• BOTH∩T=F, since there is less information about q, and from 0<Prob(p)<1 it always
follows that Prob(p∧q)<1.

• T∩T=NONE. Indeed the only knowledge of the positivity of Prob(p) and Prob(q) is
not sufficient to ensure any information concerning Prob(p∧q).
Note that the epistemic value BOTH is not preserved by conjunction. We leave a similar

treatment of disjunction to the reader. In fact, the argumentative approach presented in
subsection 6.2 is in agreement with Table 6. Just replace Prob(p)>0 by “there is a consistent
argument for p”. For instance, finding an argument for p and an argument for q does not
provide for the existence of an argument for their conjunction. The above considerations
cast doubts on the intuitive assumption that the combination of epistemic values T and F
should coincide with the Boolean calculus, letting them behave as 1 and 0.

15The lower Frechet bound max(0,Prob(p)+Prob(q)−1) is zero in this case.
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TABLE 5. Belnap epistemic values as qualitative probabilities
T F BOTH NONE
Prob(p)>0 Prob(¬p)>0 1>Prob(p)>0 1≥Prob(p)≥0

TABLE 6. Conjunction of qualitative probabilities
∩ F NONE BOTH T
F F F F F
NONE F NONE F NONE
BOTH F F F F
T F NONE F NONE

6.4 Belnap set-up in the belief function framework
In a more informative setting, suppose the number of sources is known to be an integer n.
Then, if i sources assert an atomic formula a is provably true, and j sources claim a is false,
one may obtain the relative frequencies:

fa(1)= in ;fa(0)= jn ;fa(?)=1− i+jn .

By construction fa(1)+fa(0)+fa(?)=1. For instance, fa(1) is the probability that a is prov-
ably true, fa(?) the probability that it is unknown. One may identify this frequency assign-
ment to a mass function ma in the sense of Shafer [44] on the set of classical truth-values
{0,1}. Namely, using the conventions of possibility theory, ma assigns weights to {1}, {0},
{0,1}: ma({1})= fa(1), ma({0})= fa(0),ma({0,1})= fa(?). Note that the epistemic values T and
F become consonant belief functions, for which the mass function bears on nested pairs of
subsets of truth-values. They correspond to possibility distributions πa(1)=1,πa(0)=1− i

n
(when fa(0)=0, for T) and πa(1)=1− j

n ,πa(0)=1 (when fa(1)=0, for F). BOTH corresponds
to when fa(0)>0,fa(1)>0, NONE to fa(?)=1.
We can also interpret the frequency assignment as a mass assignment on the set of inter-
pretations �, bearing on a, ¬a and 	, respectively. Then, we can compute the degrees of
belief and plausibility of a as

Bel(a)= i
n

;Pl(a)=1−Bel(¬a)=1− j
n

.

This model is not new, actually (see Dubois and Prade, [18]).
The problem of evaluating logical formulas can then be posed in a rigourous way. We
can assume each propositional variable ak is informed by all sources in the form of mass
functions mk , for k=1...k. A joint mass function can be obtained by merging the k mass
functions on the set of 2k interpretations in �. Note that this approach would never assign
positive masses to subsets of � other than partial (or complete) interpretations, i.e. coherent
situations s∈S in the sense of Section 4. For instance using Dempster rule of combination,
the mass of a partial interpretation of the form s=∧i∈I ai∧∧i∈J¬ai , where I ∩J =∅ is

m(s)=
∏

i∈I
mi(ai)·

∏

i∈J
mi(¬ai)·

∏

i �∈I∪J
mi(	).
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Then, degrees of belief and plausibility of a given formula p can be computed as

Bel(p)=
∑

s|=p
m(s);Pl(p)=

∑

s �|=¬φ

m(s).

This is clearly an extension of the supervaluationist approach to partial logic, where room
for inconsistency is naturally provided for by allowing for conflicting sources. Note that the
contradiction ⊥ is, in some sense, tamed as it receives no positive mass while conflicting
source opinions (Bel(p)>0,Bel(¬p)>0) are handled, and non-trivial inferences are made.

6.5 Belnap truth-values as modalities
If we stick to a qualitative non-truth-functional approach, it is natural to view T,F, BOTH,
NONE as modalities rather than truth-values. The following translations are one possible
choice:

• a is T modelled by �a,
• a is F modelled by �¬a.
And as a consequence,

• a is NONE modelled by ¬�a∧¬�¬a
• a is BOTH modelled by �a∧�¬a
Since Belnap seems to intend a paraconsistent use of contradiction, a straightforward
encoding in some usual modal logics would fail16. Indeed:

• in all systems where the axiom �a→a holds, �a∧�¬a is a contradiction since �a true
implies that a is true;
• in all systems (such as K) where �a∧�b is equivalent to �(a∧b), �a∧�¬a=�⊥,
which does not sound promising for a non-trivial translation of BOTH;

• the classical negation ∼ applied to (a,T) in Belnap’s logic is not coherent with the
negation of �a, which is the modal encoding of (a,T). Explained in terms of modalities:
∼�a≡�¬a differs from ¬�a.

Another possible translation17 is that �a means that all sources assert a and ♦a means
that at least one source asserts a. Hence BOTH reads ♦a∧♦¬a. But then the modeling of
NONE becomes problematic for symmetric reasons since it is ¬♦a∧¬♦¬a, that is, �a∧
�¬a=�⊥. Nevertheless, �⊥ is not a contradiction in the modal system K. This has given
rise to a literature on modal logics of inconsistent knowledge (see Meyer and Van der Hoek
[38], for a survey of classical references). The multiple-expert modal logics studied by Fitting
[24] are also worth pointing out as akin to Belnap’s idea of accumulated knowledge from
sources, where experts may disagree. Studying the precise positioning of Belnap logic with
respect to modal logics of inconsistency would deserve a special study.

16A modal paraconsistent logic might be considered. However it is not clear that the distinction between the
epistemic and the ontological status of propositions is much emphasised in such logics.
17suggested by a referee.
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7 Conclusion

Many paradoxes in multivalued logics seem to be due to a confusion between truth-values
and the epistemic values an agent may use to describe a state of knowledge : the former
are compositional by assumption, the latter cannot be consistently so, at least under a
Boolean view of the world18. It is clear that modal logic offers a more natural setting than
partial logic for reasoning about incomplete information. In the Boolean setting, epistemic
issues of ignorance and conflicts cannot be addressed by artificially augmenting the truth-
set, that is, changing the domain of propositional variables. Actually, classical tautologies
are the only thing a logically omniscient agent may know independently of the information
that has been collected. So, in logical approaches to incompleteness and contradiction, the
goal of preserving classical tautologies should supersede the goal of maintaining a truth-
functional setting, when variables are two-valued. For instance, modal logics for reasoning
about incomplete knowledge preserve classical tautologies. Of course, it does not mean that
recognizing a complex syntactic entity as being a tautology is always feasible in practice.
In any case, since a truth-functional use of the bilattice-based logic does not seem to be
convincingly useful for reasoning under incompleteness and contradiction, the question of
its domain of application remains pending.
Concerning other inconsistency-tolerant approaches, at least those relying on argumenta-
tion based on consistent subsets of a belief base escape the objections raised in this paper
against Belnap four-valued logic. Whether these objections may be raised against other
inconsistency-tolerant frameworks such as paraconsistent logics [7] or quasi-classical logic
[8] is a matter of further research, as is the significance of many-valued truth-functional
accounts of intuitionistic logic.
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