
A R T I C L E S S T A T E

© 2013 The Author. Journal compilation © 2013 Institute of Philosophy SAS

Organon F 20 (Supplementary Issue 2) 2013: 5-36

Deduction in TIL: From Simple
to Ramified Hierarchy of Types

MARIE DUŽÍ
Department of Computer Science. VSB-Technical University Ostrava.

17. listopadu 15. 708 33 Ostrava. Czech Republic.
marie.duzi@gmail.com

RECEIVED: 13-02-2013 ACCEPTED: 05-03-2013

Abstract: Tichý’s Transparent Intensional Logic (TIL) is an overarching logical
framework apt for the analysis of all sorts of discourse, whether colloquial, scientific,
mathematical or logical. The theory is a procedural (as opposed to denotational) one, ac-
cording to which the meaning of an expression is an abstract, extra-linguistic procedure
detailing what operations to apply to what procedural constituents to arrive at the prod-
uct (if any) of the procedure that is the object denoted by the expression. Such proce-
dures are rigorously defined as TIL constructions. Though TIL analytical potential is
very large, deduction in TIL has been rather neglected. Tichý defined a sequent calcu-
lus for pre-1988 TIL, that is TIL based on the simple theory of types. Since then no
other attempt to define a proof calculus for TIL has been presented. The goal of this
paper is to propose a generalization and adjustment of Tichý’s calculus to TIL 2010.
First I briefly recapitulate the rules of simple-typed calculus as presented by Tichý.
Then I propose the adjustments of the calculus so that it be applicable to hyperinten-
sions within the ramified hierarchy of types. TIL operates with a single procedural se-
mantics for all kinds of logical-semantic context, be it extensional, intensional or hyper-
intensional. I show that operating in a hyperintensional context is far from being tech-
nically trivial. Yet it is feasible. To this end we introduce a substitution method that
operates on hyperintensions. It makes use of a four-place substitution function (called
Sub) defined over hyperintensions.

Keywords: Existential generalisation – extensional rules – hyperintensions – sequent
calculus – substitution.

6 M A R I E D U Ž Í

1 Foundations of TIL

 From the formal point of view, TIL is a hyperintensional, partial typed
λ-calculus. Thus the syntax of TIL is Church’s (higher-order) typed
λ-calculus with the important difference that the syntax has been assigned
a procedural (as opposed to denotational) semantics. TIL λ-terms do not
denote functions; rather they denote procedures (constructions in TIL
terminology) that produce functions or functional values as their product.
A linguistic sense of an expression is an abstract procedure detailing how to
arrive at an object of a particular logical type denoted by the expression.
TIL constructions are such procedures. Thus, abstraction transforms into
the molecular procedure of forming a function, application into the mo-
lecular procedure of applying a function to an argument, and variables into
atomic procedures for arriving at their values assigned by a valuation.
 There are two kinds of constructions, atomic and compound (molecu-
lar). Atomic constructions (Variables and Trivializations) do not contain
any other constituent but themselves; they specify objects (of any type) on
which compound constructions operate. The variables x, y, p, q, …, con-
struct objects dependently on a valuation; they v-construct. The Trivialisa-
tion of an object X (of any type, even a construction), in symbols 0X, con-
structs simply X without the mediation of any other construction. Com-
pound constructions, which consist of other constituents as well, are Com-
position and Closure. Composition [F A1…An] is the operation of functional
application. It v-constructs the value of the function f (valuation-, or v-,
-constructed by F) at a tuple-argument A (v-constructed by A1, …, An) if
the function f is defined at A, otherwise the Composition is v-improper,
i.e., it fails to v-construct anything.1

1 We treat functions as partial mappings, i.e., flat set-theoretical objects, unlike the
constructions of functions which are structured procedures consisting of constituents.

 Closure [λx1…xn X] spells out the in-
struction to v-construct a function by abstracting over the values of the
variables x1,…,xn in the ordinary manner of the λ-calculi. Finally, higher-
order constructions can be used twice over as constituents of composite
constructions. This is achieved by a construction called Double Execution,
2X, that behaves as follows: If X v-constructs a construction X’, and X’ v-
constructs an entity Y, then 2X v-constructs Y; otherwise 2X is v-improper,
failing as it does to v-construct anything.

 D E D U C T I O N I N T I L 7

 TIL constructions, as well as the entities they construct, all receive
a type. The formal ontology of TIL is bi-dimensional; one dimension is
made up of constructions, the other dimension encompasses non-
constructions. On the ground level of the type hierarchy, there are non-
constructional entities unstructured from the algorithmic point of view be-
longing to a type of order 1. Given a base of atomic types of order 1, the in-
duction rule for forming functional types is applied: where α, β1,…,βn are
types of order 1, the set of partial mappings from β1 ×…× βn to α, denoted
‘(α β1…βn)’, is a type of order 1 as well. Constructions that construct enti-
ties of order 1 are constructions of order 1. They themselves belong to a type
of order 2, denoted ‘*1’. The type *1 together with atomic types of order 1
serves as a base for the induction rule: any collection of partial mappings,
type (α β1…βn), involving *1 in their domain or range is a type of order 2.
Constructions belonging to a type *2 that identify entities of order 1 or 2,
and partial mappings involving such constructions, belong to a type of order
3. And so on ad infinitum.2

Remark. For the purposes of natural-language analysis, we are currently as-
suming the following epistemic base of ground types, each of which is part
of the ontological commitments of TIL:

 The first three definitions below constitute the logical heart of TIL.

Definition 1 (types of order 1)
Let B be a base, where a base is a collection of pair-wise disjoint, non-
empty sets. Then:
(i) Every member of B is an elementary type of order 1 over B.
(ii) Let α, β1, ..., βm (m > 0) be types of order 1 over B. Then the col-

lection (α β1 ... βm) of all m-ary partial mappings from β1×...×βm
into α is a functional type of order 1 over B.

(iii) Nothing is a type of order 1 over B unless it so follows from (i) and
(ii). □

3

2 For details see, for instance, Duží – Jespersen – Materna (2010, Ch. 1.3, 1.4), or
Duží – Materna (2012, Ch. 2).
3 TIL is an open-ended system. The above epistemic base {ο, ι, τ, ω} was chosen,
because it is apt for natural-language analysis, but the choice of base depends on the
area and language to be analysed. For instance, possible worlds and times are out of
place in case of mathematics, and the base might consist of, e.g., ο and ν, where ν is the
type of natural numbers.

8 M A R I E D U Ž Í

 ο: the set of truth-values {T, F};
 ι: the set of individuals (a constant universe of discourse);
 τ: the set of real numbers (doubling as temporal continuum);
 ω: the set of logically possible worlds (the logical space).

Definition 2 (construction)
(i) The variable x is a construction that constructs an object O of the

respective type dependently on a valuation v: x v-constructs O.
(ii) Trivialization: Where X is an object whatsoever (an extension, an

intension or a construction), 0X is the construction Trivialization. It
constructs X without any change in X.

(iii) The Composition [X Y1…Ym] is the following construction. If X v-
constructs a function f of type (αβ1…βm), and Y1, …, Ym v-construct
entities B1, …, Bm of types β1, …, βm, respectively, then the Compo-
sition [X Y1…Ym] v-constructs the value (an entity, if any, of type α)
of f at the tuple argument ⟨B1, …, Bm⟩. Otherwise the Composition
[X Y1…Ym] does not v-construct anything and so is v-improper.

(iv) The Closure [λx1…xm Y] is the following construction. Let x1, x2,
…, xm be pair-wise distinct variables v-constructing entities of
types β1, …, βm and Y a construction v-constructing an α-entity.
Then [λx1 … xm Y] is the construction λ-Closure (or Closure). It v-
constructs the following function f of the type (αβ1…βm). Let
v(B1/x1,…,Bm/xm) be a valuation identical with v at least up to as-
signing objects B1/β1, …, Bm/βm to variables x1, …, xm. If Y is
v(B1/x1,…,Bm/xm)-improper (see iii), then f is undefined at ⟨B1, …,
Bm⟩. Otherwise the value of f at ⟨B1, …, Bm⟩ is the α-entity
v(B1/x1,…,Bm/xm)-constructed by Y.

(v) The Single Execution 1X is the construction that either v-constructs
the entity v-constructed by X or, if X v-constructs nothing, is v-
improper.

(vi) The Double Execution 2X is the following construction. Where X is
any entity, the Double Execution 2X is v-improper (yielding nothing
relative to v) if X is not itself a construction, or if X does not v-
construct a construction, or if X v-constructs a v-improper con-
struction. Otherwise, let X v-construct a construction Y and Y v-
construct an entity Z: then 2X v-constructs Z.

(vii) Nothing is a construction, unless it so follows from (i) through
(vi). □

 D E D U C T I O N I N T I L 9

 The definition of the ramified hierarchy of types decomposes into three
parts. First, simple types of order 1 that were already defined by Definition
1. Second, constructions of order n, and third, types of order n + 1.

 Definition 3 (ramified hierarchy of types)
T1 (types of order 1). See Definition 1.
Cn (constructions of order n)
(i) Let x be a variable ranging over a type of order n. Then x is a con-

struction of order n over B.
(ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are con-

structions of order n over B.
(iii) Let X, X1,..., Xm (m > 0) be constructions of order n over B. Then

[X X1... Xm] is a construction of order n over B.
(iv) Let x1,...xm, X (m > 0) be constructions of order n over B. Then

[λx1...xm X] is a construction of order n over B.
(v) Nothing is a construction of order n over B unless it so follows from

Cn (i) – (iv).
Tn+1 (types of order n + 1) Let ∗n be the collection of all constructions of
order n over B. Then
(i) ∗n and every type of order n are types of order n + 1.
(ii) If 0 < m and α, β1,...,βm are types of order n + 1 over B, then

(α β1 ... βm) (see T1 ii)) is a type of order n + 1 over B.
(iii) Nothing is a type of order n + 1 over B unless it so follows from (i)

and (ii). □

 Empirical languages incorporate an element of contingency that non-
empirical ones lack. Empirical expressions denote empirical conditions that
may or may not be satisfied at some empirical index of evaluation. Non-
empirical languages have no need for an additional category of expressions
for empirical conditions. We model these empirical conditions as possible-
world intensions. Intensions are entities of type (βω): mappings from possi-
ble worlds to an arbitrary type β. The type β is frequently the type of a
chronology of α-objects, i.e. a mapping of type (ατ). Thus α-intensions are
frequently functions of type ((ατ)ω), abbreviated as ‘ατω’. We typically say
that an index of evaluation is a world/time pair ⟨w, t⟩. Extensional entities
are entities of some type α where α ≠ (βω) for any type β. Where w ranges
over ω and t over τ, the following schematic Closure characterizes the logi-
cal syntax of any empirical language: λwλt […w….t…].

10 M A R I E D U Ž Í

 Logical objects like truth-functions and quantifiers are extensional: ∧
(conjunction), ∨ (disjunction) and ⊃ (implication) are of type (οοο), and ¬
(negation) of type (οο). Quantifiers ∀α, ∃α are type-theoretically polymor-
phous, total functions of type (ο(οα)), for an arbitrary type α, defined as
follows. The universal quantifier ∀α is a function that associates a class A of
α-elements with T if A contains all elements of the type α, otherwise with
F. The existential quantifier ∃α is a function that associates a class A of α-
elements with T if A is a non-empty class, otherwise with F. Below all type
indications will be provided outside the formulae in order not to clutter the
notation. Furthermore, ‘X/α’ means that an object X is (a member) of type
α. ‘X →v α’ means that the type of the object valuation-constructed by X is
α. We write ‘X → α’ if what is v-constructed does not depend on a valua-
tion v. Throughout, it holds that the variables w →v ω and t →v τ. If C
→v ατω then the frequently used Composition [[C w] t], which is the in-
tensional descent (a.k.a. extensionalization) of the α-intension v-
constructed by C, will be encoded as ‘Cwt’.
 Our neo-Fregean semantic schema, which applies to all contexts, is
this:

 The most important relation in this schema is between an expression
and its meaning, i.e., a construction. Once constructions have been defined,
we can logically examine them; we can investigate a priori what (if any-
thing) a construction constructs and what is entailed by it. Thus mean-
ings/constructions are semantically primary, denotations secondary, because
an expression denotes an object (if any) via its meaning that is a construc-
tion expressed by the expression. Once a construction is explicitly given as a
result of logical analysis, the entity (if any) it constructs is already implicitly
given. As a limiting case, the logical analysis may reveal that the construc-
tion fails to construct anything by being improper.
 Any given unambiguous term or expression (even one involving indexi-
cals or anaphoric pronouns) expresses the same construction as its sense
whatever sort of context the term or expression is embedded within. And
the meaning of an expression determines the respective denoted entity (if
any), but not vice versa. The denoted entities are (possibly 0-ary) functions

denotes

Expression Construction Denotation
expresses constructs

 D E D U C T I O N I N T I L 11

understood as set-theoretical mappings. Thus we strictly distinguish be-
tween a procedure (construction) and its product (here, a constructed func-
tion), and between a function and its value. What makes TIL anti-
contextual and compositional is the fact that the theory construes the seman-
tic properties of the sense and denotation relations as remaining invariant
across different sorts of linguistic contexts. We do not develop a special ex-
tensional logic for extensional contexts, intensional logic for intensional
contexts and hyperintensional logic for hyperintensional contexts. Logical
operations are universal and context-invariant. What is context dependent
are the arguments on which these operations operate. In a hyperintensional
context they are constructions themselves; in an intensional context the ar-
guments of logical rules and operations are the products of constructions,
that is set-theoretical functions; finally, in an extensional context we operate
on functional values.
 Technically speaking, some constructions are modes of presentation of
functions, including 0-place functions such as individuals and truth-values,
and the rest are modes of presentation of other constructions. Thus, with
constructions of constructions, constructions of functions, functions, and
functional values in our stratified ontology, we need to keep track of the
traffic between multiple logical strata. The ramified type hierarchy does
just that. What is important about this traffic is, first of all, that construc-
tions may themselves figure as functional arguments or values. Thus we
consequently need constructions of one order higher in order to present
those being arguments or values of functions. Typically, constructions that
serve as arguments to operate on are supplied by the two kinds of atomic
constructions, viz. Trivialization and variables. For instance, if x/∗1 → τ is
a variable belonging to ∗1, the type of order 2, then 0x/∗2 → ∗1 is a con-
struction belonging to ∗2, the type of order 3, which constructs just the
variable x.
 It should be clear now that we need to distinguish three kinds of con-
text. Here I only recapitulate the characterizations of these contexts. Rig-
orous definitions are rather complicated and thus out of the scope of this
paper.4

4 For these rigorous definitions see Duží et al. (2010, §2.6) or Duží – Materna (2012,
Chapter 11).

 When defining the three kinds of context we proceed in a top-
down way. First we distinguish two kinds of occurrence of a subconstruc-
tion D in a construction C, which means that we define the use-mention

12 M A R I E D U Ž Í

distinction. Then we define two kinds of using a construction D as a con-
stituent of C. The constituent D can be used either intensionally or exten-
sionally in C.
 The use-mention distinction is traditionally understood as the distinction
between using an expression (or any piece of language) and mentioning it us-
ing a quotation in a meta-language. However, we do not analyse the seman-
tics of quotation, which is not to say that it is not an interesting topic in the
philosophy of language. Instead, we analyse the semantics of using expres-
sions in a communicative act. An expression E is used to communicate its
meaning that we explicate as a TIL construction C. In principle, there are
three ways of using an expression within a linguistic discourse.
 First, the meaning of E can be just mentioned as an object of predication
rather than used to point at the object denoted by it (if any). This is in
particular the case of sentences expressing attitudes. For instance, in the
sentence “a believes explicitly that Cracow is greater than Warsaw” the
meaning of the embedded clause ‘Cracow is greater than Warsaw’ rather
than the proposition denoted by it is the object of predication, because it is
possible that a believes that Cracow is greater than Warsaw without believ-
ing that Warsaw is smaller than Cracow. The believer a is related explicitly
to this mode of presentation of the proposition that Cracow is greater than
Warsaw.
 Second, if the meaning of E is used to refer to the denoted object (that
we conceive as a function) it can be used either intensionally or extensionally.
If the former, then the entire function is an object of predication; and if the
latter, then the functional value is an object of predication.
 Hence we must distinguish between three kinds of an occurrence of a
subconstruction D in a construction C.

Hyperintensional context within C: the kind of context in which a con-
struction D occurs in such a way that it is not used to v-construct a
function (or its value). Instead the construction D itself is the argument
of another function; the construction is merely mentioned. Only in a
hyperintensional context can a construction figure as the subject of
predication.
 Example. “a is solving the equation sin(x) = 0”. Here a cannot be
related to the solution, that is to the class of real numbers {… -2π, -π,
0, π, 2π, …}, because in such a case there would be nothing to solve for
a. Rather, a is related to the meaning of ‘sin(x) = 0’, which is the con-

 D E D U C T I O N I N T I L 13

struction λx [[0Sin x] = 00]. He wants to find out which class of real
numbers is so constructed. Thus Solving is a relation-in-intension of an
individual to a construction, and the analysis of the sentence comes
down to this construction:

 λwλt [0Solvingwt a 0[λx [[0Sin x] = 00]]]

Types: Solving/(οι∗n)τω; a → ι; x → τ; Sin/(ττ); 0/τ; =/(οττ).
 The Closure λx [[0Sin x] = 00] occurs here hyperintensionally.
When evaluating the truth-value of the sentence, we do not evaluate
this Closure; it is a matter of a. Hence the whole Closure is the (sec-
ond) argument of the relation Solving, the first being a.

Intensional context of C: the kind of context in which a construction D
is used intensionally as a constituent of C to v-construct a function
rather than a particular value of the function.
 Example. “Sine is a trigonometric function.” This sentence expresses
the fact that sine belongs to the class of trigonometric functions. Hence
the entire function sine rather than its particular value is an object of
predication here.
 When Trigonometric/(ο(ττ)) is the class of trigonometric functions
of type (ττ), the analysis of the sentence comes down to this Composi-
tion:

 [0Trigonometric 0Sin]
0Sin is used intensionally within this Composition. It is not composed
with a τ-argument in order to construct a value of the sine function.
The subject of predication is not a value but this very function.

Extensional context of C: the kind of context in which a construction D
of a function is used extensionally as an instruction to apply the func-
tion in order to v-construct a particular value of the function.
 Example. “Sine of π equals to zero” expresses the Composition
[[0Sin π] = 00] where 0Sin occurs extensionally; the Composition is
used to construct the value of the sine function at π. Also, in the previ-
ous example, 0Trigonometric is used extensionally.

 The details, however, are somewhat more involved. The basic idea is
that a ‘higher’ context is dominant over a ‘lower’ one. Thus, as we have just
showed, in the meaning of the sentence “a is solving the equation sin(x) =

14 M A R I E D U Ž Í

0”, the Closure λx [[0Sin x] = 00] occurs hyperintensionally and it thus
produces a hyperintensional context. And since a higher-order context is
dominant over a lower-order one, all the subconstructions of this Closure
including the construction of the function sine, that is 0Sin, occur hyperin-
tensionally as well. Hence the subconstructions [λx [[0Sin x] = 00]], [[0Sin
x] = 00], [0Sin x], 0Sin, x, 00 are not constituents of the entire Closure
λwλt [0Solvingwt a 0[λx [[0Sin x] = 00]]]. Rather they are only mentioned
within the second argument of the function v-constructed by 0Solvingwt. The
constituents of this Closure are those subconstructions that are used (inten-
sionally or extensionally) to construct a function or a functional value. They
are: λwλt [0Solvingwt a 0[λx [[0Sin x] = 00]]], [0Solvingwt a 0[λx [[0Sin x] =
00]]], 0Solvingwt, 0Solvingw, 0Solving, w, t, a and 0[λx [[0Sin x] = 00]].
 Similarly in the meaning of the sentence “Sine a trigonometric func-
tion” the Trivialization 0Sin occurs intensionally whereas in the meaning of
“The sine of π equals 0” it occurs extensionally. However, if the latter is
included in an intensional context, 0Sin occurs intensionally. And if in-
cluded into a hyperintensional context, it occurs hyperintensionally.
 The main reason for defining and taking into account these three kinds
of context is this. Not respecting particular levels of abstraction yields many
paradoxes and fallacies that arise from an incorrect application of exten-
sional rules like Leibniz’s law of substitution of identicals and the rule of
existential generalisation.
 Traditionally, the validity of extensional rules has been fielded as a logi-
cal criterion for distinguishing (i) extensional/ transparent/’relational’ con-
texts from (ii) non-extensional/opaque/’notional’ contexts. The idea is that
extensional (etc.) contexts are those that validate rules of substation and
quantifying-in. What we are saying is that these rules are valid also in in-
tensional and hyperintensional contexts, but that the feasibility of applying
them presupposes that it be done within an extensional logic of hyperin-
tensionals. Deploying a non-extensional logic of hyperintensions generates
opacity and thus makes (hyper)intensional contexts logically intractable.5

5 Here I draw on material from Duží – Jespersen (2012) and (2013) where more de-
tails can be found.

Tichý issues in (1986, 256; 2004, 654) a warning against inter-defining the
notion of extensional context and the validity of the rules of substitution of
co-referring terms and existential generalization on pain of circularity
(where TIL and Quine agree on the use of ‘co-referential’):

 D E D U C T I O N I N T I L 15

Q: When is a context extensional?
A: A context is extensional if it validates (i) the rule of substitution of

co-referential terms and (ii) the rule of existential generalization.
Q: And when are (i), (ii) valid?
A: Those two rules are valid when applied to extensional contexts.

 We steer clear of the circle by defining extensionality for (i) hyperinten-
sions presenting functions, for (ii) functions (including possible-world inten-
sions), and for (iii) functional values. These three levels are squared off with
the three kinds of context as introduced above.
 The last notion we will need is that of procedural isomorphism. Laying
out the required semantics requires a fair amount of footwork. The main
problem we encounter here is the problem how to define synonymy. The
solution might seem to be simple; two expressions are synonymous if they
have the same meaning. Since we explicate meanings as constructions, the
related problem to solve is the individuation of constructions. When oper-
ating on hyperintensional level the individuation up to equivalence is too
coarse-grained, since different constructions may be equivalent by con-
structing one and the same object. On the other hand, constructions are
too fine-grained from the procedural point of view. Our working hypothe-
sis is that hyperintensional individuation is procedural individuation and
that the relevant procedures are isomorphic modulo α- or η- or restricted
β-convertibility. Any two terms or expressions whose respective meanings
are procedurally isomorphic are deemed semantically indistinguishable,
hence synonymous.
 The degree to which ‘functions-in-intension’ should be fine-grained
was of the outmost importance for Church.6

6 For Church, functions-in-intension are modes of presentation of functions-in-
extensions that is set-theoretical mappings. Hence functions-in-intension roughly cor-
respond to our constructions.

 When summarising Church’s
Alternatives, Anderson (1998, 162) presents these options considered by
Church. Senses are identical if the respective expressions are (A0) ‘synony-
mously isomorphic’, (A1) mutually λ-convertible, (A2) logically equivalent.
(A0) is α-conversion and synonymies resting on meaning postulates; (A1)
is α- and β-conversion; Church also considered Alternative (A1′) that is
α-, β- and η-conversion; (A2) is logical equivalence (see Church 1993).
(A2), the weakest criterion, was refuted already by Carnap in his (1947),
and would not be acceptable to Church, anyway. (A1) is surely more fine-

16 M A R I E D U Ž Í

grained. However, we are not willing to include unrestricted β-conversion.
The reasons are these. First, β-conversion is not guaranteed to be an
equivalent transformation as soon as partial functions are involved. Second,
even in those cases when β-reduction is an equivalent transformation, it
can yield a loss of analytic information.7

 Church’s Alternatives (0) and (1) leave room for additional Alternatives.
One such would be Alternative (½), another Alternative (¾).

8

 The de dicto variant is the β-equivalent contractum of the de re variant.
The variants are equivalent because they construct one and the same
proposition, the two sentences denoting the same truth-condition. Yet
they denote this proposition in different ways, hence they are not synony-
mous. The equivalent β-reduction leads here to a loss of analytic informa-
tion, namely loss of information about which of the two ways, or construc-

 The former
includes α- and η-conversion while the latter adds a restricted β-conversion
by name. If we must choose, we would prefer Alternative (¾) to soak up
those differences between β-transformations that concern only λ-bound
variables and thus (at least appear to) lack natural-language counterparts.
 Another reason for excluding unrestricted β-conversion is that occa-
sionally even β-equivalent constructions have different natural-language
counterparts; witness the difference between attitude reports de dicto vs. de
re. Thus the difference between “a believes that Warsaw is smaller than
Cracow” and “Warsaw is believed by a to be smaller than Cracow” is just
the difference between β-equivalent meanings provided the meaning of the
‘Warsaw’ is a proper construction of an individual. Where attitudes are con-
strued as in possible-world semantics, that is as relations to intensions
(rather than hyperintensions), the attitude de dicto receives the analysis

 λwλt [0Believewt a λwλt [0Smallerwt
0Warsaw 0Cracow]]

while the attitude de re receives the analysis

 λwλt [λx [0Believewt a λwλt [0Smallerwt x 0Cracow]] 0Warsaw]

Types: Smaller/(οιι)τω; x →v ι; Warsaw, Cracow/ι; Believe/(οιοτω)τω.

7 For the notion of analytic information, see Duží (2010) and Duží et al. (2010, §5.4).
The solution of the problem of the loss of analytic information is proposed in Duží –
Jespersen (2013).
8 For (A½) see Jespersen (2010).

 D E D U C T I O N I N T I L 17

tions, has been used to construct this proposition. In this particular case the
loss seems to be harmless, though, because there is only one, hence unam-
biguous, way to β-expand the de dicto version into its equivalent de re vari-
ant.9

 No such features can be found in βr-reduction. If a variable y →v α is
not free in C then the βr-contractum of [λx [… x …] y] is [… y …]. Now

 However, unrestricted equivalent β-reduction sometimes yields a loss of
analytic information that cannot be restored by β-expansion. Here is an ex-
ample. The Compositions

 (C1) [λx [0+ x 01] 03]
 (C2) [λy [0+ 03 y] 01]

both β-reduce to the contractum [0+ 03 01]. It is uncontroversial that the
contractum can be equivalently expanded back both to (C1) and (C2).
However, the problem is that there is no way to reconstruct which of (C1),
(C2) would be the correct redex. We do not know which function has been
applied to which argument.
 The restricted version of equivalent β-conversion we have in mind con-
sists in substituting free variables for λ-bound variables of the same type,
and will be called βr-conversion. Restricted β-conversion is just a formal
manipulation with λ-bound variables that has much in common with η-
conversion and less with β-reduction. The latter is the operation of apply-
ing a function f/(βα) to its argument value a/α in order to obtain the value
of f at a (leaving it open whether a value emerges). It is the fundamental
computational rule of functional programming languages. Thus if f is con-
structed by the Closure C = λx [… x …] then β-reduction is here the op-
eration of calling the procedure C with a formal parameter x at the actual
parameter value a: [λx [… x …] 0a]. Now a construction of the value a is
substituted for x and the ‘body’ of the procedure C is computed, which
means that the Composition [… 0a …] is evaluated in order to obtain the
value of the function f at a.

9
 In general, de dicto and de re attitudes are not equivalent, but logically independent.

Consider “a believes that the Pope is not the Pope” and “a believes of the Pope that he is
not the Pope”. The former, de dicto, variant makes a deeply irrational and most likely is
not a true attribution, while the latter, de re, attribution is perfectly reasonable and most
likely the right one to make. In TIL the de dicto variant is not an equivalent
β-contractum of the de re variant due to the partiality of the role Pope/ιτω.

18 M A R I E D U Ž Í

the evaluation of the Composition [… y …] does not yield a value of f. As
a result we just obtain a formal simplification of [λx [… x …] y].
 For instance, we see little reason to differentiate semantically or logi-
cally between “b is believed by a to be happy” and “b has the property of be-
ing believed by a to be happy”.10

Let C, D/∗n → α be constructions, and ≈v /(ο∗n∗n), ≈ /(ο∗n∗n) binary
relations between constructions of order n. Then
C, D are v-congruent, 0C ≈v 0D, iff either C and D v-construct the same
α-entity, or both C and D are v-improper;
C, D are equivalent, 0C ≈ 0D, iff C, D are v-congruent for all valuations
v. □

 The latter sentence expresses

 λwλt [[λw’λt’ [λx [0Believew’t’
0a λwλt [0Happywt x]]]]wt 0b]

This is merely a βr-expanded form of

 λwλt [λx [0Believewt
0a λwλt [0Happywt x]] 0b]

 Thus we define:

Definition 4 (procedurally isomorphic constructions: Alternative (¾))
Let C, D be constructions. Then C, D are α-equivalent iff they differ at
most by deploying different λ-bound variables. C, D are η-equivalent iff
one arises from the other by η-reduction or η-expansion. C, D are βr-
equivalent iff one arises from the other by βr-reduction or βr-expansion.
C, D are procedurally isomorphic, denoted ‘0C ≈*

0D’, ≈*/(ο∗n∗n), iff there
are closed constructions C1,…,Cm, m≥1, such that 0C = 0C1, 0D =
0Cm, and all Ci, Ci+1 (1 ≤ i < m) are either α-, η- or βr-equivalent. □

 There are two weaker relations between constructions that we I will
need as well. They are equivalency and v-congruency:

Definition 5 (congruency and equivalence of constructions)

10 This is not to say we see no reason at all not to differentiate. For instance, it could
be argued that one thing is to believe that a is happy and another is to believe that a has
the property of being happy, because the latter at least appears to presuppose that the
believer have the additional conceptual resources to master the notion of property. Or if
the believer is a self-assured nominalist then he may protest that while he does believe
that a is happy he does not believe that a has any properties. Further research is re-
quired to decide one way or the other.

 D E D U C T I O N I N T I L 19

Corollaries
If C, D are procedurally isomorphic, then C, D are equivalent, but not
vice versa: 0C ≈* 0D ⇒ 0C ≈ 0D.
If C, D are equivalent, then C, D are v-congruent, but not vice versa: 0C
≈ 0D ⇒ 0C ≈v 0D.

Examples
a) Expressions ‘President of Czech Republic’ and ‘the husband of Livia

Klaus’ are co-referentional. They just contingently happen to refer to
the same individual, Václav Klaus, in the given world and time. After
March 8th 2013 they will be no more co-referential. Hence their mean-
ings are v-congruent in the given ⟨w, t⟩: [λwλt [0President_ofwt

0CR]]wt
≈v [λwλt [0Husband_ofwt

0Livia]]wt
b) Assume that ‘Pope’ and ‘the head of Catholic church’ are co-denota-

tional terms by denoting one and the same office. Then their meanings
are equivalent: 0Pope ≈ λwλt [0Head_ofwt

0Catholics]
c) Assume that the expressions ‘azure’ and ‘sky-blue’ are synonymous.

Then their meanings are procedurally isomorphic: 0Azure ≈* 0Sky_Blue

 So much for the logical and philosophical foundations of TIL as it is in
2010. As mentioned above, Tichý defined a sequent calculus only for pre-
1988 TIL that differed from the current version of TIL in these three
main issues. First, it was based on simple hierarchy of types. Second, as a
consequence of the first, pre-1988 TIL constructions did not involve
Trivialisation and Double Execution. An object was a construction of itself.
Hence this version did not, strictly speaking, distinguish between an object
and a mode of presentation of the object. Finally, as a result, constructions
were not objects sui generis. They could be only used to construct objects
but could not figure as arguments of functions. In other words, pre-1988
TIL did not take into account hyperintensional contexts in which we oper-
ate on constructions.11

11 In his (1988) Tichý deals with inference in Chapter 13 where he discusses the dis-
tinction between a one-dimensional and two-dimensional conception of proofs and ar-
gues for the latter. He provides logical and philosophical reasons for his conception of
a two-dimensional inference. The two-dimensional view is no doubt a rigorous explica-
tion of the way to execute proofs correctly. However, Tichý does not develop a new
proof calculus for TIL-1988, nor does he compare the two-dimensional inference and
the sequent calculus for TIL as introduced earlier in his (1982) and (1986). Actually,

20 M A R I E D U Ž Í

2. Tichý’s sequent calculus

 When defining extensional rules for operating in (hyper-)intensional
contexts we encounter two main problems, namely the problem of substitu-
tion of identicals (Leibniz) and existential generalization. Tichý proposed
a solution of the substitution and existential generalization problem in his
(1982, 1986) and defined a sequent calculus for the pre-1988 TIL, that is
for extensional and intensional contexts. Moreover, the solution is re-
stricted to the so-called linguistic constructions of the form λwλt [C1 C2
… Cm] or λwλt [λx1 … xm C]. In order to explain and recapitulate Tichý’s
calculus and rules I will now use terminology as introduced above. In par-
ticular I will speak about a (hyper-)intensional and extensional context
though Tichý does not use these terms.

2.1. Substitution and existential generalization

 a) Substitution. a = b; C(a/x)├ C(b/x)
 This rule seems to be invalid in intensional contexts. For instance, the
following argument is obviously invalid:

The President of ČR is the husband of Livie.
Miloš Zeman has been elected for the President of ČR.

———————————————————————
Miloš Zeman has been elected for the husband of Livie.

 b) Existential generalization. C(a/x)├ ∃x C(x)
 Again, in intensional contexts this rule seems to be invalid. For in-
stance, the following argument is obviously invalid:

Miloš Zeman wants to be the President of ČR.
—————————————————————

The President of ČR exists.

 Now we must take into account that Tichý solves these problems only
for a particular case of linguistic constructions. Thus he does not define
e.g. substitution of identicals in general. He specifies the intensional de-

the adoption of the sequent calculus is not necessarily connected with the two-
dimensional inference, as was evident in Gentzen’s work.

 D E D U C T I O N I N T I L 21

scent of a construction C with respect to w, t, or both, and proves under
which conditions is the so-descended construction substitutable for an-
other construction.
 Ad a) In order to solve the problem of substitution, Tichý introduces in
(1986) the notion of hospitality of a construction for a variable z occurring
in a construction C(z). In principle, there are four cases. If a variable z is
(1,1) hospitable, then the construction of the form [Xwt] is substitutable for
z. That is, z occurs in an extensional (de re) context. If a variable z is (1,0)
hospitable, then the construction of the form [X w] is substitutable for z.
That is, z occurs in an intensional (de dicto) context with respect to time t.
If a variable z is (0,1) hospitable, then the construction of the form [X t] is
substitutable for z. That is, z occurs in an intensional (de dicto) context
with respect to a world w. Finally, if a variable z is (0,0) hospitable, then
the construction of the form X is substitutable for z. That is, z occurs in
an intensional (de dicto) context with respect to both t and w.
 Ad b) Existential generalization. Tichý first defines an exposure of a vari-
able. In brief, a variable z → α is exposed in a construction C if it is free
and occurs extensionally in C, that is it does not occur in an intensional
context like λt […z…]. Second, he takes into account the hospitality of a
variable z. Then he defines the rule of existential generalisation for exten-
sional contexts like this.

Let x → α be (1,1)-hospitable and let D(k,l), 0 ≤ k ≤ 1, 0 ≤ l ≤ 1, be a
construction substitutable for x in a construction C(x). Then the fol-
lowing rule is valid:

λwλt C(D(k,l)/x)├ λwλt ∃x C(x)

 This rule needs to be explained. First, D(k,l) → α, 0 ≤ k ≤ 1, 0 ≤ l ≤ 1,
is an abbreviation for a construction of one of these forms Dwt, Dw, Dt, D.
Second, if x is exposed and (1,1)-hospitable then the existential generalisa-
tion is valid.
 Example. “The president of the Czech Republic is an economist.”

λwλt [0Economistwt 0PCRwt]├ λwλt ∃x [0Economistwt x];

Types. Economist/(οι)τω; PCR/ιτω: the office of the president of CR; x →v ι.

22 M A R I E D U Ž Í

2.2. Sequent calculus

The basic notions we need are these.

Match is a pair a:C, where a, C → α and a is an atomic construction.
A match a:C is satisfied by a valuation v, if a and C v-construct the same
object; match :C is satisfied by v, if C is v-improper; matches a:C and
b:C are incompatible, if a, b construct different objects; matches a:C, :C
are incompatible.

Sequent is a tuple of the form a1:C1, …, am:Cm b:D, for which we use
a generic notation Φ Ψ; A sequent Φ Ψ is valid if each valuation
satisfying Φ satisfies also Ψ;

 Remark. Note that due to this definition a valid sequent can be viewed
as a valid argument. Thus Tichý actually applies here his two-dimensional
conception of inference introduced later in 1988 book though he does not
explicitly speak about the two-dimensional inference in his 1982 paper.
 The rules preserving validity of sequents are specified like this.

 Structural rules.
1. || Φ Ψ, if Ψ ∈ Φ (trivial sequent)
2. Φ Ψ || Φs Ψ, if Φ ⊆ Φs (redundant match due

to monotonicity)
3. Φ, ϑ Ψ; Φ ϑ ||Φ Ψ (simplification)
4. || Φ y:y (trivial match)
5. Φ ϑ1; Φ ϑ2 || Φ Ψ, if ϑ1 and ϑ2 are incompatible
6. Φ, :ϑ Ψ; Φ, y:ϑ Ψ ||Φ Ψ (y is not free in Φ ,Ψ)

 Application rules.
7. a-instance (modus ponens):
 Φ y:[FX1…Xm], Φ, f:F, x1:X1,…,xm:XmΨ || Φ Ψ
 (f, xi, different variables, free in Φ, Ψ , F, Xi)
8. a-substitution:
 (i) Φ y:[FX1…Xm], Φ x1:X1,…,Φ xm:Xm || Φ y:[Fx1…xm]
 (ii) Φ y:[Fx1…xm]; Φ x1:X1,…, Φ xm:Xm || Φ y:[FX1…Xm]
9. extensionality:
 Φ, y:[f x1…xm] y:[g x1…xm]; Φ, y:[g x1…xm] y:[f x1…xm] ||

Φ f:g
 (y, x1,…,xm are different variables that are not free in Φ, f, g.)

 D E D U C T I O N I N T I L 23

 λ-rules.
10. Φ, f:λx1…xmY Ψ || Φ Ψ (f is not free in Φ, Y,Ψ)
11. β-reduction:
 Φ y:[[λx1…xmY] X1…Xm] || Φ y:Y(X1…Xm/x1…xm)
 (Xi is substitutable for xi)
12. β-expansion:

Φ x1:X1;…; Φ xm:Xm; Φ y:Y(X1…Xm/x1…xm) ||
Φ y:[[λx1…xmY] X1…Xm]

 So much for Tichý’s proof calculus as he introduced it in the two pa-
pers (1982) and (1986). In the next Section 3 I am going to generalize the
calculus for TIL 2010 as presented in Duží – Jespersen – Materna (2010).

3. Generalization for TIL 2010

 Our goal is to generalize the calculus so that it involves ramified theory of
types, all kinds of constructions that is not only Tichý’s linguistic construc-
tions, existential generalization to any context and substitution of identicals
in any kind of context be it extensional, intensional or hyperintensional.
For the sake of convenience I first briefly recapitulate the free kinds of con-
text as introduced in Section 1.

3.1. Three kinds of context

 Constructions are full-fledged objects that can be not only used to con-
struct an object (if any) but also serve themselves as input/output objects
on which other constructions (of a higher-order) operate. Thus we have:

 Hyperintensional context: the sort of context in which a construction is
not used to v-construct an object. Instead, the construction itself is an ar-
gument of another function; the construction is just mentioned.
 Example. “Charles is solving the equation 1 + x = 3.” When solving the
equation, Charles wants to find out which set (here a singleton) is con-
structed by the Closure λx [0= [0+ 01 x] 03]. Hence this Closure must oc-
cur hyperintensionally, because Charles is related to the Closure itself
rather than its product, a particular set. Otherwise the seeker would be
immediately a finder and Charles ’s solving would be a pointless activity.
The analysis comes down to:

24 M A R I E D U Ž Í

 λwλt [0Solvewt 0Charles 0[λx [0= [0+ 01 x] 03]]].

 Intensional context: the sort of context in which a construction C is used
to v-construct a function f but not a particular value of f; moreover, C does
not occur within another hyperintensional context.
 Example. “Charles wants to be The President of Finland.” Charles is re-
lated to the office itself rather than to its occupier, if any. Thus the Clo-
sure λwλt [0President_ofwt 0Finland] must occur intensionally, because it is
not used to v-construct the holder of the office (particular individual, if
any). The sentence is assigned as its analysis the construction

 λwλt [0Want_to_bewt 0Charles λwλt [0President_ofwt 0Finland]].

 Extensional context: the sort of context in which a construction C of
a function f is used to construct a particular value of f at a given argument,
and C does not occur within another intensional or hyperintensional con-
text.
 Example. “The President of Finland is watching TV.” The analysis of
this sentence comes down to the Closure

 λwλt [0Watchwt λwλt [0President_ofwt 0Finland]wt 0TV].

The meaning of ‘the President of Finland’ occurs here with de re supposi-
tion, i.e. extensionally.

3.2. Extensional calculus of hyperintensions

 In this section I generalise Tichý’s extensional rules for substitution and
existential generalization so that they be applicable to constructions of any
kind (not only linguistic) and in any context. Moreover, I am going to ex-
plain the way in which partiality is being ‘propagated up’, and finally I will
deal with the problem of β-conversion.

3.2.1. Rules of existential generalisation

 Now I specify the rules for existential generalisation into the three kinds
of context.12

12 For details see Duží (2012) and Duží – Jespersen (2012).

 These rules will be specified in a schematic way. Let F →
(αβ); a → α. We will examine an extensional, intensional and hyperinten-

 D E D U C T I O N I N T I L 25

sional occurrence of a construction of the schematic form [… [F a] …]
within a construction D.

 a) Extensional context
 Let an occurrence of a construction [… [F a] …] be extensional and let
it v-construct the truth-value T. Then the following rule is truth-
preserving:

[… [F a] …]├ ∃x [… [F x] …]; x →v α

Example. Pope is wise.╞ Somebody is wise.

λwλt [0Wisewt 0Popewt]╞ λwλt ∃x [0Wisewt x].

Types: Wise/(οι)τω; Pope/ιτω; x → ι.
 Hence we can quantify into an extensional context by an abstraction
over the value of the function constructed by F. This is quite comprehen-
sible. In an extensional context the value of the function is an object of
predication.

 b) Intensional context
 Let [F a] occur intensionally in a construction [… [F a] …] that v-
constructs T. Then the following rule is truth-preserving:

[… [F a] …] ├ ∃f [… [f a] …]; f →v (αβ)

Example. b believes that Pope is wise.╞ There is an office such that b be-
lieves that its holder is wise.

λwλt [0Believewt 0b λwλt [0Wisewt 0Popewt]]╞
λwλt ∃f [0Believewt 0b λwλt [0Wisewt fwt]].

Types: Believe/(οιοτω)τω: an intensional belief; b/ι; Wise/(οι)τω; Pope/ιτω; f
→ ιτω.
 In an intensional context we cannot quantify over the value of a func-
tion, because the entire function is an object of predication. Hence we
must quantify over the entire function.

 c) Hyperintensional context
 Let [F a] occur hyperintensionally in a construction [… 0[… [F a] …] …]
that v-constructs T. Now if we want to validly quantify into hyperproposi-

26 M A R I E D U Ž Í

tional context, we come up against a major technical complication. An at-
tempt analogous to the intensional one above yields:

[… 0[… [F a] …] …]

∃f [… 0[… [f a] …] …]; f →v (αβ)

Why is the conclusion no good? The occurrence of f in 0[… [f a] …] – notice
the leftmost Trivialization – is 0bound that is bound by Trivialisation, be-
cause the variable f occurs within the hyperintensional context of the con-
struction [… [f a] …]. So f is mentioned, hence not available for a direct logi-
cal manipulation. It is shielded from ∃ by Trivialization in 0[… [f a] …].
 Yet it would be a serious flaw of an extensional logic of hyperintensions
if one of the fundamental extensional rules were not applicable in a hyper-
intensional context. For instance, from the premise that a believes* (hyper-
intensionally) that the Evening Star is a planet it does follow that there is a
concept ES of an individual role Evening_Star/ιτω such that a believes* that
its occupant is a planet. But how?
 First, we must realize that in a hyperintensional context the object of
predication is a construction of a function. Hence we must quantify over
construction. Second, the solution consists in the application of the follow-
ing substitution technique. A valid argument is obtained by applying the
function Sub of the polymorphous type (∗n∗n∗n∗n) that operates on con-
structions in this way. Let X, Y, Z be constructions of order n. Then Sub is
a mapping which, when applied to ⟨X, Y, Z⟩, returns the construction that
is the result of correctly substituting X for Y in Z. A correct substitution is
one that does not make any variable occurring free in X become bound in
the resulting construction (no ‘collision’). For illustration, the Composition
[0Sub 002 0x 0[0+ x 01]] constructs the result of substituting 02 for x into
[0+ x 01], which is the Composition [0+ 02 01]. Therefore, the Composi-
tion [0Sub 002 0x 0[0+ x 01]] is equivalent to 0[0+ 02 01], both constructing
the Composition [0+ 02 01].
 In Duží – Jespersen (submitted) we analyze four different arguments
that share the same premise, but have different conclusions. Two of them
are invalid, while the first of the valid ones leads up to the solution of the
problem of quantifying into hyperpropositional contexts. Here I reproduce
the two valid rules and introduce another one, which I argue for as the
most general one.

 D E D U C T I O N I N T I L 27

[… 0[… [F a] …] …]
 (1)

[0∃*λc [… [0Sub c 0c 0[… [c a] …]] …]]

Types: ∃*/(ο(ο∗n)); c →v ∗n; 2c →v (αβ)

 Proof.
 (i) 0[… [F a] …] constructs [… [F a] …] ∅
 (ii) [0Sub c 0c 0[… [c a] …]] v(F/c)-constructs the construction

[… [F a] …]; (the first occurrence of c is free)
 (iii) λc [… [0Sub c 0c 0[… [c a] …]] …] constructs a non-empty class of

constructions
 (iv) [0∃*λc [… [0Sub c 0c 0[… [c a] …]] …]]

 Note, however, that [… [c a] …] in the conclusion of (1) comes with
wrong typing and so is necessarily an improper Composition. The variable c
ranges over constructions rather than functions, so c cannot be Composed
with an argument of a function (see Definition 2, iii)). To be sure, the im-
properness of a construction matters only if the construction is introduced as
used in order to produce a product, at which it fails. If a construction is merely
mentioned as an argument of a function, it occurs as an ordinary object that
can be operated on, and its failure to produce a product is logically immaterial.
 In the present case [… [c a] …] is an argument of Sub, and the Composi-
tion [0Sub c 0c 0[… [c a] …]] is a proper constituent, because c v-constructs
a construction of a function. In a word, lazy evaluation of c in this Composi-
tion is an option because the second and third occurrence of c is Trivializa-
tion-bound, i.e. mentioned. But, though technically feasible, it is methodol-
ogically and philosophically unsatisfactory that wrong typing should be an in-
tegral part of the solution. Fortunately, there are attractive alternatives:

[… 0[… [F a] …]…]
 (2)

 [0∃*λc […[0Sub c F 0[… [F a] …]]…]]

 Proof.
 (i) the Composition [0Sub c 0F 0[… [F a] …]] v(F/c)-constructs

0[… [F a] …]]
 (ii) the Closure λc [… [0Sub c 0F 0[… [F a] …]] …] constructs a non-

empty class
 (iii) [0∃*λc [… [0Sub c 0F 0[… [F a] …]] …]]

28 M A R I E D U Ž Í

 This rule does not have a flaw of wrong typing. Yet it is not general
enough. The reason is this. The construction F may have more than one
occurrence in the hyperintensional context and we may want to quantify
only over some of these occurrences. Hence the general rule for quantifying
into hyperpropositional attitudes is this:13

13 This solution has been suggested by Jakub Macek as a reaction to (1). I am in-
debted to him for making this suggestion.

[… 0[… [F a] …] …]
 (3)

 [0∃*λc [… [0Sub c 0d 0[… [d a] …]] …]]

Additional type: d → (αβ).

 Proof.
 (i) the Composition [0Sub c 0d 0[… [d a] …]] v(F/c)-constructs

0[… [F a] …]]
 (ii) the Closure λc [… [0Sub c 0d 0[… [d a] …]] …] constructs a non-

empty class
 (iii) [0∃*λc [… [0Sub c 0d 0[… [d a] …]] …]]

 Example.

b believes* that Pope is wise.╞ There is a concept of an office such that
b believes* that its holder is wise.
λwλt [0Believe*wt 0b 0[λwλt [0Wisewt 0Popewt]]╞ λwλt ∃*c [0Believe*wt 0b
[0Sub c 0d 0[λwλt [0Wisewt dwt]]]];

Types: Believe*/(οι∗n)τω: hyperpropositional attitude; c →v ∗n; 2c →v ιτω; d
→v ιτω.
 If we wanted to infer more, namely that there is an office such that b be-
lieves* that its holder is wise, we would need another assumption, namely
that the construction of this office is proper. In this case this additional as-
sumption is valid, because the Trivialisation 0Pope is not v-improper for
any valuation v. Hence a stronger argument is also valid:

 D E D U C T I O N I N T I L 29

b believes* that Pope is wise.╞ There is an office such that b believes*
that its holder is wise.

 λwλt [[0Believe*wt 0b 0[λwλt [0Wisewt 0Popewt]] ∧ [0Proper 0Pope]]╞
 λwλt ∃f ∃*c [[f = 2c] ∧ [0Believe*wt 0b [0Sub c 0d 0[λwλt [0Wisewt dwt]]]]];

Additional type: f → ιτω.

3.2.2. Substitution

 In order to specify substitution of identicals (Leibniz) in the three kinds
of context, recall Definitions 4 and 5 of v-congruent, equivalent and proce-
durally isomorphic constructions. It should be clear now that

a) In a hyperintensional context (propositional attitudes, mathematical sen-
tences, …) substitution of procedurally isomorphic (but neither equivalent
nor v-congruent) constructions is valid.

b) In an intensional context (modalities, some notional attitudes, …) substi-
tution of equivalent or procedurally isomorphic (but not only v-
congruent) constructions is valid;

c) In an extensional context substitution of v-congruent (or equivalent or
procedurally isomorphic) constructions is valid.

 Examples.
 a) extensional context

The temperature in Amsterdam is the same
as the temperature in Prague.

The temperature in Amsterdam is 20 0C.
–––––––––––––––––––––––––––––––––––––––

The temperature in Prague is 20 0C.

 Proof of the validity of this argument. In any ⟨w, t⟩-pair the following
steps are truth-preserving:

 1. [0Temperature_inwt 0Amsterdam] = [0Temperature_inwt 0Prague]
assumption

 2. [0Temperature_inwt 0Amsterdam] = 020 assumption
 3. [0Temperature_inwt 0Prague] = 020 substitution 1, 2

Types: Temperature_in/(τι)τω; Amsterdam, Prague/ι; 20/τ.

30 M A R I E D U Ž Í

 b) intensional context
 To illustrate invalidity of substitution of v-congruent constructions in
an intensional context, consider an example of B. Partee:

The temperature in Amsterdam is rising.
The temperature in Amsterdam is 20 0C.

––––––––––––––––––––––––––––––––––––
20 0C is rising.

 1. [0Risingwt λwλt [0Temperature_inwt 0Amsterdam]] assumption
 2. [0Temperature_inwt 0Amsterdam] = 020 assumption
 3. [0Risingwt

020] ???

Additional types: Rising/(οττω)τω: the property of magnitude; λwλt
[0Temperature_inwt 0Amsterdam] → ττω.
 The last step is invalid. In the first assumption the Composition
[0Temperature_inwt 0Amsterdam] occurs intensionally. To be rising is the
property of magnitude (function) rather than of its value. Hence v-con-
gruent constructions [0Temperature_inwt 0Amsterdam], 020 cannot be mu-
tually substituted.
 As a valid argument we can adduce the recent one:

Benedict XVI resigns as Pope.
Pope is the same office as the Head of the Catholic church.

–––
Benedict XVI resigns as the Head of Catholic church.

 Proof of the validity of this argument. In any ⟨w, t⟩-pair the following
steps are truth-preserving:

 1. [0Resignwt 0Benedict 0Pope] assumption
 2. [0Pope = λwλt [0Head_ofwt

0Catholics]] assumption
 3. [0Resignwt 0Benedict λwλt [0Head_ofwt

0Catholics]] substitution 1, 2

Types: Resign/(οιιτω)τω; Pope/ιτω; Benedict/ι.

 c) hyperintensional context
 To illustrate invalidity of substitution of equivalent constructions in a
hyperintensional context, consider this example:

 D E D U C T I O N I N T I L 31

Marie knows* that Benedict XVI resigns as Pope.
Pope is the same office as the Head of the Catholic Church.

––
Marie knows* that Benedict XVI resigns as the Head

of the Catholic Church.

 1. [0Know*wt
0Marie 0[λwλt [0Resignwt 0Benedict 0Pope]]] assumption

 2. [0Pope = λwλt [0Head_ofwt
0Catholics]] assumption

 3. [0Know*wt
0Marie 0[λwλt [0Resignwt 0Benedict

 λwλt [0Head_ofwt
0Catholics]]]] ???

Additional type: Know*/(οι∗n)τω: hyperpropositional attitude.
 Marie may know (hyperintensionally) that Pope Benedict XVI resigns
but does not have to know that Pope is the Head of the Catholic Church.
In hyperintensional attitudes we must fully respect the perspective of the
attributee.

3.2.3. Sequent calculus and β-conversion

 If we apply extensional rules of substitution of identicals and existential
generalisation as specified above, Tichý’s sequent calculus (or any other ex-
tensional calculus) can be applied. Yet we must be aware of the problematic
nature of β-conversion. Though it is the fundamental computational rule
of λ-calculi, it is underspecified by β-conversion. This rule can be executed
in two different ways; ‘by value’ and ‘by name’. There are two problems
with the latter.
 First, in logic of partial functions such as TIL the rule of transformation
‘by name’

[[λx1…xmY] X1…Xm]├ Y(X1…Xm/x1…xm)

is not equivalent, because the left-hand side can be v-improper whereas the
right-hand side v-proper by constructing a degenerated function that is un-
defined for all its arguments. To illustrate it, consider two constructions C1
and C2 that are not equivalent, because they construct different functions:

 C1 [[λx [λy [0Divide y x]]] [0Cot 0π]]
 C2 [λy [0Divide y [0Cot 0π]]]

Types: x, y → τ; Divide/(τττ): the function of dividing y by x; Cot/(ττ):
the cotangent function; π/τ.

32 M A R I E D U Ž Í

 The construction C1 is the Composition of the Closure [λx [λy
[0Divide y x]]] with the Composition [0Cot 0π]. Since the contagent func-
tion is not defined at the argument π, [0Cot 0π] is improper by failing to
construct anything. Due to compositionality principle the entire Composi-
tion C1 is improper, because the function constructed by the Closure [λx
[λy [0Divide y x]]] does not receive an argument to be applied at. However,
the Closure is never improper, it always constructs a function. Hence C2 is
a proper construction. It constructs a ‘degenerated function’ of type (ττ)
undefined on all its arguments. But C2 is a β-contractum of C1, that is the
entire Composition [0Cot 0π] has been substituted for the variable (formal
parameter) x. Thus whereas C1 does not construct anything, C2 constructs a
degenerated function that is an object (though a peculiar one).
 Partiality, as we know all too well, is a complicating factor. Though
lambda logic can be modified so as to allow ‘undefined terms’, application of
a function in λ-calculi had always been total. E. Moggi (1988) would appear
to have been the first to advance a definition of a partial λ-calculus, and S.
Feferman (1995) introduced axioms (λp) for Partial Lambda Calculus. How-
ever, they both consider only a ‘total application’ to a term that is denoting.
 The second problem is this. Even if we apply an equivalent ‘total β-
reduction’, it can yield a loss of analytic information as illustrated in Sec-
tion 1. This is due to the fact that we do not keep track of the function
and arguments that have been used in the transformation.
 An analogy from programming languages can be helpful to explain the
problem. Imagine you have a procedure (program) λx C(x) with a “hole” x
(unsaturated procedure with a formal parameter x). It does not make sense
to compute C(x) in this stage. Before calling the program λx C(x) one
must ‘fill in the hole’ x that is to supply an argument (value) for which C
should be computed. To this end there is a subprogram D that specifies
the material (argument value) to be filled into the hole x.
 There are two possibilities how to do it.

 1. Insert into the hole x the whole subprocedure D and then compute
C(D). This corresponds to calling D ‘by name’.

 2. Compute D first in order to obtain “the material” (argument value)
a. Then insert a into the hole x and compute C(a). This corre-
sponds to calling D ‘by value’.

 In case 1 there may be an undesirable side-effect. Imagine that the sub-
program D is somehow garbled and as a result the whole procedure C gets

 D E D U C T I O N I N T I L 33

garbled after the insertion (‘damage being propagated up’). Moreover, in-
stead of the hole x you have now got D and D may conflict with C. Again,
no good, damage. This corresponds to the case of an invalid beta reduction
that does not preserve equivalence. And still moreover, even if D does not
damage C when computing C(D), after the execution of C(D) you lost the
track of D and of the result D produces. The two procedures have been
merged together. Now you want to compute another procedure E(x) and to
supply the same material for the hole x. Even if the execution of C(D) were
successful, D might have been changed by the execution. There is no guar-
antee that the same material would be supplied to the hole x in E(x). This
case corresponds to a valid β-reduction preserving equivalence but yielding
the loss of information.
 Fortunately, there is a remedy. Call the subprocedure D ‘by value’. The
idea is simple. Compute D first to obtain its result a (if any), and then sub-
stitute this result for x. This solution is preserving equivalence, avoids the
problem of the loss of analytic information, and moreover, it is in practice
more effective. If the execution of the subprocedure D fails to produce a
product, it is pointless to call C(x) or E(x) or any other procedure that
should operate on this product. Thus we know it in advance, rather than
only when executing C(x). We keep all the procedures C(x), E(x), D sepa-
rated and evaluate them only when needed. Everything is all right, as it
should be.
 Tichý’s λ-rules involve β-reduction ‘by name’. Due to the version of se-
quent calculus that operates on matches the rule is validity preserving; β-
reduction ‘by name’ in the sequent calculus is this rule:

Φ y:[[λx1…xmY] X1…Xm] || Φ y:Y(X1…Xm/x1…xm);
(Xi is substitutable for xi)

The left-hand match is satisfied by a valuation v if y and [[λx1…xmY]
X1…Xm] v-construct the same object. Hence the Composition [[λx1…xmY]
X1…Xm] is v-proper and the rule is validity preserving.
 In this way the problem of partiality is avoided rather than solved. It is
the standard way to deal with application as presented, for instance, by
Moggi and Feferman. The rule does not give us any hint what to do in
case that the Composition [[λx1…xmY] X1…Xm] is v-improper, because in
this case the left-hand side match is not satisfied by the valuation v due to
the fact that the atomic construction y is always satisfied. Thus the rule is
not applicable.

34 M A R I E D U Ž Í

 For these reasons we developed a substitution method that makes it pos-
sible to define a generally valid β-transformation ‘by value’ that does not
exhibit the above specified defects. To this end we make use of the func-
tion Sub defined in Section 3.2.1. Moreover we occasionally need another
function Trα/(∗nα) that takes an object of type α to its Trivialisation. Note
that there is a substantial difference between the application of this func-
tion and the construction Trivialisation. For instance, if x →v ι, 0x v-con-
structs just the variable x. The variable is ο-bound in 0x and thus it occurs
hyperintensionally. On the other hand [Trι x] v(John/x)-constructs 0John.
The variable x is free in [Trι x] and thus occurs intensionally.
 Let xi →v αi be mutually distinct variables and Di →v αi (1 ≤ i ≤ m)
constructions. Then the following rule of β-reduction ‘by value’ is valid:

[[λx1…xm Y] D1…Dm]├ 2[0Sub [0Trα1 D1] 0x1 …
[0Sub [0Trαm Dm] 0xm 0Y]]

Note the Double Execution on the right-hand side. The result of applying
Sub is a construction that must be afterwards executed; hence Double Exe-
cution.
 Example. “John loves his own wife. So does the Mayor of Ostrava.”

 λwλt [λx [0Lovewt x [0Wife_ofwt x]] 0John] =βv
 λwλt 2[0Sub 00John 0x 0[0Lovewt x [0Wife_ofwt x]]]
 λwλt [so_doeswt 0MOwt]

λwλt 2[0Sub 0[λwλt λx [0Lovewt x [0Wife_ofwt x]]] 0so_does 0[so_doeswt
0MOwt]] =βv λwλt [λx [0Lovewt x [0Wife_ofwt x]] 0MOwt] =βv

 λwλt 2[0Sub [0Tr 00MOwt] 0x 0[0Lovewt x [0Wife_ofwt x]]].

Types. Love/(οιι)τω; Wife_of/(ιι)τω; John/ι; MO/ιτω: the office of the
Mayor of Ostrava; x →v ι.
 One can easily check that in all these constructions, whether reduced or
non-reduced, the track of the property of loving one’s own wife is being kept.
This property is constructed by the Closure λwλt λx [0Lovewt x [0Wife_ofwt
x]]. When applied to John it does not turn into the property of loving John’s
wife. And the same property is substituted for the variable so_does into the
second sentence. Thus we can easily infer that John and the Mayor of Ostrava
share the property of loving their own wives. If we used β-reduction ‘by name’
the Closure would be reduced to λwλt [0Lovewt 0John [0Wife_ofwt 0John]]. No
doubt that it can be β-expanded to the original Closure. The problem is that
it can be also expanded to another Closure λwλt [λx [0Lovewt x [0Wife_ofwt

 D E D U C T I O N I N T I L 35

0John]] 0John], which means that the property of loving John’s wife has been
applied to John. In this way we lost the track of the property that has been
applied to John and that we want to apply to Mayor of Ostrava. And it also
shows exactly how the β-reduction by value works to our advantage.14

14 For details see Duží – Jespersen (2013).

4. Conclusion

 We described generalization of Tichý’s sequent calculus to the calculus
for TIL 2010. The generalization concerns these issues. First, the exten-
sional rules of quantifying in and substitution of identicals were generalized
so that to be valid in any context, including intensional and hyperinten-
sional ones. Second, we showed that the sequent calculus remains to be the
calculus for TIL based on the ramified hierarchy of types with one impor-
tant exception, which is the rule of β-reduction. We specified a generally
valid rule of β-reduction ‘by value’ that does not yield a loss of analytic in-
formation about which function has been applied to which argument. No
doubt that these are valuable results.
 Yet some open problems remain. Among them there are in particular
the question on the properties of the calculus like completeness and the
problem of its implementation. There is also a question whether another
similarly extensional calculus of hyperintensions would not be more con-
venient for implementation. To this end we develop a computational vari-
ant of TIL, the functional programming language TIL-Script. Till now we
managed to develop and test the modules for recognizing particular types of
context and we implemented β-reduction by value that we use universally.
Moreover, we specified and implemented the algorithm that makes it pos-
sible to exploit Prolog inference machine (see Duží et. al. 2009). However,
the full-fledged TIL inference machine is still a future work.

Acknowledgements

The research reported herein was funded by Grant Agency of the Czech Republic,
Projects No. 401/10/0792, “Temporal Aspects of Knowledge and Information” and also
by the internal grant agency of VSB-Technical University Ostrava, Project No.
SP2013/207 “Application of artificial intelligence in process-knowledge mining, model-
ling and management”.

36 M A R I E D U Ž Í

References

ANDERSON, C. A. (1998): Alonzo Church’s contributions to philosophy and intensional
logic. The Bulletin of Symbolic Logic 4, 129-171.

CARNAP, R. (1947): Meaning and Necessity. Chicago: Chicago University Press.
CHURCH, A. (1993): A revised formulation of the logic of sense and denotation. Alter-

native (1). Noûs 27, 141-157
DUŽÍ, M. (2010): The paradox of inference and the non-triviality of analytic informa-

tion. Journal of Philosophical Logic 39, No. 5, 473-510.
DUŽÍ, M. (2012): Towards an extensional calculus of hyperintensions. Organon F 19,

supplementary issue 1, 20-45.
DUŽÍ, M. – ČÍHALOVÁ, M. – CIPRICH, N. – MENŠÍK, M. (2009): Agents’ reasoning us-

ing TIL-Script and Prolog. In: Weltzer Družovec T. - Jaakkola, H. – Kiyoki, Y. –
Tokuda, T. – Yoshida, N. (eds.): Information Modelling and Knowledge Bases XXI.
Amsterdam: IOS Press, 2010, 135-154.

DUŽÍ, M. – JESPERSEN, B. – MATERNA, P. (2010): Procedural Semantics for Hyperinten-
sional Logic: Foundations and Applications of Transparent Intensional Logic. Series
Logic, Epistemology and the Unity of Science. Berlin, Heidelberg: Springer.

DUŽÍ, M. – JESPERSEN, B. (2012): Transparent quantification into hyperintensional
contexts de re. Logique & Analyse 220, 513–554.

DUŽÍ, M. – JESPERSEN, B. (submitted): Transparent quantification into hyper-
propositional contexts de dicto. Paper in revision.

DUŽÍ, M. – JESPERSEN, B. (2013): Procedural isomorphism, analytic information, and
β-conversion by value. Logic Journal of the IGPL 21, 291-308. doi:
10.1093/jigpal/jzs044.

DUŽÍ, M. – MATERNA, P. (2012): TIL jako procedurální logika. Průvodce zvídavého
čtenáře Transparentní intensionální logikou. Bratislava: aleph.

FEFERMAN, S. (1995): Definedness. Erkenntnis 43, 295-320.
JESPERSEN, B. (2010): Hyperintensions and procedural isomorphism: Alternative (½). In

The Analytical Way. Proceedings of the 6th European Congress of Analytic Phi-
losophy, ECAP VI. London: College Publications, 299-320.

MOGGI, E. (1988): The Partial Lambda-Calculus. PhD thesis. University of Edinburg,
available as LFCS report at http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-
63/.

TICHÝ, P. (1982): Foundations of partial type theory. Reports on Mathematical Logic 14,
52-72. Reprinted in Tichý (2004, 467-480).

TICHÝ, P. (1986): Indiscernibility of identicals. Studia Logica 45, 251-273. Reprinted in
Tichý (2004, 649-671).

TICHÝ, P. (1988): The Foundations of Frege’s Logic. Berlin, New York: De Gruyter.
TICHÝ, P. (2004): Collected Papers in Logic and Philosophy. V. Svoboda, B. Jespersen, C.

Cheyne (eds.). Prague: Filosofia, Czech Academy of Sciences; Dunedin: University
of Otago Press.

