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Abstract

In early 1927, Pascual Jordan (1927b) published his version of what came to be
known as the Dirac-Jordan statistical transformation theory. Later that year and
partly in response to Jordan, John von Neumann (1927a) published the modern
Hilbert space formalism of quantum mechanics. Central to both formalisms are ex-
pressions for conditional probabilities of finding some value for one quantity given
the value of another. Beyond that Jordan and von Neumann had very different views
about the appropriate formulation of problems in the new theory. For Jordan, un-
able to let go of the analogy to classical mechanics, the solution of such problems
required the identification of sets of canonically conjugate variables, i.e., p’s and q’s.
Jordan (1927e) ran into serious difficulties when he tried to extend his approach
from quantities with fully continuous spectra to those with wholly or partly dis-
crete spectra. For von Neumann, not constrained by the analogy to classical physics
and aware of the daunting mathematical difficulties facing the approach of Jordan
(and, for that matter, Dirac (1927)), the solution of a problem in the new quantum
mechanics required only the identification of a maximal set of commuting operators
with simultaneous eigenstates. He had no need for p’s and q’s. Related to their dis-
agreement about the appropriate general formalism for the new theory, Jordan and
von Neumann stated the characteristic new rules for probabilities in quantum me-
chanics somewhat differently. Jordan (1927b) was the first to state those rules in full
generality, von Neumann (1927a) rephrased them and then sought to derive them
from more basic considerations (von Neumann, 1927b). In this paper we reconstruct
the central arguments of these 1927 papers by Jordan and von Neumann and of a
paper on Jordan’s approach by Hilbert, von Neumann, and Nordheim (1928). We
highlight those elements in these papers that bring out the gradual loosening of the
ties between the new quantum formalism and classical mechanics.
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1 Introduction

In 1954, Max Born was awarded part of the Nobel Prize in physics for “his
fundamental research in quantum mechanics, especially for his statistical in-
terpretation of the wave function.” In analogy to Albert Einstein’s proposal
to interpret the electromagnetic field as a “ghost field” (Gespensterfeld ) or
“guiding field” (Führungsfeld ) for light quanta, Born (1926b, p. 804), in a
paper on the quantum mechanics of collision processes, proposed to interpret
the de-Broglie-Schrödinger matter waves as a ghost or guiding field for elec-
trons. Concretely, Born (1926b, p. 805) suggested that, given a large number
of systems in a superposition ψ(q) =

∑
n cn ψn(q) of energy eigenstates ψn(q),

the fraction of systems in an eigenstate ψn(q) is given by the absolute square
|cn|2 of the complex expansion coefficients cn. 1 In a preliminary announce-
ment of the results of the paper, Born (1926a, p. 865) gave the example of
the scattering of an electron by an atom. After the interaction of electron
and atom, he noted, the system will be in a superposition of states with the
electron flying off in different directions. He interpreted the absolute square
of the expansion coefficients as the probability that the electron flies off in a
particular direction. 2

Referring to Born’s notion of a ghost field, Wolfgang Pauli (1927a, p. 83),
in a footnote in a paper on gas degeneracy and paramagnetism, proposed
that, given a system of f degrees of freedom in an energy eigenstate ψ(q)
(q ≡ (q1, . . . , qf )), the probability of finding that system at a position be-
tween q and q + dq is given by |ψ(q)|2dq. By the time this paper appeared
in print, Pascual Jordan (1927b), citing Born’s two 1926 papers and Pauli’s
forthcoming 1927 paper, had already published a far-reaching generalization
of Pauli’s proposal. 3 Jordan did so in a paper entitled “On a new founda-

? This paper was written as part of a joint project in the history of quantum physics
of the Max Planck Institut für Wissenschaftsgeschichte and the Fritz-Haber-Institut
in Berlin.
∗ Corresponding author. Address: Tate Laboratory of Physics, 116 Church St. SE,
Minneapolis, MN 55455, USA, Email: janss011@umn.edu
1 It is tempting to read ‘fraction of systems in an eigenstate’ as ‘fraction of systems
found in an eigenstate upon measurement of the energy’, but Born did not explicitly
say this. A careful distinction between pure and mixed states had yet to be made
(von Neumann, 1927b, see Section 6).
2 Born famously only added in a footnote that this probability is not given by these
coefficients themselves but by their absolute square.
3 In a semi-popular article in Die Naturwissenschaften, “The development of the
new quantum mechanics,” Jordan (1927f, Part 2, p. 647) emphasized that the sta-
tistical interpretations of Born and Pauli “related but nevertheless initially inde-
pendent of one another.” Although his own probabilistic interpretation owes more
to Pauli than to Born, Jordan gave full credit to his Ph.D. advisor Born for the
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tion (neue Begründung) of quantum mechanics” submitted to Zeitschrift für
Physik in December 1926 (Jordan, 1927b). We will refer to this paper as Neue
Begründung I to distinguish it from Neue Begründung II, submitted in June
1927 to the same journal, a sequel in which Jordan tried both to simplify
and to generalize his theory (Jordan, 1927e). 4 The theory presented in these
Neue Begründung papers is Jordan’s version of what came to be known as
transformation theory, or, in older literature, as the Dirac-Jordan (statistical)
transformation theory. Independently of Jordan, Paul Dirac (1927) published
very similar ideas, which also form the basis of his later book (Dirac, 1930).
Dirac’s paper is much clearer than Jordan’s and uses a vastly superior nota-
tion, but Jordan actually brought out the statistical foundation of quantum
theory much more explicitly than Dirac.

The central quantities in Jordan’s formalism are what he called, following a
suggestion by Pauli and in analogy with wave amplitudes, “probability am-
plitudes” (Jordan, 1927b, p. 811). In Neue Begründung I, Jordan restricted
himself to quantities with completely continuous spectra, clearly laboring un-
der the illusion that it would be relatively straightforward to generalize his
formalism to cover quantities with wholly or partly discrete spectra as well.
The probability amplitude ϕ(a, b) between two quantum-mechanical quanti-
ties â and b̂ with fully continuous spectra is a complex function, the absolute
square of which, |ϕ(a, b)|2 , multiplied by da gives the conditional probability
Pr(a|b) for finding a value between a and a + da for â given that the system
under consideration has been found to have the value b for the quantity b̂. 5

Jordan did not think of his quantum-mechanical quantities as operators acting
in an abstract Hilbert space, but, like Schrödinger, he did associate them with
differential operators acting in a function space. An eigenfunction ψE(q) for
a one-dimensional system with energy eigenvalue E of the time-independent
Schrödinger equation is an example of a probability amplitude. The quantities

basic idea of a probabilistic interpretation of the Schrödinger wave function. In his
Habilitationsvortrag, for instance, Jordan (1927d, 107) praised the “very clear and
impressive way” in which Born had introduced this interpretation. In his article in
Die Naturwissenschaften, Jordan (1927f, Part 2, p. 645) also mentioned the impor-
tance of two papers on quantum jumps, one by himself (Jordan, 1927a) and one
by Heisenberg (1927a), for the development of the probabilistic interpretation of
quantum mechanics.
4 Jordan also published a preliminary version of Neue Begründung I (under the
same title) in the Proceedings of the Göttingen Academy (Jordan, 1927c).
5 This is the first of several instances where we will enhance Jordan’s own notation.
In Neue Begründung I, Jordan used different letters for quantities and their values.
We will almost always use the same letter for a quantity and its values and use
a hat to distinguish the former from the latter. The main exception will be the
Hamiltonian Ĥ and the energy eigenvalues E. The notation Pr(a|b) is strictly our
own and is not used in the sources we discuss.
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â and b̂ in this case are the position q̂ and the Hamiltonian Ĥ, respectively.
Hence |ψE(q)|2dq = |ϕ(q, E)|2dq gives the conditional probability Pr(q|E)
that q̂ has a value between q and q + dq given that Ĥ has the value E.
This is the special case of Jordan’s interpretation that Pauli had hit upon
(in f dimensions). Jordan also recognized that in quantum mechanics the
usual addition and multiplication rules of probability apply to the probability
amplitudes rather than to the probabilities themselves. Again crediting Pauli—
although Born (1926b, p. 804) already talked about the “interference of . . .
“probability waves” ”—Jordan (1927b, p. 812) used the phrase “interference
of probabilities” for this phenomenon. Jordan was thus the first, at least in
print and in full generality, to recognize the peculiar behavior of probabilities
in the new quantum mechanics.

Given his proximity to David Hilbert in Göttingen (Jordan had been Richard
Courant’s assistant before becoming Born’s), it should come as no surprise
that Jordan took an axiomatic approach in his Neue Begründung papers. He
first introduced his probability amplitudes and the rules they ought to obey in
a series of postulates (the formulation and even the number of these postulates
varies) and then developed a formalism realizing these postulates.

A clear description of the task at hand can be found in a paper by Hilbert,
Lothar Nordheim, and the other main protagonist of our story, John von
Neumann. This paper grew out of Hilbert’s course on quantum mechanics
in 1926/1927 for which Nordheim prepared most of the notes. 6 The course
concluded with an exposition of Jordan’s Neue Begründung (Sauer and Majer,
2009, pp. 698–706). The notes for this part of the course formed the basis for a
paper, which was submitted in April 1927 but not published until 1928. In the
introduction, the authors described the strategy for formulating the theory:

One imposes certain physical requirements on these probabilities, which are
suggested by earlier experience and developments, and the satisfaction of
which calls for certain relations between the probabilities. Then, secondly,
one searches for a simple analytical apparatus in which quantities occur
that satisfy these relations exactly (Hilbert, von Neumann, and Nordheim,
1928, p. 2–3; cf. Lacki, 2000, p. 296).

From a modern point of view, the “simple analytical apparatus” in this case
is supplied by the Hilbert space formalism. Jordan’s probability amplitudes
ϕ(a, b) are the ‘inner products’ 〈a|b〉 of the ‘eigenvectors’ |a〉 and |b〉 of the
operators â and b̂. 7 The reason we used scare quotes in the preceding sentence

6 See p. 13 of the transcript of the interview with Nordheim for the Archive of the
History of Quantum Physics (AHQP) (Duncan and Janssen, 2009, p. 361).
7 We will not introduce a special notation to distinguish between a physical quantity
and the operator acting in Hilbert space representing that quantity. In most cases
it will be clear from context whether â stands for a quantity or an operator.
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is that for quantities with completely continuous spectra, to which Jordan re-
stricted himself in Neue Begründung I, the ‘eigenvectors’ of the corresponding
operators are not elements of Hilbert space. That in modern quantum me-
chanics they are nonetheless routinely treated as if they are vectors in Hilbert
space with inner products such as 〈a|b〉 is justified by the spectral theorem for
the relevant operators.

Of course, neither the spectral theorem nor the notions of an abstract Hilbert
space and of operators acting in it were available when Jordan and Dirac pub-
lished their respective versions of transformation theory in 1927. The Hilbert
space formalism and the spectral theorem were only published later that year,
by von Neumann (1927a). Even though Dirac (1927) introduced the notation
(a/b) for what Jordan wrote as ϕ(a, b), Dirac, like Jordan, did not at that
time conceive of these quantities as ‘inner products’ of two more elementary
quantities. We are not sure about Dirac but for Jordan probability amplitudes
remained the fundamental quantities (Duncan and Janssen, 2009, p. 361).

Once the ‘inner-product’ structure of probability amplitudes is recognized and
justified with the help of the spectral theorem, Jordan’s basic axioms about
the addition and multiplication of probability amplitudes are seen to reduce
to statements about orthogonality and completeness familiar from elementary
quantum mechanics. For example, for quantities â, b̂, and ĉ with purely con-
tinuous spectra, Jordan’s postulates demand that the probability amplitudes
ϕ(a, c), ψ(a, b) and χ(b, c) satisfy the relation ϕ(a, c) =

∫
db ψ(a, b)χ(b, c).

With the identification of probability amplitudes with ‘inner products’ of
‘eigenvectors’ (appropriately normalized, such that, e.g., 〈a|a′〉 = δ(a − a′),
where δ(x) is the Dirac delta function), the familiar completeness relation,
〈a|c〉 =

∫
db 〈a|b〉〈b|c〉, which holds on account of the spectral decomposition

b̂ =
∫
db b |b〉〈b|, guarantees that ϕ(a, c) =

∫
db ψ(a, b)χ(b, c). In this sense, the

Hilbert space formalism thus provides a realization of Jordan’s postulates.

In the absence of the Hilbert space formalism and the spectral theorem, Jordan
relied on the formalism of canonical transformations to develop the analyti-
cal apparatus realizing his axiomatic scheme. Canonical transformations had
been central to the development of matrix mechanics (Born and Jordan, 1925;
Born, Heisenberg, and Jordan, 1926). Prior to Neue Begründung I, Jordan
(1926a,b) had actually published two important papers on the topic (Lacki,
2004; Duncan and Janssen, 2009). His starting point in Neue Begründung I was
the assumption that the probability amplitude ρ(p, q), where q̂ is some gener-
alized coordinate and p̂ its conjugate momentum, is of the simple form e−ipq/~.
As an aside we note that this is precisely the point at which Planck’s constant
enters into Jordan’s formalism. What the assumption ρ(p, q) = e−ipq/~ tells
us, as Jordan pointed out, is that “[f]or a given value of q̂ all possible values
of p̂ are equally probable” (Jordan, 1927b, p. 814; emphasis in the original;
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hats added). 8 In the parlance of modern quantum information theory, this is
the statement that {|p〉} and {|q〉} are mutually unbiased bases. Jordan wrote
down two differential equations trivially satisfied by this special probability
amplitude. He then considered canonical transformations to other canonically
conjugate variables P̂ and Q̂ and derived differential equations for arbitrary
probability amplitudes starting from the equations for ρ(p, q). In this way, he
claimed, one could recover both the time-independent and the time-dependent
Schrödinger equations as examples of such equations.

Both claims are problematic. The recovery of the time-dependent Schrödinger
equation requires that we look upon the time t not as a parameter as we would
nowadays but as an operator to be expressed in terms of the operators p̂ and q̂.
More importantly, Jordan’s construction only gets us to the time-independent
Schrödinger equation for Hamiltonians with a fully continuous spectrum. In
Neue Begründung I, Jordan deliberately restricted himself to quantities with
completely continuous spectra but initially he was confident that his approach
could easily be generalized to quantities with wholly or partly discrete spectra
as well. He eventually had to accept that this generalization fails. The problem,
as he himself recognized in Neue Begründung II, is that two quantities α̂
and p̂ related to each other via a canonical transformation (implemented by
the similarity transformation α̂ = T p̂T−1) always have the same spectrum. 9

Hence, no canonical transformation that can be implemented in this way can
take us from quantities such as p̂ and q̂ with a completely continuous spectrum
to a Hamiltonian with a wholly or partly discrete spectrum.

The quantities ϕ(a, b) in Jordan’s formalism do double duty as probability
amplitudes and as integral kernels of canonical transformations. The quantity
ψ(a, b) in the integral expression ϕ(a, c) =

∫
db ψ(a, b)χ(b, c) given above il-

lustrates this dual role. The latter aspect was emphasized by Dirac and gave
transformation theory its name. The ‘mind your p’s and q’s’ part of the title of
our paper refers to the central role of canonical transformations and conjugate
variables in Jordan’s formalism. Even if we accept the restriction to quantities
with fully continuous spectra for the moment, Jordan could not quite get his
formalism to work, at least not at the level of generality he had hoped for.
In hindsight, we can see that one of the major obstacles was that canonical
transformations from one set of conjugate variables to another, although they
do preserve the spectra, do not always preserve the Hermitian character of the
operators associated with these variables in quantum mechanics (Duncan and

8 As has been pointed out by several commentators, the Dirac-Jordan transforma-
tion theory played a key role in Heisenberg’s (1927b) formulation of his uncertainty
relations later that same year. See Duncan and Janssen (2009, p. 361, note 37) for
references to and quotations from the relevant sections of Jammer (1966), Beller
(1985, 1999), and Darrigol (1992).
9 See Eq. (84) at the end of Section 2.3 for a simple proof of this claim in modern
language.
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Janssen, 2009, secs. 5–6). Jordan initially introduced what he called a “supple-
mentary amplitude” (Ergänzungsamplitude) to clear this hurdle but, following
the lead of Hilbert, von Neumann, and Nordheim (1928), who put great em-
phasis on the importance of Hermiticity for the probability interpretation of
the formalism, he dropped this notion in Neue Begründung II (Jordan, 1927e,
pp. 5–6). This meant, however, that he now somewhat artificially had to re-
strict the canonical transformations he used to ones associated with unitary
operators.

In the modern Hilbert space formalism, the integral kernels of canonical trans-
formations in Jordan’s formalism are replaced by unitary operators. There is
no need anymore for considering canonical transformations nor, for that mat-
ter, for sorting quantities into pairs of conjugate variables. Jordan’s reliance on
canonical transformations and conjugate variables became even more strained
in Neue Begründung II, when he tried to extend his approach to quantities
with partly or wholly discrete spectra. He had a particularly hard time dealing
with the purely discrete spectrum of the recently introduced spin observable.

At the end of their exposition of Jordan’s theory, written before Jordan wrote
Neue Begründung II, Hilbert, von Neumann, and Nordheim (1928, p. 30) em-
phasized the mathematical difficulties with Jordan’s approach (some of which
they had caught, some of which they too had missed), announced that they
might return to these on another occasion, and made a tantalizing reference
to the first of three papers on quantum mechanics that von Neumann would
publish in 1927 in the Proceedings of the Göttingen Academy (von Neumann,
1927a,b,c). This trilogy formed the basis for his famous book (von Neumann,
1932). The first of these papers, “Mathematical foundations (Mathematische
Begründung) of quantum mechanics,” is the one in which von Neumann in-
troduced the Hilbert space formalism and the spectral theorem. One might
therefore expect at this juncture that von Neumann would simply make the
point that we made above, namely that the Hilbert space formalism provides
the natural implementation of Jordan’s axiomatic scheme and that the spec-
tral theorem can be used to address the most glaring mathematical problems
with this implementation. Von Neumann, however, did nothing of the sort.

Von Neumann was sharply critical of the Dirac-Jordan transformation theory.
As he put it in the introduction of his 1932 book: “Dirac’s method does not
meet the demands of mathematical rigor in any way—not even when it is re-
duced in the natural and cheap way to the level that is common in theoretical
physics” (von Neumann, 1932, p. 2; our emphasis). He went on to say that “the
correct formulation is not just a matter of making Dirac’s method mathemati-
cally precise and explicit but right from the start calls for a different approach
related to Hilbert’s spectral theory of operators” (ibid., our emphasis). Von
Neumann only referred to Dirac in this passage, but as co-author of the paper
with Hilbert and Nordheim mentioned above, he was thoroughly familiar with
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Jordan’s closely related work as well. He also clearly appreciated the differ-
ence in emphasis between Dirac and Jordan. Talking about the Schrödinger
wave function in the introduction of the second paper of his 1927 trilogy, he
wrote: “Dirac interprets it as a row of a certain transformation matrix, Jor-
dan calls it a probability amplitude” (von Neumann, 1927b, p. 246). 10 In the
opening paragraph of this article, von Neumann contrasted wave mechanics
with “transformation theory” or “statistical theory,” once again reflecting the
difference in emphasis between Dirac and Jordan. Yet, despite his thorough
understanding of it, von Neumann did not care for the Dirac-Jordan approach.

Von Neumann’s best-known objection concerns the inevitable use of delta
functions in the Dirac-Jordan approach. However, von Neumann also ob-
jected to the use of probability amplitudes. Jordan’s basic amplitude, ρ(p, q) =
e−ipq/~, is not in the space L2 of square-integrable functions that forms one re-
alization of abstract Hilbert space. Moreover, probability amplitudes are only
determined up to a phase factor, which von Neumann thought particularly
unsatisfactory. “It is true that the probabilities appearing as end results are
invariant,” he granted in the introduction of his paper, “but it is unsatisfactory
and unclear why this detour through the unobservable and non-invariant is
necessary” (von Neumann, 1927a, p. 3). So, rather than following the Jordan-
Dirac approach and looking for ways to mend its mathematical shortcomings,
a highly non-trivial task given that many of the ‘vectors’ whose ‘inner prod-
ucts’ give Jordan’s probability amplitudes are not elements of Hilbert space,
von Neumann, as indicated in the passage from his 1932 book quoted above,
adopted an entirely new approach. He generalized Hilbert’s spectral theory
of operators 11 to provide a formalism for quantum mechanics that is very
different from the one proposed by Jordan and Dirac. 12

The only elements that von Neumann took from the Dirac-Jordan transforma-
tion theory were, first, Jordan’s fundamental insight that quantum mechanics
is ultimately a set of rules for conditional probabilities Pr(a|b), and second,
the fundamental assumption that such probabilities are given by the absolute
square of the corresponding probability amplitudes, which essentially boils
down to the Born rule. Interestingly, von Neumann (1927a, pp. 43–44) men-
tioned Pauli, Dirac, and Jordan in this context, but not Born. Von Neumann
derived a new expression for conditional probabilities in quantum mechanics
that avoids probability amplitudes altogether and instead sets them equal to
the trace of products of projection operators, as they are now called. Von

10 Discussing Jordan’s approach in his first paper, von Neumann (1927a) referred
to “transformation operators (the integral kernels of which are the “probability
amplitudes”)” (p. 3).
11 See Steen (1973) for a brief history of spectral theory.
12 In his book, von Neumann (1932, p. 1) nonetheless used the term “transformation
theory” to describe both his own theory and the theory of Dirac and Jordan.
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Neumann used the term Einzeloperator or its abbreviation E. Op. instead.
The probability Pr(a|b), e.g., is given by Tr(Ê(a)F̂ (b)), where Ê(a) and F̂ (b)
are projection operators onto, in Dirac notation, the ‘eigenvectors’ |a〉 and |b〉
of the operators â and b̂, respectively. Unlike probability amplitudes, these
projection operators do not have any phase ambiguity. This is easily seen in
Dirac notation. The projection operator Ê(a) = |a〉〈a| does not change if the
ket |a〉 is replaced by eiϑ|a〉 and the bra 〈a| accordingly by e−iϑ〈a|. We should
emphasize, however, that, just as Jordan and Dirac with their probability am-
plitudes/transformation functions 〈a|b〉, von Neumann did not think of his
projection operators as constructed out of bras and kets, thus avoiding the
problem that many of them are not in Hilbert space.

Toward the end of his paper, von Neumann (1927a, pp. 46–47) noted that
his trace expression for conditional probabilities is invariant under “canonical
transformations.” What von Neumann called canonical transformations, how-
ever, are not Jordan’s canonical transformations but simply, in modern terms,
unitary transformations. Such transformations automatically preserve Her-
miticity and the need for something like Jordan’s Ergänzungsamplitude sim-
ply never arises. Von Neumann noted that his trace expression for conditional
probabilities does not change if the projection operators Ê and F̂ are replaced
by Û ÊÛ † and Û F̂ Û †, where Û is an arbitrary unitary operator (Û † = Û−1). In
von Neumann’s approach, as becomes particularly clear in his second paper of
1927 (see below), one also does not have to worry about sorting variables into
sets of mutually conjugate ones. This then is what the ‘never mind your p’s
and q’s’ part of the title of our paper refers to. By avoiding conjugate variables
and canonical transformations, von Neumann completely steered clear of the
problem that ultimately defeated Jordan’s approach, namely that canonical
transformations can never get us from p̂’s and q̂’s with fully continuous spectra
to quantities with wholly or partly discrete spectra, such as the Hamiltonian.

In Mathematische Begründung, von Neumann not only provided an alternative
to Jordan’s analysis of probabilities in quantum mechanics, he also provided an
alternative to the Dirac-Jordan transformation-theory approach to proving the
equivalence of matrix mechanics and wave mechanics (von Neumann, 1927a, p.
14). This is where von Neumann put the abstract notion of Hilbert space that
he introduced in his paper to good use. He showed that matrix mechanics and
wave mechanics correspond to two instantiations of abstract Hilbert space, the
space l2 of square-summable sequences and the space L2 of square-integrable
functions, respectively (Dieudonné, 1981, p. 172). As von Neumann reminded
his readers, well-known theorems due to Parseval and Riesz and Fisher had
established that l2 and L2 are isomorphic. 13

13 In 1907–1908, Erhard Schmidt, a student of Hilbert who got his Ph.D. in 1905,
fully worked out the theory of l2 and called it ‘Hilbert space’ (Steen, 1973, p. 364).
In a paper on canonical transformations, Fritz London (1926b, p. 197) used the
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In his second 1927 paper, “Probability-theoretical construction (Wahrschein-
lichkeitstheoretischer Aufbau) of quantum mechanics,” von Neumann (1927b)
freed himself even further from relying on the Dirac-Jordan approach. In
Mathematische Begründung he had accepted the Born rule and recast it in
the form of his trace formula. In Wahrscheinlichkeitstheoretischer Aufbau he
sought to derive this trace formula, and thereby the Born rule, from more fun-
damental assumptions about probability. Von Neumann started by introducing
probabilities in terms of selecting members from large ensembles of systems.
He then made two very general and prima facie perfectly plausible assump-
tions about expectation values of quantities defined on such ensembles (von
Neumann, 1927b, pp. 246–250). From those assumptions, some assumptions
about the repeatability of measurements (von Neumann, 1927b, pp. 271), and
key features of his Hilbert space formalism (especially some assumptions about
the association of observables with Hermitian operators), von Neumann did in-
deed manage to recover the Born rule. Admittedly, the assumptions needed for
this result are not as innocuous as they look at first sight. They are essentially
the same as those that go into von Neumann’s infamous no-hidden-variable
proof (Bell, 1966; Bacciagaluppi and Crull, 2009).

Along the way von Neumann (1927b, p. 253) introduced what we now call
a density operator to characterize the ensemble of systems he considered.
He found that the expectation value of an observable represented by some
operator â in an ensemble characterized by ρ̂ is given by Tr(ρ̂ â), where we used
the modern notation ρ̂ for the density operator (von Neumann used the letter
U). This result holds both for what von Neumann (1927b) called a “pure”
(rein) or “uniform” (einheitlich) ensemble (p. 255), one consisting of identical
systems in identical states, and for what he called a “mixture” (Gemisch) (p.
265). So the result is more general than the Born rule, which obtains only in
the former case. Von Neumann went on to show that the density operator for a
uniform ensemble is just the projection operator onto the ray in Hilbert space
corresponding to the state of all systems in this ensemble. However, he found
it unsatisfactory to characterize the state of a physical system by specifying
a ray in Hilbert space. “Our knowledge of a system,” von Neumann (1927b,
p. 260) wrote, “is never described by the specification of a state . . . but, as
a rule, by the results of experiments performed on the system.” In this spirit,
he considered the simultaneous measurement of a maximal set of commuting
operators and constructed the density operator for an ensemble where what
is known is that the corresponding quantities have values in certain intervals.
He showed that such measurements can fully determine the state and that the
density operator in that case is once again the projection operator onto the
corresponding ray in Hilbert space.

Von Neumann thus arrived at the typical quantum-mechanical way of conceiv-

term ‘Hilbert space’ for L2 (Duncan and Janssen, 2009, p. 356, note 12).
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ing of a physical problem nowadays, which is very different from the classical
way to which Jordan was still wedded in Neue Begründung. In classical me-
chanics, as well as in the Dirac-Jordan transformation theory, at least in its
original 1927 form, the full description of a physical system requires the spec-
ification of a complete set of p’s and q’s. In quantum mechanics, as first made
clear in von Neumann’s Wahrscheinlichkeitstheoretischer Aufbau, it requires
the specification of the eigenvalues of all the operators in a maximal set of
commuting operators for the system. In other words, the ‘never mind your p’s
and q’s’ part of the title of our paper carried the day.

In the balance of this paper we cover the developments sketched above in
greater detail. 14 We give self-contained reconstructions of the central argu-
ments and derivations in the papers documenting these developments, which,
somewhat incredibly, took place over the span of just one year, between late
1926 and late 1927. To make these arguments and derivations easier to follow
for a modern reader, we will translate them all into Dirac notation.

We start (in Section 2) with Jordan’s Neue Begründung I, which was submitted
in late 1926 and appeared early in 1927 (Jordan, 1927b). We also take into
account a 9-page synopsis of this paper presented to the Göttingen Academy
in January 1927 (Jordan, 1927c) and his discussion of Neue Begründung in
the final section of a semi-popular article on the development of the new
quantum mechanics (Jordan, 1927f, Part 2, pp. 646–648; cf. note 2). In these
papers Jordan only dealt with quantities with completely continuous spectra,
while suggesting that the generalization to ones with partly or wholly discrete
spectra would be straightforward (Jordan 1927b, p. 811, 816; 1927c, p. 161).
We cover Jordan’s postulates for his probability amplitudes and his use of
canonical transformations between pairs of conjugate variables to derive the
equations satisfied by these amplitudes.

In Section 3, we discuss the paper submitted in April 1927 by Hilbert, von
Neumann, and Nordheim (1928). The authors of this paper had the advan-
tage of having read the paper in which Dirac (1927) presented his version
of transformation theory. Jordan only read Dirac’s paper, submitted in late
1926, when he was correcting the page proofs of Neue Begründung I (Jordan,
1927b, p. 809; note added in proof). Although we occasionally refer to Dirac’s
work, both his original paper on transformation theory and the book based
on it (Dirac, 1930), and avail ourselves freely of his bra and ket notation, our
focus in this paper is on the group working in Göttingen, especially Jordan
and von Neumann. As mentioned earlier, von Neumann must have become
thoroughly familiar with the Dirac-Jordan transformation theory as one of
Hilbert’s junior co-authors of the Grundlagen paper.

14 For other discussions of these developments, see, e.g., Jammer (1966, Ch. 6) and
Mehra and Rechenberg (2000, Chs. I & III).
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In Section 4, we consider Jordan’s Neue Begründung II, submitted in June
1927 and written in part in response to criticism of Neue Begründung I in
the Grundlagen paper by Hilbert, von Neumann, and Nordheim (1928) and
in the Mathematische Begründung paper of von Neumann (1927a). Since von
Neumann introduced an entirely new approach, we deviate slightly from the
chronological order of these papers, and discuss Mathematische Begründung
after Neue Begründung II. In the abstract of the latter, Jordan (1927e, p. 1)
promised “a simplified and generalized presentation of the theory developed in
[Neue Begründung] I.” Drawing on Dirac (1927), Jordan simplified his notation
somewhat, although he also added some new and redundant elements to it.
Most importantly, however, the crucial generalization to quantities with partly
or wholly discrete spectra turned out to be far more problematic than he had
suggested in Neue Begründung I. Rather than covering Neue Begründung II
in detail, we highlight the problems Jordan ran into, especially in his attempt
to deal with spin in his new formalism.

In Sections 5 and 6, we turn to the first two papers of von Neumann’s trilogy
on quantum mechanics of 1927. In Section 5, on Mathematische Begründung
(von Neumann, 1927a), we focus on von Neumann’s criticism of the Dirac-
Jordan transformation theory, his proof of the equivalence of wave mechanics
and matrix mechanics based on the isomorphism between L2 and l2, and his
derivation of the trace formula for probabilities in quantum mechanics. We
do not cover the introduction of his Hilbert space formalism, which takes
up a large portion of his paper. This material is covered in any number of
modern books on functional analysis. 15 In Section 6, on Wahrscheinlichkeits-
theoretischer Aufbau (von Neumann, 1927c), we likewise focus on the overall
argument of the paper, covering the derivation of the trace formula from some
basic assumptions about the expectation value of observables in an ensemble of
identical systems, the introduction of density operators, and the specification
of pure states through the values of a maximal set of commuting operators.

In Section 7, we summarize the transition from Jordan’s quantum-mechanical
formalism rooted in classical mechanics (mind your p’s and q’s) to von Neu-
mann’s quantum-mechanical formalism which no longer depends on classical
mechanics for its formulation (never mind your p’s and q’s). As a coda to our
story, we draw attention to the reemergence of the canonical formalism, its
generalized coordinates and conjugate momenta, even for spin-1

2
particles, in

quantum field theory.

15 See, e.g., Prugovecki (1981), or, for a more elementary treatment, which will be
sufficient to follow our paper, Dennery and Krzywicki (1996, Ch. 3).
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2 Jordan’s Neue Begründung I (December 1926)

Neue Begründung I was submitted to Zeitschrift für Physik on December 18,
1926 and published January 18, 1927 (Jordan, 1927b). It consists of two parts.
In Part One (I. Teil ), consisting of secs. 1–2 (pp. 809–816), Jordan laid down
the postulates of his theory. In Part Two (II. Teil ), consisting of secs. 3–7, he
presented the formalism realizing these postulates. In the abstract of the paper,
Jordan announced that his new theory would unify all earlier formulations of
quantum theory:

The four forms of quantum mechanics that have been developed so far—
matrix theory, the theory of Born and Wiener, wave mechanics, and q-
number theory—are contained in a more general formal theory. Following
one of Pauli’s ideas, one can base this new theory on a few simple funda-
mental postulates (Grundpostulate) of a statistical nature (Jordan, 1927b,
p. 809).

As we already mentioned in the introduction, Jordan claimed that he could
recover both the time-dependent and the time-independent Schrödinger equa-
tion as special cases of the differential equations he derived for the probability
amplitudes central to his formalism. This is the basis for his claim that wave
mechanics can be subsumed under his new formalism. Nowhere in the paper
did he show explicitly how matrix mechanics is to be subsumed under the new
formalism. Perhaps Jordan felt that this did not require a special argument
as the new formalism naturally grew out of matrix mechanics and his own
contributions to it (Jordan, 1926a,b). However, as emphasized repeatedly al-
ready, Jordan (1927b) restricted himself to quantities with purely continuous
spectra in Neue Begründung I, so the formalism as it stands is not applicable
to matrix mechanics. Dirac (1927) faced the same problem with his version
of the Dirac-Jordan transformation theory, but other than that Jordan’s new
formalism can also be seen as a natural extension of Dirac’s (1925) q-number
theory. It is only toward the end of his paper (sec. 6) that Jordan turned to
the operator theory of Born and Wiener (1926). In our discussion of Neue
Begründung I, we omit this section along with some mathematically intricate
parts of secs. 3 and 5 that are not necessary for understanding the paper’s
overall argument. We will also draw the veil of charity over the last part of
Jordan’s production, the ill-conceived account of quantum jumps that takes
up sec. 7.

Although we will not cover Jordan’s unification of the various forms of quan-
tum theory in any detail, we will cover (in Section 5) von Neumann’s criticism
of the Dirac-Jordan way of proving the equivalence of matrix mechanics and
wave mechanics as a prelude to his own proof based on the isomorphism of l2

and L2 (von Neumann, 1927a). In our discussion of Neue Begründung I in this
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section, we focus on the portion of Jordan’s paper that corresponds to the last
sentence of the abstract, which promises a statistical foundation of quantum
mechanics. Laying this foundation actually takes up most of the paper (secs.
1–2, 4–5).

2.1 Jordan’s postulates for probability amplitudes

The central quantities in Neue Begründung I are generalizations of Schrödinger
energy eigenfunctions which Jordan called “probability amplitudes.” He at-
tributed both the generalization and the term to Pauli. Jordan referred to a
footnote in a forthcoming paper by Pauli (1927a, p. 83, note) proposing, in
Jordan’s terms, the following interpretation of the energy eigenfunctions ϕn(q)
(where n labels the different energy eigenvalues) of a system (in one dimen-
sion): “If ϕn(q) is normalized, then |ϕn(q)|2dq gives the probability that, if the
system is in the state n, the coordinate [q̂] has a value between q and q + dq”
(Jordan, 1927b, p. 811). A probability amplitude such as this one for position
and energy can be introduced for any two quantities. 16

In Neue Begründung I, Jordan focused on quantities with completely con-
tinuous spectra. He only tried to extend his approach, with severely limited
success, to partly or wholly discrete spectra in Neue Begründung II (see Section
4). For two quantities x̂ and ŷ that can take on a continuous range of values
x and y, respectively, 17 there is a complex probability amplitude ϕ(x, y) such
that |ϕ(x, y)|2 dx gives the probability that x̂ has a value between x and x+dx
given that ŷ has the value y.

In modern Dirac notation ϕ(x, y) would be written as 〈x|y〉. Upon transla-
tion into this modern notation, many of Jordan’s expressions turn into in-
stantly recognizable expressions in modern quantum mechanics and we shall
frequently provide such translations to make it easier to read Jordan’s text.
We must be careful, however, not to read too much into it. First of all, von
Neumann had not yet introduced the abstract notion of Hilbert space when
Jordan and Dirac published their theories in 1917, so neither one thought of
probability amplitudes as ‘inner products’ of ‘vectors’ in Hilbert space at the
time. More importantly, for quantities x̂’s and ŷ’s with purely continuous spec-
tra (e.g. position or momentum of a particle in an infinitely extended region),
the ‘vectors’ , |x〉 and |y〉 are not elements of Hilbert space, although an inner

16 It is unclear exactly how much of Jordan’s statistical foundation of quantum
mechanics is due to Pauli. See Duncan and Janssen (2009, p. 359) for discussion
and further references.
17 Recall that this is our notation (cf. note 5): Jordan used different letters for
quantities and their numerical values. For instance, he used q (with value x) and β
(with value y) for what we called x̂ and ŷ, respectively (Jordan, 1927b, p. 813)
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product 〈x|y〉 can be defined in a generalized sense (as a distribution) as an
integral of products of continuum normalized wave functions, as is routinely
done in elementary quantum mechanics. The fact that continuum eigenstates
can be treated as though they are indeed states in a linear space satisfy-
ing completeness and orthogonality relations which are continuum analogs of
the discrete ones which hold rigorously in a Hilbert space is, as we will see
later, just the von Neumann spectral theorem for self-adjoint operators with
a (partly or wholly) continuous spectrum.

In the introductory section of Neue Begründung I, Jordan (1927b, p. 811)
listed two postulates, labeled I and II. Only two pages later, in sec. 2, en-
titled “Statistical foundation of quantum mechanics,” these two postulates
are superseded by a new set of four postulates, labeled A through D. 18 In
Neue Begründung II, Jordan (1927e, p. 6) presented yet another set of postu-
lates, three this time, labeled I through III (see Section 4). 19 The exposition
of Jordan’s theory by Hilbert, von Neumann, and Nordheim (1928), writ-
ten in between Neue Begründung I and II, starts from six postulates, labeled
I through VI (see Section 3). We will start from Jordan’s four postulates of
Neue Begründung I, which we paraphrase and comment on below, staying close
to Jordan’s own text but using the notation introduced above to distinguish
between quantities and their numerical values.

Postulate A. For two mechanical quantities q̂ and β̂ that stand in a definite
kinematical relation to one another there are two complex-valued functions,
ϕ(q, β) and ψ(q, β), such that ϕ(q, β)ψ∗(q, β)dq gives the probability of finding
a value between q and q+ dq for q̂ given that β̂ has the value β. The function
ϕ(q, β) is called the probability amplitude, the function ψ(q, β) is called the
“supplementary amplitude” (Ergänzungsamplitude).

Comments: As becomes clear later on in the paper, “mechanical quantities
that stand in a definite kinematical relation to one another” are quantities that
can be written as functions of some set of generalized coordinates and their
conjugate momenta. In his original postulate I, Jordan (1927b, p. 162) wrote
that “ϕ(q, β) is independent of the mechanical nature (the Hamiltonian) of the
system and is determined only by the kinematical relation between q and β.”

18 In the short version of Neue Begründung I presented to the Göttingen Academy
on January 14, 1927, Jordan (1927c, p. 162) only introduced postulates I and II. In
this short version, Jordan (1927c, p. 163) referred to “a soon to appear extensive
paper in Zeitschrift für Physik” (i.e., Jordan, 1927b).
19 In his semi-popular account of the development of the new quantum mechanics,
Jordan (1927f, p. 648; cf. note 2 above), after explaining the basic notion of a proba-
bility amplitude (cf. Postulate A below), listed only two postulates, or axioms as he
now called them, namely “the assumption of probability interference” (cf. Postulate
C below) and the requirement that there is a canonically conjugate quantity p̂ for
every quantum-mechanical quantity q̂ (cf. Postulate D below).
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Hilbert et al. made this into a separate postulate, their postulate V: “A further
physical requirement is that the probabilities only depend on the functional
nature of the quantities F1(pq) and F2(pq), i.e., on their kinematical connection
[Verknüpfung], and not for instance on additional special properties of the
mechanical system under consideration, such as for example its Hamiltonian”
(Hilbert, von Neumann, and Nordheim, 1928, p. 5). With ϕ(q, β) = 〈q|β〉, the
statement about the kinematical nature of probability amplitudes translates
into the observation that they depend only on the inner-product structure of
Hilbert space and not on the Hamiltonian governing the time evolution of the
system under consideration. 20

It turns out that for all quantities represented, in modern terms, by Hermi-
tian operators, the amplitudes ψ(q, β) and ϕ(q, β) are equal to one another. At
this point, however, Jordan wanted to leave room for quantities represented by
non-Hermitian operators. This is directly related to the central role of canoni-
cal transformations in his formalism. As Jordan (1926a,b) had found in a pair
of papers published in 1926, canonical transformations need not be unitary
and therefore do not always preserve the Hermiticity of the conjugate vari-
ables one starts from (Duncan and Janssen, 2009). The Ergänzungsamplitude
does not appear in the presentation of Jordan’s formalism by Hilbert, von
Neumann, and Nordheim (1928). 21 In Neue Begründung II, Jordan (1927e, p.
3) restricted himself to Hermitian quantities and silently dropped the Ergän-
zungsamplitude. We return to the Ergänzungsamplitude in Section 2.4 below,
but until then we will simply set ψ(q, β) = ϕ(q, β) everywhere.

Postulate B. The probability amplitude ϕ̄(β, q) is the complex conjugate of the
probability amplitude ϕ(q, β). In other words, ϕ̄(β, q) = ϕ∗(q, β). This implies
a symmetry property of the probabilities themselves: the probability density
|ϕ̄(β, q)|2 for finding the value β for β̂ given the value q for q̂ is equal to the
probability density |ϕ(q, β)|2 for finding the value q for q̂ given the value β for
β̂.

Comment. This property is immediately obvious once we write φ(q, β) as 〈q|β〉
with the interpretation of 〈q|β〉 as an ‘inner product’ in Hilbert space (but
recall that one has to be cautious when dealing with quantities with continuous
spectra).

Postulate C. The probabilities combine through interference. In sec. 1, Jordan

20 In the AHQP interview with Jordan, Kuhn emphasized the importance of this
aspect of Jordan’s formalism: “The terribly important step here is throwing the
particular Hamiltonian function away and saying that the relationship is only in
the kinematics” (session 3, p. 15).
21 Both ψ and ϕ are introduced in the lectures by Hilbert on which this paper is
based but they are set equal to one another almost immediately and without any
further explanation (Sauer and Majer, 2009, p. 700).
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(1927b, p. 812) already introduced the phrase “interference of probabilities” to
capture the striking feature in his quantum formalism that the probability am-
plitudes rather than the probabilities themselves follow the usual composition
rules for probabilities. Let F1 and F2 be two outcomes [Tatsachen] for which
the amplitudes are ϕ1 and ϕ2. If F1 and F2 are mutually exclusive, ϕ1 + ϕ2 is
the amplitude for the outcome ‘F1 or F2’. If F1 and F2 are independent, ϕ1ϕ2

is the amplitude for the outcome ‘F1 and F2’.

Consequence. Let ϕ(q, β) be the probability amplitude for the outcome F1 of
finding the value q for q̂ given the value β for β̂. Let χ(Q, q) be the probability
amplitude for the outcome F2 of finding the value Q for Q̂ given the value
q for q̂. Since F1 and F2 are independent, Jordan’s multiplication rule tells
us that the probability amplitude for ‘F1 and F2’ is given by the product
χ(Q, q)ϕ(q, β). Now let Φ(Q, β) be the probability amplitude for the outcome
F3 of finding the value Q for Q̂ given the value β for β̂. According to Jordan’s
addition rule, this amplitude is equal to the ‘sum’ of the amplitudes for ‘F1

and F2’ for all different values of q. Since q̂ has a continuous spectrum, this
‘sum’ is actually an integral. The probability amplitude for F3 is thus given
by 22

Φ(Q, β) =
∫
χ(Q, q)ϕ(q, β) dq. [NB1, sec. 2, Eq. 14] (1)

Special case. If Q̂ = β̂, the amplitude Φ(β′, β′′) becomes the Dirac delta func-
tion. Jordan (1927b, p. 814) introduced the notation δβ′β′′ even though β′ and
β′′ are continuous rather than discrete variables [NB1, sec. 2, Eq. 16]. In a
footnote he conceded that this is mathematically dubious. In Neue Begrün-
dung II, Jordan (1927e, p. 5) used the delta function that Dirac (1927, pp.
625–627) had meanwhile introduced in his paper on transformation theory.
Here and in what follows we will give Jordan the benefit of the doubt and
assume the normal properties of the delta function.

Using that the amplitude χ(β′, q) is just the complex conjugate of the ampli-
tude ϕ(q, β′), we arrive at the following expression for Φ(β′, β′′):

Φ(β′, β′′) =
∫
ϕ(q, β′′)ϕ∗(q, β′) dq = δβ′β′′ . [NB1, sec. 2, Eqs. 15, 16, 17] (2)

Comment. Translating Eqs. (1)–(2) above into Dirac notation, we recognize

22 We include the numbers of the more important equations in the original papers
in square brackets. ‘NB1’ refers to Neue Begründung I (Jordan, 1927b). Since the
numbering of equations starts over a few times in this paper (see note 36), we will
often include the section number as well.
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them as familiar completeness and orthogonality relations: 23

〈Q|β〉 =
∫
〈Q|q〉〈q|β〉 dq, 〈β′|β′′〉 =

∫
〈β′|q〉〈q|β′′〉 dq = δ(β′ − β′′). (3)

Since the eigenvectors |q〉 of the operator q̂ are not in Hilbert space, the spec-
tral theorem, first proven by von Neumann (1927a), is required for the use of
the resolution of the unit operator 1̂ =

∫
dq|q〉〈q|.

Postulate D. For every q̂ there is a conjugate momentum p̂. Before stating this
postulate, Jordan offered a new definition of what it means for p̂ to be the
conjugate momentum of q̂. If the amplitude ρ(p, q) of finding the value p for
p̂ given the value q for q̂ is given by

ρ(p, q) = e−ipq/~, [NB1, sec. 2, Eq. 18] (4)

then p̂ is the conjugate momentum of q̂.

Anticipating a special case of Heisenberg’s (1927b) uncertainty principle, Jor-
dan (1927b, p. 814) noted that Eq. (4) implies that “[f]or a given value of q̂
all possible values of p̂ are equally probable.”

For p̂’s and q̂’s with completely continuous spectra, Jordan’s definition of
when p̂ is conjugate to q̂ is equivalent to the standard one that the operators
p̂ and q̂ satisfy the commutation relation [p̂, q̂] ≡ p̂ q̂ − q̂ p̂ = ~/i. This equiva-
lence, however, presupposes the usual association of the differential operators
(~/i) ∂/∂q and ‘multiplication by q’ with the quantities p̂ and q̂, respectively.
As we emphasized in the introduction, Jordan did not think of these quan-
tities as operators acting in an abstract Hilbert space, but he did associate
them (as well as any other quantity obtained through adding and multiplying
p̂’s and q̂’s) with the differential operators (~/i) ∂/∂q and q (and combina-
tions of them). The manipulations in Eqs. (19ab)–(24) of Neue Begründung I,
presented under the subheading “Consequences” (Folgerungen) immediately
following postulate D, are meant to show that this association follows from
his postulates (Jordan, 1927b, pp. 814–815). Using modern notation, we re-
construct Jordan’s rather convoluted argument. As we will see, the argument
as it stands does not work, but a slightly amended version of it does.

The probability amplitude 〈p|q〉 = e−ipq/~, Jordan’s ρ(p, q), trivially satisfies
the following pair of equations:(

p+
~
i

∂

∂q

)
〈p|q〉 = 0, [NB1, sec. 2, Eq. 19a] (5)

23 The notation 〈Q|β〉 for Φ(Q, β) etc. obviates the need for different letters for
different probability amplitudes that plagues Jordan’s notation.
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(
~
i

∂

∂p
+ q

)
〈p|q〉 = 0. [NB1, sec. 2, Eq. 19b] (6)

Unless we explicitly say otherwise, expressions such as 〈a|b〉 are to be inter-
preted as our notation for Jordan’s probability amplitudes ϕ(a, b) and not as
inner products of vectors |a〉 and |b〉 in Hilbert space.

Following Jordan (NB1, sec. 2, Eqs. 20–22), we define the map T , which takes
functions f of p and turns them into functions Tf of Q (the value of a new
quantity Q̂ with a fully continuous spectrum):

T : f(p) → (Tf)(Q) ≡
∫
〈Q|p〉f(p)dp. (7)

In other words, T . . . =
∫
dp 〈Q|p〉 . . . [NB1, Eq. 21]. For the special case that

f(p) = 〈p|q〉, we get:

(T 〈p|q〉) (Q) =
∫
〈Q|p〉〈p|q〉dp = 〈Q|q〉, (8)

where we used completeness, one of the consequences of Jordan’s postulate C
(cf. Eqs. (1)–(3)). In other words, T maps 〈p|q〉 onto 〈Q|q〉: 24

〈Q|q〉 = T 〈p|q〉. [NB1, sec. 2, Eq. 22] (9)

Likewise, we define the inverse map T−1, which takes functions F of Q and
turns them into functions T−1F of p: 25

T−1 : F (Q) → (T−1F )(p) ≡
∫
〈p|Q〉F (Q)dQ. (10)

In other words, T−1 . . . =
∫
dQ 〈p|Q〉 . . . 26 For the special case that F (Q) =

24 At this point, Jordan’s notation, ϕ(x, y) = T.ρ(x, y) [NB1, sec. 2, Eq. 22], gets
particularly confusing as the x on the left-hand side and the x on the right-hand
side refer to values of different quantities. The same is true for the equations that
follow [NB1, Eqs. 23ab, 24ab].
25 To verify that T−1 is indeed the inverse of T , we take F (Q) in Eq. (10) to be
(Tf)(Q) in Eq. (7). In that case we get:

(T−1Tf)(p) =

∫
〈p|Q〉

(∫
〈Q|p′〉f(p′)dp′

)
dQ

=

∫∫
〈p|Q〉〈Q|p′〉f(p′) dQdp′

=

∫
〈p|p′〉f(p′) dp′ = f(p).

26 Jordan (1927b, p. 815, note) used the Ergänzungsamplitude to represent T−1 in
this form.
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〈Q|q〉 we get (again, by completeness):

(
T−1〈Q|q〉

)
(p) =

∫
〈p|Q〉〈Q|q〉dQ = 〈p|q〉, (11)

or, more succinctly,

〈p|q〉 = T−1〈Q|q〉. (12)

Applying T to the left-hand side of Eq. (5) [NB1, Eq. 19a], we find:

T

((
p+

~
i

∂

∂q

)
〈p|q〉

)
= Tp〈p|q〉+

~
i

∂

∂q
T 〈p|q〉 = 0, (13)

where we used that differentiation with respect to q commutes with applying
T (which only affects the functional dependence on p). Using that 〈p|q〉 =
T−1〈Q|q〉 (Eq. (12)) and T 〈p|q〉 = 〈Q|q〉 (Eq. (9)), we can rewrite Eq. (13)
as: 27 (

TpT−1 +
~
i

∂

∂q

)
〈Q|q〉 = 0. [NB1, sec. 2, Eq. 23a] (14)

Similarly, applying T to the left-hand side of Eq. (6) [NB1, Eq. 19b], we find:

T

((
~
i

∂

∂p
+ q

)
〈p|q〉

)
= T

~
i

∂

∂p
〈p|q〉+ qT 〈p|q〉 = 0, (15)

where we used that multiplication by q commutes with applying T . Once again
using that 〈p|q〉 = T−1〈Q|q〉 and T 〈p|q〉 = 〈Q|q〉, we can rewrite this as: 28

(
T
~
i

∂

∂p
T−1 + q

)
〈Q|q〉 = 0. [NB1, sec. 2, Eq. 23b] (16)

Eqs. (14) and (16) [NB1, Eqs. 23ab] gave Jordan a representation of the quanti-
ties p̂ and q̂ in the Q-basis. The identification of p̂ in the Q-basis is straightfor-
ward. The quantity p in Eq. (5) [NB1, Eq. 19a] turns into the quantity TpT−1

in Eq. (14), [NB1, Eq. 23a]. This is just what Jordan had come to expect on
the basis of his earlier use of canonical transformations (see Section 2.2 below).
The identification of q̂ in the Q-basis is a little trickier. Eq. (6) [NB1, Eq. 19b]
told Jordan that the position operator in the original p-basis is −(~/i) ∂/∂p
(note the minus sign). This quantity turns into −T (~/i) ∂/∂p T−1 in Eq. (16)
[NB1, Eq. 23b]. This then should be the representation of q̂ in the new Q-basis,
as Jordan stated right below this last equation: “With respect to (in Bezug

27 There is a sign error in NB1, sec. 2, Eq. 23a: −TxT−1 should be TxT−1.
28 There is a sign error in NB1, sec. 2, Eq. 23b: −y should be y.
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auf ) the fixed chosen quantity [Q̂] every other quantity [q̂] corresponds to an
operator [−T (~/i) ∂/∂p T−1]” (Jordan, 1927b, p. 815). 29

With these representations of his quantum-mechanical quantities p̂ and q̂,
Jordan could now define their addition and multiplication through the corre-
sponding addition and multiplication of the differential operators representing
these quantities.

Jordan next step was to work out what the differential operators TpT−1 and
−T (~/i) ∂/∂pT−1, representing p̂ and q̂ in the Q-basis, are in the special case
that Q̂ = q̂. In that case, Eqs. (14) and (16) [NB1, Eqs. 23ab] turn into:

(
TpT−1 +

~
i

∂

∂q

)
〈q′|q〉 = 0, (17)

(
T
~
i

∂

∂p
T−1 + q

)
〈q′|q〉 = 0. (18)

On the other hand, 〈q′|q〉 = δ(q′ − q). So 〈q′|q〉 trivially satisfies:

(
~
i

∂

∂q′
+

~
i

∂

∂q

)
〈q′|q〉 = 0, [NB1, sec. 2,Eq. 24a] (19)

(−q′ + q) 〈q′|q〉 = 0. [NB1, sec. 2,Eq. 24b] (20)

Comparing Eqs. (19)–(20) with Eqs. (17)–(18), we arrive at

TpT−1〈q′|q〉 =
~
i

∂

∂q′
〈q′|q〉, (21)

−T ~
i

∂

∂p
T−1〈q′|q〉 = q′〈q′|q〉. (22)

Eq. (21) suggests that TpT−1, the momentum p̂ in the q-basis acting on the q′

variable, is just (~/i) ∂/∂q′. Likewise, Eq. (22) suggests that−T (~/i) ∂/∂p T−1,
the position q̂ in the q-basis acting on the q′ variable, is just multiplication by
q′. As Jordan put it in a passage that is hard to follow because of his confusing
notation:

Therefore, as a consequence of (24) [our Eqs. (19)–(20)], the operator x
[multiplying by q′ in our notation] is assigned (zugeordnet) to the quantity
[Grösse] Q itself [q̂ in our notation]. One sees furthermore that the operator

29 Because of the sign error in Eq. (16) [NB1, Eq. 23b], Jordan set q̂ in the Q-basis
equal to T ((~/i) ∂/∂p)T−1.
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ε ∂/∂x [(~/i) ∂/∂q′ in our notation] corresponds to the momentum P [p̂]
belonging to Q [q̂] (Jordan, 1927b, p. 815). 30

It is by this circuitous route that Jordan arrived at the usual functional
interpretation of coordinate and momentum operators in the Schrödinger
formalism. Jordan (1927b, pp. 815–816) emphasized that the association of
(~/i) ∂/∂q and q with p̂ and q̂ can easily be generalized. Any quantity (Grösse)
obtained through multiplication and addition of q̂ and p̂ is associated with the
corresponding combination of differential operators q and (~/i) ∂/∂q.

Jordan’s argument as it stands fails. We cannot conclude that two operations
are identical from noting that they give the same result when applied to one
special case, here the delta function 〈q′|q〉 = δ(q′ − q) (cf. Eqs. (21)–(22)).
We need to show that they give identical results when applied to an arbitrary
function. We can easily remedy this flaw in Jordan’s argument, using only the
kind of manipulations he himself used at this point (though we will do so in
modern notation). We contrast this proof in the spirit of Jordan with a modern
proof showing that Eqs. (14) and (16) imply that p̂ and q̂, now understood in
the spirit of von Neumann as operators acting in an abstract Hilbert space,
are represented by (~/i) ∂/∂q and q, respectively, in the q-basis. The input for
the proof in the spirit à la Jordan are his postulates and the identification of
the differential operators representing momentum and position in the Q-basis
as TpT−1 and −T (~/i) ∂/∂p T−1, respectively (cf. our comments following
Eq. (16)). The input for the proof à la van Neumann are the inner-product
structure of Hilbert space and the spectral decomposition of the operator p̂. Of
course, von Neumann (1927a) only introduced these elements after Jordan’s
Neue Begründung I.

Closely following Jordan’s approach, we can show that Eqs. (14) and (16)
[NB1, Eqs. 23ab] imply that, for arbitrary functions F (Q), if Q is set equal to
q,

(TpT−1F )(q) =
~
i

∂

∂q
F (q), (23)(

−T ~
i

∂

∂p
T−1F

)
(q) = qF (q). (24)

Since F is an arbitrary function, the problem we noted with Eqs. (21)–(22)
is solved. Jordan’s identification of the differential operators representing mo-
mentum and position in the q-basis does follow from Eqs. (23)–(24).

To derive Eq. (23), we apply T , defined in Eq. (7), to p (T−1F )(p). We then
use the definition of T−1 in Eq. (10) to write (TpT−1F )(Q) as:

30 We remind the reader that Jordan used the term ‘operator’ [Operator] not for
an operator acting in an abstract Hilbert space but for the differential operators
(~/i) ∂/∂x and (multiplying by) x and for combinations of them.
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(TpT−1F )(Q) =
∫
〈Q|p〉 p (T−1F )(p) dp

=
∫
〈Q|p〉 p

[∫
〈p|Q′〉F (Q′)dQ′

]
dp

=
∫∫
〈Q|p〉 p 〈p|Q′〉F (Q′) dp dQ′. (25)

We now set Q̂ = q̂, use Eq. (5) to substitute −(~/i) ∂/∂q′ 〈p|q′〉 for p〈p|q′〉,
and perform a partial integration:

(TpT−1F )(q) =
∫∫
〈q|p〉 p 〈p|q′〉F (q′) dp dq′

=
∫∫
〈q|p〉

(
−~
i

∂

∂q′
〈p|q′〉

)
F (q′) dp dq′

=
∫∫
〈q|p〉〈p|q′〉~

i

dF (q′)

dq′
dp dq′. (26)

On account of completeness and orthogonality (see Eq. (3) [NB1, Eqs. 14–
17]), the right-hand side reduces to (~/i)F ′(q). This concludes the proof of
Eq. (23).

To derive Eq. (24), we similarly apply T to −(~/i) ∂/∂p (T−1F )(p):

(
−T ~

i

∂

∂p
T−1F

)
(Q) =−

∫
〈Q|p〉 ~

i

∂

∂p
(T−1F )(p) dp

=−
∫
〈Q|p〉 ~

i

∂

∂p

[∫
〈p|Q′〉F (Q′)dQ′

]
dp

=−
∫∫
〈Q|p〉 ~

i

∂

∂p
〈p|Q′〉F (Q′) dp dQ′. (27)

We now set Q̂ = q̂ and use Eq. (6) to substitute q′〈p|q′〉 for −(~/i) ∂/∂p 〈p|q′〉:(
−T ~

i

∂

∂p
T−1F

)
(q) =

∫∫
〈q|p〉 q′ 〈p|q′〉F (q′) dp dq′ = q F (q), (28)

where in the last step we once again used completeness and orthogonality.
This concludes the proof of Eq. (24).

We now turn to the modern proofs. It is trivial to show that the representation
of the position operator q̂ in the q-basis is simply multiplication by the eigen-
values q. Consider an arbitrary eigenstate |q〉 of position with eigenvalue q,
i.e., q̂ |q〉 = q |q〉. It follows that 〈Q| q̂ |q〉 = q〈Q|q〉, where |Q〉 is an arbitrary
eigenvector of an arbitrary Hermitian operator Q̂ = Q̂† with eigenvalue Q.
The complex conjugate of this last relation,

〈q| q̂ |Q〉 = q 〈q|Q〉, (29)
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is just the result we wanted prove.

It takes a little more work to show that Eq. (14) [NB1, Eq. 23a] implies that
the representation of the momentum operator p̂ in the q-basis is (~/i) ∂/∂q.
Consider Eq. (25) for the special case F (Q) = 〈Q|q〉:

TpT−1〈Q|q〉 =
∫∫
〈Q|p〉 p 〈p|Q′〉〈Q′|q〉 dp dQ′. (30)

Recognizing the spectral decomposition
∫
dp p |p〉〈p| of p̂ in this equation, we

can rewrite it as:

TpT−1〈Q|q〉 =
∫
〈Q| p̂ |Q′〉〈Q′|q〉 dQ′ = 〈Q| p̂ |q〉, (31)

where in the last step we used the decomposition
∫
|Q′〉〈Q′| dQ′ of the unit

operator. Eq. (14) tells us that

TpT−1〈Q|q〉 = −~
i

∂

∂q
〈Q|q〉. (32)

Setting the complex conjugates of the right-hand sides of these last two equa-
tions equal to one another, we arrive at:

〈q| p̂ |Q〉 =
~
i

∂

∂q
〈q|Q〉, (33)

which is the result we wanted to prove. Once again, the operator Q̂ with
eigenvectors |Q〉 is arbitrary. If Q̂ is the Hamiltonian and q̂ is a Cartesian
coordinate, 〈q|Q〉 is just a Schrödinger energy eigenfunction.

With these identifications of p̂ and q̂ in the q-basis we can finally show that
Jordan’s new definition of conjugate variables in Eq. (4) [NB1, Eq. 18] re-
duces to the standard definition, [p̂, q̂] = ~/i, at least for quantities with com-
pletely continuous spectra. Letting [(~/i) ∂/∂q, q] act on an arbitrary function
f(q), one readily verifies that the result is (~/i) f(q). Given the association of
(~/i) ∂/∂q and q with the quantities p̂ and q̂ that has meanwhile been estab-
lished, it follows that these quantities indeed satisfy the usual commutation
relation

[p̂, q̂] = p̂ q̂ − q̂ p̂ =
~
i
. [NB1,Eq. 25] (34)

This concludes Part I (consisting of secs. 1–2) of Neue Begründung I. Jordan
wrote:

This is the content of the new theory. The rest of the paper will be devoted,
through a mathematical discussion of these differential equations [NB1, Eqs.
23ab, our Eqs. (14)–(16), and similar equations for other quantities], on the
one hand, to proving that our postulates are mathematically consistent
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[widerspruchsfrei ] and, on the other hand, to showing that the earlier forms
[Darstellungen] of quantum mechanics are contained in our theory (Jordan,
1927b, p. 816).

In this paper we focus on the first of these tasks, which amounts to providing
a realization of the postulates discussed in this secton.

2.2 Canonical transformations in classical mechanics, the old quantum the-
ory and matrix mechanics

Given the central role of canonical transformations in Neue Begründung, we
insert a brief subsection to review the use of canonical transformations in
the developments leading up to it. 31 Canonical transformations in classical
physics are transformations of the position and conjugate momentum variables
(q, p) that preserve the form of Hamilton’s equations,

q̇ =
∂H(p, q)

∂p
, ṗ = −∂H(p, q)

∂q
. (35)

Following Jordan (1927b, p. 810) in Neue Begründung I, we assume that the
system is one-dimensional. For convenience, we assume that the Hamiltonian
H(p, q) does not explicitly depend on time. The canonical transformation to
new coordinates and momenta (Q,P ) is given through a generating function,
which is a function of one of the old and one of the new variables. For a
generating function of the form F (q, P ), for instance, 32 we find the equations
for the canonical transformation (q, p)→ (Q,P ) by solving the equations

p =
∂F (q, P )

∂q
, Q =

∂F (q, P )

∂P
(36)

for Q(q, p) and P (q, p). This transformation preserves the form of Hamilton’s
equations: 33

Q̇ =
∂Ĥ(P,Q)

∂P
, Ṗ = −∂Ĥ(P,Q)

∂Q
, (37)

where the Hamiltonians H(p, q) and H(P,Q) are numerically equal to one
another but given by different functions of their respective arguments. One
way to solve the equations of motion is to find a canonical transformation
such that, in terms of the new variables, the Hamiltonian depends only on

31 This subsection is based on Duncan and Janssen (2009, sec. 2).
32 In the classification of Goldstein et al. (2002, p. 373, table 9.1), this corresponds to
a generating function of type 2, F2(q, P ). The other types depend on (q,Q), (p,Q),
or (p, P ). Which type one chooses is purely a matter of convenience and does not
affect the physical content.
33 For elementary discussion, see, e.g., Duncan and Janssen (2007, Pt. 2, sec. 5.1).
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momentum, H(P,Q) = H(P ). Such variables are called action-angle variables
and the standard notation for them is (J, w). The basic quantization condition
of the old quantum theory of Bohr and Sommerfeld restricts the value of a
set of action variables for the system under consideration to integral multiples
of Planck’s constant, J = nh (n = 0, 1, 2, . . .). Canonical transformations to
action-angle variables thus played a central role in the old quantum theory.
With the help of them, the energy spectrum of the system under consideration
could be found.

In classical mechanics, canonical transformations preserve the so-called Pois-
son bracket, {p, q} = 1. For any two phase-space functions G(p, q), H(p, q) of
the pair of canonical variables (p, q), the Poisson bracket is defined as

{G(p, q), H(p, q)} ≡ ∂G(p, q)

∂p

∂H(p, q)

∂q
− ∂H(p, q)

∂p

∂G(p, q)

∂q
. (38)

For G(p, q) = p and H(p, q) = q, this reduces to {p, q} = 1. We now compute
the Poisson bracket {P,Q} of a new pair of canonical variables related to (p, q)
by the generating function F (q, P ) as in Eq. (36):

{P (p, q), Q(p, q)} =
∂P (p, q)

∂p

∂Q(p, q)

∂q
− ∂Q(p, q)

∂p

∂P (p, q)

∂q
. (39)

By the usual chain rules of partial differentiation, we have

∂Q

∂p

∣∣∣∣∣
q

=
∂2F

∂P 2

∣∣∣∣∣
q

∂P

∂p

∣∣∣∣∣
q

, (40)

∂Q

∂q

∣∣∣∣∣
p

=
∂2F

∂q∂P
+
∂2F

∂P 2

∣∣∣∣∣
q

∂P

∂q

∣∣∣∣∣
p

. (41)

Substituting these two expressions into Eq. (39), we find

{P (p, q), Q(p, q)}=
∂P

∂p

∣∣∣∣∣
q

 ∂2F

∂q∂P
+
∂2F

∂P 2

∣∣∣∣∣
q

∂P

∂q

∣∣∣∣∣
p


−

 ∂2F

∂P 2

∣∣∣∣∣
q

∂P

∂p

∣∣∣∣∣
q

 ∂P

∂q

∣∣∣∣∣
p

=
∂2F

∂q∂P

∂P

∂p

∣∣∣∣∣
q

. (42)

The final line is identically equal to 1, as

∂2F

∂q∂P
=

∂p

∂P

∣∣∣∣∣
q

=

 ∂P
∂p

∣∣∣∣∣
q

−1

. (43)
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This shows that the Poisson bracket {p, q} = 1 is indeed invariant under
canonical transformations.

In matrix mechanics a canonical transformation is a transformation of the
matrices (q, p) to new matrices (Q,P ) preserving the canonical commutation
relations

[p, q] ≡ pq − qp =
~
i

(44)

that replace the Poisson bracket {p, q} = 1 in quantum mechanics. Such trans-
formations are of the form

P = TpT−1, Q = TqT−1, H = THT−1, (45)

where H is obtained by substituting TpT−1 for p and TqT−1 for q in the
operator H given as a function p and q. One easily recognizes that this trans-
formation does indeed preserve the form of the commutation relations (44):
[P,Q] = ~/i. Solving the equations of motion in matrix mechanics boils down
to finding a transformation matrix T such that the new Hamiltonian H is
diagonal. The diagonal elements, Hmm, then give the (discrete) energy spec-
trum.

In two papers before Neue Begründung, Jordan (1926a,b) investigated the
relation between the matrices T implementing canonical transformations in
matrix mechanics and generating functions in classical mechanics. He showed
that the matrix T corresponding to a generating function of the form 34

F (p,Q) =
∑
n

fn(p)gn(Q), (46)

is given by

T (q, p) = exp
i

~

{
(p, q)−

∑
n

(fn(p), gn(q))

}
, (47)

where the notation (. , .) in the exponential signals an ordering such that, when
the exponential is expanded, all p’s are put to the left of all q’s in every term
of the expansion. 35

When he wrote Neue Begründung I in late 1926, Jordan was thus steeped in
the use of canonical transformations, both in classical and in quantum physics.
When Kuhn asked Jordan about his two papers on the topic (Jordan, 1926a,b)
during an interview in 1963 for the AHQP, Jordan told him:

Canonical transformations in the sense of Hamilton-Jacobi were . . . our
daily bread in the preceding years, so to tie in the new results with those as

34 In the classification of Goldstein et al. (cf. note 32), this corresponds to a gener-
ating function of type 3, F3(p,Q).
35 See Duncan and Janssen (2009, pp. 355–356) for a reconstruction of Jordan’s
proof of this result.
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closely as possible—that was something very natural for us to try (AHQP
interview with Jordan, session 4, p. 11).

2.3 The realization of Jordan’s postulates: probability amplitudes and canon-
ical transformations

At the beginning of sec. 4 of Neue Begründung I, “General comments on the
differential equations for the amplitudes,” Jordan announced:

To prove that our postulates are mathematically consistent, we want to give
a new foundation of the theory—independently from the considerations in
sec. 2—based on the differential equations which appeared as end results
there (Jordan, 1927b, p. 821).

He began by introducing the canonically conjugate variables α̂ and β̂, satisfy-
ing, by definition, the commutation relation [α̂, β̂] = ~/i. They are related to
the basic variables p̂ and q̂, for which the probability amplitude, according to
Jordan’s postulates, is 〈p|q〉 = e−ipq/~ (see Eq. (4)), via

α̂ = f(p̂, q̂) = T p̂T−1, (48)

β̂ = g(p̂, q̂) = T q̂T−1. (49)

with T = T (p̂, q̂) [NB1, sec. 4, Eq. 1]. 36 Note that the operator T (p̂, q̂) defined
here is different from the operator T . . . =

∫
dp 〈Q|p〉 . . . defined in sec. 2 (see

Eq. (7), Jordan’s Eq. (21)). The T (p̂, q̂) operator defined in sec. 4 is a similarity
transformation operator implementing the canonical transformation from the
pair (p̂, q̂) to the pair (α̂, β̂). We will see later that there is an important
relation between the T operators defined in secs. 2 and 4.

Jordan now posited the fundamental differential equations for the probability
amplitude 〈q|β〉 in his theory: 37

{
f

(
~
i

∂

∂q
, q

)
+

~
i

∂

∂β

}
〈q|β〉 = 0, [NB1, sec. 4, Eq. 2a] (50)

{
g

(
~
i

∂

∂q
, q

)
− β

}
〈q|β〉 = 0. [NB1, sec. 4, Eq. 2b] (51)

36 The numbering of equations in Neue Begründung I starts over in sec. 3, the first
section of Part Two (II. Teil ), and then again in sec. 4. Secs. 6 and 7, finally, have
their own set of equation numbers.
37 He introduced separate equations for the Ergänzungsamplitude [NB1, sec. 4, Eqs.
3ab] (see Eqs. (90)–(91) below). We ignore these additional equations for the mo-
ment but will examine them for some special cases in sec. 2.4.
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These equations have the exact same form as Eqs. (14)–(16) [NB1, sec. 2, Eqs.
23ab], with the understanding that the operator T is defined differently. As
Jordan put it in the passage quoted above, he took the equations that were
the end result in sec. 2 as his starting point in sec. 4.

Before turning to Jordan’s discussion of these equations, we show that they
are easily recovered in the modern Hilbert space formalism. The result of the
momentum operator α̂ in Eq. (48) acting on eigenvectors |β〉 of its conjugate
operator β̂ in Eq. (49) is, as we saw in Section 2.1: 38

α̂|β〉 = −~
i

∂

∂β
|β〉. (52)

Taking the inner product of these expressions with |q〉 and using that α̂ =
f(p̂, q̂), we find that

−~
i

∂

∂β
〈q|β〉 = 〈q|α̂|β〉 = 〈q|f(p̂, q̂)|β〉. (53)

Since p̂ and q̂ are represented by the differential operators (~/i) ∂/∂q and q,
respectively, in the q-basis, we can rewrite this as

〈q|f(p̂, q̂)|β〉 = f

(
~
i

∂

∂q
, q

)
〈q|β〉. (54)

Combining these last two equations, we arrive at Eq. (50). Likewise, using
that β̂|β〉 = β|β〉 and that β̂ = g(p̂, q̂), we can write the inner product 〈q|β̂|β〉
as

〈q|β̂|β〉 = β〈q|β〉 = g

(
~
i

∂

∂q
, q

)
〈q|β〉, (55)

where in the last step we used the representation of p̂ and q̂ in the q-basis.
From this equation we can read off Eq. (51).

We turn to Jordan’s discussion of Eqs. (50)–(51) [NB1, sec. 4, Eqs. 2ab]. As
he pointed out:

As is well-known, of course, one cannot in general simultaneously impose
two partial differential equations on one function of two variables. We will
prove, however, in sec. 5: the presupposition—which we already made—that
â and β̂ are connected to p̂ and q̂ via a canonical transformation (1) [our

38 The complex conjugate of Eq. (33) can be written as

〈Q| p̂ |q〉 = −~
i

∂

∂q
〈Q|q〉 = 〈Q|

(
−~
i

∂

∂q

)
|q〉.

Since this holds for arbitrary |Q〉, it follows that p̂ |q〉 = −(~/i)(∂/∂q)|q〉. This will
be true for any pair of conjugate variables.
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Eqs. (48)–(49)] is the necessary and sufficient condition for (2) [our Eqs.
(50)–(51)] to be solvable (Jordan, 1927b, p. 822; hats added).

In sec. 5, “Mathematical theory of the amplitude equations,” Jordan (1927b,
pp. 824–828) made good on this promise. To prove that the “presupposition”
is sufficient, he used canonical transformations to explicitly construct a simul-
taneous solution of the pair of differential equations (50)–(51) for probability
amplitudes (ibid., pp. 824–825, Eqs. 9–17). He did this in two steps.

(1) He showed that the sufficient condition for 〈Q|β〉 to be a solution of
the amplitude equations in the Q-basis, given that 〈q|β〉 is a solution of
these equations in the q-basis, is that (p̂, q̂) and (P̂ , Q̂) are related by a
canonical transformation.

(2) He established a starting point for generating such solutions by show-
ing that a very simple canonical transformation (basically switching p̂
and q̂) turns the amplitude equations (50)–(51) into a pair of equations
immediately seen to be satisfied by the amplitude 〈q|β〉 = eiqβ/~.

With these two steps Jordan had shown that the assumption that P̂ and Q̂
are related to p̂ and q̂ through a canonical transformation is indeed a sufficient
condition for the amplitude equations (50)–(51) [NB1, sec. 4, Eqs. 2ab] to be
simultaneously solvable. We cover this part of Jordan’s argument in detail.

The proof that this assumption is necessary as well as sufficient is much more
complicated (Jordan, 1927b, pp. 825–828, Eqs. 18–34). The mathematical pre-
liminaries presented in sec. 3 of Neue Begründung I (ibid., pp. 816–821) are
needed only for this part of the proof in sec. 5. We will cover neither this part
of sec. 5 nor sec. 3.

However, we do need to explain an important result that Jordan derived in
sec. 5 as a consequence of this part of his proof (ibid., p. 828, Eqs. 35–40):
Canonical transformations T (p̂, q̂) as defined above (see Eqs. (48)–(49) [NB1,
sec. 4, Eq. 1]), which are differential operators once p̂ and q̂ have been replaced
by their representations (~/i) ∂/∂q and q in the q-basis, can be written in the
form of the integral operators T defined in sec. 2 (see Eq. (7) [NB1, sec. 2, Eq.
21]).

This result is central to the basic structure of Jordan’s theory and to the logic
of his Neue Begründung papers. It shows that Jordan’s probability amplitudes
do double duty as integral kernels of the operators implementing canonical
transformations. As such, Jordan showed, they satisfy the completeness and
orthogonality relations required by postulate C (see Eqs. (1)–(3) [NB1, sec.
2, Eqs. 14–17]). To paraphrase the characterization of Jordan’s project by
Hilbert et al. that we already quoted in the introduction, Jordan postulated
certain relations between his probability amplitudes in Part One of his paper
and then, in Part Two, presented “a simple analytical apparatus in which

30



quantities occur that satisfy these relations exactly” (Hilbert, von Neumann,
and Nordheim, 1928, p. 2). These quantities, it turns out, are the integral
kernels of canonical transformations. Rather than following Jordan’s own proof
of this key result, which turns on properties of canonical transformations, we
present a modern proof, which turns on properties of Hilbert space and the
spectral theorem.

But first we show, closely following Jordan’s own argument in sec. 5 of Neue
Begründung I, how to construct a simultaneous solution of the differential
equations (50)–(51) [NB1, sec. 4, Eqs. 2ab] for the amplitudes. Suppose we
can exhibit just one case of a canonical transformation (p̂, q̂) → (α̂, β̂) (Eqs.
(48)–(49) [NB1, sec. 4, Eq. 1]) where the amplitude equations manifestly have
a unique simultaneous solution. Any other canonical pair can be arrived at
from the pair (p̂, q̂) via a new transformation function S(P̂ , Q̂), in the usual
way

p̂ = SP̂S−1, q̂ = SQ̂S−1. (56)

with S = S(P̂ , Q̂) [NB1, sec. 5, Eq. 10]. The connection between the original
pair (α̂, β̂) and the new pair (P̂ , Q̂) involves the composite of two canonical
transformations [NB1, sec. 5, Eq. 11]:

α̂ = f(p̂, q̂) = f(SP̂S−1, SQ̂S−1) ≡ F (P̂ , Q̂), (57)

β̂ = g(q̂, q̂) = g(SP̂S−1, SQ̂S−1) ≡ G(P̂ , Q̂). (58)

In the new Q-basis, the differential equations (50)–(51) [NB1, sec. 4, Eqs. 2ab]
for probability amplitudes take the form{

F

(
~
i

∂

∂Q
,Q

)
+

~
i

∂

∂β

}
〈Q|β〉 = 0, [NB1, sec. 5, Eq. 12a] (59)

{
G

(
~
i

∂

∂Q
,Q

)
− β

}
〈Q|β〉 = 0. [NB1, sec. 5, Eq. 12b] (60)

Jordan now showed that

〈Q|β〉 =

{
S

(
~
i

∂

∂q
, q

)
〈q|β〉

}
q=Q

[NB1, sec. 5, Eq. 13] (61)

is a simultaneous solution of the amplitude equations (59)–(60) in the Q-basis
if 〈q|β〉 is a simultaneous solution of the amplitude equations (50)–(51) in the
q-basis. Using the operator S and its inverse S−1, we can rewrite the latter
as 39

S

{
f

(
~
i

∂

∂q
, q

)
+

~
i

∂

∂β

}
S−1S 〈q|β〉 = 0, [NB1, sec. 5, Eq. 14a] (62)

39 This step is formally the same as the one that got us from Eqs. (5)–(6) [NB1, sec.
2, Eqs. 19ab] to Eqs. (14)–(16) [NB1, sec. 2, Eqs. 23ab].
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S

{
g

(
~
i

∂

∂q
, q

)
− β

}
S−1S 〈q|β〉 = 0, [NB1, sec. 5, Eq. 14b] (63)

both taken, as in Eq. (61), at q = Q. Written more carefully, the first term in
curly brackets in Eq. (62), sandwiched between S and S−1, is

S f

(
~
i

∂

∂q
, q

)
S−1 =

{
S

(
~
i

∂

∂q
, q

)
f

(
~
i

∂

∂q
, q

)
S−1

(
~
i

∂

∂q
, q

)}
q=Q

. (64)

With the help of Eq. (57), this can further be rewritten as

S(P,Q) f(P,Q)S(P,Q)−1|P= ~
i

∂
∂Q

= F

(
~
i

∂

∂Q
,Q

)
. (65)

The second term in curly brackets in Eq. (62), sandwiched between S and
S−1, is simply equal to

S
~
i

∂

∂β
S−1 =

~
i

∂

∂β
, (66)

as S does not involve β. Using Eqs. (61) and (64)–(66), we can rewrite Eq.
(62) [NB1, sec. 5, Eq. 14a] as{

F

(
~
i

∂

∂Q
,Q

)
+

~
i

∂

∂β

}
〈Q|β〉 = 0, (67)

which is just Eq. (59) [NB1, sec. 5, Eq. 12a]. A completely analogous argument
establishes that Eq. (63) [NB1, sec. 5, Eq. 14b] reduces to Eq. (60) [NB1, sec.
5, Eq. 12b]. This concludes the proof that 〈Q|β〉 is a solution of the amplitude
equations in the new Q-basis, if 〈q|β〉, out of which 〈Q|β〉 was constructed
with the help of the operator S implementing a canonical transformation, is
a solution of the amplitude equations in the old q-basis.

As S is completely general, we need only exhibit a single valid starting point,
i.e., a pair (f, g) and an amplitude 〈q|β〉 satisfying the amplitude equations
in the q-basis (Eqs. (50)–(51) [NB1, sec. 4, Eqs. 2ab]), to construct general
solutions of the amplitude equations in some new Q-basis (Eqs. (59)–(60)
[NB1, sec. 5, Eqs. 12ab]). The trivial example of a canonical transformation
switching the roles of coordinate and momentum does the trick (cf. Eqs. (57)–
(58) [NB1, sec. 5, Eq. 11]):

α̂ = f(p̂, q̂) = −q̂, β = g(p̂, q̂) = p̂. [NB1, sec. 5, Eq. 15] (68)

In that case, Eqs. (50)–(51) become [NB1, sec. 5, Eq. 16]{
q − ~

i

∂

∂β

}
〈q|β〉 = 0, (69)

{
~
i

∂

∂q
− β

}
〈q|β〉 = 0. (70)
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Except for the minus signs, these equations are of the same form as the trivial
equations (5)–(6) [NB1, sec. 2, Eqs. 19ab] for 〈p|q〉, satisfied by the basic
amplitude 〈p|q〉 = e−ipq/~. In the case of Eqs. (69)–(70), the solution is:

〈q|β〉 = eiβq/~. [NB1, sec. 5, Eq. 17] (71)

This establishes that the canonical nature of the transformation to the new
variables is a sufficient condition for the consistency (i.e. simultaneous solv-
ability) of the pair of differential equations (59)–(60) [NB1, sec. 5, Eq. 12ab]
for the probability amplitudes.

Jordan (1927b, pp. 825–828) went on to prove the converse, i.e., that the
canonical connection is also a necessary condition for the consistency of Eqs.
(59)–(60). This is done, as Jordan explained at the top of p. 827 of his paper,
by explicit construction of the operator S (in Eq. (61)), given the validity of
Eqs. (59)–(60). We skip this part of the proof.

Jordan (1927b, p. 828) then used some of the same techniques to prove a key
result in his theory. As mentioned above, we will appeal to the modern Hilbert
space formalism and the spectral theorem to obtain this result. Once again
consider Eq. (61):

〈Q|β〉 =

{
S

(
~
i

∂

∂q
, q

)
〈q|β〉

}
q=Q

. [NB1, sec. 5, Eq. 13] (72)

This equation tells us that the differential operator S((~/i) ∂/∂q, q) maps ar-
bitrary states 〈q|β〉 in the q-basis (recall that β̂ can be any operator) onto the
corresponding states 〈Q|β〉 in the Q-basis. The spectral theorem, which gives
us the resolution

∫
dq|q〉〈q| of the unit operator, tells us that this mapping can

also be written as

〈Q|β〉 =
∫
dq 〈Q|q〉〈q|β〉. (73)

Schematically, we can write

S

(
~
i

∂

∂q
, q

)
. . . =

∫
dq 〈Q|q〉 . . . (74)

In other words, the probability amplitude 〈Q|q〉 is the integral kernel for the in-
tegral representation of the canonical transformation operator S((~/i) ∂/∂q, q).
Using nothing but the properties of canonical transformations and his differ-
ential equations for probability amplitudes (Eqs. (50)–(51) [NB1, sec. 4, Eqs.
2ab]), Jordan (1927b, p. 828) derived an equation of exactly the same form as
Eq. (74), which we give here in its original notation:

T

(
ε
∂

∂x
, x

)
=
∫
dx.ϕ(y, x). . . . [NB1, sec. 5, Eq. 40] (75)
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Jordan claimed that Eqs. (50)–(51) [NB1, sec. 4, Eqs. 2ab] contain both the
time-independent and the time-dependent Schrödinger equations as special
cases. The time-independent Schrödinger equation is a special case of Eq.
(51):

If in (2b) we take β to be the energy W , and g to be the Hamiltonian
function H(p, q) of the system, we obtain the Schrödinger wave equation,
which corresponds to the classical Hamilton-Jacobi equation. With (2b)
comes (2a) as a second equation. In this equation we need to consider f to
be the time t (as a function of p and q) (Jordan, 1927b, p. 822).

Actually, the variable conjugate to Ĥ would have to be minus t̂. For α̂ =
f(p̂, q̂) = −t̂ and β̂ = g(p̂, q̂) = Ĥ (with eigenvalues E), Eqs. (50)–(51) be-
come: {

t̂− ~
i

∂

∂E

}
〈q|E〉 = 0, (76){

Ĥ − E
}
〈q|E〉 = 0. (77)

If 〈q|E〉 is set equal to ψE(q), Eq. (77) is indeed just the time-independent
Schrödinger equation.

Jordan likewise claimed that the time-dependent Schrödinger equation is a
special case of Eq. (50)

if for β we choose the time t [this, once again, should be −t], for g [minus] the
time t(p, q) as function of p, q, and, correspondingly, for f the Hamiltonian
function H(p, q) (Jordan, 1927b, p. 823).

This claim is more problematic. For α̂ = f(p̂, q̂) = Ĥ (eigenvalues E) and
β̂ = g(p̂, q̂) = −t̂, Eqs. (50)–(51) [NB1, sec. 4, Eqs. 2ab] become:{

Ĥ − ~
i

∂

∂t

}
〈q|t〉 = 0, (78)

{
t̂− t

}
〈q|t〉 = 0. (79)

If 〈q|t〉 is set equal to ψ(q, t), Eq. (78) turns into the time-dependent Schrö-
dinger equation. However, time is a parameter in quantum mechanics and not
an operator t̂ with eigenvalues t and eigenstates |t〉. 40

This also makes Eqs. (76) and (79) problematic. Consider the former. For a
free particle, the Hamiltonian is Ĥ = p̂2/2m, represented by ((~/i)∂/∂q)2/2m
in the q-basis. The solution of Eq. (77),

〈q|E〉 = ei
√

2mEq/~, (80)

40 There is an extensive literature on this subject. For an introduction to this issue,
see, e.g., Hilgevoord (2002) and the references therein.
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is also a solution of Eq. (76) as long as we define t̂ ≡ mq̂p̂−1, as suggested by
the relation q = (p/m)t, Note, however, that we rather arbitrarily decided on
this particular ordering of the non-commuting operators p̂ and q̂. Using that

~
i

∂

∂q
ei
√

2mEq/~ =
√

2mE ei
√

2mEq/~, (81)

we find that t̂ 〈q|E〉 = mq̂p̂−1〈q|E〉 is given by:

mq̂

(
~
i

∂

∂q

)−1

ei
√

2mEq/~ =
mq√
2mE

ei
√

2mEq/~. (82)

This is indeed equal to (~/i)∂/∂E 〈q|E〉 as required by Eq. (76):

~
i

∂

∂E
ei
√

2mEq/~ =
mq√
2mE

ei
√

2mEq/~. (83)

So with t̂ ≡ mq̂p̂−1, both Eq. (50) and Eq. (51) [NB1, sec. 4, Eqs. 2ab] hold in
the special case of a free particle. It is not at all clear, however, whether this
will be true in general.

It is probably no coincidence that we can get Jordan’s formalism to work,
albeit with difficulty, for a free particle where the energy spectrum is fully
continuous. Recall that, in Neue Begründung I, Jordan restricted himself to
quantities with completely continuous spectra. As he discovered when he tried
to generalize his formalism to quantities with partly or wholly discrete spectra
in Neue Begründung II, this restriction is not nearly as innocuous as he made
it sound in Neue Begründung I.

Consider the canonical transformation α̂ = T p̂T−1 (Eq. (48) [NB1, sec. 4, Eq.
1]) that plays a key role in Jordan’s construction of the model realizing his
axioms. Consider (in modern terms) an arbitrary eigenstate |p〉 of the operator
p̂ with eigenvalue p, i.e., p̂|p〉 = p|p〉. It only takes one line to show that then
T |p〉 is an eigenstate of α̂ with the same eigenvalue p:

α̂ T |p〉 = T p̂T−1T |p〉 = T p̂|p〉 = p T |p〉. (84)

In other words, the operators α̂ and p̂ connected by the canonical transforma-
tion α̂ = T p̂T−1 have the same spectrum. This simple observation, more than
anything else, reveals the limitations of Jordan’s formalism. It is true, as Eq.
(77) demonstrates, that his differential equations Eqs. (50)–(51) [NB1, sec. 4,
Eqs. 2ab] for probability amplitudes contain the time-independent Schrödinger
equation as a special case. However, since the energy spectrum is bounded
from below and, in many interesting cases, at least partially discrete, it is
impossible to arrive at the time-independent Schrödinger equation starting
from the trivial equations (69)–(70) [NB1, sec. 5, Eq. 16] for the probability
amplitude eiqβ/~ between q̂ and β̂—recall that β̂ = p̂ in this case (see Eq.
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(68))—and performing some canonical transformation. As Eq. (84) shows, a
canonical transformation cannot get us from p̂’s and q̂’s with completely con-
tinuous spectra to α̂’s and β̂’s with partly discrete spectra. This, in turn,
means that, in many interesting cases (i.e., for Hamiltonians with at least
partly discrete spectra), the time-independent Schrödinger equation does not
follow from Jordan’s postulates. In Jordan’s defense one could note at this
point that this criticism is unfair as he explicitly restricted himself to quanti-
ties with fully continuous spectra in Neue Begründung I. However, as we will
see when we turn to Neue Begründung II in Section 4, Jordan had to accept
in this second paper that the extension of his general formalism to quantities
with wholly or partly discrete spectra only served to drive home the problem
and did nothing to alleviate it.

2.4 The confusing matter of the Ergänzungsamplitude

In this subsection, we examine the “supplementary amplitude” (Ergänzungs-
amplitude) ψ(x, y) that Jordan introduced in Neue Begründung I in addition
to the probability amplitude ϕ(x, y). 41 Jordan’s (1927b, p. 813) postulate I
sets the conditional probability Pr(x|y) that x̂ has a value between x and
x+ dx given that ŷ has the value y equal to:

ϕ(x, y)ψ∗(x, y)dx. [NB1, sec. 2, Eq. 10] (85)

Jordan allowed the eigenvalues x and y to be complex. He stipulated that
the “star” in ψ∗(x, y) is to be interpreted in such a way that, when taking
the complex conjugate of ψ(x, y), one should retain x and y and not replace
them, as the “star” would naturally suggest, by their complex conjugates. The
rationale for this peculiar rule will become clear below.

For general complex amplitudes, Eq. (85) only makes sense as a positive real
probability if the phases of ϕ(x, y) and ψ∗(x, y) exactly compensate, leaving
only their positive absolute magnitudes (times the interval dx, as we are deal-
ing with continuous quantities). Jordan certainly realized that in cases where
the mechanical quantities considered were represented by self-adjoint oper-
ators, this duplication was unnecessary. 42 He seems to have felt the need,
however, to advance a more general formalism, capable of dealing with the
not uncommon circumstance that a canonical transformation of perfectly real
(read “self-adjoint” in the quantum-mechanical case) mechanical quantities

41 This subsection falls somewhat outside the main line of argument of our paper
and can be skipped by the reader without loss of continuity.
42 For instance, if x̂ is a Cartesian coordinate and ŷ is the Hamiltonian, the ampli-
tudes ϕ(x, y) = ψ(x, y) are just the Schrödinger energy eigenfunctions of the system
in coordinate space.
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actually leads to a new canonically conjugate, but complex (read “non-self-
adjoint”) pair of quantities. An early example of this can be found in London’s
(1926b) solution of the quantum harmonic oscillator by canonical transforma-
tion from the initial (q̂, p̂) coordinate-momentum pair to raising and lowering
operators, which are obviously not self-adjoint (Duncan and Janssen, 2009,
sec. 6.2, pp. 357–358).

Jordan could hardly have been aware at this stage of the complete absence
of “nice” spectral properties in the general case of a non-self-adjoint opera-
tor, with the exception of a very special subclass to be discussed shortly. In
contrast to the self-adjoint case, such operators may lack a complete set of
eigenfunctions spanning the Hilbert space, or there may be an overabundance
of eigenfunctions which form an “over-complete” set, in the sense that proper
subsets of eigenfunctions may suffice to construct an arbitrary state. To the
extent that eigenfunctions exist, the associated eigenvalues are in general com-
plex, occupying some domain—of possibly very complicated structure—in the
complex plane. In the case of the lowering operator in the simple harmonic
oscillator, the spectrum occupies the entire complex plane! Instead, Jordan
(1927b, p. 812) seems to have thought of the eigenvalue spectrum as lying on
a curve even in the general case of arbitrary non-self-adjoint quantities.

There is one subclass of non-self-adjoint operators for which Jordan’s attempt
to deal with complex mechanical quantities can be given at least a limited
validity. The spectral theorem usually associated with self-adjoint and uni-
tary operators (existence and completeness of eigenfunctions) actually extends
with full force to the larger class of normal operators N̂ , defined as satisfying
the commutation relation [N̂ , N̂ †] = 0, which obviously holds for self-adjoint
(N̂ = N̂ †) and unitary (N̂ † = N̂−1) operators. 43 The reason that the spectral
theorem holds for such operators is very simple: given a normal operator N̂ ,
we may easily construct a pair of commuting self-adjoint operators:

Â ≡ 1

2
(N̂ + N̂ †), B̂ ≡ 1

2i
(N̂ − N̂ †). (86)

It follows that Â = Â†, B̂ = B̂†, and that [Â, B̂] = (i/2) [N,N †] = 0. A well-
known theorem assures us that a complete set of simultaneous eigenstates |λ〉
of Â and B̂ exist, where the parameter λ is chosen to label uniquely the state
(we ignore the possibility of degeneracies here), with

Â |λ〉 = α(λ) |λ〉, B̂ |λ〉 = β(λ) |λ〉, N̂ |λ〉 = ζ(λ) |λ〉, (87)

where ζ(λ) ≡ α(λ) + iβ(λ) are the eigenvalues of N̂ = Â + iB̂. Of course,
there is no guarantee that α(λ) and β(λ) are continuously connected (once we

43 For discussion of the special case of finite Hermitian matrices, see Dennery and
Krzywicki (1996, sec. 24.3, pp. 177–178). For a more general and more rigorous
discussion, see von Neumann (1932, Ch. II, sec. 10).
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eliminate the parameter λ), so the spectrum of N̂ (the set of points ζ(λ) in the
complex plane) may have a very complicated structure. For a normal operator,
there at least exists the possibility though that the spectrum indeed lies on a
simple curve, as assumed by Jordan. In fact, it is quite easy to construct an
example along these lines, and to show that Jordan’s two amplitudes, ϕ(x, y)
and ψ(x, y), do exactly the right job in producing the correct probability
density in the (self-adjoint) x̂ variable for a given complex value of the quantity
ŷ, in this case associated with a normal operator with a complex spectrum.

Our example is a simple generalization of one that Jordan (1927b, sec. 5, pp.
830–831) himself gave (in the self-adjoint case). For linear canonical trans-
formations, the differential equations specifying the amplitudes ϕ(x, y) and
ψ(x, y) [NB1, sec. 4, Eqs. 2ab and 3ab] are readily solved analytically. Thus,
suppose that the canonical transformation from a self-adjoint conjugate pair
(p̂, q̂) to a new conjugate pair (α̂, β̂) is given by

α̂ = a p̂+ b q̂, β̂ = c p̂+ d q̂, (88)

where the coefficients a, b, c, d must satisfy ad− bc = 1 for the transformation
to be canonical, but may otherwise be complex numbers [cf. NB1, sec. 5, Eqs.
56–57]. The requirement that α̂ be a normal operator (i.e., [α̂, α̂†] = 0) is
easily seen to imply a/a∗ = b/b∗. Thus, a and b have the same complex phase
(which we may call eiϑ). Likewise, normality of β̂ implies that c and d have
equal phase (say, eiχ). Moreover, the canonical condition ad− bc = 1 implies
that the phases eiϕ and eiχ must cancel, so we henceforth set χ = −ϑ, and
rewrite the basic canonical transformation as

α̂ = ζ(a p̂+ b q̂), β̂ = ζ∗(c p̂+ d q̂), (89)

where ζ ≡ eiϑ, and a, b, c, d are now real and satisfy ad − bc = 1. We see
that the spectrum of β̂ lies along the straight line in the complex plane with
phase −ϑ (as the operator c p̂+d q̂ is self-adjoint and therefore has purely real
eigenvalues): the allowed values for β̂ are such that ζβ is real.

It is now a simple matter to solve the differential equations for the amplitude
ϕ(q, β) and the supplementary amplitude ψ(q, β) in this case. The general
equations are (Jordan, 1927b, sec. 4, p. 821): 44

44 Jordan (1927b, p. 817) introduced the notation F † for the adjoint of F in sec. 3
of his paper.
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{
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, q
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i

∂

∂β

}
ϕ(q, β) = 0, [NB1, sec. 4, Eq. 2a] (90){

g

(
~
i

∂

∂q
, q

)
− β

}
ϕ(q, β) = 0, [NB1, sec. 4, Eq. 2b] (91){

f †
(
~
i

∂

∂q
, q

)
+

~
i

∂

∂β

}
ψ(q, β) = 0, [NB1, sec. 4, Eq. 3a] (92){

g†
(
~
i

∂

∂q
, q

)
− β

}
ψ(q, β) = 0. [NB1, sec. 4, Eq. 3b] (93)

The differential operators in this case are (recall that α̂ = f(p̂, q̂) and β̂ =
g(p̂, q̂) (see Eqs. (48)–(49) [NB1, sec. 4, Eq. 1]):

f = ζ

(
a
~
i

∂

∂q
+ b q

)
, f † = ζ∗

(
a
~
i

∂

∂q
+ b q

)
,

(94)

g = ζ∗
(
c
~
i

∂

∂q
+ d q

)
, g† = ζ

(
c
~
i

∂

∂q
+ d q

)
,

and for ϕ(q, β) and ψ(q, β) we find (up to an overall constant factor):

ϕ(q, β) = exp

{
− i
~

(
d

2c
q2 − 1

c
ζβq +

a

2c
(ζβ)2

)}
,

(95)

ψ(q, β) = exp

{
− i
~

(
d

2c
q2 − 1

c
ζ∗βq +

a

2c
(ζ∗β)2

)}
.

We note that the basic amplitude ϕ(q, β) is a pure oscillatory exponential, as
the combinations ζβ and the constants a, c, and d appearing in the exponent
are all real, so the exponent is overall purely imaginary, and the amplitude has
unit absolute magnitude. This is not the case for ψ(q, β), due to the appearance
of ζ∗, but at this point we recall that, according to Jordan’s postulate A,
the correct probability density is obtained by multiplying ϕ(x, y) by ψ∗(x, y),
where the star symbol includes the instruction that the eigenvalue y of ŷ is
not to be conjugated (cf. our comment following Eq. (85)). This rather strange
prescription is essential if we are to maintain consistency of the orthogonality
property ∫

ϕ(x, y′′)ψ∗(x, y′)dx = δy′y′′ (96)

with the differential equations (91) and (93) for the amplitudes [NB1, sec. 4,
Eqs. 2b and 3b]. With this proviso, we find (recalling again that ζβ is real):

ψ∗(q, β) = exp

{
i

~

(
d

2c
q2 − 1

c
ζβq +

a

2c
(ζβ)2

)}
= ϕ̄(q, β), (97)
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where the bar now denotes conventional complex conjugation, and we see that
the product ϕ(q, β)ψ∗(q, β) = ϕ(q, β)ϕ̄(q, β) is indeed real, and in fact, equal
to unity, as we might expect in the case of a purely oscillatory wave function.

That Jordan’s prescription for the construction of conditional probabilities
cannot generally be valid in the presence of classical complex (or quantum-
mechanically non-self-adjoint) quantities is easily verified by relaxing the con-
dition of normal operators in the preceding example. In particular, we consider
the example of the raising and lowering operators for the simple harmonic os-
cillator, obtained again by a complex linear canonical transformation of the
(q̂, p̂) canonical pair. 45 Now, as a special case of Eq. (88), we take

α̂ =
1√
2

(p̂+ iq̂) = f(p̂, q̂), β̂ =
1√
2

(ip̂+ q̂) = g(p̂, q̂), (98)

which, though canonical, clearly does not correspond to normal operators, as
the coefficients a, b (and likewise c, d) are now 90 degrees out of phase. Solving
the differential equations for the amplitudes, Eqs. (90)–(93) [NB1, sec. 4, Eqs.
2ab, 3ab], we now find (up to an overall constant factor [cf. Eq. (95)]):

ϕ(q, β) = exp
{
− 1

2~
(
q2 − 2

√
2βq + β2

)}
,

(99)

ψ(q, β) = exp
{

1

2~
(
q2 − 2

√
2βq + β2

)}
= ψ∗(q, β) =

1

ϕ(q, β)
,

where β is an arbitrary complex number. In fact, the wave function ϕ(q, β) is
a square-integrable eigenfunction of β̂ for an arbitrary complex value of β: it
corresponds to the well-known “coherent eigenstates” of the harmonic oscil-
lator, with the envelope (absolute magnitude) of the wave function executing
simple harmonic motion about the center of the potential well with frequency
ω (given the Hamiltonian Ĥ = 1

2
(p̂2 + ω2q̂2)). The probability density in q

of such a state for fixed β is surely given by the conventional prescription
|ϕ(q, β)|2. On the other hand, for complex β, the Jordan prescription requires
us to form the combination (with the peculiar interpretation of the “star” in
ψ∗(q, β), in which β is not conjugated):

ϕ(q, β)ψ∗(q, β) = 1, (100)

which clearly makes no physical sense in this case, as the state in question is a
localized, square-integrable one. If Jordan’s notion of an Ergänzungsamplitude
is to have any nontrivial content, it would seem to require, at the very least,

45 As mentioned above, London (1926b) had looked at this example of a canonical
transformation (Duncan and Janssen, 2009, sec. 6.2, p. 358).
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that the complex quantities considered fall into the very special category of
normal operators after quantization.

In fact, as we will see shortly, in the paper by Hilbert, von Neumann, and
Nordheim (1928) on Jordan’s version of statistical transformation theory, the
requirement of self-adjointness already acquires the status of a sine qua non for
physical observables in quantum theory, and the concept of an Ergänzungsam-
plitude disappears even from Jordan’s own treatment of his theory after Neue
Begründung I.

3 Hilbert, von Neumann, and Nordheim’s Grundlagen (April 1927)

In the winter semester of 1926/27, Hilbert gave a course entitled “Mathemat-
ical methods of quantum theory.” The course consisted of two parts. The first
part, “The older quantum theory,” was essentially a repeat of the course that
Hilbert had given under the same title in 1922/23. The second part, “The new
quantum theory,” covered the developments since 1925. As he had in 1922/23,
Nordheim prepared the notes for this course, which were recently published
(Sauer and Majer, 2009, pp. 504–707; the second part takes up pp. 609–707).
At the very end (ibid., pp. 700–706), we find a concise exposition of the main
line of reasoning of Jordan’s Neue Begründung I.

This presentation served as the basis for a paper by Hilbert, von Neumann, and
Nordheim (1928). As the authors explained in the introduction (ibid., pp. 1–2),
“important parts of the mathematical elaboration” were due to von Neumann,
while Nordheim was responsible for the final text (Duncan and Janssen, 2009,
p. 361). The paper was submitted to the Mathematische Annalen April 6, 1927,
but, for reasons not clear to us, was published only in 1928, i.e., well after the
appearance of the trilogy by von Neumann (1927a,b,c) that rendered much
of it obsolete. In this section we go over the main points of this three-man
paper. 46

In the lecture notes for Hilbert’s course, Dirac is not mentioned at all, and even
though in the paper it is acknowledged that Dirac (1927) had independently
arrived at and published similar results, the focus continues to be on Jordan.
There are only a handful of references to Dirac, most importantly in connection
with the delta function and in the discussion of the Schrödinger equation for
a Hamiltonian with a partly discrete spectrum (Hilbert, von Neumann, and
Nordheim, 1928, p. 8 and p. 30, respectively). Both the lecture notes and the

46 For other discussions of Hilbert, von Neumann, and Nordheim (1928), see Jammer
(1966, 309–312) and Lacki (2000, pp. 295–300), who mainly focuses on its axiomatic
structure.
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paper stay close to the relevant sections of Neue Begründung I, but Hilbert and
his collaborators did change Jordan’s notation. Their notation is undoubtedly
an improvement over his—not a high bar to clear—but the modern reader
trying to follow the argument in these texts may still want to translate it
into the kind of modern notation we introduced in Section 2. We will adopt
the notation of Hilbert and his co-authors in this section, except that we
will continue to use hats to distinguish (operators representing) mechanical
quantities from their numerical values.

As we mentioned in Section 2.1, when we discussed postulates A through D
of Neue Begründung I, Hilbert, von Neumann, and Nordheim (1928, pp. 4–5)
based their exposition of Jordan’s theory on six “physical axioms.” 47 Axiom
I introduces the basic idea of a probability amplitude. The amplitude for the
probability that a mechanical quantity F̂1(p̂ q̂) (some function of momentum
p̂ and coordinate q̂) has the value x given that another such quantity F̂2(p̂ q̂)
has the value y is written as ϕ(x y; F̂1 F̂2).

Jordan’s Ergänzungsamplitude still made a brief appearance in the notes for
Hilbert’s course (Sauer and Majer, 2009, p. 700) but is silently dropped in
the paper. As we saw in Section 2, amplitude and supplementary amplitude
are identical as long as we only consider quantities represented, in modern
terms, by Hermitian operators. In that case, the probability w(x y; F̂1 F̂2) of
finding the value x for F̂1 given the value y for F̂2 is given by the product
of ϕ(x y; F̂1 F̂2) and its complex conjugate, which, of course, will always be a
real number. Although they did not explicitly point out that this eliminates
the need for the Ergänzungsamplitude, Hilbert, von Neumann, and Nordheim
(1928, p. 17–25) put great emphasis on the restriction to Hermitian operators.
Secs. 6–8 of their paper (“The reality conditions,” “Properties of Hermitian
operators,” and “The physical meaning of the reality conditions”) are devoted
to this issue.

Axiom II corresponds to Jordan’s postulate B and says that the amplitude
for finding a value for F̂2 given the value of F̂1 is the complex conjugate of
the amplitude of finding a value for F̂1 given the value of F̂2. This symmetry
property entails that these two outcomes have the same probability. Axiom
III is not among Jordan’s postulates. It basically states the obvious demand
that when F̂1 = F̂2, the probability w(x y; F̂1 F̂2) be either 0 (if x 6= y) or 1 (if
x = y). Axiom IV corresponds to Jordan’s postulate C and states that the am-
plitudes rather than the probabilities themselves follow the usual composition
rules for probabilities (cf. Eqs. (1) and (3) in Section 2.1):

ϕ(x z; F̂1 F̂3) =
∫
ϕ(x y; F̂1 F̂2)ϕ(y z; F̂2 F̂3) dy. (101)

47 In the lecture notes we find four axioms that are essentially the same as Jordan’s
four postulates (Sauer and Majer, 2009, pp. 700–701).
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Though they did not use Jordan’s phrase “interference of probabilities,” the
authors emphasized the central importance of this particular axiom:

This requirement [Eq. (101)] is obviously analogous to the addition and mul-
tiplication theorems of ordinary probability calculus, except that in this case
they hold for the amplitudes rather than for the probabilities themselves.

The characteristic difference to ordinary probability calculus lies herein
that initially, instead of the probabilities themselves, amplitudes occur,
which in general will be complex quantities and only give ordinary probabili-
ties if their absolute value is taken and then squared (Hilbert, von Neumann,
and Nordheim, 1928, p. 5)

Axiom V, as we already mentioned in Section 2.1, makes part of Jordan’s
postulate A into a separate axiom. It demands that probability amplitudes
for quantities F̂1 and F̂2 depend only on the functional dependence of these
quantities on q̂ and p̂ and not on “special properties of the system under
consideration, such as, for example, its Hamiltonian” (ibid., p. 5). Axiom VI,
finally, adds another obvious requirement to the ones recognized by Jordan:
that probabilities be independent of the choice of coordinate systems.

Before they introduced the axioms, in a passage that we quoted in the in-
troduction, Hilbert, von Neumann, and Nordheim (1928, p. 2) had already
explained that the task at hand was to find “a simple analytical apparatus
in which quantities occur that satisfy” axioms I–VI. As we know from Neue
Begründung I, the quantities that fit the bill are the integral kernels of cer-
tain canonical transformations, implemented as T p̂T−1 and T q̂T−1 (cf. Eqs.
(48)–(49)). After introducing this “simple analytical apparatus” in secs. 3–4
(“Basic formulae of the operator calculus,” “Canonical operators and trans-
formations”), the authors concluded in sec. 5 (“The physical interpretation of
the operator calculus”):

The probability amplitude ϕ(x y; q̂ F̂ ) between the coordinate q̂ and an ar-
bitrary mechanical quantity F̂ (q̂ p̂)—i.e., for the situation that for a given
value y of F̂ , the coordinate lies between x and x+ dx—is given by the ker-
nel of the integral operator that canonically transforms the operator q̂ into
the operator corresponding to the mechanical quantity F̂ (q̂ p̂) (Hilbert, von
Neumann, and Nordheim, 1928, p. 14; italics in the original, hats added).

They immediately generalized this definition to cover the probability ampli-
tude between two arbitrary quantities F̂1 and F̂2. In sec. 3, the authors already
derived differential equations for integral kernels ϕ(x y) (ibid., pp. 10–11, Eqs.
(19ab) and (21ab)). Given the identification of these integral kernels with
probability amplitudes in sec. 5, these equation are just Jordan’s fundamental
differential equations for the latter (NB1, sec. 4, Eqs. (2ab); our Eqs. (50)–(51)
in Section 2.3).
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In sec. 4, they also stated the key assumption that any quantity of inter-
est can be obtained through a canonical transformation starting from some
canonically conjugate pair of quantities p̂ and q̂:

We will assume that every operator F̂ can be generated out of the basic
operator q̂ by a canonical transformation. This statement can also be ex-
pressed in the following way, namely that, given F̂ , the operator equation
T q̂T−1 has to be solvable.

The conditions that F̂ has to satisfy for this to be possible will not be
investigated here (Hilbert, von Neumann, and Nordheim, 1928, p. 12; hats
added).

What this passage suggests is that the authors, although they recognized the
importance of this assumption, did not quite appreciate that, as we showed
at the end of Section 2.3, it puts severe limits on the applicability of Jordan’s
formalism. In the simple examples of canonical transformations (F̂ = f(q̂) and
F̂ = p̂) that they considered in sec. 9 (“Application of the theory to special
cases”), the assumption is obviously satisfied and the formalism works just
fine (ibid., pp. 25–26). In sec. 10 (“The Schrödinger differential equations”),
however, they set F̂ equal to the Hamiltonian Ĥ and claimed that one of the
differential equations for the probability amplitude ϕ(xW ; q̂ Ĥ) (where W is
an energy eigenvalue) is the time-independent Schrödinger equation. As soon
as the Hamiltonian has a wholly or partly discrete spectrum, however, there
simply is no operator T such that Ĥ = T q̂T−1.

In secs. 6–8, which we already briefly mentioned above, Hilbert, von Neumann,
and Nordheim (1928, pp. 17–25) showed that the necessary and sufficient
condition for the probability w(x y; F̂1 F̂2) to be real is that F̂1 and F̂2 are
both represented by Hermitian operators. As we pointed out earlier, they
implicitly rejected Jordan’s attempt to accommodate F̂ ’s represented by non-
Hermitian operators through the introduction of the Ergänzungsamplitude.
They also showed that the operator representing the canonical conjugate Ĝ of
a quantity F̂ represented by a Hermitian operator is itself Hermitian.

The authors ended their paper on a cautionary note emphasizing its lack
of mathematical rigor. They referred to von Neumann’s (1927a) forthcoming
paper, Mathematische Begründung, for a more satisfactory treatment of the
Schrödinger equation for Hamiltonians with a partly discrete spectrum. In the
concluding paragraph, they warned the reader more generally:

In our presentation the general theory receives such a perspicuous and for-
mally simple form that we have carried it through in a mathematically
still imperfect form, especially since a fully rigorous presentation might well
be considerably more tedious and circuitous (Hilbert, von Neumann, and
Nordheim, 1928, p. 30).
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4 Jordan’s Neue Begründung II (June 1927)

On June 3, 1927, while at Bohr’s institute in Copenhagen on an International
Education Board fellowship, Jordan (1927e) submitted Neue Begründung II
to Zeitschrift für Physik. In the abstract he announced a “simplified and gen-
eralized” version of the theory presented in Neue Begründung I. 48

One simplification was that Jordan, like Hilbert, von Neumann, and Nordheim
(1928), dropped the Ergänzungsamplitude and restricted himself accordingly
to physical quantities represented by Hermitian operators and to canonical
transformations preserving Hermiticity. Another simplification was that he
adopted Dirac’s (1927) convention of consistently using the same letter for a
mechanical quantity and its possible values, using primes to distinguish the
latter from the former. When, for instance, the letter β is used for some quan-
tity, its values are denoted as β′, β′′, etc. We will continue to use the notation
β̂ for the quantity (and the operator representing that quantity) and the no-
tation β, β′, . . . for its values. While this new notation for quantities and their
values was undoubtedly an improvement, the new notation for probability
amplitudes and for transformation operators with those amplitudes as their
integral kernels is actually more cumbersome than in Neue Begründung I.

In the end, however, these new notational complications only affect the cos-
metics of the paper. What is far more troublesome is that the generalization of
the formalism promised in the abstract to handle cases with wholly or partly
discrete spectra is much more problematic than Jordan suggested and, we
argue, ultimately untenable. By the end of Neue Begründung II, Jordan is
counting quantities nobody would think of as canonically conjugate (e.g., dif-
ferent components of spin) as pairs of conjugate variables and has abandoned
the notion, central to the formalism of Neue Begründung I, that any quantity
of interest (e.g, the Hamiltonian) is a member of a pair of conjugate variables
connected to some initial pair of p̂’s and q̂’s by a canonical transformation.
We can fairly characterize the state of affairs by saying that, although Jordan
is still clinging to his p’s and q’s, they have effectively ceased to play any
significant role in his formalism.

As we showed at the end of Section 2.3, the canonical transformation

α̂ = T p̂T−1, β̂ = T q̂T−1 (102)

(cf. Eqs. (48)–(49)) can never get us from a quantity with a completely contin-
uous spectrum (such as position or momentum) to a quantity with a discrete

48 Interviewed in 1963 by Kuhn, who complained about the “dreadful notation” of
Neue Begründung I, Jordan said he just wanted to give a “prettier and clearer”
exposition of the same material (Duncan and Janssen, 2009, p. 360).
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spectrum (such as the Hamiltonian). In Neue Begründung II, Jordan (1927e,
pp. 16–17) evidently recognized this problem even though it is not clear that
he realized the extent to which this undercuts his entire approach.

The central problem is brought out somewhat indirectly in the paper. As Jor-
dan (1927e, pp. 1–2) already mentioned in the abstract and then demonstrated
in the introduction, the commutation relation, [p̂, q̂] = ~/i, for two canonically
conjugate quantities p̂ and q̂ cannot hold as soon as the spectrum of one of
them is partly discrete. Specifically, this means that action-angle variables Ĵ
and ŵ, where the eigenvalues of the action variable Ĵ are restricted to inte-
gral multiples of Planck’s constant, cannot satisfy the canonical commutation
relation.

The proof of this claim is very simple (ibid., p. 2). Jordan considered a pair
of conjugate quantities α̂ and β̂ where β̂ is assumed to have a purely discrete
spectrum. We will see that one runs into the same problem as soon as one α̂
or β̂ has a single discrete eigenvalue. Suppose α̂ and β̂ satisfy the standard
commutation relation:

[α̂, β̂] =
~
i
. (103)

As Jordan pointed out, it then follows that an operator that is some function
F of β̂ satisfies 49

[α̂, F (β̂)] =
~
i
F ′(β̂). (104)

Jordan now chose a function such that F (β) = 0 for all eigenvalues β1, β2, . . .
of β̂, while F ′(β) 6= 0 at those same points. In that case, the left-hand side of
Eq. (104) vanishes at all these points, whereas the right-hand side does not.
Hence, Eq. (104) and, by modus tollens, Eq. (103) cannot hold.

Since Eq. (104) is an operator equation, we should, strictly speaking, compare
the results of the left-hand side and the right-hand side acting on some state.
To show that Eq. (104)—and thereby Eq. (103)—cannot hold, it suffices to
show that it does not hold for one specific function F and one specific state
|ψ〉. Consider the simple function F1(β) = β − β1, for which F1(β1) = 0 and
F ′1(β1) = 1, and the discrete (and thus normalizable) eigenstate |β1〉 of the

49 If the function F (β) is assumed to be a polynomial,
∑

n cn β
n, which is all we

need for what we want to prove although Jordan (1927e, p. 2) considered a “fully
transcendent function,” Jordan’s claim is a standard result in elementary quantum
mechanics:

[α̂, F (β̂)] = [α̂,
∑
n

cn β̂
n] =

∑
n

cn n
~
i
β̂n−1 =

~
i

d

dβ̂

(∑
n

cn β̂
n

)
=

~
i
F ′(β̂),

where in the second step we repeatedly used that [α̂, β̂] = ~/i and that [Â, B̂Ĉ] =
[Â, B̂]Ĉ + B̂[Â, Ĉ] for any three operators Â, B̂, and Ĉ.
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operator corresponding to the quantity β̂. Clearly,

〈β1|[α̂, F1(β̂)]|β1〉 = 〈β1|[α̂, β̂ − β1]|β1〉 = 0, (105)

as β̂|β1〉 = β1|β1〉, while

〈β1|(~/i)F ′1(β̂)]|β1〉 =
~
i
〈β1|β1〉 =

~
i
, (106)

as F ′1(β̂)|β1〉 = F ′1(β1)|β1〉 = |β1〉. This shows that the relation,

〈ψ|[α̂, F (β̂)]|ψ〉 = 〈ψ|~
i
F ′(β̂)|ψ〉, (107)

and hence Eqs. (103)–(104), cannot hold. The specific example F1(β) = β−β1

that we used above immediately makes it clear that the commutation relation
[α̂, β̂] = ~/i cannot hold as soon as either one of the two operators has a single
discrete eigenvalue.

Much later in the paper, in sec. 4 (“Canonical transformations”), Jordan
(1927e, p. 16) acknowledged that it follows directly from this result that no
canonical transformation can ever get us from a pair of conjugate variables
p̂’s and q̂’s with completely continuous spectra to α̂’s and β̂’s with partly
discrete spectra. It is, after all, an essential property of canonical transforma-
tions that they preserve canonical commutation relations. From Eq. (102) and
[p̂, q̂] = ~/i it follows that

[α̂, β̂] = [T p̂T−1, T q̂T−1] = T [p̂, q̂]T−1 = ~/i. (108)

Since, as we just saw, only quantities with purely continuous spectra can
satisfy this commutation relation, Eq. (108) cannot hold for α̂’s and β̂’s with
partly discrete spectra and such α̂’s and β̂’s cannot possibly be obtained from
p̂ and q̂ through a canonical transformation of the form (102).

We will discuss below how this obstruction affects Jordan’s general formalism.
When Jordan, in the introduction of Neue Begründung II, showed that no
quantity with a partly discrete spectrum can satisfy a canonical commutation
relation, he presented it not as a serious problem for his formalism but as an
argument for the superiority of his alternative definition of conjugate variables
in Neue Begründung I (Jordan, 1927b, p. 814, cf. Eq. (4)). In that definition p̂
and q̂ are considered canonically conjugate if the probability amplitude ϕ(p, q)
has the simple form e−ipq/~, which means that as soon as the value of one of
the quantities p̂ and q̂ is known, all possible values of the other quantity are
equiprobable. As we saw in Section 2.1, Jordan showed that for p̂’s and q̂’s
with purely continuous spectra this implies that they satisfy [p̂, q̂] = ~/i (cf.
Eq. (34)), which is the standard definition of what it means for p̂ and q̂ to
be conjugate variables. In Neue Begründung II, Jordan (1927e, p. 6, Eq. (C))
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extended his alternative definition to quantities with wholly or partly discrete
spectra, in which case the new definition, of course, no longer reduces to the
standard one.

As Jordan (1927e) wrote in the opening paragraph, his new paper only assumes
a rough familiarity with the considerations of Neue Begründung I. He thus
had to redevelop much of the formalism of his earlier paper, while trying to
both simplify and generalize it at the same time. In sec. 2 (“Basic properties
of quantities and probability amplitudes”), Jordan began by restating the
postulates to be satisfied by his probability amplitudes.

He introduced a new notation for these amplitudes. Instead of ϕ(β, q) (cf. note
17) he now wrote Φαp(β

′, q′). The primes, as we explained above, distinguish
values of quantities from those quantities themselves. The subscripts α and p
denote which quantities are canonically conjugate to the quantities β̂ and q̂ for
which the probability amplitude is being evaluated. As we will see below, one
has a certain freedom in picking the α̂ and p̂ conjugate to β̂ and q̂, respectively,
and settling on a specific pair of α̂ and p̂ is equivalent to fixing the phase
ambiguity of the amplitude ϕ(β, q) up to some constant factor. So for a given
choice of α̂ and p̂, the amplitude Φαp(β

′, q′) is essentially unique. In this way,
Jordan (1927e, p. 20) could answer, at least formally, von Neumann’s (1927a,
p. 3) objection that probability amplitudes are not uniquely determined even
though the resulting probabilities are. It is only made clear toward the end of
the paper that this is the rationale behind these additional subscripts. Their
only other role is to remind the reader that Φαp(β

′, q′) is determined not by
one Schrödinger-type equation in Jordan’s formalism but by a pair of such
equations involving both canonically conjugate pairs of variables, (p̂, q̂) and
(α̂, β̂) (Jordan, 1927e, p. 20). As none of this is essential to the formalism, we
will simply continue to use the notation 〈β|q〉 for the probability amplitude
between the quantities β̂ and q̂.

Jordan also removed the restriction to systems of one degree of freedom that
he had adopted for convenience in Neue Begründung I (Jordan, 1927b, p. 810).
So q̂, in general, now stands for (q̂1, . . . q̂f ), where f is the number of degrees of
freedom of the system under consideration. The same is true for other quanti-
ties. Jordan (1927e, pp. 4–5) spent a few paragraphs examining the different
possible structures of the space of eigenvalues for such f -dimensional quanti-
ties depending on the nature of the spectrum of its various components—fully
continuous, fully discrete, or combinations of both. He also introduced the
notation δ(β′−β′′) for a combination of the Dirac delta function and the Kro-
necker delta (or, as Jordan called the latter, the “Weierstrassian symbol”).

In Neue Begründung II (Jordan, 1927e, p. 6), the four postulates of Neue
Begründung I (see our discussion in Section 2.1) are replaced by three postu-
lates or “axioms,” as Jordan now also called them (perhaps ), numbered with

48



Roman numerals. This may have been in deference to Hilbert, von Neumann,
and Nordheim (1928), although they listed six such axioms (as we saw in
Section 3). Jordan’s new postulates or axioms do not include the key portion
of postulate A of Neue Begründung I stating the probability interpretation
of the amplitudes. That is relegated to sec. 5, “The physical meaning of the
amplitudes” (Jordan, 1927e, p. 19). Right before listing the postulates, how-
ever, Jordan (1927e, p. 5) did mention that he will only consider “real (Her-
mitian) quantities,” thereby obviating the need for the Ergänzungsamplitude
and simplifying the relation between amplitudes and probabilities. There is
no discussion of the Ergänzungsamplitude amplitude in the paper. Instead,
following the lead of Hilbert, von Neumann, and Nordheim (1928), Jordan
silently dropped it. It is possible that this was not even a matter of princi-
ple for Jordan but only one of convenience. Right after listing the postulates,
he wrote that the restriction to real quantities is made only “on account of
simplicity” (der Einfachkeit halber, ibid., p. 6).

Other than the probability-interpretation part of postulate A, all four pos-
tulates of Neue Begründung I return, generalized from one to f degrees of
freedom and from quantities with completely continuous spectra to quanti-
ties with wholly or partly discrete spectra. Axiom I corresponds to the old
postulate D. It says that for every generalized coordinate there is a conju-
gate momentum. Axiom II consists of three parts, labeled (A), (B), and (C).
Part (A) corresponds to the old postulate B, asserting the symmetry property,
which, in the new notation, becomes:

Φαp(β
′, q′) = Φ∗pα(q′, β′). (109)

Part (B) corresponds to the old postulate C, which gives the basic rule for the
composition of probability amplitudes,∑

q′
Φαp(β

′, q′)ΦpP (q′, Q′) = ΦαP (β′, Q′), (110)

where the notation
∑
q indicates that, in general, we need a combination of

integrals over the continuous parts of the spectrum of a quantity and sums
over its discrete parts. In Eq. (110),

∑
q refers to an ordinary integral as the

coordinate q̂ has a purely continuous spectrum. Adopting this
∑

notation, we
can rewrite the composition rule (110) in the modern language introduced in
Section 2 and immediately recognize it as a completeness relation (cf. Eqs. (1)
and (3)): ∑

q

〈 β|q〉〈q|Q〉 = 〈β|Q〉. (111)

We can likewise formulate orthogonality relations, as Jordan (1927e, p. 7, Eq.
(5)) did at the beginning of sec. 2 (“Consequences”):∑

q

〈 β|q〉〈q|β′〉 = δ(β − β′),
∑
β

〈 q|β〉〈β|q′〉 = δ(q − q′). (112)
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Recall that δ(β − β′) can be either the Dirac delta function or the Kronecker
delta, as β̂ can have either a fully continuous or a partly or wholly discrete
spectrum. The relations in Eq. (112) can, of course, also be read as complete-
ness relations, i.e., as giving two different resolutions,∑

q

|q〉〈q|,
∑
β

|β〉〈β|, (113)

of the unit operator. Part (C) of axiom II is the generalization of the definition
of conjugate variables familiar from Neue Begründung I to f degrees of freedom
and to quantities with wholly or partly discrete spectra. Two quantities α̂ =
(α̂1, . . . , α̂f ) and β̂ = (β̂1, . . . , β̂f ) are canonically conjugate to one another if

Φα,−β(β, α) = C e
i

(∑f

k=1
βkαk

)
/~
, (114)

where C is a normalization constant. 50 Axiom III, finally, is essentially axiom
III of Hilbert, von Neumann, and Nordheim (1928, p. 4), which was not part of
Neue Begründung I and which says, in our notation, that 〈β|β′〉 = δ(β − β′),
where, once again, δ(β − β′) can be either the Dirac delta function or the
Kronecker delta.

We need to explain one more aspect of Jordan’s notation in Neue Begründung
II. As we have seen in Sections 2 and 3, probability amplitudes do double
duty as integral kernels of canonical transformations. Jordan (1927e, p. 6, Eqs.
(A′)-(B′)) introduced the special notation Φβq

αp to indicate that the amplitude
Φαp(β

′, q′) serves as such an integral kernel, thinking of Φβq
αp as ‘matrices’ with

β and q as ‘indices’ that, in general, will take on both discrete and continuous
values. We will continue to use the modern notation 〈β|q〉 both when we want
to think of this quantity as a probability amplitude and when we want to
think of it as a transformation ‘matrix’. The notation of Neue Begründung II,
like the modern notation, clearly brings out the double role of this quantity.
In Neue Begründung I, we frequently encountered canonical transformations
such as α̂ = T p̂T−1, β̂ = T p̂T−1 (cf. Eqs. (48)–(49)). In Neue Begründung
II, such transformations are written with Φβq

αp’s instead of T ’s. As we will
explain in detail below, this conceals an important shift in Jordan’s usage of
such equations. This shift is only made explicit in sec. 4, which, as its title
announces, deals specifically with “Canonical transformations.” Up to that
point, and especially in sec. 3, “The functional equations of the amplitudes,”
Jordan appears to be vacillating between two different interpretations of these
canonical transformation equations, the one of Neue Begründung I in which α̂
and β̂ are new conjugate variables different from the p̂ and q̂ we started from,
and one, inspired by Dirac (1927), as Jordan (1927e, pp. 16–17) acknowledged

50 Contrary to what Jordan (1927e, p. 7) suggested, the sign of the exponent in Eq.
(114) agrees with the sign of the exponent in the corresponding formula in Neue
Begründung I (Jordan, 1927b, p. 814, Eq. (18)).
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in sec. 4, in which α̂ and β̂ are still the same p̂ and q̂ but expressed with
respect to a new basis.

Before he got into any of this, Jordan (1927e, sec. 2, pp. 8–10) examined five
examples, labeled (a) through (e), of what he considered to be pairs of conju-
gate quantities and convinced himself that they indeed qualify as such under
his new definition (114). More specifically, he checked in these five cases that
these purportedly conjugate pairs of quantities satisfy the completeness or
orthogonality relations (112). The examples include familiar pairs of canon-
ically conjugate variables, such as action-angle variables (Jordan’s example
(c)), but also quantities that we normally would not think of as conjugate
variables, such as different components of spin (a special case of example (e)).
We take a closer look at these two specific examples.

In example (c), the allegedly conjugate variables are the angle variable ŵ with
a purely continuous spectrum and eigenvalues w ∈ [0, 1] (which means that
the eigenvalues of a true angle variable ϑ̂ ≡ 2πw are ϑ ∈ [0, 2π]) and the action
variable Ĵ with a purely discrete spectrum and eigenvalues J = C+nh, where
C is an arbitrary (real) constant and n is a positive integer. For convenience we
set C = −1, so that J = mh with m = 0, 1, 2, . . . The probability amplitude
〈w|J〉 has the form required by Jordan’s definition (114) of conjugate variables,
with α̂ = Ĵ , β̂ = ŵ, and f = 1:

〈w|J〉 = eiwJ/~. (115)

We now need to check whether 〈w|J〉 satisfies the two relations in Eq. (112):

∫ 1

0
dw 〈Jn1|w〉〈w|Jn2〉 = δn1n2 ,

∞∑
n=0

〈w|Jn〉〈Jn|w′〉 = δ(w − w′). (116)

Using Eq. (115), we can write the integral in the first of these equations as:∫ 1

0
dw 〈w|Jn2〉〈w|Jn1〉∗ =

∫ 1

0
dw e2πi(n2−n1)w = δn1n2 . (117)

Hence the first relation indeed holds. We can similarly write the sum in the
second relation as

∞∑
n=0

〈w|Jn〉〈w′|Jn〉∗ =
∞∑
n=0

e2πin(w−w′). (118)

Jordan set this equal to δ(w − w′). However, for this to be true the sum over
n should have been from minus to plus infinity. 51 If the action-angle variables
are (L̂z, ϕ̂), the z-component of angular momentum and the azimuthal angle,
the eigenvalues of Ĵ are, in fact, ±m~ with m = 0, 1, 2, . . ., but if the action

51 A quick way to see this is to consider the Fourier expansion of some periodic
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variable is proportional to the energy, as it is in many applications in the
old quantum theory (Duncan and Janssen, 2007, Pt. 2, pp. 628–629), the
spectrum is bounded below. So even under Jordan’s alternative definition of
canonically conjugate quantities, action-angle variables do not always qualify.
However, since action-angle variables do not play a central role in the Neue
Begründung papers, this is a relatively minor problem, especially compared to
the much more serious problems that Jordan ran into in his attempt to make
his formalism applicable to quantities with wholly or partly discrete spectra.

In view of this attempt, the other example of supposedly conjugate quanti-
ties that we want to examine, a special case of Jordan’s example (e), is of
particular interest. Consider a quantity β̂ with a purely discrete spectrum
with N eigenvalues 0, 1, 2, . . . , N − 1. Jordan showed that, if the completeness
or orthogonality relations (112) are to be satisfied, the quantity α̂ conjugate
to β̂ must also have a discrete spectrum with N eigenvalues hk/N where
k = 0, 1, 2, . . . , N − 1. We will check this for the special case that N = 2. As
Jordan (1927e, pp. 9–10) noted, this corresponds to the case of electron spin.
In sec. 6, “On the theory of the magnetic electron,” he returned to the topic
of spin, acknowledging a paper by Pauli (1927b) on the “magnetic electron,”
which he had read in manuscript (Jordan, 1927e, p. 21, note 2). Pauli’s dis-
cussion of spin had, in fact, been an important factor prompting Jordan to
write Neue Begründung II:

But the magnetic electron truly provides a case where the older canonical
commutation relations completely fail; the desire to fully understand the
relations encountered in this case was an important reason for carrying out
this investigation (Jordan, 1927e, p. 22).

The two conditions on the amplitudes 〈β|α〉 = Ceiβα/~ (Eq. (114) for f = 1)

function f(w):

f(w) =
∞∑

n=−∞
cn e

2πinw, with Fourier coefficients cn ≡
∫ 1

0
dw′ e−2πinw′

f(w′).

Substituting the expression for cn back into the Fourier expansion of f(w), we find

f(w) =

∫ 1

0
dw′

( ∞∑
n=−∞

e2πin(w−w′)

)
f(w′),

which means that the expression in parentheses must be equal to δ(w − w′). Note
that the summation index does not run from 0 to ∞, as in Eq. (118), but from −∞
to +∞.
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to be verified in this case are:

2∑
k=1

〈αm|βk〉〈βk|αn〉 = δnm,
2∑

k=1

〈βm|αk〉〈αk|βn〉 = δnm. (119)

Inserting the expression for the amplitudes, we can write the first of these
relations as

2∑
k=1

〈βk|αn〉〈βk|αm〉∗ =
2∑

k=1

C2 eiβk(αn−αm)/~ = C2
(
1 + ei(αn−αm)/~

)
, (120)

where in the last step we used that β1 = 0 and β2 = 1. The eigenvalues of α̂ in
this case are α1 = 0 and α2 = h/2. For m = n, the right-hand side of Eq. (120)
is equal to 2C2. For m 6= n, ei(αn−αm)/~ = e±iπ = −1 and the right-hand side
of Eq. (120) vanishes. Setting C = 1/

√
2, we thus establish the first relation

in Eq. (119). A completely analogous argument establishes the second.

This example is directly applicable to the treatment of two arbitrary compo-
nents of the electron spin, σ̂ = (σ̂x, σ̂y, σ̂z), say the x- and the z-components,
even though the eigenvalues of both σ̂x and σ̂z are (1

2
,−1

2
) rather than (0, h/2)

for α̂ and (0, 1) for β̂ as in Jordan’s example (e) for N = 2. We can easily
replace the pair of spin components (σ̂x, σ̂z) by a pair of quantities (α̂, β̂) that
do have the exact same eigenvalues as in Jordan’s example:

α̂ ≡ h

2

(
σ̂x +

1

2

)
, β̂ ≡ σ̂z +

1

2
. (121)

The amplitudes 〈β|α〉 = (1/
√

2) eiβα/~ now express that if the spin in one direc-
tion is known, the two possible values of the spin in the directions orthogonal
to that direction are equiprobable. Moreover, as we just saw, amplitudes 〈β|α〉
satisfy the completeness or orthogonality relations (112). It follows that any
two orthogonal components of spin are canonically conjugate to one another
on Jordan’s new definition! One can thus legitimately wonder whether this def-
inition is not getting much too permissive. The main problem, however, with
Jordan’s formalism is not that it is asking too little of its conjugate variables,
but rather that it is asking too much of its canonical transformations!

Canonical transformations enter into the formalism in sec. 3, where Jordan
(1927e, pp. 13–16) introduced a simplified yet at the same time generalized
version of equations (2ab) of Neue Begründung I for probability amplitudes
(Jordan, 1927b, p. 821). They are simplified in that there are no longer ad-
ditional equations for the Ergänzungsamplitude (ibid., Eqs. (3ab)). They are
generalized in that they are no longer restricted to systems with only one
degree of freedom and, much more importantly, in that they are no longer re-
stricted to cases where all quantities involved have purely continuous spectra.
Quantities with partly or wholly discrete spectra are now also allowed.
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Recall how Jordan built up his theory in Neue Begründung I (cf. our discussion
in Section 2.3). He posited a number of axioms to be satisfied by his probability
amplitudes. He then constructed a model for these postulates. To this end he
identified probability amplitudes with the integral kernels for certain canonical
transformations. Starting with differential equations trivially satisfied by the
amplitude 〈p|q〉 = e−ipq/~ for some initial pair of conjugate variables p̂ and q̂,
Jordan derived differential equations for amplitudes involving other quantities
related to the initial ones through canonical transformations. As we already
saw above, this approach breaks down as soon as we ask about the probability
amplitudes for quantities with partly discrete spectra, such as, typically, the
Hamiltonian.

Although Jordan (1927e, p. 14) emphasized that one has to choose initial p̂’s
and q̂’s with “fitting spectra” (passende Spektren) and that the equations for
the amplitudes are solvable only “if it is possible to find” such spectra, he did
not state explicitly in sec. 3 that the construction of Neue Begründung I fails
for quantities with discrete spectra. 52 That admission is postponed until the
discussion of canonical transformations in sec. 4. At the beginning of sec. 3.
the general equations for probability amplitudes are given in the form (Jordan,
1927e, p. 14, Eqs. (2ab)):

Φβq
αpB̂k − β̂kΦβq

αp = 0, (122)

Φβq
αpÂk − α̂kΦβq

αp = 0, (123)

where Âk and B̂k are defined as [NB2, sec. 3, Eq. (1)]:

B̂k =
(
Φβq
αp

)−1
β̂ Φβq

αp, Âk =
(
Φβq
αp

)−1
α̂Φβq

αp (124)

Jordan (1927e, pp. 14–15) then showed that the differential equations of Neue
Begründung I are included in these new equations as a special case. Since there
is only one degree of freedom in that case, we do not need the index k. We can
also suppress all indices of Φβq

αp as this is the only amplitude/transformation-

matrix involved in the argument. So we have Â = Φ−1α̂Φ and B̂ = Φ−1β̂ Φ.
These transformations, however, are used very differently in the two install-
ments of Neue Begründung. Although Jordan only discussed this change in
sec. 4, he already alerted the reader to it in sec. 3, noting that “B̂, Â are the
operators for β̂, α̂ with respect to q̂, p̂” (Jordan, 1927e, p. 15)

Suppressing all subscripts and superscripts, we can rewrite Eqs. (122)–(123)

52 In his Mathematische Begründung, von Neumann (1927a) had already put his
finger on this problem: “A special difficulty with [the approach of] Jordan is that
one has to calculate not just the transforming operators (the integral kernels of
which are the “probability amplitudes”), but also the value-range onto which one
is transforming (i.e., the spectrum of eigenvalues)” (p. 3).
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as:
(Φ B̂ Φ−1 − β̂) Φ = 0, (125)

(Φ ÂΦ−1 − α̂) Φ = 0. (126)

Using that

Φ ÂΦ−1 = α̂ = f(p̂, q̂), Φ B̂ Φ−1 = β̂ = g(p̂, q̂) (127)

(Jordan, 1927e, p. 15, Eq. 8); that p̂ and q̂ in the q-basis are represented by
(~/i)∂/∂q and multiplication by q, respectively; and that α̂ and β̂ in Eqs.
(125)–(126) are represented by −(~/i)∂/∂β and multiplication by β, respec-
tively, we see that in this special case Eqs. (122)–(123) (or, equivalently, Eqs.
(125)–(126)) reduce to [NB2, p. 15, Eqs. (9ab)](

g

(
~
i

∂

∂q
, q

)
− β

)
Φ = 0, (128)

(
f

(
~
i

∂

∂q
, q

)
+

~
i

∂

∂β

)
Φ = 0, (129)

which are just Eqs. (2a) of Neue Begründung I (Jordan, 1927b, p. 821; cf.
Eqs. (50)–(51) with 〈q|β〉 written as Φ). This is the basis for Jordan’s renewed
claim that his general equations for probability amplitudes contain both the
time-dependent and the time-independent Schrödinger equations as a special
case (cf. our discussion at the end of Section 2.3). It is certainly true that,
if the quantity B̂ in Eq. (124) is chosen to be the Hamiltonian, Eq. (128)
turns into the time-independent Schrödinger equation. However, there is no
canonical transformation that connects this equation for ψn(q) = 〈q|E〉 to the
equations trivially satisfied by 〈p|q〉 that formed the starting point for Jordan’s
construction of his formalism in Neue Begründung I.

Jordan (1927e, pp. 16–17) finally conceded this point in sec. 4 of Neue Begrün-
dung II. Following Dirac (1927), Jordan switched to a new conception of canon-
ical transformations. Whereas before, he saw canonical transformations such
as α̂ = T p̂T−1, β̂ = T q̂T−1, as taking us from one pair of conjugate vari-
ables (p̂, q̂) to a different pair (α̂, β̂), he now saw them as taking us from one
particular representation of a pair of conjugate variables to a different repre-
sentation of those same variables. The canonical transformation used in sec.
3, Â = Φ−1α̂Φ, B̂ = Φ−1β̂ Φ, is already an example of a canonical transfor-
mation in the new Dirac sense. By giving up on canonical transformations
in the older sense, Jordan effectively abandoned the basic architecture of the
formalism of Neue Begründung I.

This is how Jordan explained the problem at the beginning of sec. 4 of Neue
Begründung II:

Canonical transformations, the theory of which, as in classical mechanics,
gives the natural generalization and the fundamental solution of the problem
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of the integration of the equations of motion, were originally [footnote citing
Born, Heisenberg, and Jordan (1926)] conceived of as follows: the canonical
quantities q̂, p̂ should be represented as functions of certain other canonical
quantities β̂, α̂:

q̂k = Gk(β̂, α̂), p̂k = Fk(β̂, α̂). (1)

On the assumption that canonical systems can be defined through the usual
canonical commutation relations, a formal proof could be given [footnote
referring to Jordan (1926a)] that for canonical q̂, p̂ and β̂, α̂ equations (1),
as was already suspected originally, can always be cast in the form

q̂k = T β̂k T
−1, p̂k = T α̂k T

−1. (2)

However, since, as we saw, the old canonical commutation relations are not
valid [cf. Eqs. (103)–(107)], this proof too loses its meaning; in general, one
can not bring equations (1) in the form (2).

Now a modified conception of canonical transformation was developed
by Dirac [footnote citing Dirac (1927) and Lanczos (1926)]. According to
Dirac, [canonical transformations] are not about representing certain canon-
ical quantities as functions of other canonical quantities, but rather about
switching, without a transformation of the quantities themselves, to a dif-
ferent matrix representation (Jordan, 1927e, pp. 16–17; emphasis in the
original, hats added).

In modern terms, canonical transformations in the new Dirac sense transform
the matrix elements of operators in one basis to matrix elements of operators
in another basis. This works whether or not the operator under consideration
is part of a pair of operators corresponding to canonically conjugate quantities.
The notation Φβq

αp = 〈β|q〉 introduced in Neue Begründung II that replaces the
notation T in Neue Begründung I for the operators implementing a canonical
transformation nicely prepared us for this new way of interpreting such trans-
formations. Consider the matrix elements of the position operator q̂ (with a
purely continuous spectrum) in the q-basis:

〈q′|q̂|q′′〉 = q′δ(q′ − q′′). (130)

Now let β̂ be an arbitrary self-adjoint operator. In general, β̂ will have a
spectrum with both continuous and discrete parts. Von Neumann’s spectral
theorem tells us that

β̂ =
∑
n

βn |βn〉〈βn|+
∫
β |β〉〈β| dβ, (131)

where sums and integrals extend over the discrete and continuous parts of the
spectrum of β̂, respectively. In Jordan’s notation, the spectral decomposition
of β̂ can be written more compactly as: β̂ =

∑
β |β〉〈β|. We now want to find
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the relation between the matrix elements of q̂ in the β-basis and its matrix
elements in the q-basis. Using the spectral decomposition

∫
q |q〉〈q| dq of q̂, we

can write:

〈β′|q̂|β′′〉=
∫
dq′〈β′|q′〉q′〈q′|β′′〉

=
∫
dq′dq′′ 〈β′|q′′〉q′′δ(q′ − q′′)〈q′′|β′′〉 (132)

=
∫
dq′dq′′ 〈β′|q′′〉〈q′′|q̂|q′〉〈q′′|β′′〉

In the notation of Neue Begründung II, the last line would be the ‘matrix mul-

tiplication’,
(
Φqβ
qα

)−1
q̂Φqβ

qα. This translation into modern notation shows that
Jordan’s formalism, even with a greatly reduced role for canonical transforma-
tions, implicitly relies on the spectral theorem, which von Neumann (1927a)
published in Mathematische Begründung, submitted just one month before
Neue Begründung II. The most important observation in this context, how-
ever, is that an explicit choice of quantities p̂ and α̂ conjugate to q̂ and β̂,
respectively, is completely irrelevant for the application of the spectral theo-
rem.

This gets us to the last aspect of Neue Begründung II that we want to discuss
in this section, namely Jordan’s response to von Neumann’s criticism of the
Dirac-Jordan transformation theory. A point of criticism we already mentioned
is that the probability amplitude ϕ(β, q) = 〈β|q〉 is determined only up to a
phase factor.

As we mentioned in the introduction, the projection operator |a〉〈a| does not
change if the ket |a〉 is replaced by eiϑ|a〉 and the bra 〈a| accordingly by e−iϑ〈a|,
where ϑ can be an arbitrary real function of a. Hence, the spectral decomposi-
tion of β̂ in Eq. (131) does not change if |β〉 is replaced by e−iρ(β)/~|β〉, where
we have written the phase factor, in which ρ is an arbitrary real function of
β, in a way that corresponds to Jordan’s notation for the resulting phase am-
biguity in the amplitude ϕ(β, q) = 〈β|q〉. Similarly, we note that the spectral
decomposition of q̂ does not change if we replace |q〉 by eiσ(q)/~|q〉, where σ is
an arbitrary real function of q. However, with the changes |β〉 → e−iρ(β)/~|β〉
and |q〉 → eiσ(q)/~|q〉, the amplitude ϕ(β, q) = 〈β|q〉 changes (Jordan, 1927e,
p. 20):

〈β|q〉 −→ ei(ρ(β)+σ(q))/~〈β|q〉. (133)

Unlike projection operators, as von Neumann pointed out, probability ampli-
tudes, are determined only up to such phase factors.

As we noted above, Jordan responded to this criticism by adding a dependence
on quantities α̂ and p̂ conjugate to β̂ and q̂, respectively, to the probability am-
plitude 〈β|q〉, thus arriving at the amplitudes Φαp(β

′, q′) of Neue Begründung
II. It turns out that the phase ambiguity of 〈β|q〉 is equivalent to a certain
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freedom we have in the definition of the quantities α̂ and p̂ conjugate to β̂
and q̂, respectively. The phase ambiguity, as we saw, can be characterized by
the arbitrary functions ρ(β) and σ(q). Following Jordan, we will show that
our freedom in the definition of α̂ and p̂ is determined by the derivatives ρ′(β)
and σ′(q) of those same functions. By considering amplitudes Φαp(β

′, q′) with
uniquely determined α̂ and p̂, Jordan could thus eliminate the phase ambiguity
that von Neumann found so objectionable.

Following Jordan (1927e, p. 20), we establish the relation between these two
elements of arbitrariness for the special case that all quantities involved have
fully continuous spectra. In sec. 6 on spin, Jordan (1927e, pp. 21–25) tried
to extend his argument to some special cases of discrete spectra. We will not
discuss those efforts.

Consider two complete sets of eigenstates of q̂, {|q〉1} and {|q〉2}, related to
one another via

|q〉1 = eiσ(q)/~ |q〉2. (134)

This translates into two different amplitudes that differ by that same phase
factor: ϕ1(β, q) = eiσ(q)/~ ϕ2(β, q). 53 Suppose p̂1 is conjugate to q̂ if we use the
|q〉1 set of eigenstates of q̂. Since we restrict ourselves to quantities with fully
continuous spectra, this means that [p̂1, q̂] = ~/i. It also means, as we saw in
Section 2.1, that

p̂1|q〉1 = −~
i

∂

∂q
|q〉1. (135)

Eigenstates |p〉1 of p̂1 can be written as a Fourier series in terms of the |q〉1
states: 54

|p〉1 =
∫
dq eipq/~ |q〉1. (136)

We can likewise construct a p̂2 conjugate to q̂ if we use the |q〉2 set of eigenstates

53 An argument completely analogous to one we give for the relation between the
phase factor eiσ(q)/~ and the definition of p̂ can be be given for the relation between
the phase factor eiρ(β)/~ and the definition of α̂.
54 One easily verifies that |p〉1 is indeed an eigenstate of p̂1. The action of p̂1 on |p〉1
can be written as:

p̂1|p〉1 =

∫
dq eipq/~p̂1|q〉1 = −

∫
dq eipq/~

~
i

∂

∂q
|q〉1.

Partial integration gives:

p̂1|p〉1 =

∫
dq

~
i

∂

∂q

(
eipq/~

)
|q〉1 = p

∫
dq eipq/~|q〉1 = p|p〉1,

which is what we wanted to prove.
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of q̂. Instead of Eqs. (135)–(136), we then have

p̂2|q〉2 = −~
i

∂

∂q
|q〉2, |p〉2 =

∫
dq eipq/~ |q〉2. (137)

The relation between these two different conjugate momenta, it turns out, is

p̂2 = p̂1 + σ′(q̂). (138)

Note that the commutator [p̂1, q̂] does not change if we add an arbitrary func-
tion of q̂ to p̂1. To prove that Eq. (138) indeed gives the relation between p̂1

and p̂2, we show that |p〉2 in Eq. (137) is indeed an eigenstate of p̂2 as defined
in Eq. (138), using relation (134) between |q〉1 and |q〉2:

p̂2|p〉2 =
∫
dq eipq/~ p̂2 |q〉2

=
∫
dq eipq/~ (p̂1 + σ′(q̂)) e−iσ(q)/~ |q〉1

=
∫
dq ei(pq−σ(q))/~

(
−~
i

∂

∂q
+ σ′(q)

)
|q〉1 (139)

=
∫
dq (p− σ′(q) + σ′(q)) ei(pq−σ(q))/~|q〉1

= p
∫
dq eipq/~ |q〉2 = p |p〉2,

where in the fourth step we performed a partial integration. This proves that
the ambiguity (138) in the p̂ conjugate to q̂ corresponds directly to the phase
ambiguity (134) in the amplitude 〈β|q〉. Similarly, the ambiguity in the α̂
conjugate to β̂, which is determined only up to a term ρ′(β̂), corresponds
directly to the phase ambiguity eiρ(β)/~ in the amplitude 〈β|q〉. Hence, for
specific conjugate variables p̂ and α̂ conjugate to q̂ and β̂, the amplitude
Φαp(β

′, q′) of Neue Begründung II is unique up to a constant phase factor (i.e.,
one that is not a function of q or β).

In addition to responding to von Neumann’s criticism of his approach, Jor-
dan (1927e, p. 20) also offered some criticism of von Neumann’s approach.
In particular, he complained that von Neumann showed no interest in either
canonical transformations or conjugate variables. As we will see when we cover
von Neumann’s Mathematische Begründung in the next section, this is sim-
ply because von Neuman did not need either for his formulation of quantum
mechanics. That formulation clearly did not convince Jordan. In fact, von
Neumann’s paper only seems to have increased Jordan’s confidence in his own
approach. After his brief discussion of Mathematische Begründung, he con-
cluded: “It thus appears that the amplitudes themselves are to be considered
the fundamental concept of quantum mechanics” (Jordan, 1927e, pp. 20–21).
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5 Von Neumann’s Mathematische Begründung (May 1927)

In the next two sections we turn our attention to the first two papers of the
trilogy that von Neumann (1927a,b,c) published the same year as and partly
in response to the papers by Dirac (1927) and Jordan (1927b) on transforma-
tion theory. This trilogy provided the backbone of his famous book published
five years later (von Neumann, 1932). The first paper in the trilogy, Mathema-
tische Begründung, was presented in the meeting of the Göttingen Academy of
May 20, 1927. In this paper, von Neumann first introduced the Hilbert space
formalism and the spectral theorem, at least for bounded operators, two con-
tributions that have since become staples of graduate texts in quantum physics
and functional analysis. 55 In part because of this greater familiarity but also
because of its intrinsic clarity, von Neumann’s Mathematische Begründung is
much easier to follow for modern readers than Jordan’s Neue Begründung.
There is no need for us to cover it in as much detail as we did with Jordan’s
papers in Sections 2 and 4.

Mathematische Begründung is divided into nine parts, comprising 15 sections
and two appendices:

(1) “Introduction,” sec. I, pp. 1–4;
(2) “The Hilbert space,” secs. II–VI, pp. 4–22;
(3) “Operator calculus,” secs. VII–VIII, pp. 22–29;
(4) “The eigenvalue problem,” sec. IX–X, pp. 29–37;
(5) “The absolute value of an operator,” sec.“IX” (a typo: this should be

XI), pp. 37–41;
(6) “The statistical assumption [Ansatz] of quantum mechanics,” secs. XII–

XIII, pp. 42–47;
(7) “Applications,” sec. XIV, pp. 47–50;
(8) “Summary,” sec. XV, pp. 50–51;
(9) “Appendices,” pp. 51–57.

Abstract Hilbert space is introduced in secs. V–VI, the spectral theorem in
secs. IX–X. After going over the introduction of the paper, we focus on parts
of sec. IV and secs. IX–XIII.

In Sec. IV, von Neumann criticized the way in which wave mechanics and ma-
trix mechanics are unified in the approach of Dirac and Jordan and presented
his superior alternative approach to this unification, based on the isomorphism
of two concrete instantiations of abstract Hilbert space H, the space of square-
summable sequences H0 and the space of square-integrable functions H (von
Neumann, 1927a, the designations H, H0, and H are introduced on pp. 14–15).

55 In the latter category we already mentioned Prugovecki (1981) and Dennery and
Krzywicki (1996, Ch. 3) (see note 15).
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In modern notation, this is the isomorphism between l2 and L2.

Secs. IX–XIII contain von Neumann’s criticism of Jordan’s use of probability
amplitudes and his derivation of an alternative formula for conditional prob-
abilities in quantum mechanics in terms of projection operators. Unlike von
Neumann, we present this derivation in Dirac notation.

In the introduction of Mathematische Begründung, von Neumann (1927a, pp.
1–3) gave a list of seven points, labeled α through ϑ (there is no point η), in
which he took stock of the current state of affairs in the new quantum theory
and identified areas where it ran into mathematical difficulties. We paraphrase
these points. (α) Quantum theory describes the behavior of atomic systems
in terms of certain eigenvalue problems. (β) This allows for a unified treat-
ment of continuous and discontinuous elements in the atomic world. (γ) The
theory suggests that the laws of nature are stochastic. 56 (δ) Returning to
the formulation of the theory in terms of eigenvalue problems, von Neumann
briefly characterized the different but equivalent ways in which such prob-
lems are posed in matrix mechanics and in wave mechanics. Both approaches
have their difficulties. (ε) The application of matrix mechanics appears to be
restricted to situations with purely discrete spectra. To deal with wholly or
partly continuous spectra, one ends up using, side by side, matrices with in-
dices taking on discrete values and “continuous matrices,” i.e., the integral
kernels of the Dirac-Jordan transformation theory, with ‘indices’ taking on
continuous values. It is “very hard,” von Neumann (1927a, p. 2) warned, to
do this in a mathematically rigorous way. (ζ) These same problems start to
plague the differential-operator approach of wave mechanics as soon as wave
functions are interpreted as probability amplitudes. Von Neumann credited
Born, Pauli, and Jordan with transferring the probability concepts of matrix
mechanics to wave mechanics and Jordan with developing these ideas into a
“closed system” (ibid.). 57 This system, however, faces serious mathematical
objections because of the unavoidable use of improper eigenfunctions, such as
the Dirac delta function, the properties of which von Neumann thought were
simply “absurd” (ibid., p. 3). His final objection seems mild by comparison
but weighed heavily for von Neumann: (ϑ) eigenfunctions in wave mechanics
and probability amplitudes in transformation theory are determined only up
to an arbitrary phase factor. The probabilities one ultimately is after in quan-
tum theory do not depend on these phase factors and von Neumann therefore

56 Parenthetically, von Neumann (1927a, p. 1) added an important qualification:
“(at least the quantum laws known to us).” So, at this point, he left open the
possibility that, at a deeper level, the laws would be deterministic again.
57 In this context von Neumann (1927a, p. 2) referred to his forthcoming paper with
Hilbert and Nordheim (1928). Oddly, von Neumann did not mention Dirac at this
point, although Dirac is mentioned alongside Jordan in sec. XII (von Neumann,
1927a, p. 43) as well as in the second paper of the trilogy (von Neumann, 1927b, p.
245; see Section 6).
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wanted to avoid them altogether. 58

In sec. II, von Neumann set the different guises in which the eigenvalue prob-
lems appear in matrix and in wave mechanics side by side. In matrix me-
chanics, the problem is to find square-summable infinite sequences of complex
numbers v = (v1, v2, . . .) such that

Hv = Ev, (140)

where H is the matrix representing the Hamiltonian of the system in ma-
trix mechanics, and where E is an energy eigenvalue. In wave mechanics, the
problem is to find square-integrable complex-valued functions f(x) such that

Ĥf(x) = Ef(x), (141)

where Ĥ is the differential operator, involving multiplication by x and differ-
entiation with respect to x, that represents the Hamiltonian of the system in
wave mechanics.

One way to unify these two approaches, von Neumann (1927a, pp. 10–11)
pointed out at the beginning of sec. IV, is to look upon the discrete set of
values 1, 2, 3 . . . of the index i of the sequences {xi}∞i=1 in matrix mechanics
and the continuous (generally multi-dimensional) domain Ω of the functions
f(x) in wave mechanics as two particular realizations of some more general
space, which von Neumann called R. Following the notation of his book (von
Neumann, 1932, sec. 4, pp. 15–16), we call the ‘space’ of index values Z. Eq.
(140) can then be written as: 59

∑
j∈Z

Hijvj = Evi. (142)

‘Summation over Z’ can be seen as one instantiation of ‘integration over R;’
‘integration over Ω’ as another. In this way Eq. (141) can, at least formally,
be subsumed under matrix mechanics. One could represent the operator Ĥ in
Eq. (141) by the integral kernel H(x, y) and write∫

Ω
dy H(x, y)f(y) = Ef(x). (143)

Both the matrix Hij and the integral kernel H(x, y) can be seen as ‘matrices’
Hxy with indices x, y ∈ R. For Hij, R = Z; for H(x, y), R = Ω. Von Neumann

58 In Neue Begründung II, as we saw in Section 5, Jordan (1927e, p. 8) responded to
this criticism by adding subscripts to the probability amplitudes for two quantities
β̂ and q̂ indicating a specific choice of the canonically-conjugate quantities α̂ and p̂
(see Eqs. (133)–(139)).
59 We replaced von Neumann’s (1927a, p. 10) xi’s by vi’s to avoid confusion with
the argument(s) of the functions f(x).
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identified this way of trying to unify matrix and wave mechanics as Dirac’s
way (and, one may add, although he is not mentioned by name at this point:
Jordan’s way). Von Neumann rejected this approach. He dismissed the analogy
between Z and Ω sketched above as “really superficial, as long as one sticks
to the usual measure of mathematical rigor” (von Neumann, 1927a, p. 11). 60

He pointed out that even the simplest linear operator, the identity operator,
does not have a proper integral-kernel representation. Its integral kernel is the
improper Dirac delta function:

∫
dy δ(x− y)f(y) = f(x).

The appropiate analogy, von Neumann (1927a, pp. 11–14) argued, is not be-
tween Z and Ω, but between the space of square-summable sequences over Z
and the space of square-integrable functions over Ω. In his book, von Neumann
(1932, p. 16) used the notation FZ and FΩ for these two spaces. 61 In 1927, as
mentioned above, he used H0 and H, instead. Today they are called l2 and L2,
respectively. 62 Von Neumann (1927a, pp. 12–13) reminded his readers of the
“Parseval formula,” which maps sequences in l2 onto functions in L2, and a
“theorem of Fischer and F. Riesz,” which maps functions in L2 onto sequences
in l2. 63 The combination of these two results establishes that l2 and L2 are
isomorphic. As von Neumann (1927a, p. 12) emphasized, these “mathematical
facts that had long been known” could be used to unify matrix mechanics and
wave mechanics in a mathematically impeccable manner. With a stroke of the
pen, von Neumann thus definitively settled the issue of the equivalence of wave
mechanics and matrix mechanics. Anything that can be done in wave mechan-
ics, i.e., in L2, has a precise equivalent in matrix mechanics, i.e., l2. This is
true regardless of whether we are dealing with discrete spectra, continuous
spectra, or a combination of the two.

In sec. V, von Neumann (1927a, pp. 14–18) introduced abstract Hilbert space,
for which he used the notation H, carefully defining it in terms of five axioms

60 In the introduction, we already quoted some passages from the introduction of
von Neumann’s 1932 book in which he complained about the lack of mathematical
rigor in Dirac’s approach. After characterizing the approach in terms of the analogy
between Z and Ω, he wrote: “It is no wonder that this cannot succeed without
some violence to formalism and mathematics: the spaces Z and Ω are really very
different, and every attempt, to establish a relation between them, must run into
great difficulties” (von Neumann, 1932, p. 15).
61 Jammer (1966, pp. 314–315) also used this 1932 notation in his discussion of von
Neumann (1927a).
62 Earlier in his paper, von Neumann (1927a, p. 7) remarked that what we now
call l2 was usually called “(complex) Hilbert space.” Recall, however, that London
(1926b, p. 197) used the term “Hilbert space” for L2 (note 13).
63 The paper cited by von Neumann (1927a, p. 13, note 15) is Riess (1907a). In
his discussion of von Neumann’s paper, Jammer (1966, pp. 314–315) cited Riess
(1907a,b) and Fischer (1907).
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labeled A through E. 64 In sec. VI, he added a few more definitions and then
stated and proved six theorems about Hilbert space, labeled 1 through 6 (ibid.,
pp. 18–22). In sec. VII, he turned to the discussion of operators acting in
Hilbert space (ibid., pp. 25). This will be familiar terrain for the modern
reader and need not be surveyed in any more detail.

The same goes for sec. VIII, in which von Neumann introduced a special class
of Hermitian operators. Their defining property is that they are idempotent:
Ê2 = Ê. Von Neumann called an operator like this an Einzeloperator or E.
Op. for short (von Neumann, 1927a, p. 25). 65 They are now known, of course,
as projection operators. In a series of theorems, numbered 1 through 9, von
Neumann (1927a, pp. 25–29) proved some properties of such operators. For
our purposes, it suffices to know that they are Hermitian and idempotent.

We do need to take a somewhat closer look at sec. IX. In this section, von Neu-
mann (1927a, pp. 29–33) used projection operators to formulate the spectral
theorem. Following von Neumann (1927a, p. 31), we start by considering a fi-
nite Hermitian operator Â with a non-degenerate discrete spectrum (von Neu-
mann, 1927a, sec. VIII, p. 31). Order its real eigenvalues ai: a1 < a2 < a3 . . .
Let |ai〉 be the associated normalized eigenvectors (〈ai|aj〉 = δij). Now intro-

duce the operator Ê(l): 66

Ê(l) ≡
∑

(i|ai≤l)
|ai〉〈ai|, (144)

where, unlike von Neumann, we used modern Dirac notation. As we already
noted in the introduction, there is no phase ambiguity in Ê(l). The operator
stays the same if we replace |ai〉 by |ai〉′ = eiϕi |ai〉:

|ai〉′〈ai|′ = eiϕi |ai〉〈ai|e−iϕi = |ai〉〈ai|. (145)

Of course, von Neumann did not think of an E. Op. as constructed out of bras
and kets, just as Jordan did not think of a probability amplitude 〈a|b〉 as an
inner product of |a〉 and |b〉.

The operator Ê(l) has the property:

Ê(ai)− Ê(ai−1) = |ai〉〈ai|. (146)

64 In his book, von Neumann (1932) adopted the notation ‘H. R.’ (shorthand for
Hilbertscher Raum) for H.
65 As he explains in a footnote, the term Einzeloperator is based on Hilbert’s term
Einzelform (von Neumann, 1927a, p. 25, note 23).
66 Von Neumann initially the defined this operator in terms of its matrix elements
〈v|Ê(l)|w〉 for two arbitrary sequences {vi}κi=1 and {wi}κi=1 (where we replaced von
Neumann’s x and y by v and w; cf. note 59). He defined (in our notation): E(l;x|y) =∑

(i|ai≤l)〈v|ai〉〈ai|w〉 (von Neumann, 1927a, p. 31).
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It follows that:

Â =
∑
i

ai(Ê(ai)− Ê(ai−1)) =
∑
i

ai|ai〉〈ai| (147)

Ê(l) is piece-wise constant with jumps where l equals an eigenvalue. Hence
we can write Â as a so-called Stieltjes integral, which von Neumann discussed
and illustrated with some figures in appendix 3 of his paper (von Neumann,
1927a, pp. 55–57):

Â =
∫
l dÊ(l). (148)

As von Neumann (1927a, p. 32) noted, these results (Eqs. (144)–(148)) can
easily be generalized from finite Hermitian matrices and finite sequences to
bounded Hermitian operators and the space H0 or l2 of infinite square-summable
sequences. Since H0 is just a particular instantiation of the abstract Hilbert
space H, it is clear that the same results hold for bounded Hermitian operators
T̂ in H. After listing the key properties of Ê(l) for T̂ , 67 he concluded sec. IX
writing: “We call Ê(l) the resolution of unity belonging to T̂” (von Neumann,
1927a, p. 33).

In sec. X, von Neumann (1927a, pp. 33–37) further discussed the spectral
theorem. Most importantly, he conceded that he had not yet been able to
prove that it also holds for unbounded operators. 68 He only published the
proof of this generalization in the paper in Mathematische Annalen mentioned

67 As before (see note 66), he first defined the matrix elements 〈f |Ê(l)|g〉 for two
arbitrary elements f and g of Hilbert space. So he started from the relation

〈f |T̂ |g〉 =

∫ ∞
−∞

l d〈f |Ê(l)|g〉,

and inferred from that, first, that T̂ |g〉 =
∫∞
−∞ l d{Ê(l)|g〉}, and, finally, that T̂ =∫∞

−∞ l dÊ(l) (cf. Eq. (148)). Instead of the notation 〈f |g〉, von Neumann (1927a, p.
12) used the notation Q(f, g) for the inner product of f and g (on p. 32, he also
used Q(f |g)). So, in von Neumann’s own notation, the relation he started from is
written as Q(f, Tg) =

∫∞
−∞ l dQ(f,E(l)g).

68 We remind the reader that a linear operator Â in Hilbert space is bounded if
there exists a positive real constant C such that |Âf | < C|f | for arbitrary vectors
f in the space (where |...| indicates the norm of a vector, as induced from the
defining inner-product in the space). If this is not the case, then there exist vectors
in the Hilbert space on which the operator Â is not well-defined, basically because
the resultant vector has infinite norm. Instead, such unbounded operators are only
defined (i.e., yield finite-norm vectors) on a proper subset of the Hilbert space,
called the domain D(Â) of the operator Â. The set of vectors obtained by applying
Â to all elements of its domain is called the range R(Â) of Â. Multiplication of two
unbounded operators evidently becomes a delicate matter insofar as the domain
and ranges of the respective operators may not coincide.
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earlier, which was submitted on December 15, 1928 (von Neumann, 1929).
The key to the extension of the spectral theorem from bounded to unbounded
operators is a so-called Cayley transformation (von Neumann, 1929, p. 80).
Given unbounded Hermitian operator R̂, introduce the operator Û and its
adjoint

Û =
R̂ + i1̂

R̂− i1̂
, Û † =

R̂− i1̂
R̂ + i1̂

, (149)

where 1̂ is the unit operator. Since R̂ is Hermitian, it only has real eigenvalues,
so (R̂− i1̂)|ϕ〉 6= 0 for any |ϕ〉 ∈ H. Since Û is unitary (Û Û † = 1), the absolute
value of all its eigenvalues equals 1. Û is thus a bounded operator for which
the spectral theorem holds. If it holds for Û , however, it must also hold for the
original unbounded operator R̂. The spectral decomposition of R̂ is essentially
the same as that of Û . In his book, von Neumann (1932, p. 80) gave Eq. (149),
but he referred to his 1929 paper for a mathematically rigorous treatment of
the spectral theorem for unbounded operators (von Neumann, 1932, p. 75, p.
246, note 95, and p. 244, note 78)

Sec. XI concludes the purely mathematical part of the paper. In this section,
von Neumann (1927a, pp. 37-41) introduced the “absolute value” of an opera-
tor, an important ingredient, as we will see, in his derivation of his formula for
conditional probabilities in quantum mechanics (see Eqs. (157)–(161) below).

In sec. XII, von Neumann (1927a, pp. 42–45) finally turned to the statistical
interpretation of quantum mechanics. At the end of sec. I, he had already
warned the reader that secs. II–XI would have a “preparatory character” and
that he would only get to the real subject matter of the paper in secs. XII–XIV.
At the beginning of sec. XII, the first section of the sixth part of the paper
(see our table of contents above), on the statistical interpretation of quantum
mechanics, he wrote: “We are now in a position to take up our real task, the
mathematically unobjectionable unification of statistical quantum mechanics”
(von Neumann, 1927a, p. 42). He then proceeded to use the spectral theorem
and the projection operators Ê(l) of sec. IX to construct an alternative to
Jordan’s formula for conditional probabilities in quantum mechanics, which
does not involve probability amplitudes. Recall von Neumann’s objections to
probability amplitudes (see Sections 1 and 4). First, Jordan’s basic amplitudes,
ρ(p, q) = e−ipq/~ (see Eq. (4)), which from the perspective of Schrödinger wave
mechanics are eigenfunctions of momentum, are not square-integrable and
hence not in Hilbert space (von Neumann, 1927a, p. 35). Second, they are only
determined up to a phase factor (von Neumann, 1927a, p. 3, point ϑ). Von
Neumann avoided these two problems by deriving an alternative formula which
expresses the conditional probability Pr(a|b) in terms of projection operators
associated with the spectral decomposition of the operators for the observables
â and b̂.
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Von Neumann took over Jordan’s basic statistical Ansatz. Consider a one-
particle system in one dimension with coordinate q. Von Neumann (1927a, p.
43) considered the more general case with coordinates q ≡ (q1, . . . , qk). The
probability of finding a particle in some region K if we know that its energy
is En, i.e., if we know the particle is in the pure state ψn(x) belonging to that
eigenvalue, is given by (ibid.): 69

Pr(q in K|En) =
∫
K
|ψn(q)|2dq. (150)

Next, he considered the probability of finding the particle in some region K if
we know that its energy is in some interval I that includes various eigenvalues
of its energy, i.e., if the particle is in some mixed state where we only know
that, with equal probability, its state is one of the pure states ψn(x) associated
with the eigenvalues within the interval I: 70

Pr(q in K|En in I) =
∑

(n|En in I)

∫
K
|ψn(q)|2dq. (151)

The distinction between pure states (in Eq. (150)) and mixed states (in Eq.
(151)) slipped in here was only made explicit in the second paper in the trilogy
(von Neumann, 1927b). These conditional probabilities can be written in terms
of the projection operators,

Ê(I) ≡
∑

(n|En in I)

|ψn〉〈ψn|, F̂ (K) ≡
∫
K
|q〉〈q| dq, (152)

that project arbitrary state vectors onto the subspaces of H spanned by ‘eigen-
vectors’ of the Hamiltonian Ĥ and of the position operator q̂ with eigenvalues
in the ranges I and K, respectively. The right-hand side of Eq. (151) can be
rewritten as: ∑

(n|En in I)

∫
K
〈ψn|q〉〈q|ψn〉 dq. (153)

We now choose an arbitrary orthonormal discrete basis {|α〉}∞α=1 of the Hilbert
space H. Inserting the corresponding resolution of unity, 1̂ =

∑
α |α〉〈α|, into

Eq. (153), we find

∑
α

∑
(n|En in I)

∫
K
〈ψn|α〉〈α|q〉〈q|ψn〉 dq. (154)

69 The left-hand side is short-hand for: Pr(q̂ has value q in K|Ĥ has value En). We
remind the reader that the notation Pr(. , .) is ours and is not used in any of our
sources.
70 The left-hand side is short-hand for: Pr(q̂ has value q in K|Ĥ has value En in I).
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This can be rewritten as:

∑
α

〈α|

∫
K
|q〉〈q| dq ·

∑
(n|En in I)

|ψn〉〈ψn|

 |α〉. (155)

This is nothing but the trace of the product of the projection operators F̂ (K)
and Ê(I) defined in Eq. (152). The conditional probability in Eq. (151) can
thus be written as:

Pr(x in K|En in I) =
∑
α

〈α|F̂ (K)Ê(I)|α〉 = Tr(F̂ (K)Ê(I)). (156)

This is our notation for what von Neumann (1927a, p. 45) wrote as 71

[F̂ (K), Ê(I)]. (157)

He defined the quantity [Â, B̂]—not to be confused with a commutator—as
(ibid., p. 40):

[Â, B̂] ≡ [Â†B̂]. (158)

For any operator Ô, he defined the quantity [Ô], which he called the “absolute
value” of Ô, as (ibid., pp. 37–38): 72

[Ô] ≡
∑
µ,ν

|〈ϕµ|Ô|ψν〉|2, (159)

where {|ϕµ〉}∞µ=1 and {|ψν〉}∞ν=1 are two arbitrary orthonormal bases of H. Eq.
(159) can also be written as:

[Ô] ≡
∑
µ,ν

〈ϕµ|Ô|ψν〉〈ψν |Ô†|ϕµ〉 =
∑
µ

〈ϕµ|ÔÔ†|ϕµ〉 = Tr(ÔÔ†), (160)

where we used the resolution of unity, 1̂ =
∑
ν |ψν〉〈ψν |, and the fact that

Tr(Ô) =
∑
α〈α|Ô|α〉 for any orthonormal basis {|α〉}∞α=1 of H. 73 Using the

71 Since von Neumann (ibid., p. 43) chose K to be k-dimensional, he actually wrote:
[F̂1(J1) · . . . · F̂k(Jk), Ê(I)] (ibid., p. 45; hats added). For the one-dimensional case
we are considering, von Neumann’s expression reduces to Eq. (157).
72 Using the notation Q(. , .) for the inner product (see note 67) and using A in-
stead of O, von Neumann (1927a, p. 37) wrote the right-hand side of Eq. (159) as∑∞

µ,ν=1 |Q(φµ, Aψν)|2.
73 Eq. (160) shows that [Ô] is independent of the choice of the bases {|ϕµ〉}∞µ=1

and {|ψν〉}∞ν=1. Von Neumann initially introduced the quantity [Ô;ϕµ;ψν ] ≡∑
µ,ν |〈ϕµ|Ô|ψν〉|2 (ibid., p. 37). He then showed that this quantity does not ac-

tually depend on ϕµ and ψν , renamed it [Ô] (see Eq. (159) and note 72), and called
it the “absolute value of the operator” Ô (ibid., p. 38).
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definitions of [Â, B̂] and [Ô] in Eqs. (158) and (160), with Â = F̂ (K), B̂ =
Ê(I), and Ô = F̂ (K)†Ê(I), we can rewrite Eq. (157) as

[F̂ , Ê] = [F̂ †Ê] = Tr((F̂ †Ê)(F̂ †Ê)†) = Tr(F̂ †ÊÊ†F̂ ), (161)

where, to make the equation easier to read, we temporarily suppressed the
value ranges K and I of F̂ (K) and Ê(I). Using the cyclic property of the
trace, we can rewrite the final expression in Eq. (161) as Tr(F̂ F̂ †ÊÊ†). Since
projection operators P̂ are both Hermitian and idempotent, we have F̂ F̂ † =
F̂ 2 = F̂ and ÊÊ† = Ê2 = Ê. Combining these observations and restoring the
arguments of F̂ and Ê, we can rewrite Eq. (161) as:

[F̂ (K), Ê(I)] = Tr(F̂ (K)Ê(I)), (162)

which is just the expression for Pr(x in K|En in I) that we found above (see
Eq. (156)).

From Tr(F̂ Ê) = Tr(ÊF̂ ), it follows that

Pr(x in K|En in I) = Pr(En in I|x in K), (163)

which is just the symmetry property imposed on Jordan’s probability ampli-
tudes in postulate B of Neue Begründung I (Jordan, 1927b, p. 813; see Section
2.1) and postulate II in Neue Begründung II (Jordan, 1927e, p. 6; see Section
4).

Von Neumann generalized Eq. (156) for a pair of quantities to one for a pair of
sets of quantities such that the operators for all quantities in each set commute
with those for all other quantities in that same set but not necessarily with
those for quantities in the other set (von Neumann, 1927a, p. 45). 74 Let
{R̂i}ni=1 and {Ŝj}mj=1 be two such sets of commuting operators: [R̂i1 , R̂i2 ] =

0 for all 1 ≤ i1, i2 ≤ n; [Ŝj1 , Ŝj2 ] = 0 for all 1 ≤ j1, j2 ≤ m. Let Êi(Ii)

(i = 1, . . . , n) and F̂j(Jj) (j = 1, . . . ,m) be the corresponding projection
operators (cf. Eq. (152)). A straightforward generalization of von Neumann’s
trace formula (156) tells us that the probability that the Ŝj’s have values in

the intervals Jj provided that the R̂i’s have values in the intervals Ii is given
by:

Pr(Ŝj
′s in Jj

′s|R̂i
′s in Ii

′s) = Tr(Ê1(I1) . . . Ên(In)F̂1(J1) . . . F̂m(Jm)). (164)

74 Von Neumann distinguished between the commuting of R̂i and R̂j and the com-
muting of the corresponding projection operators Êi(Ii) and Êj(Ij). For bounded
operators, these these two properties are equivalent. If both R̂i and R̂j are un-
bounded, von Neumann (1927a, p. 45) cautioned, “certain difficulties of a formal
nature occur, which we do not want to go into here” (cf. note 68).

69



The outcomes ‘R̂i in Ii’ are called the “assertions” (Behauptungen) and the
outcomes ‘Ŝj in Jj’ are called the “conditions” (Voraussetzungen) (von Neu-
mann, 1927a, p. 45). Because of the cyclic property of the trace, which we
already invoked in Eq. (163), Eq. (164) is invariant under switching all asser-
tions with all conditions. Since all Êi(Ii)’s commute with each other and all
F̂j(Jj)’s commute with each other, Eq. (164) is also invariant under changing
the order of the assertions and changing the order of the conditions. These
two properties are given in the first two entries of a list of five properties,
labeled α through θ (there are no points ζ and η), of the basic rule (164) for
probabilities in quantum mechanics (von Neumann, 1927a, pp. 45–47).

Under point δ, von Neumann pointed out that the standard multiplication
law of probabilities does not hold in quantum mechanics. Parenthetically, he
added, referring to Jordan (1927b) and Hilbert, von Neumann, and Nordheim
(1928): “what does hold is a weaker law corresponding to the “superposition
[Zusammensetzung] of probability amplitudes” in [the formalism of] Jordan,
which we will not go into here” (von Neumann, 1927a, p. 46). Note that von
Neumann did not use Jordan’s phrase “interference of probabilities.”

Under point ε, von Neumann (1927a) wrote: “The addition rule of probabili-
ties is valid” (p. 46). In general, as Jordan (1927b, p. 18) made clear in Neue
Begründung I (see Eq. (1) in Section 1), the addition rule does not hold in
quantum mechanics. In general, in other words, Pr(A or B) 6= Pr(A) + Pr(B),
even if the outcomes A and B are mutually exclusive. Instead, Jordan pointed
out, the addition rule, like the multiplication rule, holds for the corresponding
probability amplitudes. Von Neumann, however, considered only a rather spe-
cial case, for which the addition rule does hold for the probability themselves.
Consider Eq. (156) for the conditional probability that we find a particle in
some region K given that its energy E has a value in some interval I. Let the
region K consist of two disjoint subregions, K ′ and K ′′, such that K = K ′∪K ′′
and K ′∩K ′′ = ∅. Given that the energy E lies in the interval I, the probability
that the particle is either in K ′ or in K ′′, is obviously equal to the probability
that it is in K. Von Neumann now noted that

Pr(x in K|E in I) = Pr(x in K ′|E in I) + Pr(x in K ′′|E in I). (165)

In terms of the trace formula (156), Eq. (165) becomes:

Tr(F̂ (K)Ê(I)) = Tr(F̂ (K ′)Ê(I)) + Tr(F̂ (K ′′)Ê(I)). (166)

Similar instances of the addition rule obtain for the more general version of
the trace formula in Eq. (164).

Under point ϑ, finally, we find the one and only reference to “canonical trans-
formations” in Mathematische Begründung. Von Neumann (1927a, pp. 46–
47) defined a canonical transformation as the process of subjecting all opera-
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tors Â to the transformation ÛÂÛ †, where Û is some unitary operator. The
absolute value squared [Â] is invariant under such transformations. Recall
[Â] = Tr(ÂÂ†). Now consider [ÛÂÛ †]:

[ÛÂÛ †] ≡ [ÛÂÛ †(ÛÂÛ †)†] = Tr(ÛÂÛ †ÛÂ†Û †) = Tr(ÂÂ†) = [Â]. (167)

Traces of products of operators are similarly invariant. This definition of
canonical transformations makes no reference in any way to sorting quantities
into sets of conjugate variables.

6 Von Neumann’s Wahrscheinlichkeitstheoretischer Aufbau (November
1927)

On November 11, 1927, about half a year after the first installment, Ma-
thematische Begründung (von Neumann, 1927a), the second and the third
installment of von Neumann’s 1927 trilogy were presented to the Göttingen
Academy (von Neumann, 1927b,c). 75 The second, Wahrscheinlichkeitstheo-
retischer Aufbau, is important for our purposes; the third, Thermodynamik
quantenmechanischer Gesamtheiten, is not. In Mathematische Begründung, as
we saw in Section 5, von Neumann had simply taken over the basic rule for
probabilities in quantum mechanics as stated by Jordan, namely that prob-
abilities are given by the absolute square of the corresponding probability
amplitudes, the prescription now known as the Born rule. In Wahrschein-
lichkeitstheoretischer Aufbau, he sought to derive this rule from more basic
considerations.

In the introduction of the paper, von Neumann (1927b, p. 245) replaced the
old opposition between “wave mechanics” and “matrix mechanics” by a new
distinction between “wave mechanics” on the one hand and what he called
“transformation theory” or “statistical theory,” on the other. By this time,
matrix mechanics and Dirac’s q-number theory had morphed into the Dirac-
Jordan statistical transformation theory. The two names von Neumann used
for this theory reflect the difference in emphasis between Dirac (transformation
theory) and Jordan (statistical theory). 76 Von Neumann mentioned Born,

75 These three papers take up 57, 28, and 19 pages. The first installment is thus
longer than the other two combined. Note that in between the first and the two
later installments, Neue Begründung II appeared (see Section 4), in which Jordan
(1927e) responded to von Neumann’s criticism in Mathematische Begründung. Von
Neumann made no comment on this response in these two later papers.
76 In the introduction, we already quoted his observation about the Schrödinger
wave function, 〈q|E〉 in our notation: “Dirac interprets it as a row of a certain
transformation matrix, Jordan calls it a probability amplitude” (von Neumann,
1927b, p. 246, note 3).
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Pauli, and London as the ones who had paved the way for the statistical theory
and Dirac and Jordan as the ones responsible for bringing this development
to a conclusion (ibid., p. 245; cf. note 57). 77

Von Neumann was dissatisfied with the way in which probabilities were in-
troduced in the Dirac-Jordan theory. He listed two objections. First, he felt
that the relation between quantum probability concepts and ordinary proba-
bility theory needed to be clarified. Second, he felt that the Born rule was not
well-motivated:

The method hitherto used in statistical quantum mechanics was essentially
deductive: the square of the norm of certain expansion coefficients of the
wave function or of the wave function itself was fairly dogmatically set equal
to a probability, and agreement with experience was verified afterwards. A
systematic derivation of quantum mechanics from empirical facts or fun-
damental probability-theoretic assumptions, i.e., an inductive justification,
was not given (von Neumann, 1927b, p. 246; our emphasis).

To address these concerns, von Neumann started by introducing probabilities
in terms of selecting members from large ensembles of systems. He then pre-
sented his “inductive” derivation of his trace formula for probabilities (see Eq.
(156)), which contains the Born rule as a special case, from two very general,
deceptively innocuous, but certainly non-trivial assumptions about expecta-
tion values of properties of the systems in such ensembles. From those two
assumptions, some key elements of the Hilbert space formalism introduced in
Mathematische Begründung, and two assumptions about the repeatability of
measurements not identified until the summary at the end of the paper (ibid.,
p. 271), Von Neumann indeed managed to recover Eq. (156) for probabilities.
He downplayed his reliance on the formalism of Mathematische Begründung
by characterizing the assumptions taken from it as “not very far going formal
and material assumptions” (ibid., p. 246). He referred to sec. IX, the sum-
mary of the paper, for these assumptions at this point, but most of them are
already stated, more explicitly in fact, in sec. II, “basic assumptions” (ibid.,

77 He cited the relevant work by Dirac (1927) and Jordan (1927b,e). He did not
give references for the other three authors but presumably was thinking of Born
(1926a,b), Pauli (1927a), and London (1926b). The reference to London is somewhat
puzzling. While it is true that London anticipated important aspects of the Dirac-
Jordan transformation theory (see Lacki, 2004; Duncan and Janssen, 2009), the
statistical interpretation of the formalism is not among those. Our best guess is
that von Neumann took note of Jordan’s repeated acknowledgment of London’s
paper (most prominently perhaps in footnote 1 of Neue Begründung I). In his book,
von Neumann (1932, p. 2, note 2; the note itself is on p. 238) cited papers by Dirac
(1927), Jordan (1927b), and London (1926b) in addition to the book by Dirac
(1930) for the development of transformation theory. In that context, the reference
to London is entirely appropriate.
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pp. 249–252).

Consider an ensemble {S1,S2,S3, . . .} of copies of a system S. Von Neumann
wanted to find an expression for the expectation value E(a) in that ensemble of
some property a of the system (we use E to distinguish the expectation value
from the projection operator E). He made the following basic assumptions
about E (von Neumann, 1927b, pp. 249–250):

A. Linearity: E(α a+ β b+ γ c+ . . .) = α E(a) + β E(b) + γ E(c) + . . . (where α,
β, and γ are real numbers). 78

B. Positive-definiteness. If the quantity a never takes on negative values, then
E(a) ≥ 0.

To this he added two formal assumptions (ibid., p. 252):

C. Linearity of the assignment of operators to quantities. If the operators Ŝ,
T̂ , . . . represent the quantities a, b, . . . , then αŜ + βT̂ + . . . represents the
quantity α a+ β b+ . . . 79

D. If the operator Ŝ represents the quantity a, then f(Ŝ) represents the quan-
tity f(a).

In sec. IX, the summary of his paper, von Neumann once again listed the
assumptions that go into his derivation of the expression for E(a). He wrote:

The goal of the present paper was to show that quantum mechanics is not
only compatible with the usual probability calculus, but that, if it [i.e.,
ordinary probability theory]—along with a few plausible factual [sachlich]
assumptions—is taken as given, it [i.e., quantum mechanics] is actually the
only possible solution. The assumptions made were the following:

1. Every measurement changes the measured object, and two measurements
therefore always disturb each other—except when they can be replaced
by a single measurement.

78 Here von Neumann appended a footnote in which he looked at the example of a
harmonic oscillator in three dimensions. The same point can be made with a one-
dimensional harmonic oscillator with position and momentum operators q̂ and p̂,
Hamiltonian Ĥ, mass m, and characteristic angular frequency ω: “The three quan-
tities [p̂/2m,mω2q̂2/2, Ĥ = p̂/2m + mω2q̂2/2] have very different spectra: the first
two both have a continuous spectrum, the third has a discrete spectrum. Moreover,
no two of them can be measured simultaneously. Nevertheless, the sum of the ex-
pectation values of the first two equals the expectation value of the third” (ibid., p.
249). While it may be reasonable to impose condition (A) on directly measurable
quantities, it is questionable whether this is also reasonable for hidden variables (see
note 83).
79 In von Neumann’s own notation, the operator Ŝ and the matrix S representing
that operator are both written simply as S.
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2. However, the change caused by a measurement is such that the measure-
ment itself retains its validity, i.e., if one repeats it immediately after-
wards, one finds the same result.

In addition, a formal assumption:

3. Physical quantities are to be described by functional operators in a man-
ner subject to a few simple formal rules.

These principles already inevitably entail quantum mechanics and its statis-
tics (von Neumann, 1927b, p. 271).

Assumptions A and B of sec. II are not on this new list in sec. IX. Presum-
ably, this is because they are part of ordinary probability theory. Conversely,
assumptions 1 and 2 of sec. IX are not among the assumptions A–D of sec. II.
These two properties of measurements, as we will see below, are guaranteed
in von Neumann’s formalism by the idempotency of the projection operators
associated with those measurements. 80 Finally, the “simple formal rules” re-
ferred to in assumption 3 are spelled out in assumptions C–D.

We go over the main steps of von Neumann’s proof, which is laid out clearly
and in detail in his paper. Instead of the general Hilbert space H̄, von Neumann
considered H0, i.e., l2 (von Neumann, 1927b, p. 253; cf. von Neumann, 1927a,
pp. 14–15 (see Section 5)). Consider the components sµν of some infinite-
dimensional Hermitian matrix S (with matrix elements sµν = s∗νµ) represent-

ing an Hermitian operator Ŝ. This operator, in turn, represents some measur-
able quantity a. The matrix S can be written as a linear combination of three
types of infinite-dimensional matrices labeled A, B, and C. To show what
these matrices look like, we write down their finite-dimensional counterparts:

Aµ ≡



0 · · · · · · · · · 0
... 1

...
...

. . .
...

... 0
...

0 · · · · · · · · · 0


, Bµν ≡



0 · · · · · · · · · 0
... 0 1

...
...

. . .
...

... 1 0
...

0 · · · · · · · · · 0


, Cµν ≡



0 · · · · · · · · · 0
... 0 i

...
...

. . .
...

... −i 0
...

0 · · · · · · · · · 0


.

The Aµ’s have 1 in the µth row and the µth column and 0’s everywhere else.
The Bµν ’s (µ < ν) have 1 in the µth row and the νth column and in the νth

row and the µth column and 0’s everywhere else. The Cµν ’s (µ < ν) have i in

80 In a footnote in the introduction of Thermodynamik quantenmechanischer
Gesamtheiten, von Neumann (1927c) reiterated these two assumptions and com-
mented: “1. corresponds to the explanation given by Heisenberg for the a-causal
behavior of quantum physics; 2. expresses that the theory nonetheless gives the ap-
pearance of a kind of causality” (p. 273, note 2). Von Neumann cited Heisenberg
(1927b), the paper on the uncertainty principle (submitted March 23, 1927).
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the µth row and the νth column and −i in the νth row and the µth column and
0’s everywhere else.

The matrix S can be written as a linear combination of A, B, and C:

S =
∑
µ

sµµ · Aµ +
∑
µ<ν

Re sµν ·Bµν +
∑
µ<ν

Im sµν · Cµν , (168)

where Re sµν and Im sµν and the real and imaginary parts of sµν , respectively.

Using von Neumann’s linearity assumption (A), we can write the expectation
value of S in the ensemble {S1,S2,S3, . . .} as:

E(S) =
∑
µ

sµµ · E(Aµ) +
∑
µ<ν

Re sµν · E(Bµν) +
∑
µ<ν

Im sµν · E(Cµν). (169)

Now define the matrix U (associated with some operator Û) with diagonal
components uµµ ≡ E(Aµ) and off-diagonal components (µ < ν):

uµν ≡
1

2
(E(Bµν) + i E(Cµν)) , uνµ ≡

1

2
(E(Bµν)− i E(Cµν)) . (170)

Note that this matrix is Hermitian: u∗µν = uνµ. With the help of this matrix U ,
the expectation value of S can be written as (von Neumann, 1927b, p. 253):

E(S) =
∑
µν

sµν uνµ. (171)

To verify this, we consider the sums over µ = ν and µ 6= ν separately. For the
former we find ∑

µ

sµµ uµµ =
∑
µ

sµµ · E(Aµ). (172)

For the latter, we have∑
µ6=ν

sµν uνµ =
∑
µ<ν

sµν uνµ +
∑
µ>ν

sµν uνµ. (173)

The second term can be written as
∑
ν>µ sνµ uµν =

∑
µ<ν s

∗
µν u

∗
νµ, which means

that ∑
µ 6=ν

sµν uνµ =
∑
µ<ν

2 Re (sµν uνµ). (174)

Now write sµν as the sum of its real and imaginary parts and use Eq. (170)
for uνµ:

∑
µ 6=ν

sµν uνµ =
∑
µ<ν

Re {(Re sµν + i Im sµν) · (E(Bµν)− iE(Cµν))}

=
∑
µ<ν

Re sµν · E(Bµν) +
∑
µ<ν

Im sµν · E(Cµν). (175)
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Adding Eq. (172) and Eq. (175), we arrive at∑
µν

sµν uνµ =
∑
µ

sµµ · E(Aµ) +
∑
µ<ν

Re sµν · E(Bµν) +
∑
µ<ν

Im sµν · E(Cµν). (176)

Eq. (169) tells us that the right-hand side of this equation is just E(S). This
concludes the proof of Eq. (171), in which one readily recognizes the trace of
the product of S and U : 81

E(S) =
∑
µν

sµν uνµ =
∑
µ

(SU)µµ = Tr(US). (177)

In other words, U is what is now called a density matrix, usually denoted by
the Greek letter ρ. It corresponds to a density operator Û or ρ̂.

The matrix U characterizes the ensemble {S1,S2,S3, . . .}. Von Neumann
(1927b, sec. IV, p. 255) now focused on “pure” (rein) or “uniform” (ein-
heitlich) ensembles, in which every copy Si of the system is in the exact same
state. Von Neumann characterized such ensembles as follows: one cannot ob-
tain a uniform ensemble “by mixing (vermischen) two ensembles unless it is
the case that both of these correspond to that same ensemble” (ibid., p. 256).
He then proved an important theorem. Let the density operators Û , Û∗, and
Û∗∗ correspond to the ensembles {Si}, {S∗j}, {S∗∗k }, respectively. Suppose
{Si} consists of η × 100% {S∗j} and ϑ× 100% {S∗∗k }. The expectation value

of an arbitrary property represented by the operator Ŝ in {Si} is then given
by

E(Ŝ) = η E∗(Ŝ) + ϑ E∗∗(Ŝ), (178)

where E∗ and E∗∗ refer to ensemble averages over {S∗j} and {S∗∗k }, respectively.
Using Eq. (177), we can write this as:

Tr(Û Ŝ) = ηTr(Û∗Ŝ) + ϑTr(Û∗∗Ŝ). (179)

Since Ŝ is arbitrary, it follows that Û , Û∗, and Û∗∗ satisfy

Û = η Û∗ + ϑ Û∗∗. (180)

Von Neumann now proved a theorem pertaining to uniform ensembles (ibid.,
pp. 257–258). That Û is the density operator for a uniform ensemble can
be expressed by the following conditional statement: If (Û = Û∗ + Û∗∗) then
(Û∗ ∝ Û∗∗ ∝ Û). Von Neumann showed that this is equivalent to the statement
that there is a unit vector |ϕ〉 such that Û is the projection operator onto that

81 Von Neumann (1927b, p. 255) only wrote down the first step of Eq. (177). It
was only in the third installment of his trilogy, that von Neumann (1927c, p. 274)
finally introduced the notation trace (Spur), which we used here and in Eq. (156)
in Section 5.
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vector, i.e., Û = P̂ϕ = |ϕ〉〈ϕ|. 82 Written more compactly, the theorem says:

{ (Û = Û∗ + Û∗∗)⇒ (Û∗ ∝ Û∗∗ ∝ Û) } ⇔ {∃ |ϕ〉, Û = P̂ϕ = |ϕ〉〈ϕ| }. (181)

The crucial input for the proof of the theorem is the inner-product structure
of Hilbert space. The theorem implies two important results, which, given the
generality of the assumptions going into the proof of the theorem, have the
unmistakable flavor of a free lunch. First, pure dispersion-free states (or ensem-
bles) correspond to unit vectors in Hilbert space. 83 Second, the expectation
value of a quantity a represented by the operator Ŝ in a uniform ensemble
{Si} characterized by the density operator Û = |ϕ〉〈ϕ| is given by the trace
of the product of the corresponding matrices:

E(Ŝ) = Tr(Û Ŝ) = Tr(|ϕ〉〈ϕ|Ŝ) = 〈ϕ|Ŝ|ϕ〉, (182)

which is equivalent to the Born rule.

Von Neumann was still not satisfied. In sec. V, “Measurements and states,”
he noted that

our knowledge of a system S′, the structure of a statistical ensemble {S′1,S′2,
. . .}, is never described by the specification of a state—or even by the corre-
sponding ϕ [i.e., the vector |ϕ〉]; but usually by the result of measurements
performed on the system (von Neumann, 1927b, p. 260).

He considered the simultaneous measurement of a complete set of commuting
operators and constructed a density operator for (the ensemble representing)
the system on the basis of the outcomes of these measurements showing the
measured quantities to have values in certain intervals. He showed that these
measurements can fully determine the state and that the density operator in
that case is the projection operator onto that state.

Let {Ŝµ} (µ = 1, . . . ,m) be a complete set of commuting operators with

82 The notation P̂ϕ (except for the hat) is von Neumann’s own (ibid., p. 257).
83 This is the essence of von Neumann’s later no-hidden variables proof (von Neu-
mann, 1932, Ch. 4, p. 171), which was criticized by John Bell (1966, pp. 1–5), who
questioned the linearity assumption (A), E(α a + β b) = α E(a) + β E(b) (see note
78). Bell argued, with the aid of explicit examples, that the linearity of expectation
values was too strong a requirement to impose on hypothetical dispersion-free states
(dispersion-free via specification of additional “hidden” variables). In particular, the
dependence of spin expectation values on the (single) hidden variable in the explicit
example provided by Bell is manifestly nonlinear, although the model reproduces
exactly the standard quantum-mechanical results when one averages (uniformly)
over the hidden variable. For recent discussion, see Bacciagaluppi and Crull (2009).
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common eigenvectors, {|σn〉} with eigenvalues λµ(n):

Ŝµ |σn〉 = λµ(n) |σn〉. (183)

Now construct an operator Ŝ with those same eigenvectors and completely
non-degenerate eigenvalues λn:

Ŝ|σn〉 = λn|σn〉, (184)

with λn 6= λn′ if n 6= n′. Define the functions fµ(λn) = λµ(n). Consider the

action of fµ(Ŝ) on |σn〉:

fµ(Ŝ) |σn〉 = fµ(λn) |σn〉 = λµ(n) |σn〉 = Ŝµ |σn〉. (185)

Hence, Ŝµ = fµ(Ŝ). It follows from Eq. (185) that a measurement of Ŝ uniquely
determines the state of the system. As von Neumann (1927b) put it: “In this
way measurements have been identified that uniquely determine the state of
[the system represented by the ensemble] S′” (p. 264).

As a concrete example, consider the bound states of a hydrogen atom. These
states are uniquely determined by the values of four quantum numbers: the
principal quantum number n, the orbital quantum number l, the magnetic
quantum number ml, and the spin quantum number ms. These four quan-
tum numbers specify the eigenvalues of four operators, which we may make
dimensionless by suitable choices of units: the Hamiltonian in Rydberg units
(Ĥ/Ry), the angular momentum squared (L̂2/~2), the z-component of the
angular momentum (L̂z/~), and the z-component of the spin (σ̂z/~). In this
case, in other words,

{Ŝµ}4
µ=1 = (Ĥ/Ry, L̂2/~2, L̂z/~, σ̂z/~). (186)

The task now is to construct an operator Ŝ that is a function of the Ŝµ’s
(which have rational numbers as eigenvalues) and that has a completely non-
degenerate spectrum. One measurement of Ŝ then uniquely determines the
(bound) state of the hydrogen atom. For example, choose α, β, γ, and δ to be
four real numbers, incommensurable over the rationals (i.e., no linear combi-
nation of α, β, γ, δ with rational coefficients vanishes), and define

Ŝ = αŜ1 + βŜ2 + γŜ3 + δŜ4 (187)

One sees immediately that the specification of the eigenvalue of Ŝ suffices to
uniquely identify the eigenvalues of Ĥ, L̂2, L̂z and σ̂z.

Von Neumann thus arrived at the typical statement of a problem in modern
quantum mechanics. There is no need anymore for q̂’s and p̂’s, where the p̂’s do
not commute with the q̂’s. Instead one identifies a complete set of commuting
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operators. Since all members of the set commute with one another, they can
all be viewed as q̂’s. The canonically conjugate p̂’s do not make an appearance.

To conclude this section, we want to draw attention to one more passage
in Wahrscheinlichkeitstheoretischer Aufbau. Both Jordan and von Neumann
considered conditional probabilities of the form

Pr(â has the value a | b̂ has the value b),

or, more generally,

Pr(â has a value in interval I | b̂ has a value in interval J).

To test the quantum-mechanical predictions for these probabilities one needs
to prepare the system under consideration in a pure state in which b̂ has the
value b or in a mixed state in which b̂ has a value in the interval I, and then
measure â. A question that has not been addressed so far is what happens
after that measurement. Von Neumann did address just this question in the
concluding section of Wahrscheinlichkeitstheoretischer Aufbau:

A system left to itself (not disturbed by any measurements) has a com-
pletely causal time evolution [governed by the Schrödinger equation]. In
the confrontation with experiments, however, the statistical character is
unavoidable: for every experiment there is a state adapted [angepaßt] to
it in which the result is uniquely determined (the experiment in fact pro-
duces such states if they were not there before); however, for every state
there are “non-adapted” measurements, the execution of which demolishes
[zertrümmert] that state and produces adapted states according to stochas-
tic laws (von Neumann, 1927b, pp. 271–272)

As far as we know, this is the first time the infamous collapse of the state
vector in quantum mechanics was mentioned in print.

7 Conclusion: Never mind your p’s and q’s

The postulates of Jordan’s Neue Begründung papers amount to a clear and
concise formulation of the fundamental tenets of the probabilistic interpre-
tation of quantum mechanics. Jordan (1927b) was the first to state in full
generality that probabilities in quantum mechanics are given by the absolute
square of what he called probability amplitudes. He was also the first to rec-
ognize that, in quantum mechanics, the addition and multiplication rules of
ordinary probability theory apply to these probability amplitudes and, at least
in general, not to the probabilities themselves. He did not succeed, however,
in constructing a satisfactory formalism capturing the quantum-mechanical
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laws governing these probabilities (such as the Schrödinger equation, time-
dependent and time-independent) and the various relations between different
probability amplitudes as given by the quantum theory that he was trying to
axiomatize with his postulates.

As we argued in this paper, Jordan was lacking the requisite mathematical
tools to do so, namely abstract Hilbert space and the spectral theorem for op-
erators acting in Hilbert space. Instead, Jordan used the canonical formalism
of classical mechanics in his attempt to construct a realization of his postu-
lates. Jordan was steeped in this formalism, which had played a central role in
the transition from the old quantum theory to matrix mechanics (Duncan and
Janssen, 2007). This is also true for the further development of the new theory,
to which Jordan had made a number of significant contributions (Duncan and
Janssen, 2008, 2009). Most importantly in view of the project Jordan pursued
in Neue Begründung, he had published two papers the year before (Jordan,
1926a,b), in which he investigated the implementation of canonical transfor-
mations in matrix mechanics (Lacki, 2004; Duncan and Janssen, 2009). As
he put it in his AHQP interview (see Section 2.2 for the exact quotation),
canonically conjugate variables and canonical transformations had thus been
his “daily bread” in the years leading up to Neue Begründung.

Unfortunately, as we saw in Sections 2–4, this formalism—the p̂’s and q̂’s—
proved ill-suited to the task at hand. As a result, Jordan ran into a number of
serious problems. First, it turns out to be crucially important for the probabil-
ity interpretation of the formalism that only Hermitian operators be allowed.
Unfortunately, canonical transformations can turn p̂’s and q̂’s corresponding
to Hermitian operators into new P̂ ’s and Q̂’s that do not correspond to Hermi-
tian operators. Initially, Jordan hoped to make room for such non-Hermitian
quantities in his formalism by introducing the so-called Ergänzungsamplitude
(see Section 2.4). Eventually, following the lead of Hilbert, von Neumann, and
Nordheim (1928), he dropped the Ergänzungsamplitude, which forced him to
restrict the class of allowed canonical transformations rather arbitrarily to
those preserving Hermiticity. The difficulties facing Jordan’s approach be-
came particularly severe when, in Neue Begründung II, Jordan (1927e) tried
to extend his formalism, originally formulated only for quantities with purely
continuous spectra, to quantities with wholly or partly discrete spectra. One
problem with this extension was that, whereas canonical transformations do
not necessarily preserve Hermiticity, they do preserve the spectra of the p̂’s
and q̂’s to which they are applied. Hence, there is no canonical transformation,
for instance, that connects the generalized coordinate q̂, which has a contin-
uous spectrum, to the Hamiltonian Ĥ, which, in general, will have at least
a partly discrete spectrum. As Jordan’s construction of a realization of his
postulates hinged on the existence of a canonical transformation connecting q̂
and Ĥ, this presented an insurmountable obstacle. The newly introduced spin
variables further exposed the limitations of Jordan’s canonical formalism. To
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subsume these variables under his general approach, Jordan had to weaken the
definition of when two quantities are to be considered canonically conjugate to
such an extent that the concept lost much of its meaning. Under the definition
Jordan adopted in Neue Begründung II, any two of the three components σ̂x,
σ̂y, and σ̂z of spin angular momentum are canonically conjugate to each other.

All these problems can be avoided if the canonical formalism of classical me-
chanics is replaced by the Hilbert space formalism, even though other math-
ematical challenges remain. When Jordan’s probability amplitudes ϕ(a, b) for
the quantities â and b̂ are equated with ‘inner products’ 〈a|b〉 of normal-
ized ‘eigenvectors’ of the corresponding operators â and b̂, the rules for such
amplitudes as laid down in the postulates of Jordan’s Neue Begründung are
automatically satisfied. Probabilities are given by the absolute square of these
inner products, and Jordan’s addition and multiplication rules for probabil-
ity amplitudes reduce to the familiar completeness and orthogonality rela-
tions in Hilbert space (see Section 2.1, Eq. (3)). Once the Hilbert space for-
malism is adopted, the need to sort quantities into p̂’s and q̂’s disappears.
Canonical transformations, at least in the classical sense as understood by
Jordan, similarly cease to be important. Instead of canonical transformations
(p̂, q̂)→ (T p̂T−1, T q̂T−1) of pairs of canonically conjugate quantities, one now
considers unitary transformations Â → UÂU−1 of individual Hermitian op-
erators. Such transformations get us from one orthonormal basis of Hilbert
space to another, preserving inner products as required by the probability
interpretation of quantum theory.

The Hilbert space formalism was introduced by von Neumann (1927a) in
Mathematische Begründung. However, von Neumann did not use this formal-
ism to provide a realization of Jordan’s postulates along the lines sketched in
the preceding paragraph. As we saw in Section 5, Von Neumann had some
fundamental objections to the approach of Jordan (and Dirac). The basic
probability amplitude for p̂ and q̂ in Jordan’s formalism, 〈p|q〉 = e−ipq/~ (see
Eq. (4)), is not a square-integrable function and is thus not an element of
the space L2 instantiating abstract Hilbert space. The delta function, which
is unavoidable in the Dirac-Jordan formalism, is simply not a function at all.
Moreover, von Neumann objected to the phase-ambiguity of the probability
amplitudes.

Jordan’s response to this last objection illustrates the extent to which he was
still trapped in thinking solely in terms of p̂’s and q̂’s. In Neue Begründung II,
he eliminated the phase-ambiguity of the probability amplitude for any two
quantities by adding two indices indicating a specific choice of the quantities
canonically conjugate to those two quantities (see Section 4, Eqs. (133)–(139)).
Von Neumann’s response to this same problem was very different and under-
scores that he was not wedded at all to the canonical formalism of classical
mechanics. Von Neumann decided to avoid probability amplitudes altogether.
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Instead he turned to projection operators in Hilbert space, which he used
both to formulate the spectral theorem and to construct a new formula for
conditional probabilities in quantum mechanics (see Eq. (156) and Eq. (164)).

Although von Neumann took Jordan’s formula for conditional probabilities
as his starting point and rewrote it in terms of projection operators, his final
formula is more general than Jordan’s in that it pertains both to pure and
to mixed states. However, it was not until the next installment of his 1927
trilogy, Wahrscheinlichkeitstheoretischer Aufbau, that von Neumann (1927b)
carefully defined the difference between pure and mixed states. In this paper,
von Neumann freed his approach from reliance on Jordan’s even further (see
Section 6). He now derived his formula for conditional probabilities in terms
of the trace of products of projection operators from the Hilbert space formal-
ism, using a few seemingly innocuous assumptions about expectation values
of observables of systems in an ensemble of copies of those systems charac-
terized by a density operator. He then showed that the density operator for a
uniform ensemble is just the projection operator onto the corresponding pure
dispersion-free state. Such pure states can be characterized completely by the
eigenvalues of a complete set of commuting operators. This led von Neumann
to a new way of formulating a typical problem in quantum mechanics. Rather
than identifying p̂’s and q̂’s for the system under consideration, he realized
that it suffices to specify the values of a maximal set of commuting operators
for the system. All operators in such sets can be thought of as q̂’s. There is
no need to find the p̂’s canonically conjugate to these q̂’s.

Coda: Return of the p’s and q’s in Quantum Field Theory

In this paper, we emphasized the difficulties engendered by Jordan’s insis-
tence on the primacy of canonical (p̂, q̂) variables in expressing the dynam-
ics of general quantum-mechanical systems (see especially Section 4 on Neue
Begründung II). These difficulties became particularly acute in the case of sys-
tems with observables with purely or partially discrete spectra, of which the
most extreme case is perhaps the treatment of electron spin (see Eqs. (119)–
(121)). Here, the arbitrary choice of two out of the three spin components
to serve as a non-commuting canonically conjugate pair clearly reveals the
artificiality of this program. In a sense, however, Jordan was perfectly right
to insist on the importance of a canonical approach, even for particles with
spin: his error was simply to attempt to impose this structure at the level of
non-relativistic quantum theory, where electron spin appears as an essentially
mysterious internal attribute which must be grafted on to the nonrelativis-
tic kinematics (which does have a perfectly sensible canonical interpretation).
Once electron spin was shown to emerge naturally at the relativistic level,
and all aspects of the electron’s dynamics subsumed in the behavior of a local

82



relativistic field, canonical ‘p & q’ thinking could be reinstated in a perfectly
natural way. This was first done explicitly by Heisenberg and Pauli (1929)
in their seminal paper on Lagrangian field theory. In modern notation, they
introduce a relativistically invariant action for a spin-1

2
field, as a spacetime

integral of a Lagrangian:

S =
∫
L d4x =

∫
ψ(x)(iγµ∂µ −m)ψ(x)d4x (188)

Here the field ψ(x) is a four-component field, with the γµ, µ = 0, 1, 2, 3 the 4x4
Dirac matrices. A conjugate momentum field πψ(x) ≡ ∂L/∂ψ̇ is then defined
in the standard fashion, with canonical equal-time anticommutation relations
imposed (as indicated by earlier work of Jordan and Wigner) in order to insert
the desired fermionic statistics of the particles described by the field,

{πψm(~x, t), ψn(~y, t)} = i~δmnδ3(~x− ~y) (189)

The transition from a Lagrangian to a Hamiltonian (density) is then carried
out in the usual way

H = πψψ̇ − L = ψ̄(i~γ · ~∇+m)ψ(x) (190)

The spatial integral of this Hamiltonian energy density would within a few
years be shown to describe exactly the free Hamiltonian for arbitrary multi-
particle states of non-interacting electrons and positrons, degenerate in mass
and each displaying the usual panoply of spin-1

2
behavior which had finally

been deciphered, in the non-relativistic context, by the atomic spectroscopy
of the mid to late 1920s. The essential point is that the relevant ‘p’-s and
‘q’-s appearing in the theory are not associated with the first-quantized wave-
functions or state vectors appropriate for a non-relativistic treatment, but
rather with the fields that must replace them once a fully relativistic theory
takes center stage.
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Riess, Frédréric (1907a). Über orthogonale Funktionensysteme. Königliche
Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische
Klasse. Nachrichten 116–122.
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