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Abstract

Galileo proposed what has been called a proto-inertial principle, accord-
ing to which a body in horizontal motion will conserve its motion. This
statement is only true in counterfactual circumstances where no impedi-
ments are present. This paper analyzes how Galileo could have been justi-
fied in ascribing definite properties to this idealized motion. This analysis is
then used to better understand the relation of Galileo’s proto-inertial prin-
ciple to the classical inertial principle.

1 Introduction

Galileo Galilei assumed that a body in horizontal motion will conserve its mo-
tion indefinitely. He used this idea to explain the parabolic shape of a body
projected from a horizontal table, and it is crucially related to his use of relativ-
ity arguments to defuse objections to the possibility of a moving earth. In both
roles it functions similarily to an inertial principle, but there are also some cru-
cial factors that put it at a distance (for some earlier discussions, and further ref-
erences, see Coffa (1968), Chalmers (1993), Hooper (1998), and especially Roux
(2006)). Most importantly: because the notion of the "horizontal" is underspec-
ified if not related to a broader spatial framework, Galileo’s own writings seem
to use the idea both in a way in which the relevant motion is rectilinear and in
which it is circular (see Miller (2014, pp.110-146) for a recent discussion); and
even if interpreted as rectilinear, the restriction to horizontal motion is highly
significant — Galileo never came to terms with the case of a body projected along
an oblique direction, such as a typical cannon ball (see Damerow et al. (2004,
pp-216-223, pp.263-266) for further details).



Galileo’s way of arguing for this conservation is closely related to a princi-
ple that had been enunciated a number of times by earlier writers: that a body
on the horizontal can be put in motion by a minimal force (see Festa and Roux
(2006)). Clearly, this minimal force conclusion only holds if we assume an ide-
alized situation in which there are no impediments to motion. Yet, taking this
idealizing step is in itself not sufficient to decide the further question, whether
the motion once initiated will last or come to an end. After all, what kind of em-
pirical information could we conceivably possess about that kind of counterfac-
tual situation? In Section 2, I will sharpen this question by considering the case
of Simon Stevin, one of the authors who had already come to the minimal force
conclusion. Stevin is especially interesting because he also enunciated views
on the conditions for acceptable idealizations, which implied a sharp distinc-
tion between stating the minimal force conclusion (acceptable idealization) and
possible extrapolations about the resulting motion (unacceptable idealization).
In Section 3, I will reconstruct how Galileo could have felt entitled to ascribe
a definite nature to the resulting motion without necessarily transgressing the
spirit of Stevin’s norms on acceptable idealizations. In the concluding Section
4, I will then show how this background helps better understand the relation
of Galileo’s "proto-inertial” principle to the classical inertial principle.

In this short paper I will focus on just one question regarding idealization in
the work of early modern practical mathematicians such as Stevin and Galileo:
how to legitimately ascribe definite properties to idealized systems? And I will
do this with respect only to one very specific problem: what can we say about
horizontal motion in the absence of impediments? Galileo has more to say on
issues regarding idealization than can be taken into account here, but a full anal-
ysis must await another occasion (see Koertge (1977) and McMullin (1985) for
two influential earlier treatments, and Palmerino (2016) for a recent discussion).
A similar remark must be made regarding Galileo’s proto-inertial principle: I
will approach this primarily through its role in Galileo’s mathematical science

of motion, bracketing its role in his astronomical work.

2 Simon Stevin on Idealization

Simon Stevin is in the first place remembered for his ingenious proof of the gen-
eral condition characterizing the equilibrium of bodies on an inclined plane,
published in 1586 (see Van Dyck (2017) for a recent analysis). He introduced



the minimal force conclusion as one of the corrolaries following from this gen-
eral condition: in the case of zero inclination there can never be equilibrium
between a body on the plane and another body attached to it with a pulley, no
matter how small the second body — hence "mathematically speaking" the lat-
ter body will always pull the first body along the horizon (Stevin, 1955, p.187).
Stevin’s stress that the minimal force conclusion is only true when speaking
"mathematically" is closely related to his distinction between "speculation" and
"practice". The former is characterized by Stevin as "an imaginary operation
without natural matter”, whereas the latter "is an operation which essentially
takes place with natural matter” (Stevin, 1961, p.619). Strictly speaking, specu-
latively established proposition will never be true of material objects, but "the
false is admitted in order that the truthful may be learned therefrom." (Stevin,
1955, p.227)

This brings Stevin very close to recent philosophical discussions on ideal-
ization, where idealization is usually understood as the practice of entertaining
false propositions in order to learn something about empirical phenomena (see
Weisberg (2007) for an influential discussion). But under which conditions can
the false teach us something relevant? The following characterization helps us
understand Stevin’s point of view:

The conclusion of speculative propositions is perfect, but that of
practical propositions is imperfect. ... The property and the end
of speculation is that it furnishes a sure foundation for the method
of construction in practice, in which by closer and more painstaking
care one may get as near to the perfection of the speculation as the
purpose of the matter requires for the benefit of man. (Stevin, 1961,
p.619)!

The reason why we idealize is that it allows us to give a "perfect", mathemati-
cally structured treatment of the subject matter. In the case of mechanics, this
mathematical treatment is made possible by the assumption that each body
possesses a unique centre of gravity, which grounds the Archimedean proof
of the law of the lever. All further mathematical propositions in Stevin’s trea-
tise are based on the law of the lever, which implies that the relevance of these
idealized statements indirectly depends on the existence of a centre of grav-
ity in each body (see Van Dyck (2017, pp.23-24)). It is this presumed existence

which provides the bridge between the speculative propositions of Stevin’s Art

!T have slightly altered the translation.



of Weighing and the practical operations in his Practice of Weighing. In the sec-
ond proposition of the latter book, Stevin explains how to construct a "most per-
fect" (Stevin, 1955, p.303) material balance that exhibits indifferent equilibrium
— which shows that this body indeed possesses a centre of gravity (the possi-
bility of indifferent equilibrium follows directly from the definition of centre of
gravity as given by Stevin).

The idealized propositions are strictly speaking false, but we can construct
material objects such as a balance in indifferent equilibrium that exhibit the
defining characteristics responsible for the mathematical regularities. This guar-
antees that by "closer and more painstaking care" we should always be able to
find situations for which these propositions are approximately true, and that
we can also assume that they remain informative for objects in situations where
the approximation no longer holds. We can now suppose that these objects also
have a centre of gravity, and that all differences from the mathematically proven
propositions must be ascribed to the presence of material impediments. This
will especially happen as soon as we consider mechanical instruments that are

put into motion to achieve practical work:

Because in several propositions of the Practice of Weighing the mo-
tions of bodies will be dealt with, I thought it advisable, before com-
ing to the matter, to explain something of it to the reader. To wit, that
the Art of Weighing only teaches us to bring the moving body into
equality of apparent weight to the body to be moved. As to the addi-
tional weight or the force which the moving body requires in order
to set in motion the body to be moved (which weight or force has to
overcome the impediments of the body to be moved, which is an in-
separable attribute of every body to be moved), the Art of Weighing
does not teach us to find that weight or force mathematically; the
cause of this is that the one moved body and its impediment are not
proportional to the other moved body and its impediment. (Stevin,
1955, p.297)

"Mathematically speaking” the smallest addition of weight should suffice to put
a balance in equilibrium in motion, but practically speaking an extra force will
always be needed, the magnitude of which can only be empirically determined.

Notice the parenthetical statement in the quotation: "impediments of the
body to be moved" are called "an inseparable attribute of every body to be

moved". In an earlier text, Stevin had already defined an inseparable attribute



as "that which cannot be taken away from its subject without the demise of the
thing" (Stevin, 1585, p.21). But this implies the impossibility of an idealized
treatment of motion along the lines of the treatment given of equilibrium. We
cannot separate the effects of the impediments in an "imaginary operation", as
we could do for the effects of material imperfections when proving the law of
the lever. The question what would happen with the body after that it is put
into motion by a minimal force on a frictionless horizontal (and assuming no
air resistance) must accordingly be senseless for Stevin — and, indeed, he does
remain silent about the issue. But why is this the case?

As Stevin didn’t rule out the possibility of a vacuum (Stevin, 1585, pp.142-
149), this cannot be due to a purely conceptual fact about the nature of motion
(as it arguably would have been for Aristotle). The clue to a better answer is
to be found in the contrast with equilibrium. All material instruments will ex-
hibit some friction (which will actually be a factor sustaining equilibrium), but
these impediments are not necessary to conceive a body in equilibrium. We
can legitimately attribute equilibrium to an idealized body, based solely on the
relative position of the body’s centre of gravity to the body’s support. Why
"legitimately"? Because we have found out through careful manipulation and
conceptual exploration that the concept of centre of gravity describes a property
responsible for the behaviour of all bodies. This property has something of a
dual nature: itis empirically grounded and it is a necessary precondition for the
possibility of giving a mathematical treatment of this behaviour. It is thus not
just empty gesturing to talk about the mathematically well determined behavior
of bodies in the absence of impediments when it comes to their static proper-
ties. The empirical relevance of Stevin’s speculative treatise is guaranteed by
the possibility of empirically exhibiting some of its most basic assumptions.

The same move cannot be made when it comes to motion. Stevin simply
knew of no empirically grounded way to separate what we could call the pure
phenomenon, present both in the ideal and empirical situations, and the extra
factors that mask this phenomenon in most empirical situations. There is no
privileged empirical system that can play the role of a balance in indifferent
equilibrium. (Stevin further illustrates this in an appendix to his treatises on
the Art and the Practice of Weighing, in which he discusses bodies in free fall;
see Van Dyck (2017, pp.33-35) for an analysis.) Stevin articulates a clear norm
for mechanical speculation: the idealizing imaginary operation that is at the
basis of its mathematical demonstrations must be constrained by the results of
specific material operations if it is to be of any epistemic worth.



3 Galileo on Motion on the Horizontal

In what follows, I will compare Galileo and Stevin on the question of motion on
a horizontal plane as a way to bring Galileo’s own use of idealization into better
focus. We will see that in a first phase of his career, Galileo did not feel bound by
something like the norm that Stevin upheld for legitimate speculation. In a later
phase, he came to conclusions that can be underwritten by this norm, though,
and we will see how the probable discovery process also shows Galileo implic-
itly operating according to it. In the next section, we will then analyze Galileo’s
own explicit way of legitimizing his conclusions. The analysis given here has
a rather narrow epistemological focus: how does Galileo’s statement about the
conservation of motion relate to the empirical evidence at his disposal? Ideally,
this analysis should be integrated within a fuller historical and contextualizing
description. (It is e. g. very improbable that Galileo would have known Stevin’s
work, but he was definitely familiar with that of Guidobaldo del Monte, which
argues for very closely related views, though not linking these to the question
of motion on the horizontal (see Van Dyck (2017)).)

In his youthful manuscript De Motu Antiquiora, written in the period 1589-
1592, a few years after Stevin's treatises, Galileo also deduced the general condi-
tion characterizing equilibrium on an inclined plane and inferred the minimal
force conclusion from it (Galilei, 1890, vol.1, pp.296-302). Again like Stevin, he
went on to warn his readers not to expect this conclusion to be borne out when
experimenting with material bodies. But unlike Stevin, he was also interested
in the nature of the resulting motion. More specifically, he wondered how to
characterize it in terms of the conceptual framework inherited from Aristotle, in
which motions are either natural or forced. His tentative conclusion was that
it is probably best to characterize it as neither natural (since the body is not
moving towards its natural place — which is why the motion won't start sponta-
neously), nor forced (since it is not moving away from its natural place — which
is why a minimal force will suffice to move it), but as "neutral". In the same
treatise, Galileo also considered the similar case of a perfectly homogeneous
material sphere rotating around the centre of the universe: would its "neutral"
motion last or come to an end (Galilei, 1890, vol.1, pp.306-307)? Significantly,
Galileo raised the question but never answered it in his treatise. We can easily
understand why Galileo would have to remain undecided. On the one hand,
there is no reason why the body should stop once it is put into motion — af-
ter all, it has no resistance against this motion. On the other hand, there is no



reason why the body should stay in motion — after all, it has no inclination for
this motion (and according to the view that Galileo had already defended in his
treatise, an external force that puts a body into motion will only remain present
in that body for a limited amount of time).

Galileo’s silence on the question of conservation of motion on a horizontal
plane is of a very different nature than Stevin’s. When e. g. treating free fall,
Galileo saw no problem in assuming the pure phenomenon to be one where
the bodies fall with uniform speeds measured by (something like) their spe-
cific weight, even if there is no empirical operation that can show this phe-
nomenon to be approximately exhibited by material bodies. Accordingly, he
saw no problem in separating a pure phenomenon from impediments solely
on the basis of theoretical preconceptions (in this case based in an extrapola-
tion from Archimedean hydrostatics). It is accordingly only the gap in his theo-
retical framework that stopped Galileo from giving a definite statement on the
precise nature of the counterfactual motion of a body moving without impedi-
ments on a perfectly horizontal plane: there seem to be equally good theoretical
reasons to assume that it would remain in motion and that it would stop.

In his Letters on Sunspots from 1613 Galileo again considered what happens
when abody on a horizontal plane is put into motion (Galilei, 1890, vol.5, p.134).
He now concluded that since the body is "indifferent" to this motion (since it
is neither natural nor forced), it will conserve its motion in the absence of all
external impediments. (We also know from a letter from his pupil Benedetto
Castelli that Galileo already held this view in 1607 (Galilei, 1890, vol.10, p.170).)
While Galileo now presented the conservation as directly following from the
body’s indifference, the earlier indecision in De Motu Antiquiora shows that this
extrapolation cannot have been so straightforward.

What did happen in the meantime? I will first offer the sketch a reconstruc-
tion that is based on all available evidence, but that will also have to fill in quite
a few lacunae. This will allow us to see how Galileo’s approach to the problem
was transformed into one that was in broad agreement with Stevin’s norms
on acceptable idealizations — although it would never be explicated as such by
Galileo himself, for reasons we will consider in Section 4.

In 1592, Galileo performed a small experiment, together with his patron
Guidobaldo del Monte (see the convincing evidence gathered in Renn et al.
(2000)). They projected a small inked ball on an inclined surface, such that the
ink would leave a trace marking the path followed by the projectile. Their con-
clusion was that the shape of the trajectory resembled either a parabola or a hy-



perbola. Renn et al. (2000, p.323) suggest that at this point Galileo could have
easily inferred the times-squared law for freely falling bodies from the parabolic
shape, by assuming the composition of a uniform horizontal motion and an ac-
celerated motion along the vertical. But there is no evidence that Galileo would
have taken that step around the time of the experiment, and there a few rea-
sons to assume that he probably could not have. As we just saw, the neces-
sary extrapolation from the minimal force conclusion to the conservation of
motion (which would result in a uniform motion) was far from straightfoward
for Galileo. But even more importantly, as argued conclusively by Renn himself,
Galileo never came to terms with the right composition of motions characteriz-
ing an obliquely projected body (Damerow et al., 2004, pp.263-266) — which is
precisely the case in the experiment with Guidobaldo. It is probably safest to
assume that initially Galileo was interested only in the symmetric shape of the
trajectory (as also stressed in Renn et al. (2000)), and that any link with the law
of fall is of a later date.

In 1602, Galileo discussed the relation between motion on inclined planes
and properties of the circular motion of a simple pendulum in a letter to Guido-
baldo del Monte (Galilei, 1890, vol.10, pp.97-100). Two years later, this time
in a letter to Paolo Sarpi, he indicated that he was looking for an evident ax-
iom from which to derive some phenomena observed by him, among which
the times-squared law of fall (Galilei, 1890, vol.10, p.115). It is plausible to
assume a direct link between the content of both letters: in the Discorsi from
1638 Galileo tried to demonstrate that the circular path of the pendulum is the
brachistochrone (the path of quickest descent), starting from the fact that bodies
descending on inclined planes follow the law of fall. Based on a careful study
of the manuscript evidence, Wisan (1974, pp.175-179) has suggested that this
was probably the way in which Galileo would have started thinking about the
possibility of a mathematical law characterizing acceleration (thus abandoning
the idea that the pure phenomenon of fall is characterized by a uniform speed).
Looking for a way to prove a proposition with which a possible demonstra-
tion for the brachistochrone could be constructed, Galileo would have realized
that this proof could only be completed if he had a mathematically determi-
nate way to express distances traversed in terms of times used. At this point it
would have made good sense to try find an empirical answer to the question
what form this expression should take, by setting up the famous experiment
with inclined planes as described in the Discorsi.

Having found empirically that bodies descending on an inclined plane ap-



proximately follow a times-squared law, the approximately parabolic shape of
the trajectory of a projectile would now have taken on extra meaning. Assum-
ing the vertical component to be characterized by the precise law of fall, the
mathematics of a parabola immediately implied that the horizontal component
should be characterized as a motion with uniform velocity. At this point the
question regarding the nature of motion on the horizontal could finally be an-
swered: it has to be conserved. The clue for the answer did not reside in the-
oretical considertations concerning matter, force and motion, but in an analy-
sis of the conditions under which an empirical phenomenon could be math-
ematically analyzed. (The puzzle regarding oblique projection is not solved,
but bypassed. The mathematics demands a uniform horizontal component,
and Galileo knows how to give this a physical interpretation for the downward
part of the trajectory. This part starts at the moment that the motion is indeed
horizontally oriented, as if the body is on a horizontal plane, where it can be
characterized as "indifferent" to this motion — which will now be interpreted as
implying the conservation of motion that is required by the mathematics of the
curve. For the first, upward, part of the trajectory, Galileo would never do better
than appeal to vague symmetry considerations (see the discussion in Damerow
et al. (2004, pp.263-266)).)

While to some extent speculative, this reconstruction has the value that it
brings out the way in which the question concerning the nature of motion on
the horizontal was gradually being transformed into one that could possibly
be adjudicated on empirical grounds by Galileo’s research. Such adjudication
could never have been straightfoward, though, since it remains a fact that in
all physically realizable circumstances moving bodies will finally come to rest.
How to decide whether this is only due to impediments rather than also fol-
lowing from the nature of bodies (and motion)? Merely saying that we can
approximate the situation in which the body keeps on moving is of no avail
here, since no matter how good the approximation, the fact remains that the
body stops — which could always be due to its intrinsic nature rather than to
remaining impediments (this was e. g. the position of Roberval later in the sev-
enteenth century (see Roux (2006, p.495))). After all, the merely approximately
parabolic shape is perfectly consistent with a non-uniform, slightly decreasing
horizontal speed.

The crucial extra step that allowed for the adjudication is the insight that
only the assumption of conservation of motion makes possible a straightfor-

ward mathematical analysis of the empirical phenomena that would otherwise



not have been possible. It allowed Galileo to directly relate the approximately
parabolic shape of the trajectory to the approximately quadratic relation estab-
lished on the inclined plane through the idealizing move in which he assumed
both a precise law of fall and a perfect parabola (and note that for Galileo there
would have been no mathematical curve corresponding to a shape closely ap-
proximating but not identitical with a parabola — so he would not have been
able to mathematically link his observation with the law of fall without making
this idealization). This new possibility provided Galileo with the good reason
to assume the conservation of motion that was lacking before. This reason was
based in empirical facts, but these facts got their significance from the explicit
goal of giving a mathematical treatment of phenomena of motion. Whether the
empirical approximation to the ideal phenomenon was "good enough" thus de-
pended on the fruitfulness of the further mathematical research program that
was predicated on this initial idealization.

For Stevin the impediments to motion were inseparable attributes because
he didn’t know any legitimate way to separate a pure phenomenon of motion
from these impediments. Galileo’s research showed that the parabolic trajec-
tory of a projectile could be taken to exhibit the nature of neutral motion much
in the same way that the balance in indifferent equilibrium exhibits the math-
ematical concept of centre of gravity. Imagining the motion of a body on a
horizontal plane without impediments had become strongly constrained by si-
multaneously empirical and mathematical considerations, in a way that it had

not been at the beginning of Galileo’s attempts.

4 A '"Proto-Inertial" Principle?

All evidence we have of Galileo’s adherence to the idea that horizontal motion
is conserved in absence of all impediments dates from after his discovery of the
parabolic shape of projectile motion and of the law of fall. Given the crucial role
of conservation in linking both phenomena, it is plausible to assume that this
role is exactly what brought Galileo to accept it after his initial indecision. When
arguing for the validity of his principle he used a different strategy, though.

In his published writings Galileo always appealed to the idea that a body on
a horizontal plane is indifferent to motion since any resulting motion would be
neither natural nor forced, and assumed that this was enough to claim that this

motion would also be conserved in the absence of impediments. Apparently, he
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felt that he had to present independent reasons to accept both components mak-
ing up the parabolic trajectory of a projectile (the inclined plane experiment for
the vertical component, and the indifference argument for the horizontal com-
ponent), before going on to their composition. Rather than seeing the parabola
as the primary empirical mark left by the pure phenomenon of neutral motion,
he wanted to present the situation on the horizontal plane as a legitimate exhi-
bition of that phenomenon. But we already saw that this move is not as evident
as Galileo made it out to be, since it is not clear how he could have unambigu-
ously decided that indifference implied conservation without the information
provided by the parabolic shape.?

It is this same move that explains the main distance separating Galileo’s
principle from our classical inertial principle. The horizontal plane functions
as a device that neutralizes the body’s weight so that it becomes indifferent to
motion. The absence of a comparable device for the case of oblique projection is
the reason why Galileo cannot apply conservation of motion there. It is also the
reason why the precise nature of the horizontal (rectilinear or circular) remains
underspecified: the directionality of Galileo’s conserved motion is not referred
to an abstract notion of space that functions as background, but it is defined
with respect to the direction of weight, which can be either be considered to be
everywhere parallelwith itself or as converging in a single point.

The need for a physical device that neutralizes the body’s weight shows that
for Galileo weight remained what Stevin had called an "inseparable attribute"
of all physical bodies, a property that could not be legitimately subtracted from
these bodies in an "imaginary operation" (the importance of this fact was al-
ready stressed forcefully in Koyré (1966)). There is a further story to be told
about this conceptualization of bodies, but it is interesting to point out that
Galileo’s results contained everything that was needed to justify the further ide-
alization in which essentially weightless bodies are posited to move uniformly
and rectilinearily in any arbitrary direction once put into motion. After all, if
the uniformity of horizontal motion was already based on the parabolic shape

%It is true that after having starting conceptualizing downward motion as naturally accelerated,
the step from indifference to conservation has become smaller than it was at the time of De Motu
Antiguiora, when Galileo still saw downward motion as essentially uniform. Galileo can now claim
that a body gains speed if it moves down, and it loses speed if it moves up. If it moves neither up nor
down, there is hence no reason why it should gain or lose speed — which would imply conservation.
This symmetry consideration holds some intuitive appeal, but it prejudges the question whether
weight (as measured by resistance against upward motion) is the only reason why a body would
lose a speed imparted to it. Again, it is not clear how we could ever decide this on purely empirical
or theoretical grounds.
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of the trajectory of the projectile, why not directly use the latter to ground this
further idealization? This step was implicitly taken by Galileo’s pupils Cavalieri
and Torricelli, who composed a uniform motion in the direction of projection
with an accelerated motion caused by the weight added to the body (see Koyré
(1966, pp. 292-304)). In this way, the parabola could become the empirical mark
not just of the nature of Galileo’s neutral motion, but of the pure phenomenon
of the motion of weightless bodies - i. e. something that we can characterize as
inertial motion.

Once you've started treating weight as a separable attribute, an external
force modifying the pure phenomenon of motion, the logic behind the justi-
fication for this idealization has started shifting, though. There can no longer
be the presumption that we could ever encounter a close approximation of this
pure phenomenon in the empirical world, as was still suggested by Galileo’s
device of the horizontal plane. It has rather become a necessary condition for
the successful mathematization of empirical phenomena such as the shape of

projectile motions.
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