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6

Deleuze and the Conceptualisable 
Character of Mathematical Theories

Simon B. Duffy

In this chapter I present an account of what a mathematical concept is, as 
developed in the work of the French philosopher Gilles Deleuze. In charac-
terising his understanding of what a mathematical concept is, I draw upon 
the way that he taps into the mathematical philosophy of Albert Lautman 
and one of Lautman’s contemporaries, Jean Cavaillès. To make sense of 
what Deleuze understands by a mathematical concept requires unpacking 
what he considers to be the conceptualisable character of a mathematical 
theory. However, his account of mathematical theories, indeed his account 
of mathematics, is much broader than what is usually understood by these 
terms. Mathematics is more than just the sum of its theories, and mathe-
matical theories are determined by more than just the proofs upon which 
the theories are based. Deleuze identifies a problem- solution complex in 
operation at the base of every theory.

By problem- solution complex Deleuze does not mean a ‘problem set’ 
and the written ‘solutions’ to them that are encountered in pedagogical set-
tings, but rather the mathematical problems that emerge during, and indeed 
characterize, the historical development of mathematics, to which math-
ematicians have responded by developing more or less rigorous solutions 
in the form of mathematical concepts derived from: conjectures, for which 
proofs have yet to be developed; proof, either of conjectures or of other 
mathematical problems in general; formal theories, based on the proofs; 
and informal, or semi- formal, theories, for which no rigorous proof has 
developed, or at least not for all aspects of the proof. Informal theories rely 
rather on heuristic proofs or inductive approximations derived intuitively. 
For Deleuze, the mathematical problems, for which a theory is a solution, 
retain their relevance to the theories not only as the conditions that gov-
ern their development but also insofar as they can contribute to determin-
ing the conceptualisable character of those theories. Deleuze presents two 
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examples of mathematical problems that operate in this way. These two are 
the problem of the solvability of quintics and the problem of the diagram-
matic representation of essential singularities.

The first is formal: Galois’ group- theoretic proof of the solvability of 
higher- degree polynomial equations. Galois proved that, despite some 
specific quintics actually having solutions, it was impossible to construct 
an algebraic formula that solved all quintics. And the second is informal: 
Poincaré’s qualitative theory of differential equations which develops the 
concept of an essential singularity. The different kinds of essential singular-
ity are determined by virtue of the observed trajectories of variables across 
a potential function, rather than by a formal mathematical proof. The dia-
grammatic representation of essential singularities, which are determined 
in relation to the problem of the representation of meromorphic functions, 
remains only intuitive. The question of the solvability of quintics and the 
diagrammatic representation of essential singularities are each examples of 
mathematical problems, the conditions of solvability of which are imma-
nent to the problems themselves. Deleuze considers these mathematical 
problems, and the mathematical concepts derived from them, to be charac-
teristic of a more general theory of mathematical problems.

This distinction between formal and informal characterizations of the 
mathematical expression of problems is important for determining how 
Deleuze’s approach to the relation between mathematics and philosophy 
differs from those committed to foundationalist approaches to the philoso-
phy of mathematics. Deleuze traces the development of what he character-
izes as a more general theory of mathematical problems through the history 
of mathematics drawing upon the work of Karl Weierstrass, Henri Poincaré, 
Bernhard Riemann, and Hermann Weyl, and the historical insights of 
Lautman and Cavaillès. An account of what a mathematical concept is for 
Deleuze will be developed by tracing the contours of this history and of its 
broader significance to his work, chief amongst which is showing how such 
a theory of mathematical problems can be deployed as a way of studying 
problems in other discourses, or fields and contexts.

Deleuze develops an account of mathematical theories, and thus of 
the concepts derived from them, that presents them as responses to 
problems, the immanent conditions of which not only govern the very 
development of the concepts but continue to be implicated in the con-
cepts as the conditions of their development (Deleuze, 1994, p. 160). The 
implications are that mathematical concepts are not solely derived from 
theories that resolve mathematical problems (Deleuze, 1994, p. 158), but 
rather mathematical concepts are themselves problematic insofar as the 
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mathematical problems that govern the development of the theories con-
tinue to be implicated in the concepts, as the conditions of their very 
development. Deleuze wants to challenge any presumption that math-
ematical problems disappear as problems, or can be abandoned, with 
the discovery of their solution, and therefore also what this presumption 
falsely entails, that it is the truth of the solution that retrospectively gov-
erns the development of the problems.

While Deleuze would acknowledge that most mathematical concepts do 
seem to fit with this model, i.e. of dissolving the problem and retrospec-
tively governing the development of the problem for which they are the 
solution, he would maintain that this seeming fit is misleading and at best a 
convenient shorthand. It is misleading insofar as it sets up the expectation 
that all problems will have solutions, or rather that all adequately deter-
mined problems will have solutions. When the expectation of a solution 
is thwarted, the fault is considered to lie with the particular characterisa-
tion of the problem, rather than with the expectation of a solution. Deleuze 
considers this to be a poor model for a theory of mathematical problems, 
as it fails to account for those problems that are able to be characterised 
adequately, i.e. with generally acceptable mathematical rigour, and yet 
whose expectation of solution is thwarted, i.e. the associated mathematical 
proof disproves a solution or proves that there is no solution. The exam-
ple that Deleuze uses is Galois’ group- theoretic proof of the solvability of 
higher- degree polynomial equations. The conceptualisable character that 
Deleuze extracts from these mathematical concepts is presented as a theory 
of mathematical problems, and would be something like this: Well- defined 
problems don’t necessarily have rigorous solutions, indeed informal dia-
grammatic representations of results do not provide solutions, but rather 
characterise the conditions of the problem itself. Deleuze argues that these 
kinds of concepts are responses to the particular conditions of the problem 
itself and are governed by those conditions rather than by an actual solu-
tion whose discovery is expected, since there is no such solution. Deleuze 
considers this example to function as an effective counterexample to what 
I have characterised as the poor model, and wants to generalise from this 
particular case to a general theory of mathematical problems.

Deleuze proposes the account of mathematical concepts that he devel-
ops as a more inclusive alternative. The implication is that mathematical 
concepts are not solely derived from theories that are the expected solu-
tions to mathematical problems, but rather mathematical concepts are 
themselves problematic insofar as the mathematical problems that govern 
the development of the theories from which the mathematical concepts are 
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derived continue to be implicated in the concepts as the conditions of their 
very development. So problems are not forgettable, or able to be discarded 
or abandoned, relative to their solutions. Nor are they simply useful for 
pedagogical reasons, i.e. to educate budding mathematicians about solu-
tions, which are then discarded or seamlessly displaced by the solution 
itself. Mathematical problems are rather intrinsic features of the enduring 
problem- solution complex.

Deleuze then uses this theory of mathematical problems as a model to 
develop a general theory of problems, and specifically philosophical prob-
lems, with the aid of tracing an alternative lineage in the history of phi-
losophy that tracks these developments in mathematics. For example, (1) 
Maimon’s account of intuitions as differentials allows Deleuze to incorpo-
rate a critique of representation within the structure of his philosophy, to 
which I return at the end of this chapter; and (2) Riemann’s work allows 
Deleuze to critique and reconfigure Kant’s pure intuitions of space and time 
along Bergsonian lines, although arguably modelled more effectively on the 
mathematics that inspired Bergson.1

The Theory of Mathematical Problems  
and the History of Mathematics

Deleuze traces the development of his alternative account of a theory of 
mathematical problems through the history of mathematics drawing upon 
the work of Weierstrass, Poincaré, Riemann, and Weyl. This history actu-
ally begins with the Leibnizian method of approximation (1684) using 
successive orders of the differential relation, which was developed into a 
theorem about power series expansions by Brooke Taylor in 1715, for which 
Lagrange attempted to provide an algebraic proof in 1772 (1797). “Lagrange 
tried to make the calculus rigorous by reducing it to the algebra of infi-
nite series” (Grabiner, 1983, p. 203). The foundation of algebra was generally 
thought to be sound in the eighteenth century. Lagrange thought he had 
proved that every differentiable function was the sum of a Taylor series. 
He coined the expression ‘derived function’ and the notation for it f ’(x), 
and recursively f ”(x), etc., which is the origin of the term ‘derivative.’ The 
concept of function helped ‘free the concept of derivative from the earlier 
ill- defined notions’ –  Leibniz’s differential quotient, a ratio with vanishing 
quantities; and, Newton’s fluxion –  since the derivative, as a function, was 
“the same sort of object as the original function” (Grabiner, 1983, p. 203). 

 1 See Duffy, 2013, pp. 89– 116.
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However, the problem with Lagrange’s method was that it assumed that 
“the algebra of finite quantities’ could ‘automatically be extended to infinite 
processes” (Grabiner, 1983, p. 203), which turned out not to be the case. 
The subsequent development of the epsilon- delta method by Weierstrass, 
which reformulated the calculus without either fluxions or vanishing quan-
tities using only real numbers, allows Lagrange’s method to be formalised 
in the calculus by Weierstrass’ theory of analytic continuity (1872), which is 
a theory of integration as the approximation of functions from differential 
relations according to a process of summation in the form of series, using 
Taylor series or power series expansions.

The history that Deleuze traces incorporates Poincaré’s qualitative the-
ory of differential equations (1881– 1882), which provides a diagrammatic 
response to problems with the representation of meromorphic functions, or 
divergent series, in Weierstrassian analytic continuity, and further extends to 
Riemann’s concept of qualitative multiplicity, or Riemann space (1854). The 
work of Weyl on Riemann surfaces (1913)2 is instrumental to the development 
of the mathematical model that Deleuze develops.3 Weyl makes Riemann’s 
intuitive representation of Riemann space more explicit by using a gener-
alisation of Weierstrass’ analytic continuity –  effectively demonstrating that 
Riemann surfaces are the surfaces of Weierstrassian power series expansions 
–  to show that Riemann space is composed of Riemann surfaces, and there-
fore of Weierstrassian power series expansions.4 It is by tracing the history 
of the philosophical engagements with and responses to these mathematical 
developments, and by drawing upon the work of Lautman and Cavaillès, that 
Deleuze develops a theory of mathematical problems, which he then uses as 
a model for a theory of problems in general as they arise in other discourses.

It is important to note that Deleuze eschews characterising his engage-
ment with mathematics as simply analogical or metaphorical. He is careful 
to distinguish between those mathematical concepts that are quantita-
tive and exact in nature, which he considers it to be ‘quite wrong’ to use 
metaphorically ‘because they belong to exact science’ (Deleuze, 1995, 
p. 29), and those mathematical problems that are ‘essentially inexact yet 
completely rigorous’ (Deleuze, 1995, p. 29) and which have led to important  

 2 See Weyl, 1964.
 3 Deleuze is aware of Weyl’s work on Riemann via Lautman’s commentary on Weyl, which 

Deleuze cites in Deleuze and Guattari, 1987, pp. 485. See Lautman, 2011, pp. 133– 137 and 
Duffy, 2013, pp. 103– 115. The importance of Lautman’s work to Deleuze’s engagement with 
mathematics in Deleuze, 1994 is explored in Duffy, 2013, pp. 117– 136.

 4 Deleuze extends this model with Poincaré’s qualitative theory of differential equations to 
characterise the relations between discontinuous (Riemann) surfaces of Riemann space.
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developments not only in mathematics and science in general but also in 
other nonscientific areas such as philosophy and the arts. Deleuze argues 
that this sort of concept is “not unspecific because something’s missing but 
because of its nature and content” (Deleuze, 1995, p. 29). An example of 
an inexact and yet rigorous concept is Poincaré’s qualitative theory of dif-
ferential equations which develops the concept of an essential singularity. 
The different kinds of essential singularity are determined by virtue of the 
observed trajectories of variables across a potential function, rather than by 
a specific formal mathematical proof. Another example is a Riemann Space. 
Bernhard Riemann generalises Gauss’ work on the differential geometry 
of surfaces –  namely, that the curvature of a surface embedded in three- 
dimensional space may be understood intrinsically to that surface, i.e. 
independently of the three dimensional space in which it is embedded –  
into higher dimensions. While Euclidean ‘finite’ geometry holds for three- 
dimensional linear point- configurations, curved three- dimensional spaces 
are not necessarily flat. However, these spaces still resemble Euclidean space 
in the infinitesimal neighbourhood of each point. By considering the infini-
tesimal neighbourhood around each point as a small bit of Euclidean space, 
the entire space can then be constructed with the step- by- step juxtaposi-
tion, or accumulation, of these infinitesimal neighbourhoods. The resulting 
Riemannian space can be defined as an assemblage of local spaces, each of 
which can be mapped onto a flat Euclidean space, without this determining 
the structure of the manifold or multiplicity as a whole.

While Deleuze recognises that citing mathematical concepts of the 
exact kind outside of their particular sphere would rightly expose one to 
the criticism of “arbitrary metaphor or of forced application” (Deleuze, 
1989, p. 129), he defends the use he makes of mathematical concepts of 
the inexact kind. He does so on the grounds that by taking from these 
mathematical concepts “a particular conceptualizable character which 
itself refers to non- scientific areas” (Deleuze, 1989, p. 129), the redeploy-
ment of this conceptualisable character in a nonscientific area is justified. 
What this means is that the other nonscientific area “converges with sci-
ence without applying it or making it a metaphor” (Deleuze, 1989, p. 129). 
A useful way of characterising the relation between the conceptualisable 
character of the inexact mathematical concept and this conceptualisable 
character as redeployed in other nonscientific areas, insofar as the latter 
converges with the former, is to refer to it as a modelling relation. That is, 
the conceptualisable character which is redeployed in a nonscientific area 
is modelled on the conceptualisable character of the inexact mathemat-
ical concept. What distinguishes a modelling relation from a relation of  
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analogy or metaphor is that there are “correspondences without resem-
blance” (Deleuze, 1994, p. 184) between them. That is, there is a correspon-
dence between the conceptualisable character in each instance; however, 
there is no resemblance between the mathematical elements of the math-
ematical problem and the non- mathematical elements of the discourse in 
which this conceptualisable character has been redeployed. It is the con-
ceptualisable character of the two examples above, or at least of how the 
former is implicated in the latter, that Deleuze redeploys in his philosophy. 
He is interested in the conditions of the discontinuity between the two dis-
continuous analytic functions in Poincaré’s qualitative theory of differen-
tial equations, which, post Weyl, would characterise the relations between 
discontinuous (Riemann) surfaces of a Riemann space.

While Deleuze does refer to his project as developing a “mathesis uni-
versalis” (Deleuze, 1994, p. 181), he does not consider there to be a definite 
system of mathematical laws at the base of nature. Mathematics is not privi-
leged in this way over other discourses. There is, however, a peculiarity about 
the discourse of mathematics that distinguishes it from other discourses, 
and that is the very general nature of the relation between the objects of the 
discourse and the ideas that we have of those objects as expressed within 
the discourse. Mathematics is peculiar insofar as all of its objects are actu-
ally constructed by the discourse itself. By this I just mean very generally 
that they are the product of the discursive practice of mathematics by math-
ematicians; they are not discovered empirically. I take it as uncontroversial 
that there are mathematical objects, and that these objects are abstract. The 
ideas that we have of the objects of mathematics are therefore directly and 
unproblematically related to the objects themselves. And this is regardless 
of subsequent questions about the status of those objects, from the point of 
view of the philosophy of mathematics: questions about the independence 
of those objects, whether we are talking about objects or structures, or even 
about competing constructions in mathematics itself. It is for this reason 
that mathematics is figured as providing a model for our understanding of 
the nature of this relation, between the objects of a discourse and the ideas 
of those objects as expressed within the discourse, in discourses other than 
mathematics, where this relation is far from straightforward.

Lautman, Cavaillès and the 
Mathematical Real

What is important about mathematics, for Lautman and Deleuze, is its 
seeming a priority, which allows the structure of problematic ideas, or the 
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theory of mathematical problems, to be recognised as a component of the 
mathematical real in a way that is not directly accessible in other discourses 
because of the reasons mentioned in the paragraph above. Deleuze takes 
Lautman’s concept of the mathematical real, which includes the sum of all 
mathematical theories and the structure of the problematic ideas that gov-
ern them, as the basis for his reflections on the theory of problems, and casts 
it as a model for our understanding of the nature of the relation between the 
objects of any one discourse and the structure of the problematic ideas that 
govern them within that discourse. Insofar as he claims that all discourses 
can be modelled in this way, Deleuze argues that there is a “mathesis univer-
salis” (Deleuze, 1994, p. 181). Deleuze is not positing a positive mathematical 
order to the universe, but he is rather nominating the Lautmanian math-
ematical real, and the theory of problems that he characterises by means of 
it, as a model for our understanding of the structure of other discourses.

What does Deleuze mean by the structure of the problematic ideas that 
govern the development of mathematical theories, which is included in 
Lautman’s concept of the mathematical real and, that I  argue, forms the 
basis of Deleuze’s theory of problems? Lautman subscribed to a Platonic 
understanding of the structure of the problematic idea; however, he under-
stands these to be abstract dialectical ideas, i.e. not universal Forms, but 
Archetypes or Ideals, which are the touchstones for the selective and orga-
nizational function of the Dialectic,5 and which remain revisable in the face 
of the demands of that organization. The abstract dialectical ideas to which 
Lautman is referring include the following: local- global; intrinsic- extrinsic; 
essence- existence; continuous- discontinuous; and finite- infinite.

It is important to note that Lautman’s references to a dialectic of ideas 
should not be understood as being references to a general dialectic that 
exists independently of the mathematics. Lautman is quite explicit in claim-
ing that the dialectic of ideas is the fourth point of view of the mathemati-
cal real (Lautman, 2011, p. 183). For Lautman, Ideas constitute, along with 
mathematical facts, objects and theories, a fourth point of view of the math-
ematical real. “Far from being opposed these four conceptions fit naturally 
together: the facts consist in the discovery of new entities, these entities are 
organized in theories, and the movement of these theories incarnates the 
schema of connections of certain Ideas” (Lautman, 2011, p.  183). For this 
reason, the mathematical real depends not only on the base of mathemati-
cal facts but also on dialectical ideas that govern the mathematical theories 

 5 According to Lautman, they are “the structural schemas according to which effective 
theories are organized” (Lautman, 2011, p. 199).
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in which they are actualized. The mathematical real is not just the sum of 
all mathematical theories. The former should therefore not be collapsed 
into the latter. To do so would lead to the mistaken thesis that mathematics 
provides evidence of an external and more general dialectic that is equally 
accessible by means of some kind of analysis performed in regard to or 
from within other discourses. What seems to be clear in Lautman’s work is 
that he considers himself to be working within the constraints of the dis-
course of mathematics, and the structure of the dialectic that he presents is 
determined as operating within the expanded concept of mathematics that 
he makes claim to: the mathematical real. The dialectic of ideas is indepen-
dent of the mathematical theories, or the mathematics per se, but not of the 
expanded understanding of the mathematical real.

Lautman does claim that the structure of the dialectic is not the sole 
privy of the mathematical real, and that it can therefore also ‘be found’ in 
other discourses. However, he does not claim that this is the case because 
the dialectic is able to be generalised, or insofar as it is transcendent with 
respect to the mathematical real. While Lautman makes strong claims to 
the unity of mathematics, which was controversial at the time and remains 
so today, he does not make any claim whatsoever as to the unity of all dis-
courses. What Lautman argues rather is that this is the case because of the 
way the structure of the dialectic operates in the mathematical real func-
tions as a model for recognizing how it can be understood to operate in 
other discourses.

Lautman maintains that we are able to recognise the logic of relations 
structured by the dialectic in other discourses solely by virtue of the math-
ematical theories in which these relations are incarnated; as he argues, “the 
effectuation of these connections is immediately mathematical theory” 
(Lautman, 2011, p. 28). That is to say that it is the way in which the math-
ematical logic is deployed in other discourses that allows such a discourse 
to be understood to operate according to the dialectic. This is perhaps 
straightforward in those discourses that deal extensively with mathemat-
ics, such as the sciences and social sciences, even philosophy; but not so 
straighforward in those that do not, such as those under the umbrella of the 
humanities. But even a simple concept like representation, or the problem 
of the relation between an object and the idea that we have of that object, 
referred to above, can be understood to be modelled on mathematics in 
the requisite way being referred to here by Lautman, and therefore operate 
according to the dialectic. A more thorough treatment of the problem of 
representation will be returned to at the end of the chapter. By dialectic 
Lautman means here the dialectic of the mathematical real. So mathematics  
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is not privileged over other discourses according to Lautman because, on 
the one hand, he does not consider there to be a definite system of mathe-
matical laws at the base of nature, and, on the other hand, he does consider 
it to be intimately involved in our understanding of the very dialectical 
structure of those discourses. What this amounts to is that mathematical 
theories are not the sole privy of mathematics, or the mathematical real; 
they also provide the ground for understanding how the dialectic oper-
ates in other discourses. So when Lautman argues that “mathematical logic 
does not enjoy in this respect any special privilege. It is only one theory 
among others and the problems that it raises or that it solves are found 
almost identically elsewhere” (Lautman, 2011, p. 28) – by privileged we 
should also understand exclusive to the mathematical real.

While Lautman subscribed to a Platonic understanding of the struc-
ture of the problematic idea, Deleuze also draws upon the comments of 
Cavaillès, who is critical of this aspect of Lautman’s work, to characterise 
problematic ideas as being immanent to the problems themselves.6 The 
example from mathematics that Deleuze uses to characterise the immanent 
nature of problematic ideas, and thus of a more general theory of mathe-
matical problems, is the question of the solvability of polynomial equations.

Galois (Formal) or Poincaré (Informal) on 
the Mathematical Expression of Problems?

Lagrange provided a unified understanding of the general formulas for 
determining the solutions to polynomial equations of degree less than or 
equal to four. However, Lagrange was unable to do the same for quintics, 
and suggested that they might not be solvable in this way. Abel provided 
the first conclusive proof of this conjecture. He proved that, despite some 
specific quintics actually having solutions, it was impossible to construct an 
algebraic formula that solved all quintics. So, the question of the solvability 
of quintics provides an example of a mathematical problem, the conditions 
of which are immanent to the problem itself, and which is characteristic of 
a more general theory of mathematical problems.

Galois developed a more complete theory on the solvability of higher- 
degree polynomial equations, by showing that a simpler proof of Abel’s 

 6 ‘Cavaillès: “Personally I am reluctant to posit something else that would govern the actual 
thinking of the mathematician, I see the exigency in the problems themselves. Perhaps 
this is what he calls the Dialectic that governs; if not I think that, by this Dialectic, one 
would only arrive at very general relations … The future will show which of us is right.” 
(Lautman, 2011, p. 224).
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result could be found along purely group- theoretic lines. Deleuze argues 
that Galois’ theory is not simply another example or expression of the 
theory of mathematical problems, but rather a formal restatement of the 
theory of problems as such, in purely group- theoretic terms. Galois’ theory 
can be understood to unite in one formal theory those aspects of the theory 
of problems that Deleuze draws upon in Poincaré’s qualitative theory of 
differential equations. Galois’ theory allows the formal presentation of a 
feature that remains only intuitive in Poincaré’s qualitative theory of differ-
ential equations, namely the leap of the variable across the cut of the poten-
tial function in the diagrammatic representation of essential singularities, 
which are determined in relation to the problem of the representation of 
meromorphic functions, where more formal solutions remain elusive.

With Galois we obtain a formal proof of a theory of mathematical prob-
lems. However, the differences in kind between differential calculus and 
group theory, namely the formalisation of the latter versus the informal 
intuitive results of the former, are ‘merely secondary’ in Deleuze’s reckon-
ing. What is important is that they are each characterisations of the math-
ematical expression of problems as such. So even though Galois’ theory is 
a formal restatement of the theory of problems in purely group- theoretic 
terms, throughout his work Deleuze prefers and continues to draw upon the 
informal model that brings together Weierstrass, Poincaré and Riemann, 
and remains quiet, or is epistemically modest, in regards to mathematical 
foundations.

This sets up the mathematical real, and the structure of the theory of 
problems as it operates in the mathematical real, to function as a model 
for the structure of other discourses, and for how we can understand these 
other discourses to operate. It is the conceptualisable character of the the-
ory of mathematical problems as a theory of problems that allows other 
discourses to be understood by the non- mathematician to operate accord-
ing to a theory of problems, or to be structured by a theory of problems 
modelled on the theory of problems in mathematics.

What distinguishes Deleuze from those committed to foundational 
approaches to the philosophy of mathematics is that Deleuze’s claims are not 
dependent on the success of one or other of the foundational approaches to 
provide foundations for mathematics. Deleuze’s claims are rather epistemi-
cally modest. Rather than being drawn into making the claim that the model 
he is proposing is the mathematical model, which is defendable by virtue of 
it being underpinned by a particular foundational approach to mathematics, 
for Deleuze, the proposed informal model is simply a mathematical model 
that he considers to be more useful than other potential models.
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The work of Deleuze does more than merely provide a descriptive 
account of a theory of problems as the foundations for our understanding 
of the operations of all discourses. Rather, his work develops an argument 
for a particular kind of theory of problems that can be understood to oper-
ate in relation to other discourses by virtue of the way that it operates as a 
theory of problems in mathematics, here borrowing the expanded account 
of mathematics derived from Lautman’s concept of the mathematical real. 
The detail of the structure of the theory of problems can only be offered in 
mathematical terms; however, the structure of this theory of problems can 
be used to model the structure and mode of operation of problems in other 
discourses.

For Deleuze, the way that a mathematical theory, and the mathemati-
cal concept derived from it, is implicated immanently in the conditions of 
the problem that determines it serves as a model for the way that a philo-
sophical concept is implicated in the philosophical conditions of the prob-
lem which determines it. There is, therefore, a correspondence between the 
structure of the theory of problems in mathematics and the structure of 
the theory of problems that is deployed in Deleuze’s philosophy, insofar as  
the latter is modelled on the former. There are “correspondences without 
resemblance” (Deleuze, 1994, p. 184) between them, insofar as the structure 
of the theory of problems conditions each discourse, but without there being 
a resemblance between the respective problems that do the conditioning.

The philosophical implications of this modelling relation are devel-
oped by Deleuze7 in his critique of representation, or of the presump-
tion of a connection between an idea and something in the world that it 
represents, presented in Difference and Repetition. For Deleuze, the ‘idea’ 
is not bound to the representation of an object or a concept, nor is it 
the property of individual consciousness. Difference, in Deleuze’s sense 
of the term, is also not tied to representation, thus it does not involve 
a comparison of one thing or concept to another. Deleuze insists that 
“[d] ifference is not and cannot be thought in itself, so long as it is subject 
to the requirements of representation” (Deleuze, 1994, p. 262). One aspect 
of the way that mathematics models the theory of problems for Deleuze 
is that the mathematics that he draws upon to develop this model also  

 7 In Expressionism in Philosophy (Deleuze, 1990) in relation to his reading of Spinoza’s 
theory of relations in the Ethics (see Duffy, 2004; 2006), and in Bergsonism (Deleuze, 
1991), and Cinema 1 and 2 (Deleuze, 1986; 1989) in relation to his understanding of 
Bergson’s intention “to give multiplicities the metaphysics which their scientific treatment 
demands” (Deleuze, 1991, p. 112). But I want to focus here on how this modelling relation 
operates in Difference and Repetition (Deleuze, 1994).

 

 



Simon B. Duffy120

120

actually models the nature of the illusory relation of representation 
between an idea and that which it represents in discourses other than 
mathematics. Deleuze draws upon the work of Salomon Maimon on the 
concept of the differential to develop this aspect of his critique of repre-
sentation. According to Maimon, the operation of integration functions 
as a mathematical rule of the understanding that is applied to the elements 
of sensation, which are modelled on differentials, in order to account for 
how the manifolds of sensation are brought to consciousness as sensible 
objects of intuition. Here, the determinate units of different manifolds 
of sensation are projected to be qualitatively different differentials. What 
appear to us as external objects are therefore constructed as such by the 
understanding, and the retrospective explanation of the construction is 
that it is the result of the application of a mathematical rule of the under-
standing to the elements of sensation.

In the first step of the process, two different manifolds of sensation 
characterised by different differentials are brought into consciousness by 
virtue of the application of integration as a rule of the understanding to 
the elements of sensation or differentials. The method of integration that 
Maimon deploys as a rule of the understanding to proceed from differen-
tials to functions, or from projected elements of sensation to the qualities of 
sensible objects, is the method of approximation of a differentiable function 
around a given point provided by the process of summation in the form of 
a Taylor series or power series expansion, what is eventually formalised by 
Weierstrass as analytic continuity. Deleuze champions the inexact exten-
sion of this method in Poincaré’s qualitative theory of differential equations. 
The real relation between the two qualities themselves, as sensible objects, 
is modelled on the mathematical relation between their differentials. A pri-
mary physical judgement is then made about the products of integration 
which determines them as sensible objects. What this amounts to is that 
all physical judgements, whatsoever, are predicated on a prior mathemati-
cal judgement, which “escapes consciousness” (Gueroult, 1929, p. 64). It is 
therefore an illusion that sensible or real objects appear as external objects 
to us, when in fact they are the product of our understanding.

What can be seen in operation here is an example of both how a mathe-
matical theory is deployed in another discourse and of the conceptualisable 
character of the mathematical theory. In other words, Poincaré’s qualitative 
theory of differential equations, which is that a function can be generated 
from differentials, corresponds structurally to the problem as articulated in 
another discourse, which is that objects can be generated from the elements 
of sensation, without there being any resemblance between the respective 
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problems that do the conditioning, and therefore how such a discourse, 
and indeed all discourses relying on such a form of representation, can be 
understood to operate according to the dialectic. It should be clear that the 
conceptualisable component which is deployed in the non- mathematical 
discourse is modelled on the conceptualisable component of the inexact 
mathematical concept.

In summary, a mathematical concept for Deleuze is the conceptualisable 
character of a mathematical theory. He develops an account of mathemati-
cal theories, and thus of the concepts derived from them, that presents them 
as responses to problems, the immanent conditions of which govern not 
only the very development of the theories, but continue to be implicated in 
the theories as the conditions of their development. The implication being 
that mathematical concepts are not solely derived from theoretical reso-
lutions of mathematical problems, but rather mathematical concepts are 
themselves problematic insofar as the mathematical problems that govern 
the development of the theories, from which the mathematical concepts 
are derived, continue to be implicated in the theories as the conditions of 
their very development. It is on the basis of this account of mathematical 
concepts as problematic that Deleuze considers the mathematical prob-
lems that he identifies in the developments of Galois, Weierstrass, Poincaré, 
Riemann, and Weyl, and the mathematical concepts derived from them, to 
be characteristic of a more general theory of mathematical problems. By 
tracing the history of the philosophical engagements with and responses 
to these mathematical developments, and by drawing upon the work of 
Lautman and Cavaillès, Deleuze develops a theory of mathematical prob-
lems, which he then uses as a model for a theory of problems in general as 
they arise in other discourses.

Deleuze does consider the theory of mathematical problems to have 
been formalised in Galois’ group- theoretic proof of the solvability of 
higher- degree polynomial equations. However, the mathematical prob-
lem of primary interest to Deleuze, and which features prominantly in the 
model he constructs, is not ultimately reducible to a formal proof. The the-
ory of problems derived from Deleuze’s informal model is the same as that 
furnished by a group- theoretic approach, it just arrives at this theory by 
other means, albeit informal mathematical means. What Deleuze gains by 
this selection is a mathematical model that affords him a critical perspective 
on representation not available in the group- theoretic approach.8 Deleuze 

 8 This is not to rule out that other possible critical perspectives on representation cannot be 
drawn from the group- theoretic approach –  just that Deleuze opts for a model furnished 
by the informal approach.
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can be understood to find in the informal mathematical problem that he 
selects a way to use the relevance of sense experience in obtaining informal 
results for mathematical problems, to model the operation of sense experi-
ence relevant not only to science but to all discursive practices relying on 
representation.
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