
From canonical transformations to
transformation theory, 1926–1927:

The road to Jordan’s Neue Begründung !

Anthony Duncan a, Michel Janssen b,∗

aDepartment of Physics and Astronomy, University of Pittsburgh
bProgram in the History of Science, Technology, and Medicine,

University of Minnesota

Abstract

We sketch the development from matrix mechanics as formulated in the Dreimänner-
arbeit of Born, Heisenberg, and Jordan, completed in late 1925, to transformation
theory developed independently by Jordan and Dirac in late 1926. Focusing on
Jordan, we distinguish three strands in this development: the implementation of
canonical transformations in matrix mechanics (the main focus of our paper), the
clarification of the relation between the different forms of the new quantum theory
(matrix mechanics, wave mechanics, q-numbers, and operator calculus), and the
generalization of Born’s probability interpretation of the Schrödinger wave func-
tion. These three strands come together in a two-part paper by Jordan published
in 1927, “On a new foundation [neue Begründung] of quantum mechanics.”
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1 Introduction

Matrix mechanics as presented in the famous Dreimännerarbeit of Born, Heisen-
berg, and Jordan (1926) was still lacking various basic elements of quantum
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mechanics as we know it today. It was formulated in terms of transitions
between states and did not provide a mathematical representation of the indi-
vidual states between which such transitions were supposed to take place. It
allowed one to calculate transition probabilities, but gave no inkling of the odd
new rules for the composition of probabilities in modern quantum mechanics.
The wave functions introduced by Schrödinger (1926a) provided a first repre-
sentation of quantum states. Born’s (1926a,b) statistical interpretation of the
wave function was an important step in the formulation of the new probability
rules.

Generalizations of the Schrödinger wave function and Born’s statistical in-
terpretation of it were incorporated into matrix mechanics and the related
q-number theory of Dirac (1925) through what came to be known as transfor-
mation theory. Independently of one another, Dirac and Jordan developed this
new formalism in late 1926 and published it in early 1927 (Jordan, 1927a,b;
Dirac, 1927). 1 In modern notation, which follows Dirac rather than Jordan,
the central quantities in transformation theory are complex probability am-
plitudes 〈a|b〉, which determine the probability of finding the value a for some
observable A after finding the value b for some observable B and at the same
time govern the transition of a basis of eigenvectors of A to a basis of eigen-
vectors of B.

Transformation theory grew out of investigations of how to implement canon-
ical transformations, familiar from classical mechanics and the old quantum
theory, in matrix mechanics and q-number theory. With hindsight, elements
of transformation theory can already be discerned in the Dreimännerarbeit.
Moreover, in a paper on canonical transformations published in the fall of 1926,
London (1926b) had found a preliminary version of transformation theory. In
particular, he had shown how to fit Schrödinger’s wave functions into the
new formalism. However, it was left to Dirac and Jordan, drawing on helpful
suggestions from Pauli and Heisenberg, to work out the formalism’s statisti-
cal interpretation. Dirac and Jordan also used the new formalism to clarify
the relations between the four different forms of quantum mechanics existing
side by side at the time: matrix mechanics, wave mechanics, q-number theory,
and the operator calculus of Born and Wiener (1926). In April 1927, Hilbert,
Von Neumann, and Nordheim (1928) submitted an exposition of Jordan’s
version of transformation theory based on lectures by Hilbert in the preced-
ing winter semester to the Mathematische Annalen. Their paper highlighted
some of the mathematical problems facing transformation theory. These prob-

1 Mehra and Rechenberg (2000, p. 72) quote from two letters clearly showing that
Dirac and Jordan initially arrived at their results independently (Heisenberg to
Jordan, 24 November 1926; Dirac to Jordan, 24 December 1926). Jordan and Dirac
did meet in Copenhagen before Jordan wrote the second of his pair of papers, in
which he cited Dirac’s paper (Jordan, 1927b, p. 1).
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lems provided an important stimulus for Von Neumann (1927) to develop the
Hilbert-space formalism for quantum mechanics.

These developments are, of course, covered in general overviews of the history
of quantum mechanics (see, e.g., Jammer, 1966, Ch. 6; Mehra and Rechen-
berg, 2000, Chs. I and III). They are also the topic of two interesting papers by
Lacki (2000, 2004). Still, this episode in 1926–1927 has not received nearly as
much attention from historians of quantum mechanics as, say, the discoveries
of matrix and wave mechanics in 1925–1926 or the formulation of the uncer-
tainty and complementarity principles in 1927 (cf. note 37 below). Given its
central importance for the development of modern quantum mechanics, the
emergence of transformation theory and its impact on subsequent formula-
tions of quantum mechanics certainly warrant further historical study. Our
paper should be seen as a modest contribution to this enterprise.

We focus on Jordan, who presented his version of transformation theory in a
two-part paper entitled “On a new foundation (neue Begründung) of quantum
mechanics” (Jordan, 1927a,b). 2 In these papers he drew on an earlier pair of
papers on canonical transformations (Jordan, 1926a,b). The transformations
that matter in matrix mechanics are the ones that preserve the form of the
fundamental commutation relations and diagonalize the energy matrix. In his
papers of 1926, Jordan showed how such transformations are the implementa-
tion in matrix mechanics of canonical transformations in classical mechanics.
The transformations that matter in quantum mechanics are unitary trans-
formations that map one orthonormal basis of Hilbert space to another, pre-
serving inner products as needed for the theory’s probability interpretation.
Unitarity is not a natural property of canonical transformations. It thus be-
came a hindrance for the formulation of quantum transformation theory that
it had important roots in the analysis of canonical transformations.

The structure of our paper is as follows. In Section 2, we briefly review the role
of canonical transformations in classical mechanics, the old quantum theory,
and matrix mechanics. In Section 3, we preview elements of quantum trans-
formation theory by showing how they are implicitly contained already in the
Dreimännerarbeit. In Sections 4–6, which form the heart of our paper, we dis-
cuss the 1926 papers by Jordan and London on canonical transformations,
avoiding overlap with Lacki’s (2004) paper on this topic as much as possible.
We highlight results in these papers that show that the transformation matrix
implementing a canonical transformation in matrix mechanics is generally not
unitary. In Section 7, we sketch the transition from Jordan’s analysis of canon-
ical transformations to the transformation theory of his Neue Begründung. In
Section 8, we collect some observations about the limited impact of Neue
Begründung. Finally, in Section 9, we briefly summarize our findings.

2 A preliminary version of Neue Begründung appeared in late 1926 (Jordan, 1926c).
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2 Canonical transformations in classical mechanics, the old quan-
tum theory and matrix mechanics

Canonical transformations in classical physics are transformations of the po-
sition and conjugate momentum variables (q, p) that preserve the form of
Hamilton’s equations,

q̇ =
∂H(p, q)

∂p
, ṗ = −∂H(p, q)

∂q
. (1)

For convenience, we assume that the system is one-dimensional and that the
Hamiltonian H(p, q) does not explicitly depend on time. The canonical trans-
formation to new coordinates and momenta (Q, P ) is given through a gen-
erating function, which is a function of one of the old and one of the new
variables. For a generating function of the form F (q, P ), for instance, we find
the equations for the canonical transformation (q, p) → (Q,P ) by solving the
equations

p =
∂F (q, P )

∂q
, Q =

∂F (q, P )

∂P
(2)

for Q(q, p) and P (q, p). One readily verifies that this transformation preserves
the form of Hamilton’s equations: 3

Q̇ =
∂Ĥ(P, Q)

∂P
, Ṗ = −∂Ĥ(P, Q)

∂Q
, (3)

where the Hamiltonians H(p, q) and Ĥ(P, Q) are numerically equal to one an-
other but given by different functions of their respective arguments. One way
to solve the equations of motion is to find a canonical transformation such
that in terms of the new variables the Hamiltonian depends only on momen-
tum, Ĥ(P, Q) = Ĥ(P ). Such variables are called action-angle variables and
the standard notation for them is (J, w). The basic quantization condition of
the old quantum theory of Bohr and Sommerfeld restricts the value of a set
of action variables for the system under consideration to integral multiples of
Planck’s constant, J = nh. Canonical transformations to action-angle vari-
ables thus played a central role in the old quantum theory. With the help of
them, the energy spectrum of the system under consideration could be found.

In matrix mechanics—as developed, after Heisenberg’s (1925) ground-breaking
Umdeutung paper, first by Born and Jordan (1925) and then by Born, Heisen-
berg, and Jordan (1926) in the Dreimännerarbeit—a canonical transformation
is a transformation of the matrices (q, p) to new matrices (Q,P ) that preserves
the canonical commutation relations. In the one-dimensional case, this is the

3 For elementary discussion, see, e.g., Duncan and Janssen (2007, Pt. 2, sec. 5.1).

4



relation:

[p, q] ≡ pq − qp =
!
i
. (4)

A canonical transformation is given by:

P = TpT−1, Q = TqT−1, Ĥ = THT−1, (5)

where Ĥ is obtained by substituting TpT−1 for p and TqT−1 for q in the
operator H given as a function p and q. One easily recognizes that this trans-
formation preserves the form of the commutation relation (4): [P, Q] = !/i.
Solving the equations of motion in matrix mechanics boils down to finding a
transformation matrix T such that the new Hamiltonian Ĥ is diagonal. The
diagonal elements, Ĥmm, then give the (discrete) energy spectrum.

We consider two questions raised by this procedure. First, what happens if
the energy spectrum is (partly) continuous? This question is addressed in the
Dreimännerarbeit, in a section written by Born, which anticipates elements
of quantum transformation theory. We examine this issue in Section 3. Then
there is the question of how the transformation matrices T in matrix mechanics
are related to the generating functions F in classical mechanics and the old
quantum theory. This relation was clarified in two pairs of papers, one by
Jordan (1926a,b) and one by London (1926a,b). In the second of his two
papers on the topic, London showed how Schrödinger’s energy eigenfunctions
fit into this formalism. We examine these issues in Sections 4–6.

3 The case of continuous energy spectra as treated in the Drei-
männerarbeit

In the introduction to the Dreimännerarbeit, the authors briefly describe the
basic strategy for solving concrete problems in matrix mechanics:

It was found possible . . . by the introduction of ‘canonical transformations’
to reduce the problem of integrating the equations of motion to a known
mathematical formulation. From this theory of canonical transformations
we were able to derive a perturbation theory (Ch. 1, sec. 4) which displays
close similarity to classical perturbation theory (Van der Waerden, 1968, p.
321)

In the next sentence, they announce that they will also develop an alternative
formalism, anticipating, as it turns out, elements of transformation theory:

On the other hand we were able to trace a connection between quantum
mechanics and the highly developed mathematical theory of quadratic forms
of infinitely many variables (Ch. 3) (ibid.).
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In an interview for the Archive for History of Quantum Physics (AHQP) in
1962, Kuhn asked Heisenberg why the authors of the Dreimännerarbeit had
decided to present the theory along these parallel tracks.

Kuhn: “Was there any discussion of the possibility of simply doing it all
in Hermitian forms from the beginning? What was the reason for doing
that much twice?”

Heisenberg: “Well, that was more or less a historical reason . . . we felt that
it might be [of] some help for other physicists to show in the one part of
the paper how similar it is to those older things . . . Then we could show
that there’s a new technique which seems to be more powerful, which is
actually identical with the other thing . . .We did realize that it was a
kind of duplication of things, but still we felt that it may be useful for
people—we don’t know what will be the most convenient. We had the
impression that there may be other still more convenient mathematical
schemes behind it. One already felt that there is a great transformability
in the whole thing, but we were not so far really to write down the general
scheme” (AHQP, Heisenberg interview, session 7, pp. 18–19).

The alternative formalism can be found in sec. 3, “Continuous spectra,” of
Ch. 3, “Connection with the theory of eigenvalues of Hermitian forms,” of the
Dreimännerarbeit. In the introduction to this section, Born, who was respon-
sible for this chapter, wrote:

The mathematical theory of continuous spectra which occur for infinite
quadratic forms has, starting from the fundamental investigations of Hilbert,
explicitly been developed by Hellinger [1909] for the case of bounded qua-
dratic forms. If we here permit ourselves to take over Hellinger’s results
to the unbounded forms which appear in our case, we feel ourselves to be
justified by the fact that Hellinger’s methods obviously conform exactly to
the physical content of the problem posed (Van der Waerden, 1968, p. 358).

On the next page, Born gets down to business:

For infinite quadratic forms, the case may arise that the form
∑

mn H(mn)
xmx∗

n [ 4 ] cannot be converted into [the principal axes or diagonalized form]∑
n Wnyny∗n by an orthogonal [read: unitary] transformation. We may then

assume, in analogy with the results for bounded forms, that a representation
with a continuous spectrum exists,

∑

mn

H(mn)xmx∗
n =

∑

n

Wnyny
∗
n +

∫
W (ϕ)y(ϕ)y∗(ϕ)dϕ,

in which the original variables are connected with new variables yn, y(ϕ)
through an ‘orthogonal transformation’; one only has to specify more clearly

4 Note that the xn’s are just variables here, not components of vectors.
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what is here understood by an orthogonal transformation (Van der Waerden,
1968, p. 359).

In modern terms, the ‘orthogonal transformations’ here are just a special
case of a change of basis in Hilbert space. Put differently, this section of
the Dreimännerarbeit can be seen as a special case of quantum transforma-
tion theory avant la lettre. To make this more transparent, we rephrase the
argument in this section in modern language and then translate some of the
results back into the language used here by Born and his co-authors.

Consider a system with an energy spectrum that is partly discrete and partly
continuous. Let {|n〉, |E〉} be a complete set of energy eigenstates that form a
basis for the Hilbert space of this system. For the discrete part, we have

H|n〉 = En|n〉, with 〈n|m〉 = δnm, (6)

where δnm is the Kronecker delta; for the continuous part, we have:

H|E〉 = E|E〉, with 〈E|E ′〉 = µ(E)δ(E − E ′), (7)

where δ(x) is the Dirac delta function and the normalization factor µ(E) is
an arbitrary real positive function. The resolution of the identity in this basis
is: 5

1 =
∑

n

|n〉〈n| +
∫ dE

µ(E)
|E〉〈E|. (8)

Now, let {|k〉} be a complete orthonormal basis (i.e., 〈k|l〉 = δkl) of eigenstates
of an arbitrary Hermitian operator with a fully discrete spectrum acting on
the same Hilbert space. 6 In this basis, the resolution of the identity is 1 =∑

k |k〉〈k|. The components of |n〉 and |E〉 with respect to this fully discrete
basis {|k〉} are 〈k|n〉 and 〈k|E〉. The matrix elements of the Hamiltonian H
relative to this basis are 〈k|H|l〉. In the notation of the Dreimännerarbeit,
these quantities are written as xkn, xk(E) and Hkl, respectively.

The components of H|n〉 and H|E〉 with respect to {|k〉} are 〈k|H|n〉 and
〈k|H|E〉, respectively. The former can be written either as

∑
l〈k|H|l〉〈l|n〉 or

as En〈k|n〉. Setting these two expressions equal to one another and using the

5 Born & Co. claim that dE/µ(E) (in our notation) gives the “a priori probability
that the energy of the atom lies between [E and E +dE]” (Van der Waerden, 1968,
p. 362). This interpretation is untenable. As we mentioned above, it is an arbitrary
normalization factor.
6 One can think, for instance, of a complete set of energy eigenstates of a one-
dimensional harmonic oscillator spanning the Hilbert space, L2, of square-integrable
functions.
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notation of the Dreimännerarbeit, we arrive at:

∑

l

Hkl xln = En xkn, (9)

or, in matrix notation, Hxn = En xn. The components 〈k|H|E〉 can likewise
be written either as

∑
l〈k|H|l〉〈l|E〉 or as E〈k|E〉 and we similarly arrive at:

∑

l

Hkl xl(E) = E xk(E), (10)

or, in matrix notation, Hx(E) = E x(E). Translating the relation

δkl = 〈k|l〉 =
∑

n

〈k|n〉〈n|l〉+
∫ dE

µ(E)
〈k|E〉〈E|l〉, (11)

where in the second step we used the resolution of the identity (8), into the
notation of the Dreimännerarbeit, we arrive at:

δkl =
∑

n

xkn x∗
ln +

∫ dE

µ(E)
xk(E) x∗

k(E). (12)

Eqs. (9), (10) and (12) can all be found in this section of the Dreimännerarbeit
(Van der Waerden, 1968, p. 353, p. 359 (Eq. (28)), p. 361 (Eq. (35))). This
confirms that the manipulations in modern language given above do capture
the argument given in this section of the paper.

Looking at this argument from a modern point of view, we note that Born,
Heisenberg, and Jordan—in keeping with the basic strategy of diagonalizing
the Hamiltonian—restrict themselves to a basis of energy eigenstates. They
did not realize yet that H can be replaced by any other Hermitian operator.
So they express the position and momentum operators q and p as matrices
relative to the basis of eigenstates of H. To make the connection to wave me-
chanics, one, conversely, needs to express H relative to a basis of eigenstates of
q (or p). Given that Heisenberg had rejected the classical concept of position
in his Umdeutung paper, it is only natural that he and his co-authors failed
to consider this option. If one does use a basis of eigenstates of position, how-
ever, the equation H|E〉 = E|E〉 turns into the time-independent Schrödinger
equation:

H

(

q,
!
i

d

dq

)

〈q|E〉 = E〈q|E〉. (13)

As Jordan (1927a, pp. 821–822) would recognize in Neue Begründung (cf. Eqs.
(62)–(63) in Section 7 below), the quantities 〈q|E〉 are just the Schrödinger
energy eigenfunctions ϕE(q).

Discussing this section of the Dreimännerarbeit in the AHQP interview from
which we already quoted above, Heisenberg remarked:
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[I]t was all just bad luck that [Born] did not find at that time already the
Schrödinger picture. He could have found the Schrödinger version especially
where he treated this continuous spectrum. There it’s only a short way to
the Schrödinger picture (AHQP, Heisenberg interview, session 7, p. 18).

“[S]till,” Heisenberg conceded, “you have to find it” (ibid.).

4 Jordan’s two papers on the implementation of canonical trans-
formations in matrix mechanics

In the abstract of the first of his two papers on canonical transformations in
quantum mechanics (which, for Jordan at this point, meant matrix mechan-
ics), Jordan (1926a) announced that he wanted to show that any canonical
transformation can be implemented in quantum mechanics via a matrix T
that takes the variables (pk, qk) to (Pk, Qk) = (TpkT−1, T qkT−1). 7

Asked about these two papers (Jordan, 1926a,b) in an interview for the AHQP
with Kuhn in 1963, Jordan said:

Canonical transformations in the sense of Hamilton-Jacobi were . . . our daily
bread in the preceding years, so to tie in the new results with those as closely
as possible—that was something very natural for us to try (AHQP, Jordan
interview, session 4, p. 11).

In his second paper on canonical transformations, Jordan (1926b) derived a
general result that gives the relation between matrices implementing canonical
transformations in matrix mechanics and generating functions implementing
canonical transformations in classical mechanics. We present a streamlined
proof of this result for the one-dimensional case. The generalization to n di-
mensions is straightforward. 8

Problem: Given, classically, some canonical contact transformation, (p, q) →

7 Following the notation of the Dreimännerarbeit, Jordan still used the letter S for
this matrix in this first paper; he switched to T in the second (now using S to denote
the generating function). As we mentioned in Section 2, a transformation of the form
(P,Q) = (TpT−1, T qT−1) preserves the commutation relations (4) and is thus by
definition canonical. Jordan wanted to show that all canonical transformations are
of this form. In other words, he wanted to prove what Lacki (2004, p. 321) calls the
“converse statement.”
8 Lacki (2004, sec. 4) covers the derivation in the first paper (Jordan, 1926a) of a
special case of the general result derived in the second.
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(P, Q), generated by a function of the form 9

F (p, Q) =
∑

n

fn(p)gn(Q), (14)

determine the transformation matrix T (q, p) that gives the corresponding
transformation of the quantum-mechanical operators, P = TpT−1 and Q =
TqT−1.

Answer: The matrix T corresponding to the function F in Eq. (14) is given
by:

T (q, p) = e
i
!{(p,q)−

∑
n
(fn(p), gn(q))}, (15)

where the notation (. , .) in the expression (p, q) − ∑
n(fn(p), gn(q)) in the

exponential signals an ordering such that, when the exponential is expanded,
all p’s are put to the left of all q’s in every term of the expansion. 10

Proof: (1) We show that TqT−1 = Q. We rewrite the left-hand side as

TqT−1 = (Tq − qT + qT )T−1 = [T, q]T−1 + q. (16)

The commutator is given by (Van der Waerden, 1968, p. 327)

[T, q] =
!
i

∂T

∂p
. (17)

Inserting the expression for T on the right-hand side of Eq. (17), keeping track
of the ordering, we find:

[T, q] = Tq −
∑

n

f ′
n(p)Tgn(q). (18)

Substituting this result on the right-hand side of Eq. (16), we find that

q =
∑

n

f ′
n(p) Tgn(q)T−1. (19)

At the same time, q is given by

q =
∂F (p, Q)

∂p
=

∑

n

f ′
n(p)gn(Q). (20)

9 In the classification of Goldstein et al. (2002, p. 373, table 9.1) this is generating
function of type 3, F3(p, Q). The argument below can easily be adapted to generating
functions that depend on (P, q), (q, Q), or (p, P ), instead. In fact, Jordan considered
a generating function of the form

∑
n fn(P )gn(q) (Jordan, 1926b, p. 513, Eq. 1; cf.

Lacki, 2004, p. 323, Eq. (15)).
10 Jordan (1926b, p. 513, Eq. 3) defined this notation for the function e

∑
n
(xn,yn).

Introducing Jordan’s result, London (1926b, p. 209) referred to this function as “the
Pauli transcendent” (die Paulische Transzendente).
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Comparing Eqs. (19) and (20), we conclude that

gn(Q) = Tgn(q)T−1 = gn(TqT−1) (21)

Assuming the gn’s are invertible functions, this implies Q = TqT−1, which is
the result we wanted to prove.

(2) We show that TpT−1 = P . Proceeding as before, we find

TpT−1 = [T, p]T−1 + p. (22)

The commutator is given by (Van der Waerden, 1968, p. 327):

[T, p] = −!
i

∂T

∂q
= −pT +

∑

n

fn(p)Tg′n(q). (23)

Substituting this result on the right-hand side of Eq. (22), we find

TpT−1 =
∑

n

fn(p)Tg′n(q)T−1. (24)

Using Eq. (21) for the function g′n, we can rewrite this as

TpT−1 =
∑

n

fn(p)g′n(Q). (25)

Noticing that
∑

n

fn(p)g′n(Q) =
∂F (p, Q)

∂Q
= P, (26)

we arrive at the result we wanted to prove.

5 London’s two papers on the implementation of canonical trans-
formations in matrix and wave mechanics

Like Jordan, Fritz London, assistant to the director of the Technische Hoch-
schule in Stuttgart at the time (Lacki, 2004, p. 336, note 33), published two
papers on canonical transformations in 1926 (London, 1926a,b). What strikes
one immediately comparing the two is that the first has “quantum mechanics”
in the title while the second has “wave mechanics” [Undulationsmechanik].
The first is indeed written in the context of matrix mechanics (informed by
Dirac’s q-number theory) and contains only a brief reference to Schrödinger
toward the end (London, 1926a, p. 924). In the second, these considerations
in the Göttingen tradition are connected with the formalism developed by
Schrödinger. We focus on this aspect of London’s contribution. For a broader
discussion of these two papers we refer to Lacki (2004), who puts London
rather than Jordan at the center of his analysis.
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As he makes clear in the passage below, London recognized that the transfor-
mation matrices T act on Schrödinger wave functions: 11

Our starting point were transformations of operations . . . This means the
following: I have a mapping H in some domain, which takes every object
x to another object y in this domain. In addition, I have another mapping
T , which maps the entire domain, including its mapping H, onto a new
domain: x goes to x∗, y to y∗. The “transformed mapping” H∗ takes x∗ to
y∗. If instead of x∗ → y∗ one uses the detour x∗ → x → y → y∗, the well-
known representation of a transformation of a transformation is recovered:
H∗ = T−1HT [this should be THT−1].

Fig. 1. Diagram from London (1926b, p. 198).

From the beginning, this state of affairs has made the following a natural
question in matrix mechanics: if the canonical transformations have the form
of transformations of transformations, then on what things x does T act [an
welchen Dingen x greift dann T unmittelbar an]? The answer is given by
eq. (6c) [T (Q, ∂/∂Q)Ψ∗(Q) = Ψ(Q)]: the things are Schrödinger’s new state
magnitudes Ψ, whose oscillating processes are described with the help of a
sequence of eigenfunctions Ψk. The operator T maps this sequence term by
term onto another sequence of eigenfunctions Ψ∗

k following (6c) (London,
1926b, pp. 197–198).

This passage is part of a section called “Canonical transformations as rota-
tions in Hilbert space.” 12 To make good on the promise in this title, London
needed to show that the T ’s implementing the canonical transformations are

11 This passage is also quoted and discussed by Lacki (2004, p. 334). Interest-
ingly, London (1926b, p. 197) cites Born and Wiener (1926) and Ch. 3 of the
Dreimännerarbeit, “Connection with the theory of eigenvalues of Hermitian forms,”
discussed in Section 3 above, as partial anticipations of his interpretation of the
transformation matrix T .
12 The term ‘Hilbert space’ as used nowadays was only introduced the following year
by Von Neumann (1927) (Jammer, 1966, p. 315). London used the term loosely for
the important special case of the space of square-integrable functions.

12



unitary. The ‘proof’ he offered for this claim, however, is circular. 13 As already
indicated by the last sentence in the quotation above, London assumed that
T maps an orthonormal basis of eigenfunctions to another orthonormal basis
of eigenfunctions of the same Hilbert space. This is tantamount to assuming
unitarity. That T is not necessarily unitary follows directly from the obser-
vation that Jordan’s construction of T only determines it up to an arbitrary
factor (see Section 4). If a particular T is unitary, then aT , with a an arbitrary
numerical factor, clearly is not: (aT )† = a∗T while (aT )−1 = (1/a)T .

In fact, one of London’s own examples, that of a simple harmonic oscillator,
involves transformation matrices that are not unitary (see Section 6.2). More-
over, Jordan (1926b) showed that, in general, the transformation matrix T
for a point transformations is not unitary (see Section 6.1). Instead, it will in
general be an isometry (i.e., a norm-preserving map) between different Hilbert
spaces, L2 and L2w, with w a weight function. London touched on this problem
in a footnote: “We leave it to the reader to take into account a density func-
tion [Dichtefunktion]” (London, 1926b, p. 198, note 1). Jordan showed how
to get a unitary canonical point transformation by modifying the generating
function out of which the transformation matrix T is constructed.

Yet, even though London was wrong to claim that T is always unitary, he
deserves credit for recognizing the importance of unitary transformations for
quantum mechanics. Moreover, in a prescient footnote added after finishing
the paper, he drew attention to the relation between the rotations in Hilbert
space emerging from his analysis and some “very general abstract papers . . . on
distributive functional operations” (London, 1926b, p. 199, note 2). As Jam-
mer (1966) comments dramatically: “When London added this footnote . . . he
could hardly have been aware of its historical importance. It was the first
reference to the future language of theoretical physics” (p. 298).

6 Two illustrative examples of canonical transformations in quan-
tum mechanics

As we saw in Section 5, the transformation matrix T corresponding to the
generating functions F constructed according to Jordan’s general recipe (15)
need not be unitary. In this section, drawing on the papers of Jordan and
London discussed in Sections 3–4, we go over two examples of canonical trans-
formations that illustrate this. The examples also illustrate how the general
formalism discussed in the abstract in the preceding sections works in a few
simple concrete cases.

13 Jammer (1966, p. 297), however, accepts London’s ‘proof’ at face value.
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6.1 Point transformations

Consider a canonical transformation generated by a function of the form (Jor-
dan 1926a, pp. 385–386; 1926b, pp. 514–515): 14

F (q, P ) = f(q)P. (27)

Since (cf. Eq. (2))

Q =
∂F

∂P
= f(q), p =

∂F

∂q
= f ′(q)P, (28)

we see that this function generates a point transformation, Q = f(q), with
the corresponding transformation of the conjugate momentum, P = p/f ′(q).

For a generating function of the general form
∑

n fn(q) gn(P ), the transforma-
tion matrix T that implements the corresponding canonical transformation in
matrix mechanics is given by (cf. Eq. (15)): 15

T (Q,P ) = e
i
!{−(Q,P )+

∑
n
(fn(Q), gn(P ))}, (29)

where, as before, the notation (. , .) signals an ordering such that, when the
exponential is expanded, all Q’s are put to the left of all P ’s in every term of
the expansion.

For the specific generating function (27), this matrix becomes:

T (Q, P ) = e
i
! (f(Q)−Q, P ) = e(∆Q, ∂/∂Q), (30)

where in the last step we introduced ∆Q ≡ f(Q) − Q and used that P =
(!/i)∂/∂Q.

Applying T to some wave function Ψ(Q), expanding the exponential while
keeping track of the ordering of Q’s and P ’s, we find (London, 1926b, p. 210):

T Ψ(Q) = e(∆Q, d/dQ)Ψ(Q) =
∑

n

1

n!
∆Qn dnΨ(Q)

dQn
. (31)

In this last expression we recognize a Taylor series, so that we can write:

T Ψ(Q) = Ψ(Q + ∆Q) = Ψ(f(Q)) = Ψ̂(Q). (32)

14 So far we have been considering generating functions of the form F (p, Q) (cf. Eq.
(14)).
15 In a note added in proof, London (1926b, p. 209) states Jordan’s relation between
generating function F and transformation matrix T in this form for the special case
that the new coordinates (Q,P ) are action-angle variables (w, J).
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The first equality shows that T does indeed implement a point transformation.

The transformation matrix T is an isometry, a norm-preserving mapping, be-
tween two different Hilbert spaces:

T : Ψ(Q) ε L2(Q) → Ψ̂(Q) ε L2w(Q), (33)

with the weight function w = f ′(Q). In other words, the norm of Ψ̂ in L2 is
not equal to the norm of Ψ in L2, but the norm of Ψ̂ in L2w is equal to the
norm of Ψ in L2. This can readily be verified:

|Ψ̂|2L2w
≡

∫
Ψ̂∗(Q) Ψ̂(Q) f ′(Q) dQ

=
∫

Ψ∗(f(Q)) Ψ(f(Q)) f ′(Q) dQ (34)

=
∫

Ψ∗(Q̄) Ψ(Q̄) dQ̄ ≡ |Ψ|2L2
.

The transformation matrix (30) is thus an example of a non-unitary transfor-
mation. As a consequence, the new momentum P is not Hermitian:

P =
1

f ′(q)
p → P † = p

1

f ′(q)
'= P. (35)

In general, the new (P, Q) = (TpT−1, T qT−1) will be Hermitian if and only if
the original (p, q) were Hermitian and T is unitary. One can make T unitary
and P Hermitian in this case by modifying the generating function f(q, P ).

Jordan (1926b, p. 515) added a term to the generating function in Eq. (27):

F (q, P ) = f(q)P +
!
2i

ln f ′(q). (36)

Instead of Eq. (28) we then get:

Q =
∂F

∂P
= f(q), p =

∂F

∂q
= f ′(q)P +

!
2i

f ′′(q)

f ′(q)
. (37)

We show that the last term is equal to 1
2 [P, f ′(q)]. The new momentum is

given by:

P =
1

f ′(q)

(

p− !
2i

f ′′(q)

f ′(q)

)

. (38)

The second term commutes with f ′(q). The first term gives:

[P, f ′(q)] =
1

f ′(q)
[p, f ′(q)] =

!
i

f ′′(q)

f ′(q)
, (39)

15



where we used that [p, F ] = (!/i)∂F/∂q for any function F (p, q) (Van der
Waerden, 1968, p. 327). The expression for p in Eq. (37) can thus be rewritten
as:

p = f ′(q)P +
1

2
[P, f ′(q)] =

1

2
(f ′(q)P + Pf ′(q)) . (40)

Since p and q are Hermitian, P must be Hermitian too.

Finally, we verify that the additional term in the generating function (36)
ensures that the corresponding transformation matrix T is unitary. Inserting
the modified generating function (36) into the general formula (29), we find:

T (Q,P ) = e
i
! (

!
2i ln f ′(Q)−(Q,P )+(f(Q),P )). (41)

So we need to add a factor
√

f ′(Q) to the expression for T in Eq. (30):

T (Q,P ) =
√

f ′(Q)e(∆Q, ∂/∂Q). (42)

The same factor needs to be added to Eq. (32) for the action of T on a wave
function:

T Ψ(Q) =
√

f ′(Q) Ψ(f(Q)) = Ψ̂(Q). (43)

The extra factor ensures that Ψ and Ψ̂ have the same norm in the same Hilbert
space L2. There is no need anymore for the weight function w:

|Ψ̂|2L2
≡

∫
Ψ̂∗(Q) Ψ̂(Q) dQ

=
∫

Ψ∗(f(Q)) Ψ(f(Q)) f ′(Q) dQ (44)

=
∫

Ψ∗(Q̄) Ψ(Q̄) dQ̄ ≡ |Ψ|2L2
.

This shows that the modified T of Eq. (42) corresponding to the modified
generating function of Eq. (36) is indeed unitary.

6.2 Simple harmonic oscillator

The Hamiltonian for a simple harmonic oscillator of unit mass is:

H =
p2

2
+

1

2
ω2q2. (45)

Following London (1926b, pp. 204–205), we consider two successive canonical
transformations, from (p, q) to (P, Q) and then from (P, Q) to action-angle
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variables (J, w). 16 The generating function for the first transformation is: 17

F (q, P ) = i
(

ω

2
q2 +

√
2ωqP +

1

2
P 2

)
. (46)

Solving

p =
∂F

∂q
= i(ωq +

√
2ωP ), Q =

∂F

∂P
= i(

√
2ωq + P ) (47)

for Q(q, p) and P (q, p), we find

Q =
1√
2ω

(p + iωq), P =
−i√
2ω

(p− iωq). (48)

The quantum versions of these new variables are essentially the familiar raising
and lowering operators a = (i/

√
2!ω) (p− iωq) and a† = −(i/

√
2!ω) (p+ iωq):

P = −
√

! a, Q = i
√

! a†. (49)

To the best of our knowledge, this is the first time anybody introduced these
operators, which would come to play such an important role in quantum me-
chanics.

The operators P and Q are clearly not Hermitian. Since p and q were Her-
mitian, it follows that the transformation matrix T that turns them into
P = TpT−1 and Q = TqT−1 is not unitary (cf. Section 6.1).

The Hamiltonian (45) in the new coordinates is:

H = iωQP +
1

2
!ω. (50)

With the help of Eq. (49) the quantum version can be rewritten in the familiar

form H = !ω
(
a†a + 1

2

)
. Substituting (!/i) d/dQ for P , we find

H = !ω

(

Q
d

dQ
+

1

2

)

. (51)

The eigenfunctions of the time-independent Schrödinger equation in these co-
ordinates,

H Ψ̂(Q) = E Ψ̂(Q), (52)

are of the form
Ψ̂n(Q) ∝ Qn, (53)

16 Unfortunately, the angle variable w is hard to distinguish from the angular fre-
quency ω.
17 London (1926b, p. 204) uses the notation S1 and S2 for the two generating func-
tions.
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with eigenvalues En = !ω
(
n + 1

2

)
. This shows that Q and P ∝ d/dQ are in-

deed raising and lowering operators, turning the nth eigenfunction, Qn, into the
(n + 1)th and (n − 1)th eigenfunctions, Qn+1 and Qn−1, respectively (modulo
immaterial constants). To recover the eigenfunctions in the original coordi-
nates (i.e., the familiar Hermite functions), one has to apply the inverse of
the transformation matrix T constructed out of the generating function (46)
according to Eq. (29) to the eigenfunctions, Ψ̂(Q), in the new coordinates.

Consider a further canonical transformation (Q,P ) → (w, J) generated by the
function

G(Q, J) = −i ln (Q)J. (54)

This gives

w =
∂G

∂J
= −i ln Q, P =

∂G

∂Q
= −i

1

Q
J. (55)

Using the second of these equations, we can rewrite the Hamiltonian (50) as:

H = ωJ +
1

2
!ω. (56)

Note that H only depends on J and not on w. As the notation suggests, these
new coordinates are action-angle variables. Substituting (!/i) d/dw for J , we
find

H = !ω

(

−i
d

dw
+

1

2

)

. (57)

The eigenfunctions of the time-independent Schrödinger equation in these co-
ordinates,

H Ψ̄(w) = E Ψ̄(w), (58)

are of the form
Ψ̄n(w) ∝ einw, (59)

with, again, eigenvalues En = !ω
(
n + 1

2

)
.

7 From Jordan’s papers on canonical transformations to his papers
on transformation theory

In his AHQP interview, Jordan recalled how he arrived at the Neue Begründung
papers in which he presented his version of transformation theory (Jordan,
1926c, 1927a,b). 18 He, Born, and Heisenberg had initially thought that the

18 The Neue Begründung papers are discussed extensively in session 3 of the inter-
view (pp. 15–23). Kuhn returned to Neue Begründung in session 4 (p. 1, pp. 11–12)
because he saw it as “one of the very very important stages of development” in
which “so many things . . . come together” (p. 1). Talking to Oppenheimer about
five months later, Kuhn called it “perhaps the most exciting of all the things in
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only observable quantities in matrix mechanics were energies and transition
probabilities. After Born’s statistical interpretation of the wave function they
realized position could also be measured. This raised the question:

[W]hat kind of quantities in general can be regarded as somehow observable?
There the idea was that in all generality some function of coordinates and
momenta conceived of as q-numbers would be an observable quantity[ 19 ]
As in the case of the Schrödinger eigenfunctions one would then also have
to formulate the corresponding statistical relations. That, I believe, was
roughly the train of thought that led to [Neue Begründung] (AHQP, Jordan
interview, session 4, p. 12). 20

As one would expect and as Kuhn confirms in the interview (session 3, p. 16),
Jordan drew on his earlier work on canonical transformations to analyze the
transformations (q, p → f(q, p), g(q, p)) involved in the attempt to generalize
the Schrödinger eigenfunctions and their statistical interpretation. 21 This is
how Jordan put it later in 1927 in a semi-popular article in Die Naturwis-
senschaften on recent breakthroughs in quantum theory:

[T]he position variables play a preferred role in Schrödinger’s theory, in
very unsatisfactory contrast to the great analytical generality achieved in
q-number theory: with q-numbers one had the option to calculate with point
coordinates as well as with arbitrary other canonical coordinates introduced
through some “contact transformation” (Jordan, 1927d, p. 646). 22

This same consideration, in more technical language, is given in the introduc-
tion of the first Neue Begründung paper. Jordan considers the time-independent
Schrödinger equation for a particular choice of coordinates and asks how its
solutions transform under canonical transformations to other coordinates. 23

The investigation of this question, Jordan continues, “led to the formulation of
a very general formal network of connections among the quantum-mechanical

[the year 1926–1927 that Oppenheimer spent in Göttingen]” (AHQP, Oppenheimer
interview, session 2, p. 15).
19 Note that there is no restriction to functions producing Hermitian operators at
this point.
20 Jordan’s remarks here are quoted more extensively by Mehra and Rechenberg
(2000, p. 68), who devote a section (sec. I.4, pp. 55–72) to Neue Begründung.
21 The transformation matrix constructed in Jordan’s (1926b) paper on canonical
transformations (see Section 4) returns in Neue Begründung (Jordan, 1927a, p. 830).
22 Jordan cited both Dirac’s work and his own and also acknowledged London’s
contribution: “the formal connections between Schrödinger’s theory and the theory
of canonical transformations had already been revealed in part by London [1926b]”
(Jordan, 1927d, pp. 646–647).
23 See Section 6.2 for an example of such a transformation in the special case of a
simple harmonic oscillator.
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laws, which contain the formal facts captured by the earlier formulations as
special cases” (Jordan, 1927a, p. 810). Jordan’s clarification of the “connection
between the different representations of the theory” (ibid.) went well beyond
Schrödinger’s (1926b) famous equivalence proof of wave and matrix mechan-
ics: 24

As is well known, quantum mechanics was developed in four different and
autonomous forms: in addition to the original matrix theory, we have Born
and Wiener’s theory, wave mechanics, and q-number theory. How the last
three formulations relate to matrix mechanics is known; every formulation
gives the same end results as matrix mechanics in the area covered by the
latter. However, there was essentially no intrinsic connection between the
three later formulations; even the general proof was lacking that these for-
mulations also lead to equivalent results in those areas where they go beyond
matrix mechanics (Jordan, 1927a, p. 810). 25

Transformation theory resolved these issues. To conclude their discussion of
the subject, Mehra and Rechenberg (2000, p. 89) appropriately quote Oskar
Klein, who told Kuhn in his AHQP interview that the papers on transforma-
tion theory by Jordan and Dirac “were regarded as the end of the fight between
matrix and wave mechanics, because they covered the whole thing and showed
that they were just different points of view” (AHQP, Klein interview, session
6, p. 2). 26

To generalize the Schrödinger eigenfunctions Jordan also had to generalize
their statistical interpretation. There he drew on ideas from Pauli—to what
extent is not entirely clear.

Following considerations by Born [1926a,b], Pauli proposed the following
interpretation of the Schrödinger eigenfunctions. If ϕn(q) is normalized, then
|ϕn(q)|2dq gives the probability that, if the system is in the state n, the
coordinate q has a value between q and q + dq (Jordan, 1927a, p. 811).

In a footnote, Jordan refers to a forthcoming paper by Pauli on gas degeneracy.
The relevant passage occurs in a footnote in that paper (Pauli, 1927, p. 83),
which was submitted 16 December 1926, two days before Jordan submitted
his.

24 For discussion of (the cogency of) Schrödinger’s proof, see Muller (1997–1999)
and Perovic (2008).
25 Jordan took this passage almost verbatim from his preliminary note in the
Göttinger Nachrichten (Jordan, 1926c, p. 161) and recycled it once more for his
article in Die Naturwissenschaften (Jordan, 1927d, p. 646).
26 Jammer (1966, p. 307) also emphasizes this element of unification, though in his
view it was only fully achieved by Von Neumann (ibid., p. 316).

20



Jordan continues, repeating almost verbatim what he wrote in his preliminary
note in the Göttinger Nachrichten (Jordan, 1926c, pp. 161–162; cf. note 25):

Pauli considers the following generalization: Let q, β be two Hermitian
quantum-mechanical quantities, which for convenience we assume to be
continuous. Then there is always a function ϕ(q, β), such that |ϕ(q0, β0)|2dq
measures the (conditional) probability that, for a given value β0 of β, the
quantity q has a value in the interval q0, q0 + dq. Pauli calls this function
the probability amplitude (Jordan, 1927a, p. 811).

In the preliminary note (Jordan, 1926c, p. 162), though not in Neue Begründung
itself, Jordan also attributes the related notion of the “interference of prob-
abilities” (see below) to Pauli. 27 Commentators have looked in vain through
Pauli’s papers and correspondence for these central elements of Jordan’s sta-
tistical interpretation of his formalism (Jammer, 1966, p. 305; Mehra and
Rechenberg, 2000, p. 66; Lacki, 2004, p. 336, note 34). The closest thing they
could find is a letter from Pauli to Heisenberg of 19 October 1926, which con-
tains the special case of the generalization mentioned in the quotation above
where q is the momentum and β is the energy (Pauli, 1979, Doc. 143, p.
348). 28

In the AHQP interview with Jordan Kuhn also asked about Pauli’s input
in Neue Begründung. Jordan did not remember exactly what he got from
Pauli but pointed out that they had had many conversations during this pe-
riod. They went on vacation together on Neuwerk, an island on the German
North Sea coast, and their paths crossed regularly in Göttingen, Hamburg, and
Copenhagen (AHQP, Jordan interview, session 3, p. 15). 29 Maybe the ideas
Jordan attributed to Pauli did all come out of those conversations; maybe
Jordan was overly generous to Pauli. Presenting his transformation theory in
Die Naturwissenschaften a few months later, Jordan (1927d, p. 647), after
introducing the basic probabilistic ideas that went into it, only says: “as was
suspected by Pauli” [wie von Pauli vermutet wurde]. But maybe Jordan sim-
ply felt that he did not have to be more specific in this case since this was a
popular article.

Jordan presented the statistical interpretation of his formalism in the form of
two postulates that have to be satisfied by the probability amplitude ϕ(q, β).

27 In the second part of Neue Begründung, Jordan (1927b, p. 19, note 1) once again
stresses that Pauli deserves much of the credit for the statistical interpretation of
his formalism.
28 Jammer (1966, p. 305) quotes a paraphrase of the relevant passage in later remi-
niscences by Heisenberg (1960, p. 44).
29 Quoted by Mehra and Rechenberg (2000, p. 66)
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Postulate I: The function ϕ(q, β) is independent of the mechanical nature
(the Hamiltonian) of the system and is determined only by the kinemat-
ical relation between q and β.[ 30 ]

Postulate II: If ψ(Q0, q0) is the probability amplitude for finding the value
Q0 for Q given q = q0, then the amplitude Φ(Q0, β0) for a certain Q0

given β0 is:

Φ(Q0, β0) =
∫

ψ(Q0, q)ϕ(q, β)dq,

where the integration runs over all possible values of q.[ 31 ]

From a modern point of view, this second postulate becomes immediately
obvious once we translate it into modern Dirac notation. Writing 〈x|y〉 for
Jordan’s probability amplitudes ϕ(x, y), we can rewrite the expression for
Φ(Q0, β0) as:

〈Q0|β0〉 =
∫
〈Q0|q〉〈q|β0〉dq. (60)

One has to be careful, however, not to read too much into this notation. Nei-
ther Jordan nor Dirac—who used the notation (./.) at this point (Dirac, 1927,
p. 631) 32 —thought of their probability amplitudes/transformation functions
as inner products of vectors in a Hilbert space. That further step is due to
Von Neumann (1927).

Jordan’s second postulate captures an important new feature: “The circum-
stance that it is thus not the probabilities themselves but their amplitudes that
follow the usual composition rule of the probability calculus can appropriately
be called the interference of probabilities” (Jordan, 1927a, pp. 811–812).

In sec. 4 of the paper, Jordan (1927a, p. 821–822) gives Schrödinger-type
equations for his probability amplitudes (see also Hilbert, Von Neumann, and
Nordheim, 1928, sec. 10). Once again, it is easy to see how one arrives at these
equations when one translates Jordan’s equations into modern Dirac notation.
Consider some canonical transformation (q, p) → (α, β). The corresponding
quantum operators are related via:

α̂ = T q̂T−1 = f(p̂, q̂), β̂ = T p̂T−1 = g(p̂, q̂). (61)

30 In the AHQP interview with Jordan, Kuhn emphasized the importance of this
idea: “That seems to me such a big step. The terribly important step here is throwing
the particular Hamiltonian function away and saying that the relationship is only
in the kinematics” (session 3, p. 15). It is in this context that he raised the question
about Pauli’s involvement.
31 There is a typo in the last equation: ϕ(q, β) should be ϕ(q, β0).
32 For an analysis of Dirac’s path to his bra-ket notation, see Borrelli (2009).
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The matrix element 〈q|β̂|β〉 can be written either as β〈q|β〉 or as 〈q|g(p̂, q̂)|β〉.
Substituting (!/i)d/dq for p̂ and q for q̂, we arrive at the equation:

g

(
!
i

d

dq
, q

)

〈q|β〉 = β〈q|β〉. (62)

For the special case that β̂ is the Hamiltonian Ĥ, this is just the (time-
independent) Schrödinger equation (cf. eq. (13)). The transformation func-
tions/probability amplitudes 〈q|E〉—or ϕ(q, E) in Jordan’s notation—are just
the Schrödinger energy eigenfunctions ϕE(q):

H

(
!
i

d

dq
, q

)

ϕE(q) = EϕE(q). (63)

To conclude this section, we turn to sec. 2 of Jordan’s paper, which we de-
liberately skipped above and in which Jordan presented the probability inter-
pretation of his formalism in more detail. It is at this point that we see how
the analysis of canonical transformation that had helped him arrive at the
general formalism of transformation theory became something of an obstacle
to its detailed elaboration. Rather than defining probabilities as the square of
the norm of the amplitudes, Jordan assigned what he called a “supplemen-
tary amplitude” [Ergänzungsamplitude] ψ(x, y) to the amplitude ϕ(x, y) and
defined the probability that the quantity q would have a value between x and
x + dx given the value y for the quantity β as

ϕ(x, y) ψ∗(x, y) dx (64)

where “[t]he star * means that one has to take the function that is the complex
conjugate of ψ(x, y) for unchanged (i.e., not complex conjugated) arguments
x, y” (Jordan, 1927a, p. 813). If the quantities q and β are Hermitian op-
erators, the two amplitudes coincide: ψ(x, y) = ϕ(x, y). Given the general
framework of canonical transformations, Jordan, however, wanted to allow
transformations to quantities that are not Hermitian operators (see Section
6, Eqs. (35) and (49) for examples of such quantities). The peculiar notion
of an Ergänzungsamplitude was dropped in Part II of Neue Begründung (Jor-
dan, 1927b, pp. 5–6). Jordan must have quickly realized that his attempt at a
more general formalism does not work. Hilbert, Von Neumann, and Nordheim
(1928) also do not mention the Ergänzungsamplitude in their paper on trans-
formation although they closely follow Part I of Neue Begründung otherwise
(Part II had not appeared yet when they wrote their paper). 33

33 Jordan’s more general formalism only works for so-called normal operators, which
are not necessarily Hermitian operators that commute with their adjoints, [O,O†] =
0. This follows from two results that we state here without proof. We are planning
a more detailed paper on Jordan’s Neue Begründung in which we will provide these
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8 The impact of Jordan’s version of transformation theory

As in the case of his pioneering work on field quantization, Jordan’s version of
transformation theory was largely overshadowed by Dirac’s. 34 Dirac’s vastly
superior notation was undoubtedly an important factor in this. Despite his
enthusiasm for Neue Begründung (see note 18), even Kuhn took Jordan to
task for his notation:

Kuhn: “In the first of the two papers on transformation theory, you use, if
you will excuse me, a dreadful notation.”

Jordan: “This was just clumsiness [nur eine Ungeschicktheit]. I had rum-
maged [herumgewühlt] through these considerations extensively before I
achieved clarity; the formulae were complicated and there was a large
mass of formulae . . . The notation found by Dirac was very beautiful and
transparent” (AHQP, Jordan interview, session 3, p. 17).

A little later Jordan told Kuhn that he was unhappy with the presentation in
the first Neue Begründung paper and that he largely wrote the second to give
a “prettier and clearer” [schöner und übersichtlicher] exposition of the same
material (session 3, p. 22). 35 It must be said, however, that the second paper
is not much better on this score than the first.

Another reason for the limited appeal of Neue Begründung, at least to physi-
cists, was its axiomatic structure. As recorded in the transcript of the AHQP
interview, Jordan chuckled as he recalled Ehrenfest’s reaction to Neue Be-
gründung: “Well, since you wrote the paper axiomatically, that only means
that one has to read it back to front” (session 3, p. 17, see also p. 19). 36

Ehrenfest was not alone. After emphasizing the importance of transforma-

proofs. Consider a canonical transformation (p̂, q̂) → (α̂, β̂). (1) If α and β are
normal operators, then their spectra will in general be complex. However, in this very
special case, ψ∗ = ϕ̄ (where the bar stands for ordinary complex conjugation), so
ϕ ψ∗ gives the right probability density. (2) If α and β are not normal operators (e.g.,
raising and lowering operators for a simple harmonic oscillator), then ϕ ψ∗ gives the
wrong probability density (e.g., for the coherent states which are eigenstates of the
lowering operators).
34 For the lack of recognition of Jordan’s work on field quantization, see Duncan
and Janssen (2008, pp. 642–643).
35 Compare this statement to the following characterization of the relation between
the two parts of Neue Begründung: “Part I contained the physical motivation and
the outline of the theory, and in Part II, Jordan developed the mathematical details
and methods” (Mehra and Rechenberg, 2000, p. 67). In the abstract of Part II,
Jordan (1927b, p. 1) announces a “simplified and generalized presentation” of the
theory presented in Part I.
36 Quoted by Mehra and Rechenberg (2000, p. 69).

24



tion theory for the clarification of the relation between the different forms of
quantum theory, Heisenberg told Kuhn in his AHQP interview:

Heisenberg: “Jordan used this transformation theory for deriving what
he called the axiomatics of quantum theory . . . This I disliked intensely
. . . [It] was leading us a bit away from the physical content of quantum
theory. I could not object to it, because after all it was correct physics,
but I felt a bit uneasy about it.”

Kuhn: “Now does this mean that you felt happier with the Dirac paper?
The results in the Dirac paper are almost identical, but the whole spirit
of the paper is very different.”

Heisenberg: “Yes . . . Dirac kept within the spirit of quantum theory while
Jordan, together with Born, went into the spirit of the mathematicians”
(AHQP, Heisenberg interview, session 11, pp. 7–8). 37

Jordan’s axiomatic approach was indeed more congenial to mathematicians.
As emphasized by Lacki (2000, p. 295, p. 298) in his paper on early axiomati-
zations of quantum mechanics, Hilbert, Von Neumann, and Nordheim (1928)
closely followed Neue Begründung in their paper on transformation theory. 38

Nordheim told Heilbron in his AHQP interview that he prepared Hilbert’s
lectures on quantum theory in the winter semester of 1926–1927 and that
he was the main author of the paper resulting from them. 39 Despite his re-
liance on Neue Begründung, even Nordheim mentioned Dirac’s paper first and
called Jordan’s formulation of transformation theory “very tortuous” (AHQP,
Nordheim interview, p. 13).

In an annotated list of his publications prepared years later, Nordheim wrote
about his paper with Hilbert and Von Neumann: “While . . . not mathemati-
cally rigorous, this paper stimulated von Neumann to his later fundamental
development of this topic” (AHQP, Nordheim folder). In a footnote at the end
of their paper, Hilbert, Von Neumann, and Nordheim (1928, p. 30) already
refer to a forthcoming paper by Von Neumann addressing some of the unre-
solved mathematical problems of transformation theory. In this paper, which

37 Despite Heisenberg’s aversion against Jordan’s axiomatics, the latter’s views—
especially as expressed in his Habilitationsvortrag (Jordan, 1927c)—strongly influ-
enced Heisenberg in the process of articulating the uncertainty principle (Beller,
1985; 1999, 91–95). Jammer (1966) writes that the uncertainty principle “had its
origin in the Dirac-Jordan transformation theory” (p. 326) and, even more strongly,
that “Heisenberg derived his principle from the Dirac-Jordan transformation the-
ory” (p. 345).
38 The paper was submitted in April 1927 and Jordan refers to it in the second part
of Neue Begründung submitted in June 1927.
39 For some quotations from the interview with Nordheim and discussion of the
paper by Hilbert, Von Neumann, and Nordheim (1928), see Mehra and Rechenberg
(2000, pp. 404–411).
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ended up appearing in print before his paper with Hilbert and Nordheim, Von
Neumann gives Jordan credit for turning the ideas of Born and Pauli about the
probability interpretation of quantum mechanics into a “closed system” (Von
Neumann, 1927, p. 2). In the same sentence, however, he goes on to say that
this system is “facing serious mathematical objections” [schwere mathematis-
chen Bedenken ausgesetzt] (ibid., pp. 2–3). Von Neumann’s paper nonetheless
shows that, for all its notational, organizational and mathematical shortcom-
ings, Jordan’s Neue Begründung played an important role in the development
of quantum mechanics.

In the process of providing sound mathematical underpinnings of Jordan’s
transformation theory, Von Neumann introduced the idea of representing quan-
tum-mechanical states by vectors or rays in Hilbert space. Vectors or rays in
Hilbert space thus replaced Jordan’s probability amplitudes—which, from the
new point of view are inner products of such vectors—as the fundamental
elements of the theory. Jordan continued to prefer thinking in terms of prob-
ability amplitudes. 40 In the second part of Neue Begründung, Jordan (1927b,
p. 2, pp. 20–21) already distanced himself from Von Neumann’s approach (cf.
Lacki, 2000, p. 292, note 33). A decade later, in the preface to his texbook
on quantum mechanics, Jordan accordingly described his and Dirac’s formula-
tion of transformation theory “as the pinnacle of the development of quantum
mechanics” [in deren Aufstellung die . . . Entwicklung der Quantummechanik
gipfelte](Jordan, 1936, p. VI). In the section devoted to transformation the-
ory, he calls it “the most comprehensive and profound version of the quantum
laws” [die umfassendste und tiefste Fassung der Quantumgesetze] (ibid., p.
171).

9 Conclusion

Three strands in the early development of quantum mechanics come together
in the transformation theory of Jordan’s Neue Begründung (Jordan, 1927a,b):
the implementation of canonical transformations, the generalization of Born’s
probability interpretation, and the clarification of the relation between the
four different forms of quantum theory co-existing in 1925–1926. In this paper
we largely focused on the first of these strands. Our main conclusion is based
on the observation that canonical transformations are not naturally restricted
to unitary transformations of Hermitian operators (a restriction necessary in
view of the probability interpretation of the quantum formalism). This ex-

40 As Darrigol (1992) admonishes: “Perhaps modern-day interpreters of quantum
mechanics should . . . remember that there exists a formulation of quantum mechan-
ics without state vectors, and with transition amplitudes (transformations) only”
(p. 344). Bub and Pitowsky (2007) seem to be heeding this admonition.
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plains both why canonical transformations gave way to the picture of rotations
in Hilbert space and why Jordan, still wedded to canonical transformations,
initially but unsuccessfully tried to set up his transformation theory in a way
that could accommodate observables represented by non-Hermitian operators.
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