
ELEMENTS OF DEDUCTIVE LOGIC

Elements of Deductive Logic

an introduction to formal logic
and elementary metatheory

with exercises

Antony Eagle

University of Adelaide

Elements of Deductive Logic by Antony Eagle (antonyeagle.org) is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit creativecommons.org/licenses/by-sa/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

This book is open source. XƎLATEX source code for the book is available from the book’s
GitHub repository, github.com/antonyeagle/edl, or by contacting me:

antony.eagle@adelaide.edu.au.

Last updated 2017-06-05

http://antonyeagle.org
http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/antonyeagle/edl
mailto:antony.eagle@adelaide.edu.au

Preface

This is a textbook covering the basics of formal logic and elementary metatheory.
One distinguishing feature is that it has more emphasis on metatheory (particu-
larly for sentential logic) than comparable introductory textbooks. Another dis-
tinguishing feature is that, while it is not primarily a book in philosophy of logic,
the book does pay close attention to some foundational issues about meaning,
consequence, and the philosophical rationale behind various metalogical results.

This book was originally written as a set of notes to accompany lectures in
the introductory-intermediate logic course at the University of Oxford, Elements
of Deductive Logic, but has evolved significantly since then. It is now suitable for
independent study. In the classroom, I have used it as the basis for a second course
in logic, particularly for slightly more mathematically inclined students, and it
could serve as the basis for a useful bridging course to a more advanced third
logic course that covers the material in Boolos et al. (2007).

This book is made available under a Creative Commons license (CC BY-SA
4.0), which allows users to share the work as they like, and to create derivative
and modified works for any purpose, as long as the original creator is appropri-
ately credited, and derivative works are licensed in the same way. I hope this will
encourage any users of the book to adapt it to their local environments.

Acknowledgements Thanks especially to Ofra Magidor and Andrew Bacon for
helpful feedback. Thanks also to James Studd, Brian King, Iain Atkinson, Katy
Moe, Daniel Hoek, Anastasiya Kravchuk, Matt Nestor, Bernhard Salow, Petra
Staynova, Laura Castelli, and Syed Qader for comments and corrections. Several
chapters of this book also formed the basis for part of the course Logic II at the

iii

elements of deductive logic

University of Adelaide in 2014; thanks to the students in that course for their feed-
back. And the final version of the book was road-tested in an honours seminar on
formal methods in philosophy at the University of Adelaide in 2017: thanks to stu-
dents in that course for their help in refining the materials, especially the sample
answers to exercises.

iv

Contents

0 Introduction 1

I Mathematical Preliminaries 5

1 Mathematical Induction and Proof 6
1.1 Inductive Proofs . 6
1.2 Proof by Reductio . 11
1.3 Intuitionism . 12

Further Reading . 14
Exercises . 14

2 Set Theory 15
2.1 Sets . 15
2.2 Relations . 23
2.3 Functions . 31
2.4 Size . 35

Further Reading . 38
Exercises . 39

II Sentential Logic: Language and Meaning 42

3 The Syntax of ℒ1 43
3.1 Strings and Quotation . 43

v

elements of deductive logic

3.2 Sentences . 45
3.3 Proofs About Syntax . 47
3.4 Proof By Induction on Complexity 48
3.5 The Size of ℒ1 . 50

Exercises . 51

4 The Semantics of ℒ1 52
4.1 Semantics for ℒ1 . 52
4.2 Truth Tables . 56
4.3 Satisfaction, Entailment, and other Semantic Notions 58
4.4 Consequences and Theories . 59
4.5 Entailment, Validity and Necessity 61
4.6 Meaning, Possibility, and Time . 63
4.7 Entailment and the Connectives 65
4.8 Structural Rules . 66
4.9 Substitution . 68
4.10 Truth-functions . 72

Exercises . 76

5 Metatheory of ℒ1 78
5.1 Disjunctive Normal Form . 78
5.2 Expressive Adequacy and Functional Completeness 81
5.3 Duality . 86
5.4 Interpolation . 88
5.5 Compactness . 91
5.6 Alternative Proof of Compactness 95
5.7 Decidability . 96

Exercises . 101

III Sentential Logic: Derivations 105

6 Tableau Derivations in ℒ1 106
6.1 Derivations . 106
6.2 Trees . 110

vi

Contents

6.3 Tableaux . 112
6.4 Closure and Order . 118
6.5 Tableaux Derivations . 121
6.6 Tableaux in practice . 123

Further Reading . 128
Exercises . 128

7 Tableau Metatheory 130
7.1 Derivations and Semantic Arguments 130
7.2 Transforming Derivations . 132
7.3 Soundness and Completeness . 137
7.4 Soundness of the Tableaux Derivation System 137
7.5 Completeness for Tableaux . 140
7.6 Finitude and Decidability . 144
7.7 Alternate Tableau Systems . 146
7.8 Trees and Tableaux . 146

Further Reading . 149
Exercises . 149

8 Natural Deduction in ℒ1 151
8.1 Natural Deduction Proofs . 151
8.2 A Little More Proof Theory . 154

Further Reading . 158
Exercises . 158

9 Natural Deduction Metatheory 161
9.1 Soundness for Natural Deduction 161
9.2 Completeness . 163
9.3 Axioms . 166

Further Reading . 169
Exercises . 169

vii

elements of deductive logic

IV Predicate Logic 171

10 The Syntax and Semantics of ℒ2 172
10.1 Syntax of ℒ2 . 172
10.2 Semantics of ℒ2 . 174
10.3 Some Semantic Theorems About ℒ2 177
10.4 Alternative Semantics for ℒ2 . 182

Further Reading . 183
Exercises . 183

11 Tableaux for ℒ2 186

12 Natural Deduction in ℒ2 187
12.1 Proofs in ℒ2 . 187
12.2 Soundness of ℒ2 . 190
12.3 Completeness of ℒ2 . 191
12.4 Decidability and Undecidability . 192

Further Reading . 197
Exercises . 197

13 Syntax, Semantics, and Derivations in ℒ= 200
13.1 Identity . 200
13.2 Numerical Quantification and the Theory of Definite Descriptions 203
13.3 Compactness and Cardinality . 207
13.4 Further Directions of Research and Study in Logic 209

Further Reading . 210
Exercises . 210

V Beyond Classical Logic 213

14 Modal and Temporal Logic 214

15 Logic and Natural Language Conditionals 215
15.1 Indicative Conditionals . 215

Further Reading . 224

viii

contents

Exercises . 224

16 Entailment, Designators, and Relations 226
16.1 Entailment . 226
16.2 Designators . 229
16.3 More on Relations . 234

Further Reading . 236
Exercises . 236

A Answers to Selected Exercises 238

B Greek letters 257

List of Definitions 258

List of Tables 259

List of Figures 261

Bibliography 262

ix

Chapter 0

Introduction

Introductory logic courses serve generally to tell you how to use a new logical
language. An introductory course will give you an introduction to the grammar,
or syntax, of the new formal language, tell you how to interpret the grammat-
ical sentences by giving a semantics, and most importantly from the perspective
of applications, tell you how to translate from natural languages into the formal
language. With a semantics and an translation scheme, you can now use a formal
language to do various things more easily than you could otherwise: you can ex-
press claims precisely andwithout risk of ambiguity (No problemwith ‘everybody
loves somebody’ in formal languages!), and check the validity or otherwise of ar-
guments of certain forms, which – if you’ve done your translation well – reflects
on the validity or otherwise of certain informal arguments you might be inter-
ested in as a philosopher or mathematician. If you have a formal proof system,
giving rules for formal derivations in your languages, you can even construct ar-
guments directly in the formal language in amore or less mechanical fashion, thus
enabling you to prove various claims directly without having to detour through
semantics.

Thinking about this for a second, though, we need some reassurance that the
formal languages will do what we want them to. Is it true that if a formal proof
is correct, then the argument it formalises is semantically valid? Is it the case
that every valid argument has a corresponding formal derivation? Which things
can and cannot be expressed in a given formal language? Is a formal language

1

elements of deductive logic

adequate to each argumentative use we might have for it in mathematics, or in
philosophy? Are formal derivations really purelymechanical, or must there be hu-
man judgment involved too? These are questions about formal logical languages,
questions in what we might call the metatheory of logic. Such questions are the
focus of this book. Such questions aren’t about how to use formal logics to do
things, but about whether they are fit for purpose, whether they can in fact do the
things we want them to do.1

Answering such questions involves drawing a distinction between the object
language, the one we are talking about, and the metalanguage, the language we
are using to talk about the object language. For this book, the object languages are
various more-or-less orthodox languages of classical logic: a sentential language
ℒ1,2 a predicate language ℒ2, and a predicate language with identity ℒ=. And
the metalanguage is the mathematically enriched version of English we use to
talk about formal languages.

The Structure of this Book This book is divided into several parts.
I begin, in Part I (chapters 1 and 2), by outlining some mathematical tools –

some elementary set theory, including the theory of relations and functions, as
well as some remarks on the nature of mathematical proof – that will help us
study and understand the formal languages which are our subject.

In Part II, I turn to sentential logic. In chapters 3 and 4, I briefly review the
syntax and semantics of classical sentential logic. Then we’ll start proving some
results in metatheory.We’ll prove some small but still interesting results about the
truth-functions, and about the intimate connections between conjunction (‘∧’),
disjunction (‘∨’), and negation (‘¬’). In chapter 5, we’ll prove our first ‘big’ result:
the so-called compactness theorem for sentential logic. I also mention issues of
computational implementation, in particular, the decidability of sentential logic.

We’ll take a break from semantics-led approaches in Part III (chapters 6–9),
to introduce and talk about formal derivations in sentential logic, and introduce

1Such questions could easily be asked about natural languages too, though since the syntax and se-
mantics of natural language are orders of magnitude harder to specify precisely, it is correspondingly
harder to establish anything conclusively about the features of such languages.

2This is sometimes called the language of propositional logic, but as I take propositions to be the mean-
ings of sentences, and logic to be the study of consequence relations between meaningful sentences,
I wish to avoid the terminology of ‘propositional logic’ as potentially misleading.

2

introduction

two kinds of derivation system: first tableaux, then natural deduction. We’ll prove
two central results connecting derivability with validity: the soundness and com-
pleteness theorems for sentential logic. We prove them for each of our derivation
systems.

Part IV turns to a review of predicate logic and (in chapters 11 and 12) some
of its derivation systems, and we’ll prove soundness for standard predicate lo-
gic. I sketch proofs of completeness, and briefly consider issues of decidability.
In chapter 13, issues about predicate logic with identity are discussed, including
the soundness of the derivation systems we construct, and issues about numerical
quantification and compactness are discussed.

In the final part (V), we turn to issues beyond classical logic, particularly pick-
ing up on some of the philosophical issues raised in earlier parts. The focus in
chapters 15 and 16 is on the relation between logical languages and natural lan-
guages, particularly focussing on issues about conditionals, entailment, designa-
tion and the theory of relations.

Exercises and Further Reading This book also includes exercises, contained in
a section entitled ‘Exercises’ at the end of each chapter.These exercises are mostly
review and consolidation of the material in the chapter, but some are intended to
extend and stretch a student’s knowledge of the material. Solutions to selected
exercises – some rather more detailed than others – are provided in Appendix A.

Many chapters also contain a section of ‘Further Reading’, which contains
references to books and articles that may provide additional information on par-
ticular topics of interest. Details of the items there referred to can be found in the
Bibliography at the end of the book.

Other Appendices The text makes free use of Greek letters as variables of vari-
ous kinds; a quick refresher of the English names of these letters can be found in
Appendix B. There are a number of defined expressions; a list of definitions can
be found in Appendix B.

SomeOther Useful Readings The languages and derivation systems used in this
book are those developed in (Halbach, 2010) and . While the present book is self-
contained, it may be helpful to review the material in Halbach’s book as a useful

3

elements of deductive logic

adjunct. Other useful sources of related material, that I drew on in a number of
places in this book, are Beall and van Fraassen (2003); Boolos et al. (2007); Bostock
(1997); Priest (2008) and Sider (2010).

4

Part I

Mathematical Preliminaries

5

Chapter 1

Mathematical Induction and
The Notion of Proof

1.1 Inductive Proofs

Mathematical Proof What is a proof? A proof of a claim is just an argument,
from assumptions that are known truths, that the claim is true. In a proof, the
argument must be a conclusive one: if the assumptions are true, the claim must
also be true. An argument involved in a proof is necessarily truth-preserving, so
that in every possible scenario where the assumptions – also known as premises
– are true, the claim being argued for – also known as the conclusion – is also true
in that scenario.1

Such arguments are hard to come by. So we tend to find proofs in mathemat-
ics and the mathematicised areas of other disciplines such as physics, computer
science, economics, and even philosophy. Other disciplines involve plenty of con-
clusive arguments, but the stumbling block tends to be finding starting assump-
tions which are known to be true. In the mathematical case, we begin our proofs
ultimately with the axioms of a particular mathematical theory: necessary math-
ematical truths that are collectively sufficient, when supplemented by appropriate

1The conclusion need not be necessary itself: what is necessary is the conclusive relationship between
the premises and conclusion.

6

mathematical induction and proof

definitions, to characterise a given body ofmathematical truths. (Somemight even
wonder whether we know these axioms, but I’ll set aside such scepticism in this
book.) There are many issues surrounding the nature of proof that we will neg-
lect; but basically, a proof is an absolutely conclusive argument for a given claim,
based on assumptions which are themselves known.

We will offer a considerable number of proofs in this book. They are largely
proofs about particular formal logical systems. (We will also look at the formal
analogue of mathematical proofs carried out in such logical systems, which we
call deductions, in chapter 6 and chapter 12.) In this chapter, we look informally
at some of the techniques we will use in constructing these proofs.

Mathematical Induction We shall often use a powerful method of reasoning
known as proof by mathematical induction.

The basic idea is simple. Assume we have a numbered sequence of things.
Suppose (i) we can show that: the first member of the sequence has some property,
and (ii) we can show that: if a member of the sequence has the property, then the
immediately subsequent member also has the property. Then we can conclude
that every member of the sequence has the property.

The easiest case is where the sequence is the natural (counting) numbers ℕ =
0, 1, 2, 3…, but the principle also works for sequences of other things that are
ordered like the natural numbers. So suppose we rank the children in a classroom
from tallest to shortest. A ranking just is a way of associating each member of
some collection with an initial fragment of the natural numbers. Suppose the
tallest child is shorter than 2m. By the way we’ve constructed the ranking, if some
randomly selected child is shorter than 2m, then the next child in the ranking (if
there is one) is also shorter than 2m. So, we can conclude, every child in the class
is shorter than 2m. Perhaps we do not always – or ever! – go explicitly through
such reasoning in such mundane cases. But we can see in the example that the
reasoning does seem to be correct, and to underlie our informal and immediate
conclusion that if the tallest student is shorter than 2m, then so is every student.

The Weak Principle of Induction There are a number of formulations of induc-
tion. This one follows our intuitions closely. It is a principle about the legitimacy
of a certain pattern of reasoning.

7

elements of deductive logic

Definition 1 (Weak Principle of Induction). Assume there is a sequence of items
𝑆 , ordered by the natural numbers. If both of the following conditions hold,

1. 𝑃 is true of the first member of 𝑆; and

2. if 𝑃 is true of the 𝑛-th member of 𝑆 , then 𝑃 is true of 𝑛 + 1-th member of 𝑆;

then, 𝑃 is true of every member of 𝑆 .

To apply this principle, we first establish the base case for condition (i); and
then the induction case, where we assume that (for some arbitrary 𝑛) 𝑃 holds of
the 𝑛-th member, and show it holds of the 𝑛 + 1-th member, to show condition (ii).
(Condition (ii) is a conditional claim: it can hold even if nothing is 𝐹 , as long as, if
any 𝑛 is 𝐹 , that suffices to establish that the subsequent thing is also 𝐹 .) Having
established those conditions, the principle of induction says, it is now legitimate
to infer that every member of the sequence has the property in question. Here is
a more mathematical example.

Theorem 1
For every natural number 𝑛,

(1.1) 0 + 1 + 2 + … + 𝑛 = 𝑛(𝑛 + 1)
2 .

Proof. We first prove the base case, that the property holds of 0 (the first member
of ℕ). Easy: 0 = 0⋅(0+1)

2 = 0
2 = 0. (Usually the base case is the easy part.)

Nowwewish to prove the induction step.That is, we assume the property holds
of 𝑛, and show it must hold of 𝑛 + 1. So we assume: 0 + 1 + … + 𝑛 = (𝑛(𝑛 + 1))/2.

(0 + 1 + … + 𝑛) = 𝑛(𝑛 + 1)
2(1.2)

(0 + 1 + … + 𝑛) + 𝑛 + 1 = (
𝑛(𝑛 + 1)

2) + 𝑛 + 1(1.3)

= 𝑛(𝑛 + 1)
2 + 2(𝑛 + 1)

2(1.4)

= (𝑛 + 2)(𝑛 + 1)
2(1.5)

= (𝑛 + 1)((𝑛 + 1) + 1)
2(1.6)

8

mathematical induction and proof

Equation (1.6) is clearly just an instance of Equation (1.1) with ‘𝑛 + 1’ in place of
‘𝑛’, as required. This proves the induction step.

The Strong Principle of Induction Here is another induction principle, which
is sometimes easier to use than weak induction.

Definition 2 (Strong Principle of Induction). ‘For all 𝑛, if for all 𝑚 < 𝑛, 𝑃 (𝑚) then
𝑃 (𝑛)’ implies ‘For all 𝑛, 𝑃 (𝑛).’

To return to our schoolchildren example, we could reason informally using the
strong principle like this. Pick any random child.We know that if each child earlier
in the ranking than our chosen child is shorter than 2m, then our child too is
shorter than 2m. Since our child was randomly chosen, we know that every child
is such that, if all its precedessors in the ranking are shorter than 2m, they are too.
We conclude that every child must be shorter than 2m.

The strong principle is just a conditional claim – there is no basis step. Why?
Assume that for every 𝑛, if for each 𝑚 < 𝑛 it is the case that 𝐹 (𝑚), then 𝐹 (𝑛).
Consider, in particular, 𝑛 = 0. Is it true that for all 𝑚 < 0, 𝐹 (𝑚)? Well, if it were
false, there would be a number less than 0 such that it isn’t 𝐹 . But there are no
numbers less than zero, so in particular, there are none of them that are not 𝐹 ! So –
in a degenerate or vacuous way – all numbers less than 0 are 𝐹 . So the antecedent
of the conditional is true, and since the conditional is true, the consequent must
be true.The consequent is 𝐹 (0) –which is the basis step. Still, sometimes its useful
to set out the basis step even when we’re using strong induction.

The choice of whether to use the weak principle or the strong principle is
stylistic, for they are equivalent in the sense that any proof using one could be in
principled reformulated to use the other. I show one direction of the equivalence
here.
Theorem 2 (Weak to Strong)
Theweak principle of induction validates reasoning in accordance the strong principle
of induction.

Proof. We assume the conditional premise of the strong principle: that for every
𝑛, if for all 𝑚 < 𝑛 𝐹 (𝑚), then 𝐹 (𝑛). We will also assume the weak principle of
induction. And we’ll prove from those two assumptions that every 𝑛 is 𝐹 . That

9

elements of deductive logic

is, assuming the validity of reasoning in accordance with the weak principle of
induction, we can demonstrate the validity of reasoning in accordance with the
strong principle.

Here’s how. We define a new condition, 𝐺, as follows:

𝐺(𝑛) =df for all 𝑚 < 𝑛, 𝐹 (𝑚).

(So a number has 𝐺 if all its predecessors have 𝐹 .) We can re-write our conditional
assumption using 𝐺 as follows:

(†) For every 𝑛, if 𝐺(𝑛) then 𝐹 (𝑛).

Base case: we show that 𝐺(0). Trivial, by the argument just given.
Induction step: we want to show that, on the assumption that 𝐺(𝑛), it follows

that 𝐺(𝑛 + 1). Assume 𝐺(𝑛). By (†), 𝐹 (𝑛). By the definition of 𝐺, for all 𝑚 < 𝑛,
𝐹 (𝑚). So for all 𝑚 ⩽ 𝑛, 𝐹 (𝑛). But it is obvious that the collection of numbers less
than or equal to 𝑛, is the same as the collection of numbers less than 𝑛 + 1. So we
have shown that for all 𝑚 < 𝑛 + 1, 𝐹 (𝑛). But by the definition of 𝐺 again, we’ve
just shown 𝐺(𝑛 + 1).

Applying the weak principle of induction to this base case and this induction
step, we conclude that for all 𝑛, 𝐺(𝑛). By (†) again, for all 𝑛, 𝐹 (𝑛), as desired.

The Least Number Principle Here’s another induction principle, of a different
form to those we’ve just considered.

Definition 3 (Least Number Principle). If 𝑀 is a subset of ℕ, and is non-empty,
then 𝑀 has a least member.

On the assumption that reasoning in accordance with the LNP is good, then reas-
oning in accordance with the weak principle is also good, as is shown by the
following theorem.

Theorem 3 (LNP to Weak)
The weak principle of Induction is validated by the least number principle.

10

mathematical induction and proof

Proof. Assume that 𝑃 is a property such that 𝑃 (0), and for every 𝑛, 𝑃 (𝑛) → 𝑃 (𝑛+1).
We prove from the LNP and these assumptions that for every 𝑛, 𝑃 (𝑛) (which is the
weak principle).

Let 𝑀 be the set of numbers which do not satisfy 𝑃 . By the LNP, 𝑀 has a
least member if it is not empty – call this member 𝑚. 𝑃 (0) holds, by assumption,
so 𝑚 > 0; and since 𝑚 is the least member of 𝑀 , 𝑃 (𝑚 − 1). But since if 𝑃 (𝑛) then
𝑃 (𝑛+1), 𝑃 (𝑚) follows from 𝑃 (𝑚−1). That contradicts our assumption that 𝑚 ∈ 𝑀 .
So there can be no least member of 𝑀 . A set only has no least member if it has no
members at all; so there is no number 𝑛 such that ¬𝑃 (𝑛), hence for every number
𝑛, 𝑃 (𝑛).

To show that all three principles of induction we’ve considered are equivalent,
we’d now need to show that the LNP follows from the strong or weak principles
of induction; this is left for an exercise.

1.2 Proof by Reductio

Another important proof strategy that you will commonly use is proof by reduc-
tio ad absurdum (literally, ‘reduction to the absurd’). In mathematics, this is also
commonly known as proof by contradiction. The idea of this proof is to show that
some claim is true by showing that its negation cannot be true. In fact, we just
used this proof strategy in the proof of Theorem 3. Here is another example.

Theorem 4
There is no largest prime number.

Proof. Suppose – for the sake of argument – that 𝑘 is the largest prime. Take all
the prime numbers less than or equal to 𝑘. Multiply all these numbers together,
and add 1. The resulting number cannot be divided by 𝑘, nor by any of the primes
smaller than 𝑘 – for if you were to divide by any of those numbers, the remainder
would be one.Therefore it is either itself prime, or (by the fundamental theorem of
arithmetic) it is divisible by a prime number greater than 𝑘. In either case, there is
a prime greater than 𝑘, thus refuting our initial supposition that there is a greatest
prime. So that initial supposition must be false, and theorem holds.

11

elements of deductive logic

I have made the role of the supposition explicit – we show that an absurdity, or
a flat out contradiction, follows from our assumption by impeccable conclusive
reasoning. But the hallmark of impeccable conclusive reasoning is that, if you
start with a truth, you must also end up with a truth. Since we have ended up
with something bound to be untrue – an impossibility – we must not have started
with a truth.

1.3 Intuitionism

The foregoing line of reasoning is very persuasive, and its use is pervasive through-
out mathematics and in this book. However, somemathematicians and philosoph-
ers, beginning with the influential topologist Brouwer, have wondered whether
this proof strategy is legitimate. Everyone agrees that, in showing that our initial
supposition of ‘not 𝑆’ for some English sentence 𝑆 is untrue, we have shown that
its negation, ‘not not 𝑆’ is true. But these intuitionists say that ‘not not 𝑆’ is not
equivalent to 𝑆 . Why do they say this? It is because proof by contradiction per-
mits us to show that there is an entity with a certain property (because to assume
there is no such entity would lead to a contradiction), without telling us what
that entity is. Such proofs are called non-constructive, for they do not construct
the entity which has the property in question.2

Intuitionism on Mathematical Truth What is the interpretation of mathemat-
ical truth that motivates intuitionists to reject the equivalence of ‘not-not-𝑃 ’ and
‘𝑃 ’ for at least some sentence 𝑃 ? It is this: mathematical truth is mathematical
proof (Shapiro, 2000). Mathematical objects don’t just exist, out there in some
Platonic heaven, waiting for facts about them to be discovered. They need to be
brought into existence by the activity of a mathematician. But bringing something
into existence is a positive act – simply showing that it would be absurd if some-
thing didn’t exist, is not yet to construct it. So intuitionists offer a reinterpretation

2Consider, for example, the classical proof that there are irrational numbers 𝑎 and 𝑏 such that 𝑎𝑏 is

rational. We can show this by considering 𝑞 = √2
√2, and show that either 𝑞√2 is rational if 𝑞 is

irrational, or that 𝑞 itself is rational – either way, there is a pair of irrational numbers (either 𝑎 = 𝑏 =
√2, or 𝑎 = 𝑞, 𝑏 = √2) such that 𝑎𝑏 is rational. But we haven’t shown which of these numbers is in fact
rational – we haven’t constructed an example, we’ve merely shown that there must be an example.
(In fact, 𝑞 is irrational, so that is an actual constructed example that verifies the theorem.)

12

mathematical induction and proof

of the language of proof – English, in our case – to reflect their philosophical com-
mitments.

• The absurd sentence ⊥ is not constructible.

• A construction of ‘𝑃 and 𝑄’ consists of a construction of 𝑃 and a construc-
tion of 𝑄.

• A construction of ‘𝑃 or 𝑄’ consists of a construction of 𝑃 or a construction
of 𝑄.

• A construction of ‘If 𝑃 then 𝑄’ is a technique which transforms any con-
struction of 𝑃 into a construction of 𝑄.

They define ‘not-𝑃 ’ to mean: ‘If 𝑃 then ⊥’, i.e., there is a technique which turns
a construction of 𝑃 into a construction of the absurdity. ‘not not 𝑃 ’, accordingly,
says that there is a technique which turns a technique turning a construction of
𝑃 into the construction of the absurdity, itself into a construction of an absurdity.
But that is not at all obviously the same as a construction of 𝑃 .

The Law of Excluded Middle Characteristically, the rejection of the so-called
law of double negation elimination leads to the rejection of the law of excluded
middle (LEM): intuitionists reject the principle that for any 𝑃 , either 𝑃 or not 𝑃 .
For them, that is equivalent to: for any 𝑃 , there is (already) either a construction
of 𝑃 , or a construction turning a construction of 𝑃 into the construction of an
absurdity. Why should we think, prior to any such construction being offered,
that they antecedently exist?

We can however prove something closely related to LEM.

Theorem 5 (LEM−)
For any 𝑃 , not-not-(𝑃 or not-𝑃)

Proof. Assume (i) that for some 𝑃 , it is the case neither that 𝑃 , nor that not-𝑃 .
Assume (ii) 𝑃 : it follows that 𝑃 or not-𝑃 , so our assumption (ii) must be false.
If assumption (ii) were correct, in conjunction with assumption (i), we’d be able
to construct a contradictory claim of the form 𝑄 and not-𝑄. That is absurd, and
not constructible. So, under assumption (i) alone, we can turn any construction
of 𝑃 into a construction of the absurd, which is of course a construction of not-𝑃

13

elements of deductive logic

from assumption (i). But it follows from not-𝑃 , again trivially, that ‘𝑃 or not-𝑃 ’.
So we can turn an assumption of (i) into a construction of the absurdity, which is
a construction of not-not-(𝑃 or not-𝑃).

So we can show that it is absurd to deny LEM; but that is not yet tantamount to
its being legitimate to assert it.

Resisting Intuitionism To insist on constructive proofs, and to eschew the use
of proof by contradiction, is to cripple mathematics. This would be acceptable –
perhaps – if there were a powerful philosophical rationale for thinking that, in
general ‘not not 𝑆’ is not equivalent to 𝑆 . But no persuasive examples have really
been given, despite the best efforts of intuitionists to defend their view. So in this
book we will adopt the standard highly plausible classical position, that proof by
contradiction is perfectly acceptable.

Further Reading

On mathematical induction, see Machover (1996). Two philosophical attempts to motivate
intuitionism are by Heyting (1956) and Dummett (1983). A useful discussion of the non-
standard features of intuitionistic mathematics is by Iemhoff (2015).

Exercises

1. Prove that the strong principle of induction entails the LNP.

2. Bivalence is the principle that every meaningful declarative sentence is either true
or false – that there are exactly two ‘truth values’. What is the relationship between
Bivalence and the Law of Excluded Middle?

Answers to selected exercises on page 238.

14

Chapter 2

Set Theory

2.1 Sets

A set is a collection of objects. Like a collection, it is a single thing, not a plurality.
If 𝑋 is a set, the objects in 𝑋 are called its elements or members. We write 𝑥 ∈ 𝑋
for ‘𝑥 is an element of 𝑋’ (and 𝑦 ∉ 𝑋 for ‘𝑦 is not an element of 𝑋’).

Sets are individuated by their members; or as we sometimes say, sets are in-
dividuated purely extensionally. There must be something to a set over and above
its members – otherwise it would be simply a plurality identical to those mem-
bers. But whatever that ‘something’ is, it is minimal enough that there cannot be
two distinct sets which share the same members.Therefore, if 𝑋 and 𝑌 name sets
which have all and only the same members, 𝑋 = 𝑌 . So we can specify a set by
listing the members, conventionally in curly braces: 𝑋 = {𝑥1, ..., 𝑥𝑛, …}.

In this, sets differ from sequences: two distinct sequences can have the same
members as long as they occur in a different order in the two sequences. Some
say that sets also differ from wholes in this respect: while you can make only one
set from a given collection of members, you can make more than one object from
a given collection of parts, if you arrange those parts in different ways. (This last
example is however controversial: some think that appearances here are decept-
ive.)

A set is not composed of its members in any straightforward sense: it is not

15

elements of deductive logic

a whole with its members as parts. We can see this most easily in the case of a
singleton set, a set with just one member. Clearly 𝑥 ∈ {𝑥}; but since 𝑥 itself need
not be a set, 𝑥 ∉ 𝑥. Since sets are individuated by their members, and since {𝑥}
has a member that 𝑥 does not, 𝑥 ≠ {𝑥}. So a set is not to be identified with the
fusion of its members, even when that latter object exists.

Axioms The standard approach to set theory is to take this informal conception
of a set as a collection, and set down axioms that characterise the behaviour of sets.
We’ve already seen one of the standard axioms of so-called Zermelo-Fraenkel set
theory: the axiom of extensionality:

Axiom 1 (Extensionality). For any sets 𝑋 and 𝑌 , if for all objects 𝑥, 𝑥 ∈ 𝑋 iff 𝑥 ∈ 𝑌 ,
then 𝑋 = 𝑌 .

I will below mention various axioms, the basic starting points of modern set the-
ory, but we will largely proceed in an informal way. In particular, I will not be
offering proofs from the axioms of all the set theoretic principles I state below.

Sets in Sets One thing is worth being explicit about at the outset. Sets can have
other sets as members. We might be used to thinking of collections as collections
of material objects (rocks, china plates, etc.) But since a set is not identical to
its members, and we can talk about and quantify over sets, they are also objects
available to be the members of further sets. We might start with the non-sets, or
ur-elements as they are sometimes known; but once we make sets of them, we
can then make further sets which include sets as members, and then further sets
involving sets of sets, etc. This is the so-called iterative conception of a set (Boolos,
1971).

Defining Sets We’ve seen one way to define a set: list the members. But what if
there are too many to list?

One thing we can do is define sets inductively. This means: given a base case,
and a generating relation, we define a set that includes the base case, and anything
related to a member of the set by the generating relation, and nothing else (the
closure condition). Here’s an example.

16

set theory

Definition 4 (Your Ancestors). Base case: Your mother and father are ancestors.
Generating Relation: Any parent of an ancestor is an ancestor.
Closure Condition: Nothing else is an ancestor of you.

Let 𝐴𝑎𝑒 be the set of my ancestors. Any member of 𝐴𝑎𝑒 is a parent of a parent
of…a parent of me, with 𝑛 > 0 occurences of ‘a parent of’. The property ‘is an
ancestor of AE’ is called the ancestral of the property ‘is a parent of AE’. Andmore
generally we can say that the relation 𝑅 ‘𝑥 is an ancestor of 𝑦’ is the ancestral of
the relation ‘𝑥 is a parent of 𝑦’. Note that the set 𝐴𝑎𝑒 = {𝑥 ∶ 𝑅(𝑥, 𝑎𝑒)}

Alternatively, we can specify a set by stating a condition 𝐹 that the members
all satisfy, typically in some formal mathematical language. Then we can specify
the set of things 𝑥 such that each 𝑥 is 𝐹 . We write this {𝑥 ∶ 𝐹 (𝑥)}. If 𝑌 = {𝑥 ∶
𝐹 (𝑥)}, then 𝑦 ∈ 𝑌 iff 𝐹 (𝑦). But in fact any collection of items forms a set: there
needn’t be a natural condition all the members satisfy.

Not just any condition will define a set. Consider the condition 𝐹 = 𝑥 ∉ 𝑥.
This defines a set R = {𝑥 ∶ 𝑥 ∉ 𝑥}, the set of all non-self-membered things.

Is R a member of R? Assume R ∈ R. Then R must meet the defining con-
dition 𝐹 , so that R ∉ R. But since R cannot both be and not be a member of
itself, the assumption must be wrong. So R ∉ R. But then R does meet 𝐹 , and
therefore R ∈ R. A contradiction follows. This is known as Russell’s paradox.

The problem is assuming that any condition at all defines a set.The alternative
is simple: to assume that, if we are given a set 𝑋, then any condition at all will
separate the members of 𝑋 into those which meet the condition and those which
do not. That is: for any set 𝑋, and any condition 𝐹 , there will exist a set 𝑌 which
contains everythingwhich is both amember of 𝑋 and satisfies 𝐹 .This is the axiom
of separation, so called because it separates out those members of a set which have
a certain specified feature.

Axiom 2 (Separation). If 𝑋 is a set that is already given, and 𝐹 is any condition,
then there exists a set 𝑌 consisting of all the members of 𝑋 which meet the con-
dition 𝐹 . (This may be trivial, in that all or no members of 𝑋 meet the condition.)
That is, for any 𝑋 and 𝐹 , this specification is well-defined and guaranteed to de-
note a set: {𝑥 ∈ 𝑋 ∶ 𝐹 (𝑥)}.

17

elements of deductive logic

Relations Between Sets Some important relations of inclusion and exclusion
between sets can be defined, once we are assured that some sets exist.

Definition 5 (Subset). A set 𝑋 is a subset of 𝑌 , written 𝑋 ⊆ 𝑌 if every member
of 𝑋 is also a member of 𝑌 : for every 𝑥, if 𝑥 ∈ 𝑋 then 𝑥 ∈ 𝑌 . 𝑋 is a strict subset
(or proper subset) of 𝑌 if 𝑋 ⊆ 𝑌 and 𝑌 ⊈ 𝑋 (written ‘𝑋 ⊂ 𝑌 ’).

Trivially, for all sets 𝑋, 𝑋 ⊆ 𝑋. It also follows that if 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑋 then
𝑋 = 𝑌 (easy). And also if 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑍 then 𝑋 ⊆ 𝑍 . Note that if 𝐹 is
some condition, the set {𝑥 ∶ 𝑥 ∈ 𝑋 and 𝐹 (𝑥)}, which is guaranteed to exist by the
axiom of Separation, is always a subset of 𝑋.

Definition 6 (Superset). A set 𝑋 is a superset of 𝑌 , written 𝑋 ⊇ 𝑌 if every mem-
ber of 𝑌 is also a member of 𝑋: for every 𝑥, if 𝑥 ∈ 𝑌 then 𝑥 ∈ 𝑋. 𝑋 is a strict
superset (or proper superset) of 𝑌 if 𝑋 ⊇ 𝑌 and 𝑌 ⊉ 𝑋 (written ‘𝑋 ⊃ 𝑌 ’).

Definition 7 (Disjoint). Sets 𝑋 and 𝑌 are disjoint iff there is no 𝑥 which is a mem-
ber of both.

Operations on Sets The foregoing relations are defined between existing sets.
But there are also generating operations, that given some existing sets yield some
new sets. For each of these generating operations, we need to give a definition
of the properties of the operation. But we also need an axiom to ensure that that
operation succeeds, that is, that there is a set which satisfies the definition we
have set down. The axiom of Separation supports our first two definitions:

Definition 8 (Intersection). If 𝑋 and 𝑌 are sets, the set 𝑋 ∩ 𝑌 which contains
only members of both is called the intersection.

If X = 𝑋1, … , 𝑋𝑛, … is a set of sets, ⋂X = 𝑋1 ∩ … ∩ 𝑋𝑛 ∩ ….

Definition 9 (Relative Complement). If 𝑋 and 𝑌 are sets, then 𝑋 ⧵ 𝑌 is the set of
all members of 𝑋 which are not members of 𝑌 , called the relative complement of
𝑌 with respect to 𝑋.

Because both of these definitions involve taking a set that is already given and
constructing a subset, the existence of the resulting sets is supported by the axiom
of Separation. In the case of intersection, if 𝑋 and 𝑌 exist, 𝑋 ∩ 𝑌 exists: 𝑋 ∩ 𝑌 =

18

set theory

{𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝑌 }. Alternatively, we can denote this set as the set of any 𝑥 that
meets the conjunctive condition of being in both 𝑋 and 𝑌 : {𝑥 ∶ 𝑥 ∈ 𝑋 and 𝑥 ∈ 𝑌 }.
In the case of relatively complement, if 𝑋 and 𝑌 exist, 𝑋 ⧵ 𝑌 exists: 𝑋 ⧵ 𝑌 = {𝑥 ∈
𝑌 ∶ 𝑥 ∉ 𝑌 }.

What if we want to make a set which isn’t a subset of an already given set?

Definition 10 (Union). If 𝑋 and 𝑌 are sets, then 𝑋 ∪ 𝑌 (read ‘the union of 𝑋 and
𝑌 ’) is the set which contains all the members of 𝑋 and all the members of 𝑌 .

If X = 𝑋1, … , 𝑋𝑛, … is a set of sets, ⋃X = 𝑋1 ∪ … ∪ 𝑋𝑛 ∪ ….

The existence of unions is supported by this axiom:

Axiom 3 (Unions). Suppose X is any set of sets (i.e., a set with only other sets as
its members). For any such X, there is a set 𝑌 such that, for any 𝑧, 𝑧 ∈ 𝑌 iff 𝑧 is
a member of one of the members of X. In short: if 𝑋 and 𝑌 exist, 𝑋 ∪ 𝑌 exists:
𝑋 ∪ 𝑌 = {𝑥 ∶ 𝑥 ∈ 𝑋 or 𝑥 ∈ 𝑌 }.

That is, 𝑌 is the set containing all the things which are in any of the sets in X. If
𝑋 and 𝑌 are sets, there is a set {𝐴, 𝐵}.1 It then follows from the axiom of Unions
that there is a set which contains all the members of 𝑋 and all the members of 𝑌 .
By extensionality, there is just one such set; we call it 𝐴 ∪ 𝐵 = ⋃{𝐴, 𝐵}.

Note the links between ∩ and ‘and’, and ∪ and ‘or’.

TheEmpty Set If 𝑋 is a set, then by the definition of relative complement, 𝑋 ⧵𝑋
is a set. Suppose 𝑋 ⧵ 𝑋 has a member, 𝑧. Then 𝑧 ∈ 𝑋 ⧵ 𝑋 iff 𝑧 ∉ 𝑋 and 𝑧 ∈ 𝑋.
Contradiction; so 𝑋 ⧵𝑋 has no members.This set is the empty set, written ∅. 𝑌 ⧵𝑌
is also empty; by extensionality, 𝑋 ⧵ 𝑋 = ∅ = 𝑌 ⧵ 𝑌 ; there is only one empty set.

The empty set is the collection which has nothing in it. It corresponds to the
empty list. While the empty collection has no members, that doesn’t mean that it
itself is nothing: it is the unique thing which is a set and also has no members.

If 𝑋 is any set, then for any 𝑥, if 𝑥 ∈ ∅ then 𝑥 ∈ 𝑋 – for the empty set has no
members at all. By the definition of subset, therefore, ∅ ⊆ 𝑋, for any 𝑋.

It is easy to show that when 𝑋 and 𝑌 are disjoint, 𝑋 ∩ 𝑌 = ∅.

1This is in fact another axiom, the axiom of Pairing.

19

elements of deductive logic

Absolute Complement and the Universal Set The empty set is the smallest pos-
sible set in terms of its members. Is there a largest set? If there is a universal set
Ω – a set which has everything (every individual and every set) as a member –
we could define something a bit closer to negation than relative complement. We
could define: −𝑋 = Ω ⧵ 𝑋; it would be the set of all things which are not in 𝑋.

This is not possible. Suppose there were a universal set. Then the axiom of
separation, that if 𝑋 is a set then there is a set 𝑌 which is a subset of 𝑋 and such
that for all 𝑥 ∈ 𝑋 if 𝐹 (𝑥) then 𝑥 ∈ 𝑌 , will entail a contradiction.2 So there is no
universal set. (Philosophical puzzle: how do we quantify over – talk about – all
sets, as we have been doing, if there is no collection big enough to contain them
all? How indeed can we even talk about everything if there are too many things
to be collected together into a set?)

Power Set So far youmight think that sets are just collections of individuals (i.e.,
non-sets). (Well, we’ve already mentioned the axiom of Pairing, so you probably
don’t think that.) But set theory is much more general than that: anything at all,
including other sets, can be gathered into a set (as long as we don’t try to gather
too many things).

One useful set of sets is the power set of a set 𝑋. This is, intuitively, the set
of all ways to choose some members from 𝑋. We can choose no members; we
can choose all the members; we can choose some but not all. Each such way of
choosing determines a subset of 𝑋, so the set of all ways to choose members from
𝑋 is exactly the set of all subsets of 𝑋:

Definition 11 (Power Set). Given a set 𝑋, the power set of 𝑋, denoted ℘(𝑋), is
defined: ℘(𝑋) = {𝑌 ∶ 𝑌 ⊆ 𝑋}. (It is another axiom of set theory that for any set,
its power set exists – the aptly named Power Set axiom.)

Notice that, for any 𝑋, ∅ ∈ ℘(𝑋); and 𝑋 ∈ ℘(𝑋). The name ‘power set’ comes
from this fact:
Theorem 6
If 𝑋 has 𝑛 members, ℘(𝑋) has 2𝑛 members.

2Hint for exercises: Apply the condition 𝑥 ∉ 𝑥 to the universal set Ω in the axiom of separation, and we
will construct the Russell setR perfectly legitimately. Since the Russell set does not exist, something’s
gone wrong: the only candidate is the assumption that there is a set of everything.

20

set theory

Proof. A subset of 𝑋 is a set containing perhaps some but not necessarily all the
members of 𝑋. We can specify a subset by saying, of each member of 𝑋, whether
it is in the subset. Suppose the members of 𝑋 are 𝑥1, … , 𝑥𝑛. Then a finite binary
sequence, consisting of 1s and 0s, of length 𝑛 suffices to determine a subset of 𝑋,
by the following principle: let 𝑥𝑖 be amember of the subset associated with 𝑠 iff the
𝑖th place in the sequence 𝑠 is a 1. By extensionality, each subset of 𝑋 corresponds
to exactly one such sequence. So how many finite binary sequences of length 𝑛
are there? Each place 𝑖 in the sequence can be either 1 or 0, so there are 2𝑛 such
sequences. So there are 2𝑛 distinct subsets of 𝑋, and hence 2𝑛 members of ℘(𝑋).

Ordered Pairs and Sequences As mentioned above, sets are identical iff they
have the same members. How those members happen to be listed is irrelevant:
{𝑥, 𝑦} = {𝑦, 𝑥} = {𝑥, 𝑥, 𝑦}. So if we want to capture the idea of an ordered sequence,
it cannot be a set – order doesn’t matter for sets, and one can’t have repeated
elements in a set. Yet we can model, or represent, sequences just using sets.

Definition 12 (Ordered Pair). An ordered pair ⟨𝑥, 𝑦⟩ is defined as the unordered
set {𝑥, {𝑥, 𝑦}}.

This is not to say that ordered pairs are and always have been special kinds of sets.
The existence of multiple equally good models for how to represent ordered pairs
set-theoretically undermines any claim that ordered pairs are identical to sets.
Kuratowski’s original definition of an ordered pair was this different proposal:

Definition 13 (Kuratowski Ordered Pair). A Kuratowski ordered pair «𝑥, 𝑦» =df
{{𝑥}, {𝑥, 𝑦}}.

If we take seriously the identification of ordered pairs with sets, we need to answer
which of these definitions identifies the ‘right’ sets. But any such answer would
be arbitrary, because it would involve picking one equally good representation of
ordered pairs over another. The choice to model ordered pairs as in the text, or by
Kuratowski’s alternative, is a choice of model – it has no significance for what is
being modelled, namely, sequences of length 2.

Why do I say this? Because we can show that both our definition and Kur-
atowski’s manage to capture the behaviour of ordered pairs. We do so by estab-
lishing the fundamental principle of the identity of ordered pairs follows from

21

elements of deductive logic

the definitions, namely, that ordered pairs are identical iff they have the same
first member, and the same second member. What we show is that, if we define
ordered pairs as above, they have all the characteristic features of ordered pairs.

Theorem 7 (Criteria of Identity for Ordered pairs)
⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ iff 𝑥 = 𝑢 and 𝑦 = 𝑣.

Proof. ⟨𝑥, 𝑦⟩ = ⟨𝑢, 𝑣⟩ iff {𝑥, {𝑥, 𝑦}} = {𝑢, {𝑢, 𝑣}} iff (i) 𝑥 = 𝑢 and {𝑥, 𝑦} = {𝑢, 𝑣} or
(ii) 𝑥 = {𝑢, 𝑣} and {𝑥, 𝑦} = 𝑢. Since (ii) is not possible – it would entail that 𝑥 is a
member of one of its own members – it must be that (i), which in turn holds iff
𝑥 = 𝑢 and 𝑦 = 𝑣 (we need extensionality again to show that if {𝑥, 𝑦} = {𝑥, 𝑣} then
𝑦 = 𝑣).

In the proof of this theorem, we had to appeal to the fact that no set is a mem-
ber of a member of itself. (In proving the parallel criteria of identity theorem for
Kuratowski ordered pairs, we need not appeal to this fact, showing which I leave
as an exercise.) This fact obviously holds on the iterative conception of a set. It
tacitly relies on this characteristic axiom of Zermelo-Fraenkel set theory:

Axiom 4 (Foundation). Every non-empty set 𝑋 contains a member 𝑦 such that 𝑋
is disjoint from 𝑦: 𝑋 ∩ 𝑦 = ∅.

(This axiom is also known as regularity.)

Theorem 8
No set is a member of itself.

Proof. Let 𝑋 be an arbitrary set. Clearly 𝑋 ∈ {𝑋}, which latter set exists by
Pairing. By Foundation, since {𝑋} is non-empty, it has a member 𝑦 such that
{𝑋} ∩ 𝑦 = ∅. Since the only member of {𝑋} is 𝑋, it must be that {𝑋} ∩ 𝑋 = ∅.
But if 𝑋 ∈ 𝑋, then 𝑋 and {𝑋} do have a member in common – namely, 𝑋 – and
their intersection isn’t empty. So 𝑋 ∉ 𝑋.

This theorem gives another route to avoiding Russell’s paradox from earlier (page
17). But Foundation also enables us to rule out longer ‘cycles’ of inclusion, since it
entails that there are no infinite descending chains of set membership: every set
bottoms out eventually in some members of its members of its members… that
have no members themselves.

22

set theory

We can extend the idea of an ordered pair to an ordered sequence of any num-
ber of elements, as follows:

Definition 14 (Ordered 𝑛-tuple). Let the notation ⟪𝑥1, … , 𝑥𝑛⟫ denote an ordered
𝑛-tuple, for 𝑛 ⩾ 2. We offer an inductive definition.

• Base case. ⟪𝑥1, 𝑥2⟫ =df ⟨𝑥1, 𝑥2⟩.

• Inductive step. ⟪𝑥1, …, 𝑥𝑛+1⟫ =df ⟨⟪𝑥1, …, 𝑥𝑛⟫, 𝑥𝑛+1⟩.

From now on, I will abuse notation, and use ‘⟨’ and ‘⟩’ to delimit all ordered se-
quences, not only pairs. But, speaking strictly, when in the following I denote
an ordered triple by ⟨𝑥, 𝑦, 𝑧⟩, that expression should be interpreted as ⟪𝑥, 𝑦, 𝑧⟫ =
⟨⟨𝑥, 𝑦⟩, 𝑧⟩. It doesn’t really matter how we define ordered tuples; all that matters
is that they are well-defined set-theoretic entities which behave as expected. (So,
strictly speaking, we’d need to prove a theorem analogous to Theorem 7 showing
that ordered 𝑛-tuples as just defined behave in the right way. We are not going to
do that.)

One remaining case deserves attention. Our notation covers all ordered se-
quences of two or more members. What about the degenerate case of an ordered
sequence with just one member? We shall adopt the following harmless conven-
tion (which will however be of use in §10.2):

Definition 15 (Ordered 1-tuple). An ordered 1-tuple ⟨𝑥⟩ is simply 𝑥 itself.

This choice has the odd but harmless consequence that everything is a sequence.

2.2 Relations

Intuitively, a relation 𝑅 characterises the nature of the connections between some
things (its relata), or an aspect of the structure of some collection of things. We
will model a relation set theoretically as a set of sequences of entities; we care
not just about which things are involved in the relation, but which way they are
related. (We need to be able to distinguish when Alice loves Bob from the case
where Bob loves Alice, and simply saying that Alice and Bob are related by the ‘–
loves –’ relation doesn’t allow us to do that.) So the set

{⟨Melbourne,Victoria⟩, ⟨Adelaide, South Australia⟩, …}

23

elements of deductive logic

is (part of) the relation of ‘ – is the capital city of – ’.

Definition 16 (Binary Relation). 𝑋 is a binary relation on a domain 𝐷 iff it is any
set that contains nothing except ordered pairs ⟨𝑥, 𝑦⟩ where 𝑥 ∈ 𝐷 and 𝑦 ∈ 𝐷. (∅
contains nothing at all, and so nothing other than ordered pairs, so is a binary
relation).

Definition 17 (Cartesian Product). TheCartesian product of sets𝑋 and 𝑌 , written‘𝑋×
𝑌 ’, is the set of all pairs ⟨𝑥, 𝑦⟩ such that 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 .

A binary relation on 𝐷 is a subset of 𝐷 × 𝐷. A relation can be generalised to
arbitrary numbers of relata:

Definition 18 (𝑛-place Relation). 𝑋 is an 𝑛-place relation on 𝐷 iff it is any set of
ordered 𝑛-tuples of members of 𝐷. An 𝑛-place relation is a subset of 𝐷 × … × 𝐷⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛

.

This identification of relations with sets is not necessarily a ‘metaphysical’ hypo-
thesis. Just as in the case of ordered pairs, we need not literally assert that relations
are and always were sets. Rather, this is a model that can be used to represent
some interesting features of relations. I say some more about the metaphysics of
relations in chapter 13.

Properties of Binary Relations Binary relations have many interesting proper-
ties. We can often represent these properties graphically, if the domain on which
the relation is defined is finite.

Definition 19 (Finite Directed Graph). A finite directed graph on a domain 𝐷 is
a pair ⟨𝑉 , 𝐴⟩ where the set of vertices 𝑉 is 𝐷, 𝐷 is finite, and 𝐴 is a set of arrows,
directed lines frommembers of 𝑉 tomembers of 𝑉 . (Not everymember of 𝑉 needs
to have an arrow attached to it.)

A graph on 𝐷 represents a binary relation 𝑅 on 𝐷 just in case

1. ⟨𝑥, 𝑦⟩ ∈ 𝑅 iff 𝑥 ∈ 𝑉 and 𝑦 ∈ 𝑉 .

2. ⟨𝑥, 𝑦⟩ ∈ 𝑅 iff there is an arrow from 𝑥 to 𝑦 in 𝐴.

24

set theory

1 dd 2 dd

3 dd 4 dd

1 2oo

3

@@�������

OO

4oo

^^=======

OO

Figure 2.1: Reflexivity and Transitivity

Reflexivity, Transitivity, and Symmetry Consider the domain 𝐷 = {1, 2, 3, 4}.

Definition 20 (Reflexive). A relation on 𝐷 is reflexive iff for all 𝑥 ∈ 𝐷, ⟨𝑥, 𝑥⟩ ∈ 𝑅.

Graphically, that means, as in the figure on the left in Figure 2.1, that each vertex
has an arrow pointing to itself. A relation is irreflexive iff no vertex has an arrow
pointing to itself.

Definition 21 (Transitive). A relation on 𝐷 is transitive iff for all 𝑥, 𝑦, 𝑧 ∈ 𝐷, if
both ⟨𝑥, 𝑦⟩ ∈ 𝑅 and ⟨𝑦, 𝑧⟩ ∈ 𝑅, then also ⟨𝑥, 𝑧⟩ ∈ 𝑅.

Graphically, that means, as in the figure on the right in Figure 2.1, that whenever
there is an indirect sequence of arrows between two vertices, there is also a ‘short-
cut’. A relation is intransitive iff there is never a shortcut.

Definition 22 (Symmetric). A relation 𝑅 on 𝐷 is symmetric iff whenever ⟨𝑥, 𝑦⟩ ∈
𝑅, then ⟨𝑦, 𝑥⟩ ∈ 𝑅.

Graphically, this means (as on the left in Figure 2.2) that whenever there is an ar-
row from one vertex to another, there will be a return arrow. A relation is asym-
metric iff there are no returning arrows at all.

Definition 23 (Anti-symmetric). A relation𝑅 on𝐷 is anti-symmetric iffwhenever
⟨𝑥, 𝑦⟩ ∈ 𝑅 and ⟨𝑦, 𝑥⟩ ∈ 𝑅, then 𝑥 = 𝑦 (sometimes this is known as weak asym-
metry).

Graphically, this means (as on the right in Figure 2.2) that the only ‘returning’
arrows are loops. We need to clearly distinguish non-reflexivity from irreflexivity:
the former is just the failure of reflexivity – i.e., at least one object in the domain
doesn’t bear 𝑅 to itself – while the latter involves every object in the domain

25

elements of deductive logic

1 '' 2gg

��
3 '' 4gg

HH 1:: 2oo

3

@@�������

OO

4 ZZ
oo

^^=======

OO

Figure 2.2: Symmetry

not bearing 𝑅 to itself. Likewise, we need to distinguish non-transitivity from
intransitivity, and non-symmetry from asymmetry and antisymmetry.

The observant reader will have noticed that, while we defined reflexive on 𝐷,
symmetric on 𝐷, etc., the only definition which actually mentions 𝐷 is the defin-
ition of reflexivity. All the other definitions are conditional in form: they say, if
certain pairs are in the relation, then certain other pairs will be too. We needn’t
specify a domain to check whether these conditionals hold of any relation. But to
check whether a relation is reflexive, we need not only the ordered pairs of the
relation, but also what the domain is, so we can see if any members of the domain
are missing from the relation. Reflexivity is an extrinsic property of a relation,
because it is relative to the domain from which the relata of the relation may be
drawn. The others are intrinsic properties of a relation; whether the relation has
them is fixed by which pairs are in the relation. The very same set of pairs might
be reflexive on one domain and non-reflexive on another, but it will be symmetric
on every domain if it is symmetric on any.

Equivalence Relations

Definition 24 (Equivalence Relation). If 𝑅 on 𝐷 is reflexive, transitive, and sym-
metric, then it is an equivalence relation.

An equivalence relation divides up the domain into equivalence classes, every
member of which bears the relation to every other member of it. The relation
‘is the same height as’ is an equivalence relation on the domain of all people; we
say that it induces a partition on the domain of people, sorting them into groups
which are uniform with respect to height.

The most obvious equivalence relation on a domain 𝐷 is the identity rela-
tion, the set of all pairs ⟨𝑥, 𝑥⟩ such that 𝑥 𝑖𝑛𝐷. It is reflexive by definition, and

26

set theory

moreover symmetric and transitive; since there are never arrows from any 𝑥 to
any distinct 𝑦, it follows that every time there are such arrows, there are return
arrows and shortcuts. (Notice that the identity relation is both symmetric and
anti-symmetric.)

Any relation on the empty set is also trivially an equivalence relation. While
every empty relation is trivially symmetric and transitive, it will generally fail to
be reflexive unless the domain is empty too.

Seriality Reflexivity guarantees that every thing in the domain bears the rela-
tion to at least one thing, and moreover that among those things is the object
itself. If a relation satisfies the first condition, though perhaps without meeting
the second, it is serial:

Definition 25 (Serial). A relation on 𝐷 is serial iff for all 𝑥 ∈ 𝐷, there is some
𝑦 ∈ 𝐷 such that ⟨𝑥, 𝑦⟩ ∈ 𝑅.

Graphically, that means, that each vertex has an arrow emerging from it. A rela-
tion is non-serial if at least one vertex has no arrow emerging from it. (The notion
of an ‘aserial’ relation – one where no vertex bears the relation to anything – is
trivial, since only the empty relation could be aserial.) It is obvious that a reflexive
relation is serial.
Theorem 9
A transitive, symmetric, and serial relation is reflexive (and hence is an equivalence
relation).

Proof. Suppose 𝑅 is transitive, symmetric, and serial on 𝐷. Pick an arbitrarymem-
ber of 𝐷, 𝑥. By seriality, there is a 𝑦 ∈ 𝐷 such that ⟨𝑥, 𝑦⟩ ∈ 𝑅. By symmetry,
⟨𝑦, 𝑥⟩ ∈ 𝑅. By transitivity, ⟨𝑥, 𝑥⟩ ∈ 𝑅. Since 𝑥 was arbitrary, 𝑅 is reflexive.

Connectedness An equivalence relation divides up the domain into isolated
groups of mutually interrelated elements. A connected relation, intuitively, is one
where no item is isolated. But there are a number of things we could mean by this.
First, we define a (directed) path:

Definition 26 (Path). There is a path from 𝑥 to 𝑦 in 𝑅 iff there exists a sequence
𝑧1, … , 𝑧𝑛 such that ⟨𝑥, 𝑧1⟩ ∈ 𝑅 and ⟨𝑧1, 𝑧2⟩ ∈ 𝑅 and …and ⟨𝑧𝑛, 𝑦⟩ ∈ 𝑅.

27

elements of deductive logic

1 // 2

��
3 4oo

1 // 2

��
3

OO

4oo

1:: 2 ddoo

3 ZZ

@@�������

OO

4 ZZ
oo

^^=======

OO

Figure 2.3: Connectedness and Totality

Now we may define:

Definition 27 (Strong Connectedness). 𝑅 on 𝐷 is connected iff for any 𝑥 ∈ 𝐷 and
𝑦 ∈ 𝐷, such that 𝑥 and 𝑦 are distinct, then there is a path from 𝑥 to 𝑦 in 𝑅.

This is illustrated in the middle graph in Figure 2.3, where by following the arrows
one can get from any vertex to any other, perhaps by a number of intermediate
vertices.

There is another property of binary relations, sometimes called weak connec-
tedness, which holds iff for any nodes on the graph of 𝑅, 𝑥 and 𝑦, there is some path
that joins 𝑥 to 𝑦 moving only along arrows (perhaps in the ‘backwards’ direction).
This is illustrated in the left hand graph in Figure 2.3. For any binary relation 𝑆 ,
let 𝑆∗ be the relation defined by ⟨𝑥, 𝑦⟩ ∈ 𝑆∗ iff ⟨𝑥, 𝑦⟩ ∈ 𝑆 or ⟨𝑦, 𝑥⟩ ∈ 𝑆 .

Definition 28 (Weak Connectedness). A relation 𝑅 is weakly connected on 𝐷 iff
𝑅∗ is connected on 𝐷.

There is an even stronger condition than connectedness, illustrated in the right
hand graph in Figure 2.3:

Definition 29 (Totality). A relation 𝑅 on 𝐷 is total iff for any 𝑥 and 𝑦 in 𝐷, either
⟨𝑥, 𝑦⟩ ∈ 𝑅 or ⟨𝑦, 𝑥⟩ ∈ 𝑅.

Theorem 10
If 𝑅 is total on 𝐷, then 𝑅 is reflexive on 𝐷.

Proof. If 𝑅 is total, then for any 𝑥 and 𝑦 in 𝐷, either ⟨𝑥, 𝑦⟩ ∈ 𝑅 or ⟨𝑦, 𝑥⟩ ∈ 𝑅.
Suppose 𝑥 = 𝑦; then either either ⟨𝑥, 𝑥⟩ ∈ 𝑅 or ⟨𝑥, 𝑥⟩ ∈ 𝑅. Therefore, for any
𝑥 ∈ 𝐷, ⟨𝑥, 𝑥⟩ ∈ 𝑅, i.e., 𝑅 is reflexive on 𝐷.

28

set theory

Inverse and Complement Relations Given a relation 𝑅 on 𝐷, we can define two
interesting further relations in terms of it:

Definition 30 (Inverse). Given a relation 𝑅, its inverse 𝑅−1 is defined to be this
set: {⟨𝑦, 𝑥⟩ ∶ ⟨𝑥, 𝑦⟩ ∈ 𝑅}.

Definition 31 (Complement). Given a relation 𝑅 on 𝐷, its complement 𝑅′ on 𝐷
is defined to be this set: (𝐷 × 𝐷) ⧵ 𝑅 – i.e., the set of all ordered pairs of elements
of the domain not in 𝑅.

Note that a complement relation is always with respect to the underlying domain
– there is no such thing as the complement of a relation – whereas we can define
an inverse relation just with reference to the original relation.

Theorem 11 (Property Preservation)
• If 𝑅 is reflexive on 𝐷 then 𝑅−1 is reflexive on 𝐷 and 𝑅′ is irreflexive on 𝐷;

• if 𝑅 is symmetric then 𝑅−1 and 𝑅′ are symmetric;

• if 𝑅 is transitive then 𝑅−1 is transitive;

• if 𝑅 is connected on 𝐷 then 𝑅−1 is connected on 𝐷.

Proof. I prove one case: reflexivity. If 𝑅 is reflexive on 𝐷, then for all 𝑥 ∈ 𝐷,
⟨𝑥, 𝑥⟩ ∈ 𝑅. By definition of inverse, then, each ⟨𝑥, 𝑥⟩ ∈ 𝑅−1; i.e., 𝑅−1 is also
reflexive on 𝐷. By definition of complement, no ⟨𝑥, 𝑥⟩ ∈ 𝑅′; so 𝑅′ is irreflexive
on 𝐷.

Orderings

Definition 32 (Ordering). A relation 𝑅 on 𝐷 is a

Partial order iff it is reflexive, transitive, and anti-symmetric (e.g., ⊆ on a set of
sets; see Figure 2.4);

Strict Partial Order iff it is transitive and asymmetric (i.e., ⊂);

Total Order iff it is a total partial ordering (i.e., ⩽ on ℕ). Also sometimes known
as a linear order ;

29

elements of deductive logic

{𝐴, 𝐵}⊆ "" {𝐴}⊆
oo ⊆

tt

{𝐵}

⊆

OO

⊆ 22 ∅ ⊆
yy

⊆

OO

⊆oo

⊆
ccGGGGGGGGG

Figure 2.4: Partial ordering of a set of sets by ⊆

Strict Total Order iff it is a total strict partial order (i.e., <).

As defined above, a total order is reflexive, transitive, antisymmetric, and total.
By Theorem 10, a total order is reflexive. So we could have defined a total order
as one that is total, transitive, and antisymmetric.

Well-Orderings Suppose 𝑅 is a total order on 𝐷. If ⟨𝑥, 𝑦⟩ ∈ 𝑅, then we say 𝑥
precedes 𝑦. If ⟨𝑥, 𝑦⟩ ∈ 𝑅 and 𝑥 ≠ 𝑦 and there does not exist a 𝑧 such that ⟨𝑥, 𝑧⟩ ∈
𝑅 and ⟨𝑧, 𝑦⟩ ∈ 𝑅, then 𝑥 immediately precedes 𝑦. (We can give exactly similar
definitions for succeeds.)

An element 𝑥 of 𝐷 is minimal iff there is no distinct 𝑦 that precedes 𝑥. An
element 𝑥 is least if it precedes every distinct 𝑦 ∈ 𝐷. (Corresponding definitions
can be given for maximality and greatest.)

Definition 33 (Well-ordering). 𝑅 is a well-ordering of 𝐷 iff it is a total order and
every non-empty subset 𝑑 of 𝐷 has a least member under 𝑅.

Example: ⩽ is a well-ordering of the natural numbers ℕ. Here is another well-
ordering of ℕ:

(2.1) 𝑥 ≼ 𝑦 iff

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑥 is even and 𝑦 is odd; or

𝑥 and 𝑦 are even and 𝑥 ⩽ 𝑦; or

𝑥 and 𝑦 are odd and 𝑥 ⩽ 𝑦.

The order induced by ≼ yields 0, 2, 4, … , 1, 3, 5, …. In this ordering, every sub-
set of ℕ has a ≼-least element. Notice, however, that 1 is not least, but it has no
immediate predecessor.

The less-than-or-equal-to relation on natural numbers ⩽ is a well-ordering
of ℕ. It can be extended in an obvious way to the less-than-or-equal-to relation

30

set theory

on the positive and negative integers ℤ, which we denote ⩽ℤ. (This is strictly
speaking a different relation, since ⟨−1, 0⟩ ∈⩽ℤ but ⟨−1, 0⟩ ∉⩽.) ⩽ℤ is a total
or linear order on ℤ, but is not a well-ordering, because the set of all negative
integers is a non-empty subset of ℤ but has no least member under ⩽ℤ (it does
have a greatest member though, unlike ℕ). But ℤ can be well-ordered: 𝑥 ⩽abs 𝑦 iff
either (i) |𝑥| ⩽ |𝑦| or (ii) |𝑥| = |𝑦| and 𝑥 ⩽ 𝑦, where ‘|𝑥|’ here denotes the absolute
value of 𝑥. This induces the order 0, −1, 1, −2, 2, ….

2.3 Functions

Consider the relation ‘– is the capital city of –’, conceived of as relating Australian
states to Australian cities. This relation has an interesting feature: if a state stands
in the relation to a city, then it stands in the relation to exactly one city. This is in
fact made explicit by the way we have specified the relation: a city C stands in the
relation to a state S iff C is (is identical to) the capital city of S, where the descript-
ive noun phrase ‘the capital city of S’ manages to successfully denote something
just in case there is only one capital city. Not all relations have this feature: ‘𝑥
is taller than 𝑦’, for example, cannot be formulated as an identity between 𝑥 and
something denoted by a descriptive phrase involving 𝑦.

Relations which have this special feature, where whenever 𝑥𝑅𝑦, then there is
no distinct 𝑧 such that 𝑥𝑅𝑧, are known as functions.

Definition 34 (Unary Function). If 𝑅 is a binary relation such that for any 𝑥, 𝑦, 𝑧,
if ⟨𝑥, 𝑦⟩ ∈ 𝑅 then ⟨𝑥, 𝑧⟩ ∈ 𝑅 iff 𝑦 is identical to 𝑧, then 𝑅 is a unary (one-place)
function.

We write 𝑓𝑅(𝑥) = 𝑦 iff ⟨𝑥, 𝑦⟩ ∈ 𝑅. The notation ‘𝑓𝑅(𝑥)’ is a noun phrase, typically
corresponding to a definite description like ‘the capital city of 𝑥’. We say 𝑥 is the
argument given to 𝑓 , and 𝑦 the value of 𝑓 given that argument. The fact that, for
a given argument, a function has a unique value, justifies our talking of ‘the value
of the function for a given argument’, and justifies the link to natural language
definite descriptions as corresponding to a function with an argument – see the
discussion of definite descriptions in chapter 16.

The notion of a function can be generalised to an arbitrary 𝑛-place relation,
which will give rise potentially to an 𝑛 − 1-place function.

31

elements of deductive logic

Definition 35 (Function). 𝑓 is an 𝑛-place function iff (i) it is a relation (ii) and
for any sequence 𝑥1, … , 𝑥𝑛 of objects, and any 𝑦, 𝑧, if ⟨𝑥1, … , 𝑥𝑛, 𝑦⟩ ∈ 𝑓 and
⟨𝑥1, … , 𝑥𝑛, 𝑧⟩ ∈ 𝑓 , then 𝑦 = 𝑧 (i.e., each sequence of things stands in the rela-
tion to at most one thing).

Since a function is a relation, some of its properties are defined only relative
to a domain. There is another notion, also confusingly called the domain of a
function, which can be thought of as the things the function accepts as arguments.

Definition 36 (Domain). The domain (note: different to the domain of a relation)
of a function 𝑓 is the set

𝒟(𝑓) = {𝑥 ∶ there is a 𝑦 such that ⟨𝑥, 𝑦⟩ ∈ 𝑓}.

There is also the range of the function, which are the things the function can yield
as values.

Definition 37 (Range). The range of 𝑓 is the set

ℛ(𝑓) = {𝑦 ∶ there is a 𝑥 such that ⟨𝑥, 𝑦⟩ ∈ 𝑓}.

Definition 38 (Partial and Total). A function 𝑓 is partial on domain 𝐷 if 𝒟(𝑓) ⊂
𝐷; it is total if 𝒟(𝑓) = 𝐷.

Obviously any function 𝑓 is total on 𝒟(𝑓), but it may be total on some domains
and partial on others. In this sense, totality and partiality of a function is another
extrinsic property of the underlying relation.

Operators

Definition 39 (Operator). If 𝑓 is a function, and ℛ(𝑓) ⊆ 𝒟(𝑓), then 𝑓 is an op-
erator.

Consider the numerical function sq = {⟨𝑥, 𝑦⟩ ∶ 𝑥2 = 𝑦}, otherwisewritten sq(𝑥) =
𝑥2. This generalises in the obvious way to binary functions: if the values of the
function are appropriate arguments, it is an operator. An example is the addi-
tion function on the domain of integers, plus = {⟨𝑥, 𝑦, 𝑧⟩ ∶ 𝑧 = 𝑥 + 𝑦}. This is an
arithmetical operator.

32

set theory

Some properties of functions are conveniently illustrated by plus.

Definition 40 (Commutative). A binary function 𝑓 is commutative iff

𝑓(𝑥, 𝑦) = 𝑓(𝑦, 𝑥).

Definition 41 (Associative). A binary operator 𝑓 is associative iff

𝑓(𝑥, 𝑓 (𝑦, 𝑧)) = 𝑓(𝑓(𝑥, 𝑦), 𝑧).

(We need 𝑓 to be an operator to ensure that it is definedwhen its values are treated
as arguments in this way.)

It is obvious that plus is both commutative and associative: 𝑥+𝑦 = 𝑦+𝑥 and 𝑥+(𝑦+
𝑧) = (𝑥 + 𝑦) + 𝑧. A commutative but not associative operator is mean(𝑥,𝑦) = 𝑥+𝑦

2 .
Clearly mean(𝑥, 𝑦) = mean(𝑦, 𝑥). (This follows from the commutativity of plus.)
But mean(𝑥,mean(𝑦, 𝑧)) is not in general equal to mean(mean(𝑥, 𝑦), 𝑧). An asso-
ciative but non-commutative operator is the concatenation operator on strings
⌢, which takes two strings and joins them into a longer string by appending the
second to the first. Clearly (𝑥 ⌢ 𝑦) ⌢ 𝑧 = 𝑥 ⌢(𝑦 ⌢ 𝑧): ‘te’⌢‘a’ = ‘tea’ = ‘t’⌢‘ea’.
But 𝑥 ⌢ 𝑦 isn’t necessarily 𝑦 ⌢ 𝑥: ‘tea’ isn’t ‘ate’.

Properties of functions Suppose 𝑓 is a function, and 𝑋 and 𝑌 are some sets.
There are some relational properties that 𝑓 might have relative to 𝑋 and 𝑌 .

Definition 42 (Into, Onto, etc.). Into 𝑓 is a function from 𝑋 into 𝑌 iff 𝒟(𝑓) = 𝑋
and ℛ(𝑓) ⊆ 𝑌 .

Onto 𝑓 is a function from 𝑋 onto 𝑌 iff 𝒟(𝑓) = 𝑋 and ℛ(𝑓) = 𝑌 . An onto function
is also known as a surjection.

One-One 𝑓 is a one-one function from 𝑋 to 𝑌 iff 𝑓 is into and whenever 𝑥 ≠ 𝑦,
𝑓(𝑥) ≠ 𝑓(𝑦). A one-one function is also known as an injection.

Bijection 𝑓 is a bijection from 𝑋 to 𝑌 (or, is a one-one correspondence) iff 𝑓 is
one-one and onto.

33

elements of deductive logic

•

•

•

•
33hhhhhhh

•
&&NN

NNN
NNN

•
33hhhhhhh

•

•

•

•
33hhhhhhh

•
33hhhhhhh

•
33hhhhhhh

•

@@����������

•

•

•

•

•
33hhhhhhh

•
33hhhhhhh

•
33hhhhhhh

•

•

•

•
33hhhhhhh

•
33hhhhhhh

•
33hhhhhhh

Into Onto One-one Bijection

Figure 2.5: Properties of functions

It is important to remember as always that these features are always relative to
the sets 𝑋 and 𝑌 . A function that is a bijection between 𝑋 and 𝑌 needn’t be a
bijection between 𝑋′ and 𝑌 ′. These properties are illustrated in Figure 2.5.

Some examples; these are all total functions from ℕ:

• The constant function 𝑓(𝑥) = 1 is into ℕ.

• The function 𝑔(𝑥) =
⎧⎪
⎨
⎪⎩

𝑥/2 if 𝑥 is even

(𝑥 + 1)/2 if 𝑥 is odd
is onto ℕ. (Every natural num-

ber is the value of this function for two arguments.)

• The function ℎ(𝑥) = 𝑥3 is one-one from ℕ to ℕ. (Every natural number has
a unique cube, every cube has a unique cube root – but not every natural
number is a cube.)

• The identity function 𝑖(𝑥) = 𝑥 is a bijection from ℕ to ℕ.

Because a function is a relation, it has an inverse and complemenent.The com-
plement is not very interesting from the perspective of functions, since only in
trivial cases will the complement of a function be a function. But the inverse of
a function may be of more interest. The definition of an inverse relation in Into,
Onto, etc. 30 suffices to define an inverse function, but here is an equivalent defin-
ition directly in terms of functions:

34

set theory

Definition 43 (Inverse). If 𝑔 is a function, it is the inverse of 𝑓 iff 𝒟(𝑓) = ℛ(𝑔),
ℛ(𝑓) = 𝒟(𝑔), and for all 𝑥, 𝑔(𝑓(𝑥)) = 𝑥. In that case, we often write 𝑓 −1 for 𝑔.

Obviously, 𝑓 is also the inverse of 𝑓 −1.
Note that not every function has an inverse function (it always has an inverse

relation, which may or may not be a function):

Theorem 12
A function has an inverse iff it is one-one.

Proof. Left for exercises.

Theorem 13
If 𝑓 is one-one but not a bijection, 𝑓 −1 is a partial function.

Proof. If 𝑓 is one-one from 𝑋 to 𝑌 but not a bijection, then there exists a 𝑦 ∈ 𝑌
which is not the value of 𝑓 for any member of 𝑋. Assume for reductio that 𝑓 −1

is total on 𝑌 . Then there must be some 𝑥 ∈ 𝑋 such that 𝑓 −1(𝑦) = 𝑥. But then
by the definition of inverse, 𝑓(𝑥) = 𝑓(𝑓 −1(𝑦)) = 𝑦. But then 𝑥 is a member of 𝑋
which yields 𝑦 as value when given to 𝑓 as argument; contradiction. So 𝑓 −1 is not
total.

2.4 Size

Definition 44 (Finite). A set 𝑋 is finite iff there exists a set of natural numbers
𝑁 = {1, … , 𝑛} and a bijection 𝑓 from 𝑋 to 𝑁 .

A finite set can be put into one-one correspondence with some initial fragment of
the sequence of natural numbers. (This corresponds to the notion, familiar from
childhood, of counting some things by pointing to each of them while reciting
some initial fragment of the natural numbers.) A set is infinite iff it is not finite.
Where there is a bijection between 𝑋 and {1, … , 𝑛}, 𝑋 has 𝑛 members – we say
that 𝑋 has cardinality 𝑛, |𝑋| = 𝑛.

Now we will define some further notions useful for talking about size.

Definition 45 (Enumeration). 𝑓 is an enumeration of 𝑋 iff 𝒟(𝑓) ⊆ ℕ (the natural
numbers), ℛ(𝑓) = 𝑋, and 𝑓 is onto.

35

elements of deductive logic

An enumeration associates each member of 𝑋 with some number. This is a gener-
alisation of the ordinary notion of counting, however: since we only require that
an enumeration be onto, all sorts of weird ‘counting’ procedures are included: e.g,
the constant function from ℕ onto {𝑎} is an enumeration of {𝑎}. But this definition
does ensure that any enumerable set is intuitively countable: since any enumer-
able set 𝑋 is going to be no larger than some subset of ℕ, by Enumeration 42. This
is captured in the following definition:

Definition 46 ([Un]Countable). 𝑋 is countable iff there exists a function which
enumerates it; it is denumerable iff it is countable and infinite; it is uncountable if
it is not countable.

Obviously, all finite sets are enumerable, since if 𝑓 is a bijection showing 𝑋 to be
finite, 𝑓 −1 exists and is an enumeration of 𝑋. But some infinite sets are countable
too: obviously, ℕ itself (there is a no bijection between ℕ and some initial subset
of ℕ, but the identity function enumerates it).

The notion of cardinality can be extended to infinite sets too (Machover, 1996: chs.
3, 6).

Definition 47 (Equinumerosity). 𝑋 and 𝑌 are equinumerous iff there exists a bijec-
tion from 𝑋 to 𝑌 .

Definition 48 (Cardinality). For each set, 𝑋 – whether finite or infinite – there
exists its cardinality, |𝑋|, meeting the following condition: for any 𝑋 and 𝑌 , |𝑋| =
|𝑌 | iff 𝑋 and 𝑌 are equinumerous.

Certainly treating the natural numbers as cardinals of finite sets meets the con-
dition in Definition 48. But Definition 48 applies to any sets; it’s just that, for the
infinite sets, we have no pre-theoretical grasp on what their cardinalities might
be. That’s okay though: we can characterise them.

Definition 49 (≤). If 𝜆 and 𝜇 are cardinals, such that |𝑋| = 𝜆 and |𝑌 | = 𝜇, then
𝜆 ≤ 𝜇 iff there is an injection from 𝑋 to 𝑌 .

Theorem 14
Let |𝑌 | = 𝜇. Then 𝜆 ≤ 𝜇 iff there exists an 𝑋 such that 𝑋 ⊆ 𝑌 and |𝑋| = 𝜆.

36

set theory

Proof. Obvious: by Definition 49, 𝜆 ≤ 𝜇 iff there is an injection from 𝑋 to 𝑌 iff
there is a bijection from 𝑋 to a subset of 𝑌 .

Theorem 15 (Schröder-Bernstein)
≤ partially orders the cardinals (Machover, 1996: 38–41).

With the notion of a cardinal, we can prove that there are more sizes of set
than finite sizes, because there are more cardinals than just the natural numbers,
which are the cardinalities of finite sets. Since there is no bijection from any finite
subset of natural numbers to the whole set of natural numbers, the cardinality of
the set of natural numbers is not any finite natural number. We introduce ℵ0 to
name |ℕ|.
Theorem 16 (Cantor)
For any set 𝑋, |𝑋| < |℘(𝑋)|.

Proof. Define a function 𝑓 such that for all 𝑥 ∈ 𝑋, 𝑓(𝑥) = {𝑥}. Since if 𝑥 ∈
𝑋, {𝑥} ⊆ 𝑋, 𝑓 is an injection from 𝑋 into ℘(𝑋), and hence |𝑋| ≤ |℘(𝑋)| by
Definition 49.

To show that |𝑋| < |℘(𝑋)|, we need to show that |𝑋| ≠ |℘(𝑋)|, i.e. (by
Definition 48), that 𝑋 and ℘(𝑋) are not equinumerous. Let 𝑔 be any function
from 𝑋 to ℘(𝑋). The domain of 𝑔 is the members of 𝑋, and the range are subsets
of 𝑋, precisely the kinds of things members of 𝑋 can be members of. But not
every member of 𝑋 needs to be a member of the subset of 𝑋 picked out by 𝑔(𝑥).
Let us define the set of such things, the 𝑥 ∈ 𝑋 which aren’t members of 𝑔(𝑥):

𝐷 = {𝑥 ∈ 𝑋 ∶ 𝑥 ∉ 𝑔(𝑥)}.

Since 𝐷 consists solely of members of 𝑋, 𝐷 ⊆ 𝑋 and hence 𝐷 ∈ ℘(𝑋). If 𝑔 is a
bijection, then there must be some 𝑑 ∈ 𝑋 such that 𝑔(𝑑) = 𝐷. Obviously, then
𝑑 ∈ 𝐷 iff 𝑑 ∈ 𝑔(𝑑). But by definition of 𝐷, 𝑑 ∈ 𝐷 iff 𝑑 ∉ 𝑔(𝑑). So if 𝑔 is a bijection,
there is some 𝑑 such that 𝑑 ∈ 𝑔(𝑑) iff 𝑑 ∉ 𝑔(𝑑), and since there obviously is no
such 𝑑, then 𝑔 cannot be a bijection. Since 𝑔 was arbitrary, no function from 𝑋 to
℘(𝑋) is a bijection, and therefore 𝑋 and ℘(𝑋) are not equinumerous.

Cantor’s theorem shows us that the powerset of a set is always a strictly larger
cardinality than the set. We already know that there is one countable infinite set,

37

elements of deductive logic

ℕ. Are there uncountable sets? Yes, obviously: ℘(ℕ): the set of all sets of natural
numbers.This allows us to show that another set is uncountable: the real numbers,
numberswith arbitrarilymany decimal places. Indeed, we can show the following,
from which it follows trivially that the set of reals is uncountable.

Theorem 17 (Uncountability of the Unit Interval)
The set of real numbers between 0 and 1 inclusive, [0, 1], is uncountable.

Proof. (Sketch.) Each subset of ℕ can be associated with an infinite binary se-
quence (sequence of 0s and 1s): the sequence corresponding to 𝑋 ∈ ℘(ℕ) is the
one which has a 1 at position 𝑛 iff 𝑛 ∈ 𝑋. Each infinite binary sequence corres-
ponds to exactly one real number in [0, 1]. So there is a bijection from ℘(ℕ) to
[0, 1], so |℘(ℕ)| = |[0, 1]|, and since the former is uncountable, so is the latter.

A final theorem linking countability and set theory, useful – perhaps – for
some exercise or other.
Theorem 18 (Countable Unions)
If X = {𝑋1, … , 𝑋𝑛, …} is countable, and each 𝑋𝑖 is countable, then ⋃X is count-
able.

I sketch the proof. Let 𝑃 be the set of positive prime numbers.This set is in one-one
correspondence with ℕ (for every 𝑛, there is one and only one 𝑛-th prime). Since
X is countable, there is a one-one function from X into the natural numbers, so
there is a one-one function 𝑓 from X into 𝑃 .

Since each 𝑋𝑖 is countable, there is a function 𝑔𝑖 that is a one to one corres-
pondence between 𝑋𝑖 and a subset of ℕ. Define the function ℎ𝑖(𝑥) = 𝑓(𝑋𝑖)𝑔𝑖(𝑥).
Since every integer has a unique prime decomposition – by the fundamental the-
orem of arithmetic (Gowers, 2008: §V.14) – if ℎ𝑖 ≠ ℎ𝑗 then ℛ(ℎ𝑖) ∩ ℛ(ℎ𝑖) = ∅.

Now define: ℎ(𝑥) = ℎ𝑖(𝑥) where 𝑥 ∈ 𝑋𝑖 and 𝑥 is not a member of any 𝑋𝑗 where
𝑗 < 𝑖. Clearly 𝒟(ℎ) = ⋃X. Obviously ℛ(ℎ) ⊆ ℕ. And ℎ is one-one, since each ℎ𝑖
is a function and their ranges are disjoint. So ⋃X is in one-one correspondence
with a subset of ℕ so is countable.

Further Reading

Another presentation of the set theory needed for this book can be found in Beall and van
Fraassen (2003). A presentation which goes well beyond what we need, but is philosoph-

38

set theory

ically nuanced, is Potter (2004). The iterative conception of a set is discussed by Boolos
(1971).

Exercises

1. Prove:

(a) If 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑋 then 𝑋 = 𝑌 .

(b) If 𝑋 ⊆ 𝑌 and 𝑌 ⊆ 𝑍 then 𝑋 ⊆ 𝑍 .

(c) 𝑋 ⊄ 𝑋.

(d) If 𝑋 ⊂ 𝑌 then 𝑌 ⊄ 𝑋.

(e) If 𝑋 ⊂ 𝑌 then 𝑋 ⊆ 𝑌 .

2. Prove:

(a) 𝑋 ∩ 𝑋 = 𝑋 ∪ 𝑋 = 𝑋.

(b) 𝑋 ∩ ∅ = ∅.

(c) 𝑋 ∪ ∅ = 𝑋.

(d) 𝑋 ⊆ 𝑌 iff 𝑋 ∩ 𝑌 = 𝑋 iff 𝑋 ∪ 𝑌 = 𝑌 .

(e) 𝑋 ∩ (𝑌 ∪ 𝑍) = (𝑋 ∩ 𝑌) ∪ (𝑋 ∩ 𝑍).

(f) 𝑋 ⧵ (𝑋 ∩ 𝑌) = 𝑋 ⧵ 𝑌 .

(g) 𝑋 ⧵ (𝑌 ∩ 𝑍) = (𝑋 ⧵ 𝑌) ∪ (𝑋 ⧵ 𝑍).

3. Prove that if there is a universal set Ω, then the axiom of separation entails a con-
tradiction.

4. Let us define a Kuratowski ordered pair «𝑥, 𝑦» as the set {{𝑥}, {𝑥, 𝑦}}. Prove that

(a) «𝑥, 𝑦» = «𝑢, 𝑣» iff 𝑥 = 𝑢 and 𝑦 = 𝑣.

(b) If 𝑥 = 𝑦 then «𝑥, 𝑦» = {{𝑥}}.

5. (a) Prove that if 𝑋 has 𝑛 members, ℘(𝑋) has 2𝑛 members.

(b) Prove that 𝑋 ⊆ 𝑌 iff ℘(𝑋) ⊆ ℘(𝑌).

(c) Show, by providing a counterexample, that it is not always true that ℘(𝑋) ∪
℘(𝑌) = ℘(𝑋 ∪ 𝑌).

6. Which of the relations expressed by the following English predicates are equivalence
relations:

39

elements of deductive logic

(a) ‘𝑥 and 𝑦 attend the same lectures’, on the domain of Oxford students.

(b) ‘𝑥 is studying the same subject as 𝑦’, on the domain of Oxford students.

7. Prove the following:

(a) If 𝑅 is irreflexive, then 𝑅′ is reflexive.

(b) If 𝑅 is symmetric, then 𝑅−1 is symmetric.

(c) If 𝑅 is symmetric, then 𝑅′ is symmetric.

(d) If 𝑅 is transitive, then 𝑅−1 is transitive.

(e) If 𝑅 is connected, then 𝑅−1 is connected.

(f) If 𝑅 is asymmetric and non-empty, then 𝑅′ is non-symmetric.

8. (a) If 𝑅 is transitive, is 𝑅′ transitive?

(b) If 𝑅 is connected, is 𝑅′ connected?

(c) If 𝑅 is antisymmetric, is 𝑅′ symmetric?

(d) If 𝑅 is transitive and non-empty, is 𝑅′ is transitive?

9. If 𝑅 is defined on the empty domain, can it be reflexive? Can it be irreflexive? What
about transitivity and symmetry?

10. What is wrong with the following argument that reflexivity is a consequence of
symmetry and transitivity?

If ⟨𝑥, 𝑦⟩ ∈ 𝑅, then ⟨𝑦, 𝑥⟩ ∈ 𝑅 since we assume 𝑅 is symmetric. If both
⟨𝑥, 𝑦⟩ ∈ 𝑅 and ⟨𝑦, 𝑥⟩ ∈ 𝑅, then since 𝑅 is transitive, ⟨𝑥, 𝑥⟩ ∈ 𝑅 – so 𝑅 is
reflexive. (After Partee et al. 1990: p. 52.)

11. (a) Can a relation be asymmetric and reflexive?

(b) Can a relation be transitive, non-symmetric and irreflexive?

(c) Can a relation be connected and irreflexive?

12. A relation 𝑅 satisfies trichotomy iff, for all 𝑥 and 𝑦, at most one of these three holds:
𝑅𝑥𝑦, 𝑅𝑦𝑥, or 𝑥 = 𝑦. Is every trichotomous relation connected? Under what circum-
stances is a connected relation trichotomous?

13. Show that a well-ordering of 𝐷 is a total ordering of 𝐷, but not vice versa.

14. Prove that

(a) If 𝑥 is a least member under an ordering 𝑅, then it is the unique least member.

(b) The set of natural numbers ℕ is well-ordered by <.

40

set theory

(c) The set of (positive and negative) integers ℤ is not well-ordered by <.

(d) There exists orderings with no maximal elements.

15. A relation 𝑅 is dense iff whenever ⟨𝑥, 𝑦⟩ ∈ 𝑅, there exists a 𝑧 such that ⟨𝑥, 𝑧⟩ ∈ 𝑅
and ⟨𝑧, 𝑦⟩ ∈ 𝑅. Prove that on the domain of the natural numbers ℕ, the greater-than
relation > is not dense; but that on the domain of the positive rationals (i.e., numbers
of the form 𝑛

𝑚 where 𝑛, 𝑚 ∈ ℕ), it is dense.

16. Let 𝐷 = {1, 2, 3, 5, 6, 10, 15, 30}. Let 𝑅 be the relation on 𝐷 defined by

𝑅 = {⟨𝑥, 𝑦⟩ ∶ 𝑥 divides 𝑦 without remainder}.

(a) Show that 𝑅 is a weak partial order but not a total order.

(b) Draw the graph of 𝑅, and identify any minimal, maximal, least or greatest
elements.

(c) Do the same for the set ℘{𝑎, 𝑏, 𝑐}, using the relation ⊆ on that domain.

17. (a) Show that if 𝑓 −1 is the inverse of 𝑓 , then 𝑓 is also the inverse of 𝑓 −1.

(b) Show that 𝑓 has an inverse function iff it is one-one.

(c) Give an example of a function that

i. is into but is not onto;

ii. is one-one but is not a bijection;

iii. has no inverse;

iv. is its own inverse. (A function which is its own inverse is known as an
involution.)

(d) Under exactly what conditions is the union of two functions itself a function?
(I.e., state necessary and sufficient conditions.)

(e) Give an example of a set which is

i. Countable;

ii. Denumerable;

iii. Uncountable. (Hint: use Theorem 16 and 6.(d).ii.)

18. (a) Show that if 𝑋 is countable, then if 𝑌 ⊆ 𝑋, 𝑌 is countable.

(b) Show that if 𝑋 and 𝑌 are both countable, 𝑋 × 𝑌 is countable. (Hint: show that
the set of ordered pairs of natural numbers is countable.)

Answers to selected exercises on page 240.

41

Part II

Sentential Logic: Language and
Meaning

42

Chapter 3

The Syntax of ℒ1

3.1 Strings and Quotation

The Alphabet of ℒ1 The language ℒ1 contains an alphabet, consisting of the
following three types of characters:

1. Sentence letters 𝑃 , 𝑄, 𝑅, 𝑃1, 𝑄1, 𝑅1, 𝑃2, 𝑄2, 𝑅2, ….

2. Logical connectives: ¬, ∧, ∨, →, ↔.1

3. Parentheses: (,)

No character falls into more than one category; that is, e.g., no sentence letter
is also a connective. Also, no character in any category is identical to any other
character in that category: e.g., ‘∧’ is distinct from ‘¬’.

Using this alphabet, we will now define the syntax, or grammar, of ℒ1. That is,
we will give rules which tell us which combinations of symbols form grammatical
sentences. To do this, we will have to talk about sentence letters and sentences.
Two devices of reference to strings will enable us to do this clearly.

Definition 50 (String). A string in a language ℒ is any finite ordered sequence
of characters from the alphabet of ℒ .

1The notation I use for the logical connectives is standard, but there are a couple of other standards too.
One very common variant is to use ‘&’ for ‘∧’. Beall and van Fraassen (2003: 25) use ‘∼’ where we use
‘¬’, ‘⊃’ where we use ‘→’, and ‘≡’ where we use ‘↔’.

43

elements of deductive logic

I use lowercase Greek letters – 𝜙, 𝜓, 𝜒 and so on – as variables for strings (see
Appendix B).

There is a convenient way that our metalanguage – English – allows us to
name strings. The convention is this. If 𝜙 is a string in ℒ1, then the English ex-
pression consisting of left quotation mark, followed by the string 𝜙, followed by
the right quotation mark, is the name of 𝜙 (Richard, 1986: 397).2

Corner Quotes A problem with this convention is that we are limited in our
ability to quantify into quotation, which we will want to do in specifying our
syntax. Here’s an example to clarify what I mean by this. Suppose we wanted to
be more precise about what a sentence letter is. We might say something like this:

Sentence Letters A sentence letter is an instance of one of the following: ‘𝑃𝑛’,
‘𝑄𝑛’, ‘𝑅𝑛’, for 𝑛 ⩾ 0.

But this doesn’t work: for, according to our convention, ‘𝑃𝑛’ is the name of the
string that contains a capital italic instance of the 16th letter of the alphabet, fol-
lowed by a lowercase subscripted italic instance of the 14th letter of the alpha-
bet. The ‘𝑛’ that occurs in the string is being mentioned, not used, so is not a
variable that can be governed by the condition ‘𝑛 ⩾ 0’. We can get around this,
by introducing a device due to Quine (1940: §6): corner quotes (sometimes called
quasi-quotation).

Here’s how theywork. If 𝜙 is a string, the expression ⌜𝜙⌝ is the quotation name
of that string – i.e., it consists of the left quote mark, the string itself, then the right
quote mark. (So if 𝜙 is a string, ⌜𝜙⌝ is a name of the string, while ‘𝜙’ is the name
of the variable that – temporarily – denotes the string.) Crucially, this construc-
tion allows variables to do their job: in forming ⌜𝜙⌝, we replace the variable by
whatever it happens to denote, rather than talking about the variable itself. This
applies to all variables in the quasi-quotation. The quasi-quotation ⌜𝜙 and 𝜓⌝ is
the expression beginning with a left quote, followed by whatever 𝜙 denotes, fol-
lowed by ‘ and ’, followed by whatever 𝜓 denotes, followed by a right quotation
mark.

2Of course, ‘𝜙’ – the expression consisting of an instance of this lowercase letter of the Greek alphabet
– is also being used, temporarily, to refer to that string, but it is a variable, not a name. Compare the
pronoun ‘him’ with the name ‘Antony’, both of which can be used by you to refer to me, but the former
only does so temporarily and under special circumstances.

44

the syntax of ℒ1

Now we can see how to fix up our definition of sentence letters:

Definition 51 (Sentence Letters). A symbol is a sentence letter iff it is an instance
of one of the following: ⌜𝑃𝑛⌝, ⌜𝑄𝑛⌝, or ⌜𝑅𝑛⌝, for 𝑛 ⩾ 0. For simplicity, we write ‘𝑃 ’
for ‘𝑃0’.

This can all seem a bit complicated, but we need to be precise if we are going to
be sure that we can prove what we need to prove about our language. Pedantry
is almost always a virtue in logic.

But one also needs to know when pedantry becomes the enemy of clarity. So
in what follows, I’ll often drop quotes and corner quotes when there is no chance
of confusion. In particular, since the object language expressions of ℒ1 are not
ordinary English expressions, it won’t be confusing in general if I write things
like: ‘𝑃17 is a sentence letter’ rather than the strictly correct ‘‘𝑃17’ is a sentence
letter’.

3.2 Sentences

Making use of corner quotes and variables over strings of ℒ1, wemay now specify
our syntax. We do it by specifying which things are the (grammatical) sentences
of our language.

Definition 52 (Sentences of ℒ1). The sentences ofℒ1 are those strings in the smal-
lest collection including all strings satisfying these two conditions:

1. All sentence letters are sentences of ℒ1.

2. If 𝜙 and 𝜓 are sentences of ℒ1, then so are:

• ⌜¬𝜙⌝;

• ⌜(𝜙 ∧ 𝜓)⌝;

• ⌜(𝜙 ∨ 𝜓)⌝;

• ⌜(𝜙 → 𝜓)⌝; and

• ⌜(𝜙 ↔ 𝜓)⌝.

45

elements of deductive logic

To say that the sentences are strings in the smallest collection including all strings
satisfying the condition means this: every string satisfying the conditions is in
the smallest collection of them, and no extra strings are in it. So, in effect, we
are saying: the sentences include those strings which meet the conditions, and no
other string that doesn’t meet the conditions is a sentence.

Some Useful Terminology

Definition 53 (Arity). The arity of a connective is the number of constituent sen-
tences the connective requires to form a grammatical sentence.

‘¬’ is called a unary connective; it makes a sentence when it is supplied with
one sentence. ‘∧’, ‘∨’, etc., are called binary connectives, because they make a
sentence when supplied with two sentences, which they connect together (hence
the name). ℒ1 does not involve ternary or higher arity connectives.

Definition 54 (Scope). The scope of an occurrence of a connective in a sentence 𝜙
is smallest sentence occurring as a constituent of 𝜙 that contains this occurrence
of the connective.

So in the sentence ((𝑃 ∧ 𝑄) ∨ 𝑅), the scope of ∧ is (𝑃 ∧ 𝑄).

Definition 55 (Main Connective). The main connective of a sentence is the con-
nective (if there is any) which is in the scope of no other; alternatively, whose
scope is the whole sentence.

Syntax The foregoing suffices to specify the syntax of our language ℒ1. The
language contains an alphabet, which includes a set of sentence letters, and a
set of connectives, and some other punctuation. And it contains a syntax, that
is, a set of rules specifying which strings constructed from the alphabet are well-
formed sentences. A language contains a syntax, but to complete our specification
of the language we will also need to talk about the meanings of sentences, or its
semantics; we look at the semantics of ℒ1 in chapter 4.

Abbreviatory Conventions When writing sentences of ℒ1, we will often from
now on drop parentheses in accordance with the following conventions (Halbach,

46

the syntax of ℒ1

2010: §2.3). Note these are only conventional abbreviations: they form no part of
the official syntax, but are just for our own convenience.

1. The outermost pair of parentheses of a sentence may be dropped; that is, we
may write ‘𝑃 ∨ 𝑄’ in place of the official ‘(𝑃 ∨ 𝑄)’.

2. If ⊕ is one of the binary connectives ‘∨’, ‘∧’ of ℒ1 (that is, ‘⊕’ is a vari-
able over binary connectives), then we may write any sentence of the form
⌜((𝜙 ⊕ 𝜓) ⊕ 𝜒)⌝ as ⌜(𝜙 ⊕ 𝜓 ⊕ 𝜒)⌝.

We may combine these conventions, dropping the outer parentheses to yield ⌜𝜙⊕
𝜓 ⊕ 𝜒⌝. Be careful: the conventions are designed to ensure that one can get back
the original sentence without ambiguity. Since 𝑃 ∨ 𝑄 ∨ 𝑅 is a legitimate abbre-
viation of ((𝑃 ∨ 𝑄) ∨ 𝑅) in accordance with the conventions, it cannot be used to
abbreviate (𝑃 ∨(𝑄∨𝑅)).That latter sentence can only be abbreviated to 𝑃 ∨(𝑄∨𝑅).

3.3 Proofs About Syntax

We can be quite precise about the syntax of ℒ1. For an example of what we can
show, consider this result:
Theorem 19 (Parenthesis Matching)
If 𝜙 is a sentence of ℒ1, then if 𝜙 contains any left parenthesis ‘(’, then it terminates
with a right parenthesis ‘)’, which is paired with the leftmost left parenthesis in 𝜙
(Shapiro, 2013: §2, Theorem 1).

Proof. By clause (3) of Definition 52, every sentence is built up from the sentence
letters using the subclauses of clause (2) of Definition 52. Sentence letters have
no parentheses (as no sentence letter is also a parenthesis). Parentheses are intro-
duced only in subclauses involving ‘∧’, ‘∨’, ‘→’, and ‘↔’, and each time they are
introduced as a matched set. So at any stage in the construction of a sentence, the
parentheses are paired off. Moreover, each newly introduced pair of parentheses
will be the leftmost and rightmost characters in a sentence. Since the only com-
plex sentences not formed from these parenthesis-introducing rules are formed
by negating existing sentences, and negation introduces a new character only at
the left. So any complex sentence which contains any parenthesis terminates in a
right parenthesis, which is matched to the leftmost left parenthesis.

47

elements of deductive logic

Now, this isn’t particularly interesting on its own; it’s fairly obvious from the rules
for the construction of sentences. However, it’s important for two reasons. First, it
shows how to construct a proof in the metalanguage: a systematic argument that
a certain claim – the theorem – is correct. This is a fairly informal proof of this
sort, and things will get a bit more precise later in the book, but it is illustrative
of the kind of thing we’ll do. Second, we can use this theorem in proving further
theorems. For example:
Theorem 20 (Prefix-free)
Let 𝜙, 𝜓 be nonempty strings, such that ⌜𝜙𝜓⌝ (i.e., 𝜙 followed by 𝜓) is a sentence.
Then 𝜙 is not a sentence (Shapiro, 2013: §2, Theorem 5).

Proof. Either 𝜙 contains at least one parenthesis, or it does not.
ByTheorem 19, if𝜙 contains any parentheses, its leftmost parenthesis ismatched

to the terminal parenthesis in 𝜓 . Since every sentence has the same number of
left and right parentheses (convince yourself that this is true in the exercises),
and ⌜𝜙𝜓⌝ is a sentence, and 𝜓 is non-empty, that means 𝜙 must contain more left
parentheses than right parentheses, and is therefore not a sentence.

So now suppose 𝜙 does not contain any parentheses. If it is a sentence, it
must either be a sentence letter, or a negated sentence letter. If it is either of these
categories, and yet ⌜𝜙𝜓⌝ is a sentence, 𝜓 must be empty; but it’s not. So it cannot
be a sentence.

So, either way, 𝜙 is not a sentence of ℒ1.

Informally, whatTheorem 20 shows is that no sentence of ℒ1 is an initial substring
of any other sentence. The set of grammatical sentences is thus prefix-free; in this
way it is like the set of well-formed phone numbers (in which no phone number
is the prefix of any other).3

3.4 Proof By Induction on Complexity

An important sort of inductive argument is induction on the complexity of sen-
tences.

3The prefix-free nature of telephone numbers is very useful, since once the telephone system detects
that a well-formed phone number has been entered, it can immediately call the number. If phone
numbers were not prefix free, to call the number which is the initial part of some other number would
involve entering some further information specifying that the number has been completely entered.

48

the syntax of ℒ1

Definition 56 (Complexity). The complexity of a sentence of ℒ1 is the sum of the
arities of the connectives occurring in it. (E.g., ¬𝑃 has complexity 1, ¬¬(𝑃 → 𝑄)
has complexity 4, etc.)

The complexity of a sentence letter is 0. Since one cannot guarantee that a sentence
has two constituents of equal complexity, we must use the strong principle of
induction if one wants to induce on complexity. (Also because the complexity
of 𝜙 ⊕ 𝜓 , where ⊕ is some binary connective, is the complexity of 𝜙, plus the
complexity of 𝜓 , plus 2.)

In effect, we already used proof by induction on complexity in the proof of
Theorem 19: we showed that the atomic sentences had matching parentheses (the
base case), and showed that if some constituents had matching parentheses, then
the complex sentence formed by applying the further clauses of the syntax added
parentheses in the appropriate way (the induction step).

Theorem 21
Each sentence consists of a string of zero or more negation symbols concatenated with
either a sentence letter or a sentence with a binary connective as its main connective.

Proof. We prove this by strong induction on complexity. Assume that the theorem
holds of all subsentences of a given sentence 𝜙, and we’ll show it to hold of the
whole sentence. There are two possibilities:

1. 𝜙 was formed by applying the negation clause of the formation rules, so
𝜙 = ¬𝜓 for some 𝜓 . By the induction hypotheses, 𝜓 consists of a string
of zero or more negations concatenated with either a sentence letter or a
sentencewith a binarymain connective. 𝜙 is formed by attaching a negation
sign to the front, so 𝜙 is a sentence with one ormore negations concatenated
with either a sentence letter or a sentence with a binary main connective –
clearly this satisfies the theorem.

2. 𝜙 was formed by applying one of the binary connective clauses of the form-
ation rules. It is thus a sentence with a binary connective as its main con-
nective, prefixed by zero negation symbols, and hence the theorem holds of
it.

49

elements of deductive logic

3.5 The Size of ℒ1

How big is the language ℒ1? That is: what is the size of its set of sentences 𝑆ℒ1?
There are infinitely many finite strings constructed from the alphabet of ℒ1 – we
can see this because, obviously, the set of sentence letters P = {𝑃𝑛 ∶ 𝑛 ∈ ℕ} is in
one-one correspondence with the set of natural numbers, and hence is countably
infinite. But P ⊂ 𝑆ℒ1 , so 𝑆ℒ1 must be infinite too. The question is: is the size of
𝑆ℒ1 countably or uncountably infinite?

Each sentence is finitely long – we can prove this by induction on complexity,
since at each complexity stage, we only form finitely long sentences from previ-
ously formed finite sentences, and there is never a stage at which an infinite sen-
tence is formed. So each sentence of ℒ1 is a finite sequence. Moreover, while our
alphabet is infinite (we are treating each sentence letter as a distinct syntactically
indivisible entity, at least at our level of analysis),4 it is nevertheless countable.
We can set up some standard enumeration of the alphabet: perhaps associate the
parentheses with 0 and 1, the connectives with numbers 2–6, and the sentence
letters with the subsequent numbers.

This means of associating numbers with items in our alphabet is in effect a
code, which turns strings of ℒ1 into corresponding sequences of natural numbers.
And it turns out this entails the set of sentences of ℒ1 is only countably infinite:

Lemma 22 (Key Lemma)
There is a one-one correspondence between finite sequences of natural numbers and
the set of natural numbers ℕ.

Proof. For each 𝑙, there are countably many finite sequences of length 𝑙. For we
can map any given sequence to a unique natural number, as follows: if 𝑝𝑘 is the
𝑘-th prime number, we map the sequence ⟨𝑛1, … , 𝑛𝑙⟩ to the product of the first 𝑙
primes, each prime 𝑝𝑖 raised to the power of 𝑛𝑖:

code(⟨𝑛1, … , 𝑛𝑙⟩) = 𝑝𝑛1
1 × … × 𝑝𝑛𝑙

𝑙 .

Since the coding function code is one-one, by the fundamental theorem of arith-

4We need not do this, of course: we could use the alphabet consisting of 𝑃 , 𝑄, 𝑅, and the digits 0, … , 9
to treat the sentence letters themselves as finite strings drawn from a finite alphabet. But as we’ll see,
this doesn’t make any difference to the size of the set of sentences of ℒ1.

50

the syntax of ℒ1

metic (Gowers, 2008: §V.14), it has an inverse, which is from a the natural num-
bers onto the set of finite sequences of length 𝑙, which is thus an enumeration, and
hence the latter set is countable.

The set of all finite sequences of natural numbers is the union of every set of
finite sequences of natural numbers of fixed length. (I.e., it is the union of: the set
of such sequences of length 1, the set of such sequences of length 2, …) There are
countably many such sets (because finite lengths are natural numbers). So the set
of all finite sequences is a countable union of countable sets; by Theorem 18, the
set of all finite sequences of natural numbers is countable.

By the Key Lemma, and the fact thatwe canmodel strings ofℒ1 as finite sequences
of natural numbers, there is a one-one correspondence between arbitrary finite
strings of the alphabet of ℒ1 and a countable set. Since the set of sentences of
ℒ1 𝑆ℒ1 is a strict subset of the set of finite strings of the alphabet of ℒ1 the
cardinality of 𝑆ℒ1 is no greater than countable (by Theorem 14), and since it is
infinite, it must therefore be countably infinite.

Exercises

1. Correctly punctuate the following sloppy remark using corner quote notation and
removing any extraneous quotation marks

For any numbers ‘𝑛’ and ‘𝑚’, ‘𝑛 + 𝑚’ denotes a number, as long as +
denotes the addition operator.

2. Prove that every sentence of ℒ1 has the same number of left and right parentheses.

3. Prove that if 𝜙 is a non-atomic ℒ1 sentence, then there is exactly one formation
clause from Definition 52 that could have been applied to existing sentences to pro-
duce 𝜙. (Hint: use the fact that no character is identical to any other. You’ll need to

show that it is not the case that, e.g., (𝜙 ∨ 𝜓) is the same sentence as (𝜒 ∧ 𝜉).)

4. Assuming the result of the previous exercise, show that every sentence of ℒ1 is
uniquely readable – that is, each sentence can be produced from the sentence letters
in accordance with the formation clauses in exactly one way (Shapiro, 2013: §2).

Answers to selected exercises on page 241.

51

Chapter 4

The Semantics of ℒ1

4.1 Semantics for ℒ1

To complete our specification of ℒ1, we need to provide some account of the in-
tended meanings of sentences of ℒ1. In natural languages each expression has a
specific meaning or meanings, and each use makes a specific contribution to the
utterances in which it appears. There is some non-specificity due to ambiguity,
but even that is tightly circumscribed. Our language will differ from natural lan-
guage in this respect. For we will not insist on any one fixed interpretation of
the sentence letters of the language.1 However, the meanings we assign to the
logical connectives will resemble more closely the kinds of meanings in natural
languages: the meanings of connectives will make a fixed contribution, alongside
the syntax, to determining the meanings of complex sentences.

In a sense, ℒ1 and other formal languages are not really devices for commu-
nication of meaning at all. They provide ways of representing structure within
sentences and arguments, and it is those parts of the language which are assigned
a fixed meaning which determine which aspects of structure are able to be cap-
tured by a given formal language. ℒ1 gives the connectives which combine with

1We resist the assignment of any fixedmeaning to the sentence letters in part for practical reasons. If we
wish to use our logical languages to model natural language arguments, it would be tedious indeed to
have to figure out which sentence letter translates the natural language sentences we are considering.
(Is it 𝑃371?) So we allow the meaning of the sentence letters to be fixed anew in each application.

52

the semantics of ℒ1

sentence letters to create complex sentences a fixed meaning – so it is able to rep-
resent those aspects of the structure of a sentence that it possesses in virtue of the
presence of those connectives. And it can be used to model the structure of natural
language sentences which feature analogues of those connectives. But it is only
in a particular application that the sentence letters of ℒ1 are given any meaning.
A temporary assignment of meanings to those components of a language without
fixed meanings is known as an interpretation of the language.

Meaning and Truth Values One common approach to the theory of meaning, or
semantics, for natural languages is to identify one primary aspect of meaning of
a sentence with its truth conditions, the circumstances under which the sentence
is true. So in important respects, the meaning of ‘Jonquil is walking’ is given by
specifying that it is true under conditions when Jonquil is walking, and false under
other conditions.The actual truth value of the sentence is thus part of themeaning
of the sentence, because whether a sentence is true in the actual circumstances is
part of its truth conditions. And the same is true for the truth value of the sentence
in other, non-actual, circumstances.

ℒ1 adopts a similar approach, because it assigns a truth value to each of its
sentences under each interpretation. Note that the approach is similar but nev-
ertheless distinct: natural language semantics is concerned with truth in various
actual and possible circumstances, while in formal logic we are interested in truth
under various interpretations and reinterpretations of the constituents of the lan-
guage – this difference has particular significance when we consider validity and
entailment below. Furthermore, the theory of meaning for ℒ1 states that the truth
value assigned exhausts the meaning of the sentence, under that interpretation –
there are no further aspects of meaning.

In practice, an intepretation of ℒ1 associates a truth value – either True or
False – with every sentence letter of ℒ1. Having interpreted (or re-interpreted)
the sentence letters, the remainder of the semantics is constructed to be such that
the truth-value of a sentence depends on its semantically relevant structure and
the truth-values of its constituents. ℒ1 thus has what is known as a compositional
semantics: having assigned meanings to the most basic constituents of the lan-
guage, the semantics specifies how those meanings are to be extended to every
sentence in the language by showing how the semantic values (which are just

53

elements of deductive logic

truth values, in ℒ1) of a complex sentence are determined by its structure and the
semantic values of its parts.

Translation When translating between natural languages, it is best (if possible)
to translate a sentence in the home language by a sentence in the target language
with the same truth conditions. Such a guideline cannot be applied to translation
between natural and formal languages. What we can do is make sure that we pick
an intepretation of the formal language such that the actual truth value of the
natural language sentence is reflected in the truth value assigned to the formal
language sentence letter. (And, of course, make sure you translate only those nat-
ural language sentences without internal logical structure that can be represented
in your target formal language by sentence letters of that language.)

Classical Valuations In classical logic, as in life, there are two truth values: True
𝑇 and False 𝐹 (sometimes written 1 and 0, sometimes written ⊤ and ⊥). Recall our
discussion of Bivalence in chapter 1; it is a presumption of classical logic that there
are only two truth values, and that each meaningful sentence possesses one and
only one of them. ℒ1 is a classical logic, and any semantics for ℒ1 will support a
total pattern of assignments of truth values to the sentences of the language that
respects Bivalence, once we have a Bivalent interpretation of the sentence letters.
Such a assignment of truth values is known as a valuation:

Definition 57 (Valuation). A valuation of a language is an assignment of values
(of some sort of other) to the sentences of that language. A classical valuation is a
valuation in which the possible values are the classical truth values 𝑇 and 𝐹 , and
in which every sentence has exactly one value assigned to it.

We can express what we said about classical valuations more concisely using the
language of functions: a classical valuation on some language is a total function
from the set of sentences of a language into the set of truth values. We may also
use it to define a new notion:

Definition 58 (ℒ1-Structure). An ℒ1-structure is a (total) function from the set
of sentence letters of ℒ1 into the set of classical truth values {𝑇 , 𝐹 }.

54

the semantics of ℒ1

Anℒ1-Structure is a formalmathematical rendering ofwhatwe informally termed
an interpretation of ℒ1.

A valuation need not be compositional, in the sense that there need not be any
rules governing which complex sentences get which truth values. But ours will
be, and we can use the rules governing the construction of complex sentences to
extend an ℒ1 structure to a full classical valuation for ℒ1.

Definition 59 (ℒ1-valuation). When 𝒜 is any ℒ1-structure, J⋅K𝒜 is a valuation
function from the set of ℒ1 sentences to the set of truth values {𝑇 , 𝐹 } iff it meets
these conditions:

1. If 𝜙 is a sentence letter, J𝜙K𝒜 = 𝒜(𝜙).

2. J¬𝜙K𝒜 = 𝑇 if and only if (iff) J𝜙K𝒜 = 𝐹 .

3. J𝜙 ∧ 𝜓K𝒜 = 𝑇 iff J𝜙K𝒜 = 𝑇 and J𝜓K𝒜 = 𝑇 .

4. J𝜙 ∨ 𝜓K𝒜 = 𝑇 iff J𝜙K𝒜 = 𝑇 or J𝜓K𝒜 = 𝑇 (or both).

5. J𝜙 → 𝜓K𝒜 = 𝑇 iff J𝜙K𝒜 = 𝐹 or J𝜓K𝒜 = 𝑇 (or both).

6. J𝜙 ↔ 𝜓K𝒜 = 𝑇 iff J𝜙K𝒜 = J𝜓K𝒜 .

It is easy to see that for any ℒ1-structure 𝒜 the valuation function J⋅K𝒜 is a clas-
sical valuation. Every sentence letter is assigned exactly one of 𝑇 or 𝐹 , and every
complex sentence is assigned exactly one of 𝑇 or 𝐹 . (This depends on the result
proved in the exercises to chapter 3 – see 241 – that each sentence of ℒ1 has ex-
actly one main connective, so that every sentence of ℒ1 falls under one and only
one of the clauses in the definition of an ℒ1-valuation.)

What is also clear is that the definition of the valuation function specifies the
meaning of the logical expressions of ℒ1, the connectives. For the meaning of a
complex sentence is determined by the semantic value assigned to its constitu-
ents, and the valuation function. The meaning of ‘∧’ just is its functional role,
the operator that makes a complex sentence from simpler constituents which is
true iff both constituents are true. We’ll make this precise when we talk about
truth-functions as the meanings of connectives below section 4.10.

55

elements of deductive logic

Definition 60 (Agreement of Structures). When 𝑆 is a set of ℒ1 sentence letters,
let us say that two ℒ1 structures 𝒜 and ℬ agree on 𝑆 iff for each 𝜙 in 𝑆 , 𝒜(𝜙) =
ℬ(𝜙).

Since the value of a sentence is determined by the values of its constituents, it is
obvious that if 𝜓 is any ℒ1 sentence, and if two ℒ1 structures 𝒜 and ℬ agree on
the sentence letters in 𝜓 , then J𝜓K𝒜 = J𝜓Kℬ .

Falsity clauses Here is another example of proof by induction on complexity of
sentences. Recall the definition of a valuation. It told us under what circumstances
a sentence of a given form was true in a valuation. Why didn’t we also need to
state when a sentence was false? Because a sentence is false iff it is not true.
Theorem 23 (Falsity is Untruth)J𝜙K𝒜 = 𝐹 iff J𝜙K𝒜 ≠ 𝑇 .

Proof. Base case: 𝜙 is a sentence letter. Because 𝒜 is a function, if J𝜙K𝒜 = 𝐹 thenJ𝜙K𝒜 ≠ 𝑇 . Because 𝒜 is into and total, if J𝜙K𝒜 ≠ 𝑇 then J𝜙K𝒜 = 𝐹 .
Induction step: Suppose 𝜙 is a sentence, but is complex, and that the theorem

holds for the constituents of 𝜙. We show two illustrative cases:

1. Suppose 𝜙 = ¬𝜓 . Then J𝜙K𝒜 = 𝐹 iff J¬𝜓K𝒜 = 𝐹 , iff J𝜓K𝒜 = 𝑇 , iff J𝜓K𝒜 ≠ 𝐹
iff J¬𝜓K𝒜 ≠ 𝑇 iff J𝜙K𝒜 ≠ 𝑇 .

2. Suppose 𝜙 = (𝜓 ∨ 𝜒). Then J𝜙K𝒜 = 𝐹 iff J𝜓 ∨ 𝜒K𝒜 = 𝐹 iff J𝜓K𝒜 = 𝐹 andJ𝜒K𝒜 = 𝐹 iff J𝜓K𝒜 ≠ 𝑇 and J𝜒K𝒜 ≠ 𝑇 iff J𝜓 ∨ 𝜒K𝒜 ≠ 𝑇 iff J𝜙K𝒜 ≠ 𝑇 .

The cases of the other connectives are left for exercises.

4.2 Truth Tables

One way of representing ℒ1 structures – or at least, representing as much of
them as matters in some particular application – is using a truth table. Consider
any finite set of ℒ1 sentences, Γ. Since each sentence in Γ is also only finitely long,
there are at most finitelymany sentence letters occurring in Γ.The values assigned
to each of these sentence letters, in accordance with Definition 59, determines the
values assigned to every sentence in Γ.

56

the semantics of ℒ1

Since there are only finitely many sentence letters in Γ, each of which is as-
signed either 𝑇 or 𝐹 by our structures, it is clear there are only finitely many ways
of assigning truth values to the sentence letters. (In fact, if there are 𝑛 sentence
letters, there are 2𝑛 ways of assigning them truth values.) So we can write down
– in principle – each of those ways of assigning truth values in a truth table. This
table summarises the truth values of the sentences in Γ across all possible ℒ1-
structures.

Constructing Truth Tables For each sentence letter that appears in some sen-
tence within Γ, inscribe a column. To be precise, inscribe those columns in the
standard order: 𝑃 , 𝑄, 𝑅, 𝑃1, 𝑄1, 𝑅1…. For each way of assigning truth values to
sentence letters, inscribe a row, by putting a truth value under the appropriate
column so that every possible combination of independent assignments of clas-
sical truth values to the sentence letters is represented in some row. Now for any
way of assigning truth-values to sentence letters in Γ, there is a row of the truth
table representing that assignment. It is obvious that each row of the truth table
corresponds to a class of structures: namely, a class of structures that all agree on
the sentence letters in Γ, as per Definition 60. (Each distinct structure disagrees
over some sentence letter, but the structures corresponding to a single row in a
truth table for Γ only disagree over sentence letters not occuring in Γ – since they
are not relevant to determining the truth value of any sentence in Γ, such distinc-
tions do not matter for drawing up the truth table.) Now add a column for each
sentence in Γ, and for each row, inscribe under the sentence the value which is
assigned to that sentence by any structure corresponding to that row. (Since all
such structures agree on the sentence letters in the sentence, they will all agree
on what they assign to the sentence too, so it doesn’t matter which one we pick.)

So, for instance, suppose Γ is this interesting set of ℒ1 sentences:

{¬𝑃 , (𝑃 ∧ 𝑄), (𝑃 ∨ 𝑄), (𝑃 → 𝑄), (𝑃 ↔ 𝑄)} .

The truth table for this set of sentences is pictured in Table 4.1.

57

elements of deductive logic

𝑃 𝑄 ¬𝑃 (𝑃 ∧ 𝑄) (𝑃 ∨ 𝑄) (𝑃 → 𝑄) (𝑃 ↔ 𝑄)
T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

Table 4.1: Truth Table for the Standard Connectives

4.3 Satisfaction, Entailment, and other Semantic No-

tions

Many conceptions of logic have it that logic is fundamentally about consequence:
what it is for some sentences to follow from one another, in virtue of the logical
form of the sentences involved (Beall and Restall, 2013). But what is consequence?
We may characterise it semantically as follows: some sentences of ℒ1 have an-
other sentence as a consequence if the former sentences entail the latter sentence.
And we may characterise entailment, and a number of other semantic relations
between sentences, using the notions we’ve already introduced.

Definition 61 (Satisfaction). Suppose Γ is any (possibly empty, possibly finite,
possibly infinite) set of sentences of ℒ1, and 𝒜 is a ℒ1-structure, such that J𝛾K𝒜 =
𝑇 for every sentence 𝛾 ∈ Γ. In that case, 𝒜 satisfies Γ, or 𝒜 is a model of Γ.

Definition 62 (Entailment). A set of sentences Γ (semantically) entails a sentence
𝜙 iff every ℒ1-structure which satisfies Γ also satisfies 𝜙. Notation: Γ ⊨ 𝜙.

Definition 63 (Tautology). 𝜙 is a tautology iff every ℒ1 structure satisfies {𝜙}. A
tautology is sometimes called a logical truth.

Theorem 24
If 𝜙 is a tautology, then for any set of sentences Γ, Γ ⊨ 𝜙 – even if Γ is the empty set,
which contains no sentences at all.

This theorem explains the fact that we often write ‘⊨ 𝜙’ to mean that 𝜙 is a tau-
tology.

58

the semantics of ℒ1

If no ℒ1-structure satisfies Γ, Γ is unsatisfiable, or semantically inconsistent,
which we write Γ ⊨.2 Accordingly, a set of sentences is semantically consistent iff
it is satisfiable. If Γ = {𝜙} and Γ ⊨ then 𝜙 is a contradiction.

Theorem 25
𝜙 is a tautology iff ¬𝜙 is a contradiction.

Proof. 𝜙 is a tautology iff J𝜙K𝒜 = 𝑇 in every ℒ1 structure 𝒜 . By Definition 59,
this is the case iff J¬𝜙K𝒜 = 𝐹 in every ℒ1 structure 𝒜 ; iff no ℒ1 structure satisfies
{¬𝜙}, i.e., ¬𝜙 is a contradiction.

Theorem 26 (Entailment and Unsatisfiability)
Γ ⊨ 𝜙 iff Γ, ¬𝜙 ⊨.

Proof. Γ ⊨ 𝜙 iff every ℒ1-structure which makes all of Γ true makes 𝜙 true; iff
every ℒ1-structure which makes all of Γ true makes ¬𝜙 false; iff there is no ℒ1-
structure which makes all of Γ true along with ¬𝜙; iff Γ ∪ {¬𝜙} is unsatisfiable.

This elementary theorem is nevertheless rather useful. One thing it shows is that
reductio reasoning is good in ℒ1: for if we have an unsatisfiable set, we can pick
anymember of that set, negate it, and conclude that the remainingmembers entail
it. (Remember that Γ, 𝜙 ⊨ just means that the set Γ ∪ {𝜙} is unsatisfiable – order
does not matter.) As we have already seen, it is often easier in practice to prove
Γ ∪ {¬𝜙} unsatisfiable than to come up with a constructive argument from Γ to 𝜙.

4.4 Consequences and Theories

With the notion of entailment in hand, we can explore the content of a set of sen-
tences by seeing what follows from it. That way we don’t focus on the particular
form of the sentences involved, but on the power of

Definition 64 (Consequences). The set of consequences of a set of ℒ1 sentences
Γ, which we write 𝐶𝑛(Γ), is defined as the set including every sentence entailed
by Γ: 𝐶𝑛(Γ) = {𝜙 ∶ Γ ⊨ 𝜙}.

2We use this notation to make the notation for unsatisfiability mirror the notation for tautologousness
– don’t worry about trying to understand unsatisfiability as entailment of the empty set or anything
like that – just remember that ‘Γ ⊨’ is shorthand for ‘Γ is unsatisfiable’.

59

elements of deductive logic

Some preliminary results about the consequences of a set of sentences.

Lemma 27
Γ ⊆ 𝐶𝑛(Γ).

Proof. Left for exercise.

Lemma 28
𝐶𝑛 (𝐶𝑛 (Γ)) = 𝐶𝑛(Γ).

Proof. If 𝐶𝑛(𝐶𝑛(Γ)) ≠ 𝐶𝑛(Γ), then there must be some 𝜙 ∈ 𝐶𝑛(𝐶𝑛(Γ)) which is not
a consequence of Γ (by Lemma 27). So there is a structure 𝒜 in which 𝜙 is false but
Γ is satisfied. Since Γ is satisfied in 𝒜 , so is 𝐶𝑛(Γ). But then so is 𝜙; contradiction.
So there is no such 𝜙 – hence 𝐶𝑛(𝐶𝑛(Γ) = 𝐶𝑛(Γ).

Lemma 29
𝐶𝑛 (Γ ∪ Δ) = 𝐶𝑛 (𝐶𝑛(Γ) ∪ 𝐶𝑛(Δ)).

Proof. Left for exercise.

A theory, informally, is some systematic body of ideas. A theory inℒ1 is a body
of ℒ1 sentences that is closed under entailment, that is, every logical consequence
of the theory is part of the theory.

Definition 65 (Theory). A set of ℒ1 sentences Γ is a theory iff Γ = 𝐶𝑛(Γ).

Definition 66 (Negation Complete). A set of ℒ1 sentences Γ is negation-complete
iff for every ℒ1 sentence 𝜙, either 𝜙 ∈ Γ or ¬𝜙 ∈ Γ.

Theorem 30 (Identity of Theories)
If Θ1 and Θ2 are theories, such that

1. If Θ1 ⊨ 𝜙, then Θ2 ⊨ 𝜙;

2. Θ1 is negation-complete; and

3. Θ2 is satisfiable,

then Θ1 = Θ2.

60

the semantics of ℒ1

Proof. Condition (1) entails that 𝐶𝑛(Θ1) ⊆ 𝐶𝑛(Θ2). Condition (2) entails that if
𝜙 ∉ Θ1, then Θ1 ∪ {𝜙} is unsatisfiable. Because Θ1 is a theory, Θ1 = 𝐶𝑛(Θ1).
So if 𝜙 ∉ 𝐶𝑛(Θ1), then 𝐶𝑛(Θ1) ∪ {𝜙} is unsatisfiable. So if there is any sentence
in 𝐶𝑛(Θ2) that is not in 𝐶𝑛(Θ1), then 𝐶𝑛(Θ2) is unsatisfiable, and therefore Θ2 is
unsatisfiable. Condition (3) says that Θ2 is satisfiable, so there is no member of Θ2
which is not a member of Θ1, i.e., Θ1 = Θ2.

4.5 Entailment, Validity and Necessity

An argument involves a set of sentences Γ, its premises, and a single sentences 𝜙
as its conclusion.

Definition 67 (Properties of arguments). An argument from premises Γ to con-
clusion 𝜙 is (logically) valid iff Γ entails 𝜙. A valid argument is sound (under a given
interpretation) iff each of its premises is actually true under the interpretation.

Necessary Truth Preservation? Sometimes one sees a purported definition of
validity (or entailment, or [logical] consequence) along these lines: that an argu-
ment is valid iff it is impossible for its premises all to be true while its conclusion
is false (Henle, Garfield, and Tymoczko, 2011: 19). That is, if there is no possible
situation in which the premises are true and the conclusion false. While there are
some similarities between ℒ1-structures and possible situations, this sort of defin-
ition of validity should be resisted.We can think of a possible situation as specified
by a description of a way things could have been. Importantly, the description will
be in a certain actual language, which we need to hold fixed in order for it to do
its descriptive job. But an ℒ1-structure is, in some ways, precisely the opposite
of this. It is a way of interpreting the sentence letters of ℒ1, while holding fixed
the world at which those reinterpreted sentences are to be evaluated. In many
cases it makes no difference whether we consider a sentence 𝑃 to be evaluated
at a possible situation in which what 𝑃 says obtains, or to be evaluated at actu-
ality under an interpretation which makes it true. But there are cases in which it
matters. Consider this argument:

Sylvester is a child;
Therefore, Sylvester is not an adult.

61

elements of deductive logic

The premise necessitates the conclusion, for there is no possible world in which a
child is an adult. But this argument isn’t logically valid; for under a reinterpreta-
tion of the non-logical vocabulary ‘adult’ on which it means ‘child’, the premise is
actually true and the (reinterpreted) conclusion actually false. The premise guar-
antees the truth of the conclusion, in part because of what the non-logical ex-
pressions ‘adult’ and ‘child’ actually mean. But in logic, we are interested in ar-
guments where the premises guarantee the truth of the conclusion in virtue only
of the meanings of the logical expressions involved (Tarski, 1936).

Formality Why does logic concern itself with what follows from a sentence un-
der every possible reintepretation of the non-logical expressions (involved (i.e.,
those without a fixed meaning - the sentence letters, in the case of ℒ1)? This
is because logic is primarily concerned with that special case of consequence in
which the conclusion follows from the premises in virtue of the syntactic form of
the sentences involved. To focus on syntactic structure, we ought to neglect the
actual meaning of the basic constituents of the language, and focus only on how
those constituents are deployed into a complex syntactic structure. It is in a sense
like replacing those basic constituents with nonsense – but once that replacement
is made, we can see that the resulting argument still might be good in virtue of its
structure. ‘Fleebles bork and greebles gork’ entails ‘Fleebles bork’, no matter what
those constituent expressions happen to mean, just as long as ‘and’ has its actual
meaning. What the above example shows is that there are arguments where the
premises necessitate the conclusion, but not in virtue of their logical form – at
least, not in virtue of those aspects of logical form able to be represented in ℒ1.
Perhaps in some logic, we could analyse ‘child’ as ‘non-adult’, and in such a logic
the argument above would be logically valid. This shows us something else in-
teresting: that logical form depends on which expressions one takes to be logical
expressions, and that may vary between different logical languages.

These remarks also reflect on the notion of a tautology. Our conception is this:
a tautology is true in virtue of its logical structure, no matter what the meaning
of its non-logical constituents. This suffices for necessity, but the converse is not
true.There are necessary truths which are not logical truths – for example, ‘Adults
are not children’ is necessary but not a tautology of ℒ1.

62

the semantics of ℒ1

4.6 Meaning, Possibility, and Time

The picture we have of meaning in our language ℒ1 is this. A sentence letter has
as its meaning, relative to an ℒ1 structure, a truth value. If a possible scenario is
which has a coherent description in a given language, then we can define a ℒ1-
logically possible scenario as one described by a satisfiable set of ℒ1 sentences. I
will say something briefly about the philosophical issues about meaning involved
in this picture.

There are several respects in which this language differs from natural lan-
guage. We have just noted, in effect, that being true in every possible scenario
relative to ℒ1 is to be distinguished from being genuinely necessary. It is not
really possible to make each sentence in this set jointly true: {‘Sylvester is a child’,
‘Sylvester is an adult’}. But the only possible translations of these sentences into
ℒ1 turn that set into a satisfiable one, so the scenario is logically possible. (This
probably shows that the terminology of ‘logical possibility’ is misleading, since
it is not a type of possibility at all – perhaps ‘logically coherent’ or ‘formally co-
herent’ are preferable.) On the other hand, it is to be hoped that any genuinely
possible scenario is also logically coherent.3

The treatment of possibility for ℒ1 sentences is not as controversial as the
treatment of time. For many natural language sentences change their truth value
while keeping their meaning fixed – so truth value isn’t even part of the meaning
(though it might be determined by the meaning in conjunction with the circum-
stances the sentence is taken to be describing). So the English sentence ‘It’s raining
in Munich’ is true today, but false tomorrow, even though it seems to mean the
same thing on both days. Three proposals might enable us to bring the treatment
of the logical language and natural language closer on this issue.

• First, you might consider the logical language adequate to handle only that
fragment of natural language which concerns sentences which have a con-
stant truth value over time.

• Second, you might think that ℒ1 sentences concern just what is presently
true; if you wanted to handle claims about what was true (which we handle

3Even this is complicated by the fact that different logical languages might be able to express different
things, as we’ll see later in this book, and so there might not be any single notion of logical coherence
that is a feature of any genuine possibility.

63

elements of deductive logic

with past tense sentences in natural language), or what will be true (nat-
ural language future tense and related constructions), then you would need
to extend the language of ℒ1 to include something like tense. This is the
subject of what is called, naturally enough, tense logic. The basic idea is to
treat a structure for a sentential tense logic as a sequence of ℒ1 structures,
with each structure in the sequence telling us what sentence letters would
be true if that structure corresponded to the present moment. So if ‘It is
raining in Munich’ is true at time 𝑡1 then false at time 𝑡2, we could model
that by translating the sentence by the sentence letter 𝑃 , letting 𝑡1 corres-
pond to some ℒ1 structure in which 𝑃 is assigned 𝑇 , and let 𝑡2 correspond
to some ℒ1 structure in which 𝑃 is assigned 𝐹 . A whole possible world,
on this view, is then modelled by the sequence of structures – because a
possible situation, to accomodate tense as an important feature of reality,
must include other times in addition to the present moment.

• Alternatively, we could take it that natural language tense is eliminable in
some way, so that in fact the meanings of natural language sentences have
constant truth value. Surprisingly enough, this is a fairly orthodox view in
natural language semantics (King, 2003; Partee, 1973). The idea is that each
utterance of a sentence like ‘It’s raining in Munich’ expresses a proposition
like It is raining in Munich on such-and-such date – and those propositions
are permanently true if true at all, because they are about a specific time. If
this is right, then there is no problem assigning as themeaning of a sentence
a truth value relative to a possible scenario, since the meanings of natural
language sentences determine propositions of constant truth value. To do
full justice to this approach, however, involves delicate issues about both
natural language and about the ‘untensed’ nature of reality.

For practical reasons, I’ll simply adopt the first proposal, and ignore tense in dis-
cussions of ℒ1 (and ℒ2). As we’ll see when we move to talking about ℒ2 later
in this book, there are already natural language constructions which cannot be
handled by ℒ1, so there is precedent for simply taking the language of sentential
logic to be able to adequately translate only some fragment of natural language.

64

the semantics of ℒ1

4.7 Entailment and the Connectives

Entailment is a relation between a set of sentences and a single sentence; and
a claim like {𝑃 , 𝑄} ⊨ 𝑃 ∨ 𝑄 is a claim about the sentences of ℒ1– it is not a
statement in ℒ1. But there are interesting relationships between some statements
about entailment (and other semantic notions, like satisfaction), and some sen-
tences of ℒ1. We see these relationships manifest in how certain statments about
entailment license further entailments between sentences involving our logical
connectives in distinctive ways. For example:
Theorem 31 (Conjunction and Satisfaction)
Some sentences are satisfied in a structure iff their conjunction is satisfied in that
structure.That is, if Γ is some set of sentences {𝛾1, … , 𝛾𝑛}, then for every ℒ1 structure
𝒜 , 𝒜 satisfies Γ iff J(𝛾1 ∧ … ∧ 𝛾𝑛)K𝒜 = 𝑇 .

Definition 68 (Equivalence). 𝜙 and 𝜓 are logically equivalent iff 𝜙 ⊨ 𝜓 and 𝜓 ⊨
𝜙.
Theorem 32 (Equivalence and Biconditional)
𝜙 and 𝜓 are logically equivalent iff ⊨ 𝜙 ↔ 𝜓 .

Proof. 𝜙 ⊨ 𝜓 iff every structure in which 𝜙 has the value 𝑇 is one in which 𝜓 also
has the value 𝑇 , and vice versa. That is, iff in every structure 𝒜 , J𝜙K𝒜 = J𝜓K𝒜 .
That holds in turn, by Definition 59, iff J𝜙 ↔ 𝜓K𝒜 = 𝑇 in every structure, and
𝜙 ↔ 𝜓 is a tautology.

Deduction Theorem Let the notation ‘Γ, 𝜙 ⊨ 𝜓 ’ abbreviate Γ ∪ {𝜙} ⊨ 𝜓 .
Theorem 33 (Deduction)
Γ, 𝜙 ⊨ 𝜓 iff Γ ⊨ (𝜙 → 𝜓).

Proof. Γ, 𝜙 ⊨ 𝜓 iff every ℒ1-structure which satisfies Γ ∪ {𝜙} also satisfies {𝜓}.
That holds iff there is no structure 𝒜 in which Γ is satisfied and in which J𝜙K𝒜 = 𝑇
and J𝜓K𝒜 = 𝐹 . By Definition 59, there is no structure 𝒜 in which Γ is satisfied
while J𝜙 → 𝜓K𝒜 = 𝐹 , i.e., Γ ⊨ 𝜙 → 𝜓 .

Repeated applications of the deduction theorem permits us to say that an argu-
ment 𝛾1, … , 𝛾𝑛 ⊨ 𝜙 is valid iff ⊨ (𝛾1 → (𝛾2 → …(𝛾𝑛 → 𝜙)…)) – i.e., that an argu-
ment with finitely many premises is valid iff the corresponding nested conditional
is a tautology.

65

elements of deductive logic

Corollary 34
An argument from premises Γ to conclusion 𝜙 is valid iff the conditional with the
conjunction of the premises in Γ as antecedent, and 𝜙 as consequent, is a tautology.
That is Γ ⊨ 𝜙 iff ⊨ (𝛾1 ∧ … ∧ 𝛾𝑛) → 𝜙.

Proof. Obvious from Theorem 31 and Theorem 33.

The deduction theorem is the source of considerable confusion on the part of first-
year logic students and others, for it seems to suggest a correspondence between
entailment and the conditional. It does not: the correspondence is between entail-
ment and a tautologous conditional. A conditional is true just in case – in fact – if
the antecedent is true, then the consequent is also true. A tautologous conditional
is one that is true on grounds of logic alone, and it is only this sort of conditional
that expresses in ℒ1 something analogous to entailment between sentences of ℒ1.
The conditional ‘If we return our rental car late, we will be charged’ is true, but
not tautologously true – compare the genuine tautology ‘If we return our rental
car and we return it late, then we return our rental car’, which cannot help but be
true in virtue of its form (𝑃 ∧ 𝑄 ⊨ 𝑃). We return to the topic of conditionals in
chapter 15.

4.8 Structural Rules

The expression of entailment ‘Γ ⊨ 𝜙’ is known as a sequent. This sequent is correct
if Γ does entail 𝜙. There are a set of rules, each of which can be justified from the
definitions above, that governs correctness-preserving transformations of one se-
quent into another. These rules are known as structural rules. Theorems justifying
three standard structural rules follow (where Γ, Δ are sets of premises):

Theorem 35 (Permutation)
Γ, 𝜓, 𝜒, Δ ⊨ 𝜙 iff Γ, 𝜒, 𝜓, Δ ⊨ 𝜙 (premise order doesn’t matter).

Theorem 36 (Contraction)
Γ, 𝜓, 𝜓, Δ ⊨ 𝜙 iff Γ, 𝜓, Δ ⊨ 𝜙 (duplicate premises don’t matter).

Theorem 37 (Weakening)
If Γ ⊨ 𝜙, then Γ, 𝜓 ⊨ 𝜙.

66

the semantics of ℒ1

Proof. Note that every structure which satisfies all of Γ and also {𝜓} also satis-
fies Γ; as every structure satisfying Γ satisfies 𝜙, every structure satisfying Γ, 𝜓
satisfies 𝜙.

The structural rules are so-called because they don’t depend on the meaning of
any connectives, but only on the definition of entailment and the underlying set
theory governing the behaviour of sets of premises. Interesting non-classical lo-
gics can arise when one varies the structural rules, which may even be done while
retaining classical valuations (Restall, 2000) – of course one must vary the set-
theoretic conception of entailment as a relation between sets of sentences and a
sentence to vary the structural rules, in light of the theorems above.4

Cut, Transitivity and Contraposition

Theorem 38 (Cut)
If Γ, 𝜓 ⊨ 𝜙 and Γ ⊨ 𝜓 , then Γ ⊨ 𝜙.

Proof. Assume that Γ, 𝜓 ⊨ 𝜙. If every structure in which Γ is satisfied is one in
which {𝜓} is satisfied, then it is clear that the set of structures which make Γ, 𝜓
true is just the set of structures which makes Γ true. Given that all the former
satisfy 𝜙, so must all the latter: Γ ⊨ 𝜙.

Theorem 39 (Transitivity)
If Γ ⊨ 𝜓 and 𝜓 ⊨ 𝜙, then Γ ⊨ 𝜙.

Theorem 40 (Contraposition)
𝜙 ⊨ 𝜓 iff ¬𝜓 ⊨ ¬𝜙.

4For example, a multiset (sometimes known as a bag) is a generalisation of a set where the number
of times an element occurs is significant (though order still doesn’t matter). So the multisets ⟅𝑎, 𝑎, 𝑏⟆
and ⟅𝑎, 𝑏⟆ differ from one another, though {𝑎, 𝑎, 𝑏} = {𝑎, 𝑏}. If we think of entailment as a relation
between multisets of premises and a conclusion, then we are unlikely to want to accept contraction:
maybe the resources that the multiset ⟅𝑃 , 𝑃 ⟆ provides are strictly more than those provided by ⟅𝑃 ⟆.
The status of these substructural logical formalisms as logic – in the sense of having something to do
with entailment and validity – is problematic, but their formalism has applications, often in computer
science. For example, logics that do not permit contraction (linear logics) are often used to model
computational processes where keeping track of resource use is important for implementation.

67

elements of deductive logic

4.9 Substitution

Formality of Logic The notions of logical validity and entailment in ℒ1 are
formal: it is in virtue of the form of the premises that they entail the conclusion
of a valid argument. But what does it mean to say that logic is formal? Here’s one
thing it could mean: take a sentence of the language, and replace some of its con-
stituents with others of the same category, while preserving the logical structure
of the sentence with respect to some particular logic. These two sentences have
the same form, with respect to that logic. If we can prove some sort of equivalence
between the two sentences, we will have shown that what matters in the language
is form, rather than the particular constituents of a given sentence.

This is something you will have relied on implicitly in earlier logic courses:
how could it be that for example 𝑃 and 𝑃 → 𝑄 entail 𝑄, yet 𝑅 and 𝑅 → 𝑃1
fail to entail 𝑃1? But we should prove it explicitly, to make sure that our implicit
assumptions aren’t leading us astray.

In the case of ℒ1, the substituable constituents are sentences (including sen-
tence letters), and the logical structure is given by the logical connectives.

Definition 69 (Constituent sentence). A constituent sentence of 𝜙 is any well-
formed ℒ1 sentence which occurs within 𝜙 as a substring. If one decomposes the
sentence successively in accordance with the syntactic rules, every constituent
sentence appears at some stage.

We begin by considering the substitution of sentences for sentence letters.

Definition 70 (Uniform Substitution). If Γ is a set of sentences, 𝜃 a sentence, and
𝑠 a sentence letter, then write Γ[𝜃/𝑠] for the set of sentences that results by uni-
formly substituting 𝜃 for every occurrence of constituent sentence 𝑠 in every sen-
tence in Γ. (If 𝑠 doesn’t occur in Γ, then Γ[𝜃/𝑠] = Γ.) Likewise, let 𝜙[𝜃/𝑠] be the
sentence that results from replacing every occurrence of 𝑠 in 𝜙 by 𝜃.

Definition 71 (Substitution Instance). If 𝜙 = 𝜓[𝜃/𝜒], for some 𝜃, 𝜒 , then 𝜙 is
called a substitution instance of 𝜓 .

We now show a useful lemma.

68

the semantics of ℒ1

Lemma 41 (Substitution)
Suppose 𝜙 and 𝜃 are sentences, and 𝑠 a sentence letter. For any structure 𝒜 , define a
structure for every sentence letter 𝛼:

𝒜 ⋆(𝛼) =
⎧⎪
⎨
⎪⎩

𝒜(𝛼) iff 𝛼 ≠ 𝑠J𝜃K𝒜 iff 𝛼 = 𝑠.

Then J𝜙K𝒜 ⋆ = J𝜙[𝜃/𝑠]K𝒜 .

Proof. The new structure 𝒜 ⋆ is just like 𝒜 , with the possible exception that it
assigns to 𝑠 the value that 𝜃 has in 𝒜 .
Base case: If 𝜙 is a sentence letter, then the result follows by construction of 𝒜 ⋆.
Induction step: If 𝜙 is complex, and the theorem holds for less complex claims,
then the result follows. I show one case: where 𝜙 is a conjunction of two simpler
constituents. The induction hypothesis is that J𝜙𝑖K𝒜 ⋆ = J𝜙𝑖[𝜃/𝑠]K𝒜 for each 𝜙𝑖
which is a constituent of 𝜙.

By the semantic rules for the valuation function, and the induction hypothesis,

J𝜙K𝒜 ⋆ = 𝑇 iff J(𝜙1 ∧ 𝜙2)K𝒜 ⋆ = 𝑇

iff J𝜙1K𝒜 ⋆ = J𝜙2K𝒜 ⋆ = 𝑇

iff J𝜙1[𝜃/𝑠]K𝒜 = J𝜙2[𝜃/𝑠]K𝒜 = 𝑇

iff J𝜙1[𝜃/𝑠] ∧ 𝜙2[𝜃/𝑠]K𝒜 = 𝑇

iff J(𝜙1 ∧ 𝜙2)[𝜃/𝑠]K𝒜 = 𝑇 .

The desired result follows: J𝜙K𝒜 ⋆ = J𝜙[𝜃/𝑠]K𝒜 . Mutatis mutandis for the other
connectives.

With this lemma in hand, we can establish further results about substitution.
Theorem 42 (Substitution of Material Equivalents)
If J𝜃K𝒜 = 𝒜(𝑠), then J𝜙K𝒜 = J𝜙[𝜃/𝑠]K𝒜 .

Proof. If J𝜃K𝒜 = 𝒜(𝑠), then 𝒜 = 𝒜 ⋆; applying Theorem 41, the result follows
immediately.

Theorem 43 (Substitution of Sentence Letters)
If Γ entails 𝜙, then so too Γ[𝜃/𝑠] ⊨ 𝜙[𝜃/𝑠], for any 𝜃, 𝑠.

69

elements of deductive logic

Proof. Now suppose for reductio that Γ ⊨ 𝜙, but Γ[𝜃/𝑠] ⊭ 𝜙[𝜃/𝑠]. In that case, there
is a structure ℬ such that for each 𝛾 ∈ Γ, J𝛾[𝜃/𝑠]Kℬ = 𝑇 , but J𝜙[𝜃/𝑠]Kℬ = 𝐹 .

By the Substitution theorem 41, there is therefore a structure ℬ⋆ such that
for each 𝛾 ∈ Γ, J𝛾Kℬ⋆ = 𝑇 and J𝜙Kℬ⋆ = 𝐹 . But in that case, Γ ⊭ 𝜙 after all, since
there is an ℒ1 structure where the premises are true and the conclusion false,
contradicting our reductio supposition, which must have been wrong.

Generalised Substitition and Formal Logic A generalisation of Theorem 43 is
also provable. The notation ‘𝜙[𝛽/𝛼][𝛾/𝛽]’ is to represent the uniform substitution,
first, of 𝛽 for 𝛼 throughout 𝜙, and then the substitution of 𝛾 for 𝛽 throughout the
resulting sentence. It is clear that 𝜙[𝛽/𝛼][𝛾/𝛽] = 𝜙[𝛾/𝛼], as long as 𝛽 didn’t already
occur as a constituent sentence of 𝜙.
Theorem 44 (General Substitution)
When Γ is finite, if Γ ⊨ 𝜙, then also Γ[𝜃/𝜒] ⊨ 𝜙[𝜃/𝜒], for any 𝜃, 𝜒 .

Proof. Suppose for reductio that Γ ⊨ 𝜙, but there is a sentence letter 𝑠 not occurring
in Γ or 𝜙 such that Γ[𝑠/𝜒] ⊭ 𝜙[𝑠/𝜒]. There must be a structure ℬ⋆ such that for
each 𝛾 ∈ Γ, J𝛾[𝑠/𝜒]Kℬ⋆ = 𝑇 , but J𝜙[𝑠/𝜒]Kℬ⋆ = 𝐹 . By theorem 41, there is therefore
a structure ℬ such that for each 𝛾 ∈ Γ, J𝛾Kℬ = 𝑇 and J𝜙Kℬ = 𝐹 .5 But in that case,
Γ ⊭ 𝜙 after all, contradiction: so our supposition must have been wrong. So in fact
for any sentence letter 𝑠 not occurring in Γ or 𝜙, when Γ ⊨ 𝜙, Γ[𝑠/𝜒] ⊨ 𝜙[𝑠/𝜒].
But since there are infinitely many sentence letters and each of the finitely many
members of Γ and 𝜙 contains only finitely many sentence letters, we may always
find such a ‘new’ 𝑠.

Now we may apply Theorem 43 to show that Γ[𝑠/𝜒][𝜃/𝑠] ⊨ 𝜙[𝑠/𝜒][𝜃/𝑠]. But
this latter sequent just is Γ[𝜃/𝜒] ⊨ 𝜙[𝜃/𝜒].

Theorem 44 gives us another route to the formality of logic.6 We might propose
that 𝜙 shares a logical form with 𝜓 if each is a substitution instance of the other.7

5This is because for any sentence 𝛾 in which 𝑠 does not occur, 𝛾 = 𝛾[𝑠/𝜒][𝜒/𝑠].
6The reasoning is actually a little subtle: what happens when Γ is infinite? Then we cannot be assured
that there is some new sentence letter occurring in neither 𝜙 nor Γ. The Compactness Theorem (The-
orem 60), which we will prove in chapter 5, assures us that: Γ ⊨ 𝜙 iff there is some finite set Γ− ⊆ Γ
such that Γ− ⊨ 𝜙. We can then applyTheorem 44 to Γ−. But don’t worry about this wrinkle until then;
we rarely come across arguments with infinitely many premises in everyday life….

7So (𝑃 ∨𝑄) shares a logical form with ((𝑅∧¬𝑅)∨𝑄), because (𝑃 ∨𝑄)[(𝑅∧¬𝑅)/𝑃] = ((𝑅∧¬𝑅)∨𝑄), and
((𝑅 ∧ ¬𝑅) ∨ 𝑄)[𝑃 /(𝑅 ∧ ¬𝑅] = (𝑃 ∨ 𝑄). Note however that even though (𝑃 ∨ 𝑄)[𝑄/𝑃] = (𝑄 ∨ 𝑄), (𝑄 ∨ 𝑄)

70

the semantics of ℒ1

Any valid argument, when we uniformly and systematically substitute one con-
stituent for another throughout every sentence involved in premises and conclu-
sion, will transform into another argument of the same logical form; and that
second argument will also be valid. Since 𝑃 , 𝑃 → 𝑄 ⊨ 𝑄, accordingly so too
𝑃 , (𝑃 → ¬𝑃) ⊨ ¬𝑃 , which is a substitution instance of the former argument.
But as this example shows, while we retain validity, we need not retain sound-
ness. In this case no matter what interpretation we give to 𝑃 , the premises of the
post-substitition argument are inconsistent with each other, so we know that they
cannot all be true under any interpretation. But we could have interpreted 𝑃 and
𝑄 in the original argument so that they came out simultaneously true, so the argu-
ment could have been sound while its substitution instance could not. Soundness
is not a matter of form, but the particular interpretation of a sentence of a given
form.

Equivalence Revisited There is one case where soundness under an interpret-
ation is guaranteed to be preserved: if what is substituted for one another are
logically equivalent sentences.

Theorem 45 (Equivalents)
If Γ ⊨ 𝜙 is sound under an interpretation, then so is any sequent Γ[𝜃/𝜒] ⊨ 𝜙[𝜃/𝜒]
where 𝜃 and 𝜒 are logically equivalent, under the same interpretation.

Proof. Left for exercise.

Theorem 46 (Equivalence)
Suppose 𝜙 is a constituent sentence of 𝜒 , and 𝜒′ = 𝜒[𝜓/𝜙]. Then 𝜙 ↔ 𝜓 ⊨ 𝜒 ↔ 𝜒′.

Proof. Base case: Suppose 𝜒 = 𝜙. Then 𝜒′ = 𝜓 , and obviously 𝜙 ↔ 𝜓 ⊨ 𝜙 ↔ 𝜓 .
Induction step: Suppose 𝜒 is complex, e.g., 𝜒 = ¬𝛾 , and the induction hy-

pothesis holds for simpler constituents: 𝜙 ↔ 𝜓 ⊨ 𝛾 ↔ 𝛾′. For any structure,J𝛼 ↔ 𝛽K𝒜 = J¬𝛼 ↔ ¬𝛽K𝒜 , so 𝜙 ↔ 𝜓 ⊨ ¬𝛾 ↔ ¬(𝛾′). But since ¬𝛾 = 𝜒 , and
¬(𝛾′) = (¬𝛾)′ = 𝜒′, the result follows. (The other cases are left for exercises.)

does not share a logical form with (𝑃 ∨ 𝑄), since we cannot uniformly substitute for 𝑄 in (𝑄 ∨ 𝑄) and
obtain (𝑃 ∨ 𝑄).

71

elements of deductive logic

c

𝑇 𝑇 𝑇
𝑇 𝐹 𝐹
𝐹 𝑇 𝑇
𝐹 𝐹 𝑇

Table 4.2: A truth-function table for c

4.10 Truth-functions

Definition 72 (Truth Function). A truth function 𝑓𝑛 is any total function from
ordered sequences of 𝑛 truth values into the set of truth values {𝑇 , 𝐹 }.

Since an 𝑛-place truth-function is a function from sequences of truth values to
truth values, it can be represented by an unlabelled truth-table of 2𝑛 rows (one
row for each sequence of truth values of length 𝑛). It is unlabelled because the
columns on the left are not headed by a sentence letter, so there is no association
in the table between these strings of truth values and ℒ1-structures. One such
truth-function table is depicted in Table 4.2, for the truth-function c. This truth-
function can also be represented perhaps more compactly as follows:

c(𝑥, 𝑦) =
⎧⎪
⎨
⎪⎩

𝐹 if 𝑥 = 𝑇 and 𝑦 = 𝐹 ;

𝑇 otherwise.

Theorem 47
There are 22𝑛 𝑛-place truth functions.

Proof. There are 2𝑛 distinct sequences of truth values of length 𝑛, each of which
is an input to an 𝑛-place truth function. Each of these sequences can be given 𝑇
or 𝐹 as its value. If one function assigns a different value to a given input than
another function, they are different functions. So there are at least 22𝑛 different
truth functions (one for each way of assigning 𝐹 s and 𝑇 s to sequences of truth
values of length 𝑛). And if 𝑓 and 𝑔 have the same value for every input, then 𝑓
and 𝑔 are the same function. (By extensionality of the underlying sets.) So there
are exactly 22𝑛 different 𝑛-place truth functions.

72

the semantics of ℒ1

Consider the 1-place truth functions. By Theorem 47, there are 4 such func-
tions, outlined in Table 4.3. They are the constant functions t and f , which yield
the same value for every argument; the identity function i, which yields as value
the argument; and the negation function n, which yields the opposite truth value
from the argument.

Expression We saw that we can represent a truth-function by an unlabelled
truth-table. The truth-function table for c in Table 4.2 bears some resemblance to
the truth table for (𝑃 → 𝑄), but how can we characterise the relationship between
truth-functions and labelled truth-tables for sentences more precisely? What we
want to say is that a sentence 𝜙 is related to a truth-function 𝑓 if, once we label the
columns on the truth-function table in the standard way, we get the truth-table
for 𝜙. Here is the official definition.

Definition 73 (Expression). A sentence 𝜙 expresses a truth function 𝑓𝑛 iff if 𝜙
contains exactly the sentence letters 𝑠1, …, 𝑠𝑛 (ordered in the standard way) then
for every ℒ1-structure 𝒜 ,

𝑓(𝒜(𝑠1), … , 𝒜(𝑠𝑛)) = J𝜙K𝒜 .

So, for example, (𝑃 → 𝑄) expresses the truth-function c, because it contains the
sentence letters 𝑃 , 𝑄; the standard order on sentence letters places 𝑃 before 𝑄,
and in every structure, c(𝒜(𝑃), 𝒜(𝑄)) = J(𝑃 → 𝑄)K𝒜 . Likewise, (𝑄 → 𝑅) also
expresses c. But (𝑄 → 𝑃) does not express c, because in any structure ℬ where
ℬ(𝑃) = 𝐹 , ℬ(𝑄) = 𝑇 , J(𝑄 → 𝑃)Kℬ = 𝐹 but c(ℬ(𝑃), ℬ(𝑄)) = c(𝐹 , 𝑇) = 𝑇 .

Since every ℒ1 sentence has a truth-table produced in the orthodoxway, every
ℒ1 sentence expresses some truth-function. The converse claim, that every truth-
function is expressed by some sentence, will be proved in chapter 5 when we talk
about expressive adequacy (page 81).

t f i n

𝑇 𝑇 𝐹 𝑇 𝐹
𝐹 𝑇 𝐹 𝐹 𝑇

Table 4.3: The four 1-place truth functions

73

elements of deductive logic

Truth-Functional Connectives We’ve already seen some sentences which ex-
press interesting truth functions above: those sentences expressing the truth func-
tions associated with the connectives of ℒ1 (Table 4.1).

Definition 74 (Truth-functional Connective). A truth-functional connective is an
𝑛-place connective ⊕ such that there exists a 𝑛-place truth function 𝑓 such that,
for any 𝜙1, … , 𝜙𝑛,

J⊕(𝜙1, … , 𝜙𝑛)K𝒜 = 𝑓 (J𝜙1K𝒜 , … , J𝜙𝑛K𝒜) ,

i.e., if ⊕(𝜙1, … , 𝜙𝑛) expresses some truth function 𝑓 .

It is evident from Table 4.1 that each of the connectives of ℒ1 are truth-functional
connectives, so ℒ1 is a truth-functional language. We’ve already encountered the
1-place truth function corresponding to the negation connective: it isn fromTable
4.3. We also encountered the 2-place connective c corresponding to the condi-
tional connective. Here are three other pertinent two-place truth functions:

a(𝑥, 𝑦) =
⎧⎪
⎨
⎪⎩

𝐹 if 𝑥 = 𝑦 = 𝐹 ;

𝑇 otherwise.

k(𝑥, 𝑦) =
⎧⎪
⎨
⎪⎩

𝑇 if 𝑥 = 𝑦 = 𝑇 ;

𝐹 otherwise.

e(𝑥, 𝑦) =
⎧⎪
⎨
⎪⎩

𝑇 if 𝑥 = 𝑦;

𝐹 otherwise.

It is easy to verify which connectives in Table 4.1 express these truth-functions.

Non-Truth Functional Connectives Consider the natural language connective
‘necessarily’, i.e., the connective that, given a sentence𝜙, yields a sentence ⌜Necessarily 𝜙⌝.
If 𝜙 is false in a structure, that obviously guarantees that ⌜Necessarily 𝜙⌝ is false
in that structure too (assuming the standard meaning for ‘Necessarily’). But if 𝜙
is true in a structure, that doesn’t tell us whether ⌜Necessarily 𝜙⌝ is true in that
structure: for some truths are necessary, others merely contingent. So to deal with
the ‘Necessarily’ operator, wewill have to introduce some further technology than

74

the semantics of ℒ1

we have available in ℒ1 structures and classical valuations.That is the topic taken
up bymodal logic – see the discussion at the end of chapter 13.We already can see,
however, one expressive limitation of ℒ1 as compared to English: for English in-
cludes non-truth-functional connectives like ‘necessarily’, ‘probably’, ‘typically’,
etc., and ℒ1 does not. Every sentence in ℒ1 has its truth value determined by the
valuation rules, and the valuation rules only make use of truth functions.

Revisiting the Semantics We could use our truth-functions to express the se-
mantics for our language in another form, giving this alternative definition of a
valuation.

Definition 75 (Alternative ℒ1-valuation). When𝒜 is anyℒ1-structure, the valu-
ation function generated by 𝒜 is this function:

J𝜙K𝒜 =

⎧⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

𝒜(𝜙) if 𝜙 is a sentence letter;

n (J𝜓K𝒜) if 𝜙 = ¬𝜓;

k (J𝜓K𝒜 , J𝜒K𝒜) if 𝜙 = (𝜓 ∧ 𝜒);

a (J𝜓K𝒜 , J𝜒K𝒜) if 𝜙 = (𝜓 ∨ 𝜒);

c (J𝜓K𝒜 , J𝜒K𝒜) if 𝜙 = (𝜓 → 𝜒);

e (J𝜓K𝒜 , J𝜒K𝒜) if 𝜙 = (𝜓 ↔ 𝜒).

This definition is obviously equivalent to that in Definition 59, in that both defin-
itions determine the same valuation of all the sentences of the language given the
same initial structure.

Definition 76 (Base). (Beall and van Fraassen, 2003: 27) Let J⋅K𝒜 be a classical
valuation. A base 𝔅 for J⋅K𝒜 is a triple ⟨𝑉 , 𝕆, 𝑐⟩ where 𝑉 is a set of elements,
𝕆 a set of operators on 𝑉 (functions such that their domain and range are both
𝑉 – recall Definition 39), and 𝑐 is a function from the set of connectives of ℒ1,
{¬, ∧, ∨, →, ↔}, into 𝕆, such that

• J𝜙K𝒜 ∈ 𝑉 , for any ℒ1 sentence 𝜙;

• for any sentences 𝜙1, … , 𝜙𝑛, and any 𝑛-ary connective ⊕,

q
⊕ (𝜙1, … , 𝜙𝑛)

y
𝒜,ℒ = 𝑐(⊕) (J𝜙1K𝒜 ,ℒ , … , J𝜙𝑛K𝒜,ℒ) .

75

elements of deductive logic

Informally, a base for a valuation is a set of values 𝑉 , a set of truth-functions 𝕆,
and a mapping that takes connectives of the language to the truth-functions they
express (Definition 74). A base for ℒ1 is this: let 𝑉 = {𝑇 , 𝐹 }, 𝕆 = {n,k,a, c, e},
and let 𝑐 be the function that maps ¬ to n, ∧ to k, etc.

Exercises

1. Show the reductio rule: that Γ ⊨ iff for every 𝛾 ∈ Γ, Γ⧵{𝛾} ⊨ ¬𝛾 . (Hint: Theorem 26.)

2. State what features the truth table for Γ ∪ {𝜙, 𝜓} will possess when

(a) Γ entails 𝜙;

(b) Γ is consistent;

(c) 𝜙 is a contradiction;

(d) 𝜙 and 𝜓 are logically equivalent.

3. (a) Show that ⊨ 𝜙 ↔ 𝜓 iff 𝐶𝑛({𝜙}) = 𝐶𝑛({𝜓}).

(b) Prove Lemma 27.

(c) Prove Lemma 29.

4. Show the remaining clauses of the induction step for the proof of Theorem 23 for
the cases where the complex sentence is of the forms:

(a) (𝜙 ∧ 𝜓);

(b) (𝜙 → 𝜓);

(c) (𝜙 ↔ 𝜓).

5. Prove Equivalents (Theorem 45).

6. (a) Prove the remaining induction cases in the proof of Equivalence (Theorem 46).

(b) As a corollary of the Equivalence Theorem, prove that if ⊨ 𝜙 ↔ 𝜓 and 𝜙 is a
constituent sentence of 𝜒 , then ⊨ 𝜒 ↔ 𝜒[𝜓/𝜙].

7. Show that, if 𝜙, 𝜓 ⊨ 𝜒 is a false sequent, it has a substitution instance 𝜙′, 𝜓′ ⊨ 𝜒′,
in which 𝜙′ and 𝜓′ are tautologies and 𝜒′ is inconsistent. (Note: by ‘substitution
instance’ in the question, you are to understand a sequent that results from one or

more uniform substitutions of sentence letters. It follows from General Substitution
[Theorem 44] that successive chains of uniform substitutions never allow one to
transform a correct sequent to an incorrect one.)

8. (a) Prove Transitivity.

76

the semantics of ℒ1

(b) Prove Contraposition.

(c) Prove this rule, related to Cut: if Γ ⊨ 𝜙, and 𝜙, Δ ⊨ 𝜓 , then Γ, Δ ⊨ 𝜓 .

9. Suppose 𝜙 and 𝜓 contain the same sentence letters. Prove that 𝜙 and 𝜓 are logically
equivalent iff they express the same truth function.

10. Consider the deprived language which has the same syntactic formation rules and
semantics as ℒ1, but only contains the connectives ¬ and ↔. Show that, in this lan-
guage, every sentence is logically equivalent to a sentence in which no occurrence
of ¬ has ↔ in its scope.

11. (a) Show the basic principle for disjunction (Bostock, 1997: §2.5):

Γ, 𝜙 ∨ 𝜓 ⊨ iff Γ, 𝜙 ⊨ and Γ, 𝜓 ⊨ .

(b) Show that the basic principle for disjunction implies that 𝜙 ⊨ 𝜙 ∨ 𝜓 and
𝜓 ⊨ 𝜙 ∨ 𝜓 .

(c) Show that the basic principle for disjunction implies that if (i) Γ, 𝜙 ⊨ 𝜒 and
(ii) Δ, 𝜓 ⊨ 𝜒 then (iii) Γ, Δ, 𝜙 ∨ 𝜓 ⊨ 𝜒 .

Answers to selected exercises on page 242.

77

Chapter 5

Metatheory of ℒ1

5.1 Disjunctive Normal Form

Definition 77 (Arbitrary Conjunction). An inductive definition:

• [⋀1
𝑖=1 𝜙𝑖] =df 𝜙1;

• [⋀𝑛+1
𝑖=1 𝜙𝑖] =df ([⋀𝑛

𝑖=1 𝜙𝑖] ∧ 𝜙𝑛+1) .

Thedefinition of arbitrary disjunction, ⋁𝑛
𝑖=1, is wholly parallel to that for arbitrary

conjunction. (Giving it explicitly is left as an exercise.)

Definition 78 (Literal). A literal is any sentence letter or negated sentence letter.

Definition 79 (Disjunctive Normal Form (dnf)). An ℒ1 sentence of 𝜙 is in dis-
junctive normal form iff there exist 𝑛, 𝑚1, … , 𝑚𝑛 such that

𝜙 =
⎡⎢⎢⎣

𝑛

⋁
𝑖=1

⎡⎢⎢⎣

𝑚𝑖

⋀
𝑗=1

±𝑠𝑖,𝑗
⎤⎥⎥⎦

⎤⎥⎥⎦
,

where each ±𝑠𝑖,𝑗 is a literal.

That is: a sentence is in disjunctive normal form iff it is a (perhaps degenerate)
disjunction of (perhaps degenerate) conjunctions of (perhaps negated) sentence
letters. One clear example is ((𝑃 ∧ ¬𝑄) ∨ (𝑃 ∧ 𝑄)). But since 𝑃 is a literal, and

78

metatheory of ℒ1

it is a degenerate arbitrary conjunction, and a degenerate arbitrary disjunction,
it is in dnfalso. Another way of characterising which ℒ1 sentences are in dnfis
as follows: a sentence is dnfiff it contains at most only connectives drawn from
{¬, ∧, ∨}, and such that ∨ never occurs in the scope of ∧ or ¬, and ∧ never occurs
in the scope of ¬.

Our interest in disjunctive normal form lies in the following theorem:

Theorem 48 (dnf)
Every truth function is expressed by a ℒ1 sentence in dnf.

Proof. Suppose 𝑓 is an 𝑛-place truth function. Let 𝑠1, … , 𝑠𝑛 be sentence letters in
the standard order, and let 𝒜 be any structure. Define an 𝑓 -agreeing structure 𝒜
as one where 𝑓(J𝑠1K𝒜 , … , J𝑠𝑛K𝒜) = 𝑇 . Assume there is at least one 𝑓 -agreeing
structure. Then define

𝑆𝒜
𝑖 =

⎧⎪
⎨
⎪⎩

𝑠𝑖 if J𝑠𝑖K𝒜 = 𝑇 ;

¬𝑠𝑖 if J𝑠𝑖K𝒜 = 𝐹 .

It is obvious that
q

𝑆𝒜
𝑖

y
𝒜 = 𝑇 for each 𝒜, 𝑖.

For every structure 𝒜 , define 𝔠𝒜 = 𝑆𝒜
1 ∧ … ∧ 𝑆𝒜

𝑛 = [⋀𝑛
𝑖=1 𝑆𝒜

𝑖]. Again, it is
obvious that J𝔠𝒜 K𝒜 = 𝑇 , since it is a conjunction of true conjuncts. It is equally
obvious that for any structure ℬ that doesn’t agree with 𝒜 on the sentence letters
𝑠1, …, 𝑠𝑛, J𝔠𝒜 Kℬ = 𝐹 , since it will have at least one false conjunct.

Since there are only finitely many structures that differ from one another in
their assignments to 𝑠1, … , 𝑠𝑛, there are only finitely many distinct sentences 𝔠𝒜
for various 𝒜 . Therefore, there are only finitely many 𝔠𝒜 such that 𝒜 is an 𝑓 -
agreeing structure; let them be enumerated 𝔠1, … , 𝔠𝑚. It is obvious that each 𝔠𝑖 is
true in one and only one structure, and that each such structure is 𝑓 -agreeing.

Define 𝔡 = 𝔠1∨…∨𝔠𝑚 = [⋁𝑚
𝑗=1 𝔠𝑗], unless there were no 𝑓 -agreeing structures,

in which case let 𝔡 = (𝑃 ∧ ¬𝑃). It is obvious that 𝔡 is true in any structure which
is among those such that some 𝔠𝑖 is true, i.e., 𝔡 is true in any 𝑓 -agreeing structure.

𝔡 is in DNF, by construction; and J𝔡K𝒜 = 𝑓(J𝑠1K𝒜 , … , J𝑠𝑛K𝒜) for all 𝒜 , because
it captures all and only the 𝑓 -agreeing structures. So 𝔡 expresses 𝑓 .

The truth-table rationale for this proof is clear: first, find the rows of the truth
table on which the truth-function gets 𝑇 (those are the 𝑓 -agreeing rows). Specify
a sentence true in exactly one row by conjoining the relevant literals (so if the row

79

elements of deductive logic

corresponding to 𝒜 is J𝑃 K𝒜 = 𝑇 , J𝑄K𝒜 = 𝐹 , the relevant conjunction is 𝑃 ∧ ¬𝑄).
Then disjoin those conjunctions which correspond to the 𝑓 -agreeing rows; the
result is a dnf sentence true in exactly the 𝑓 -agreeing rows.

We can use this result to show this
Corollary 49
For any sentence 𝜙, there is a sentence 𝜙′ which is logically equivalent to 𝜙 and
which is in dnf form.

Proof. This follows immediately from the dnf theorem and the fact that every
sentence expresses a truth function.

CNF and Positive Truth Functions A sentence is said to be in Conjunctive Nor-
mal Form iff it is a (possibly degenerate) conjunction of (possibly degenerate) dis-
junctions of literals. This is obviously a dual notion to dnf. In the case of dnf,
the dnf sentence expressing some truth function 𝑓 is the disjunction of conjunc-
tions, each of which specifies an 𝑓 -agreeing structure. Each conjunct is therefore
sufficient for 𝑓 to have the value 𝑇 in the corresponding structure; the dnf sen-
tence is the disjunction of all of these sufficient conditions. For cnf, we want the
dual notion: the cnf expression of 𝑓 will be a sentence which is a conjunction of
disjunctions, each of which specifies a necessary condition for a structure to be
𝑓 -agreeing. And what is a necessary condition for a structure to be 𝑓 -agreeing?
It must avoid being 𝑓 -disagreeing – so each disjunct will be a disjunction of sen-
tence letters and negated sentence letters, the truth of any of which is sufficient
to ensure that some 𝑓 -disagreeing structure is avoided. (A problem asks you to
make the foregoing remarks into a more precise proof of the cnf theorem.)

Call a truth function 𝑓 positive iff 𝑓(𝑇 , … , 𝑇) = 𝑇 (Bostock, 1997: exercise
2.9.3). (Equivalently, if the top row of the truth-function table is 𝑇 .) We can show
that all truth-functions which can be expressed using only → and ∧ are positive
(left for exercises). Of interest is the converse theorem:

Theorem 50
All positive truth functions can be expressed by → and ∧.

Proof. I sketch the proof. Suppose the contrary, for reductio. Then there is a truth
function 𝑓 which is positive but can’t be expressed by ∧, →. There is a cnf sen-

80

metatheory of ℒ1

tence 𝜙𝑐 which expresses 𝑓 ; this will be a conjunction of disjunctions of (possibly
negated) sentence letters. Note the following results:

• 𝜙 ∨ 𝜓 is logically equivalent to (𝜓 → 𝜙) → 𝜙,

• 𝜙 ∨ ¬𝜓 is logically equivalent to 𝜓 → 𝜙, and

• ¬𝜙 ∨ 𝜓 is logically equivalent to 𝜙 → 𝜓 .

By the constructive proof of the cnf theorem, it can be shown – by induction
on complexity of sentences, and using these results – that each conjunct of the
resulting cnf sentence will be equivalent to either

1. an arrow sentence without negation, or

2. a conjunct of the form ⋁𝑖 ¬𝑠𝑖 for the sentence letters in 𝜙𝑐 (exercise).

In the second case, the cnf sentence as a whole can’t be positive (because a dis-
junction of negated sentence letters will be false on the top row of the truth table,
so the conjunction will be false). So the first case must obtain for 𝜙𝑐 – each of its
conjuncts must be logically equivalent to a negation-free (possibly nested) condi-
tional. By substituting each conjunct of 𝜙𝑐 for the arrow-sentence equivalent, we
obtain a sentence 𝜙, which is a conjunction of arrow sentences without negation.
But 𝜙 expresses 𝑓 and contains only → and ∧.

5.2 Expressive Adequacy and Functional Complete-

ness

Expressive Adequacy and Functional Completeness

Definition 80 (Expressive Adequacy). A set of connectives is expressively adequate
iff there is, for any truth function 𝑓 , a sentence containing only those connectives
which expresses 𝑓 .

The dnf theorem shows that {∨, ∧, ¬} is expressively adequate, and therefore that
the set of connectives of ℒ1 is expressively adequate. A language is by extension
also said to be expressively adequate iff the connectives it contains are express-
ively adequate there is, for each truth function 𝑓 , some sentence in that language

81

elements of deductive logic

that, under the intended semantics, expresses 𝑓 . Since ℒ1 sentences in dnf form
are collectively expressively adequate, ℒ1 is expressively adequate.

Definition 81 (Functional Completeness). A set of truth-functional operators (truth-
functions) 𝕆 is functionally complete if every truth function can be constructed by
(possibly nested) combination of operators from only those in 𝕆.1

Derivatively, a set of connectives is functionally complete if the functions ex-
pressed by those connectives are jointly functionally complete.

The dnf theorem shows that every truth function is expressed by an ℒ1 sen-
tence, and so ℒ1 is expressively adequate. It may easily be adapted to show that
the set of operators {n,k,a} is functionally complete in the strict sense. First we
introduce some generalisations of k and a, which will allow us to apply functions
to arbitrary sequences of truth values:

Definition 82 (Maximum and Minimum). The maximum of a sequence of truth
values is defined inductively:

• max1
𝑖=1 𝑣𝑖 = 𝑣1;

• max𝑛+1
𝑖=1 𝑣𝑖 = a(max𝑛

𝑖=1, 𝑣𝑛+1).

The minimum of a sequence of truth values is defined:

• min1
𝑖=1 𝑣𝑖 = 𝑣1;

• min𝑛+1
𝑖=1 𝑣𝑖 = k(min𝑛

𝑖=1, 𝑣𝑛+1).

According to this definition, max(𝑇 , 𝐹) = 𝑇 and min(𝑇 , 𝐹) = 𝐹 .

Theorem 51 (Functional Completeness of {n,k,a})
If 𝑓(𝑥1, … , 𝑥𝑛) is an 𝑛-place truth function, there is some function composed from
max, min, andnwhich is identical to 𝑓 (has the same values for the same arguments),
and is constructed in such a way that (i) max takes scope over any occurrence of min
and n in the function definition, and (ii) min takes scope over any occurence of n in
the function definition.

1Remember that each truth-function is an operator since it is a function from sequences of truth values
to truth values.

82

metatheory of ℒ1

Proof. This example illustrates the main idea, which is just that involved in the
proof of the dnf theorem.

Suppose we consider the binary function 𝑓 such that 𝑓(𝑥, 𝑦) = 𝐹 iff 𝑥 = 𝐹 , 𝑦 =
𝑇 . Then 𝑓(𝑥, 𝑦) = 𝑇 iff either 𝑥 = 𝑦 = 𝑇 or 𝑥 = n(𝑦) = 𝑇 or n(𝑥) = n(𝑦) = 𝑇 . So

𝑓(𝑥, 𝑦) = max(min(𝑥, 𝑦), min(𝑥,n(𝑦)), min(n(𝑥),n(𝑦)).

That is, any truth-function expressible by a sentence in dnf can be constructed
from the truth-functions associated with (generalised) disjunction, (generalised)
conjunction, and negation; since every truth-function can be expressed by a sen-
tence in DNF, those operators are collectively functionally complete. Accordingly,
the connectives which express those operators {¬, ∧, ∨} form a functionally com-
plete set (in the derivative sense).

What this last result shows is that, in some sense, → and ↔ are dispensible
– every truth function expressible using them can be expressed by a sentence
without them (i.e., a dnf sentence or a cnf sentence).

There is another way to show this same result. Since two sentences containing
the same stock of sentence letters are logically equivalent iff they express the same
truth-function, the dnf theorem, together with the fact that every ℒ1 sentence
expresses a truth-function, suffices to show that every ℒ1 sentence is logically
equivalent to one in dnf form. Hence sentences involving → and ↔ are logically
equivalent to sentences in dnf form, and therefore in a sense dispensible – we
can’t say anything more with conditional and biconditional sentences than we
could if we had restricted ourselves to sentences in dnf.2

The De Morgan Equivalences Let ‘𝜙 ⫤⊨ 𝜓 ’ abbreviate ‘𝜙 ⊨ 𝜓 and 𝜓 ⊨ 𝜙’ –
that is, that 𝜙 and 𝜓 are logically equivalent.

Theorem 52 (De Morgan Equivalences)

(𝜙 ∨ 𝜓) ⫤⊨ ¬(¬𝜙 ∧ ¬𝜓),

(𝜙 ∧ 𝜓) ⫤⊨ ¬(¬𝜙 ∨ ¬𝜓).

2It is more efficient to say 𝑃 ↔ 𝑄 than its dnf equivalent (𝑃 ∧ 𝑄) ∨ (¬𝑃 ∧ ¬𝑄).

83

elements of deductive logic

𝜙 𝜓 𝜙 ∧ 𝜓 ¬(¬𝜙 ∨ ¬𝜓) 𝜙 ∨ 𝜓 ¬(¬𝜙 ∧ ¬𝜓)
𝑇 𝑇 𝑇 𝑇 𝑇 𝑇
𝑇 𝐹 𝐹 𝐹 𝑇 𝑇
𝐹 𝑇 𝐹 𝐹 𝑇 𝑇
𝐹 𝐹 𝐹 𝐹 𝐹 𝐹

Table 5.1: De Morgan Equivalences

Proof. These equivalences can be easily demonstrated using a schematic truth
table (Table 5.1).

These equivalences show that {¬, ∨} and {¬, ∧} are expressively adequate, given
the dnf theorem.

There are analogues of these equivalences for truth-functions:

Theorem 53 (De Morgan Equivalences for Truth Functions)

a(𝑥, 𝑦) = n(k(n(𝑥),n(𝑦))),

k(𝑥, 𝑦) = n(a(n(𝑥),n(𝑦))).

Using this result we can establish Theorem 52 without use of a truth table.3 This
result also shows that {n,k} and {n,a} are functionally complete.

Inadequacy and New Connectives A set of connectives is expressively inad-
equate iff there is some truth function which cannot be expressed by sentences in-
volving only those connective. Accordingly, {¬} is expressively inadequate: quite

3Consider the equivalence of (𝜙 ∨ 𝜓) and ¬(¬𝜙 ∧ ¬𝜓). By Theorem 53, a(𝑥, 𝑦) = n (k (n (𝑥) ,n (𝑦))), so
for any 𝒜 ,

J𝜙 ∨ 𝜓K𝒜 = a (J𝜙K𝒜 , J𝜓K𝒜)
= n (k (n (J𝜙K𝒜) ,n (J𝜓K𝒜)))
= n (k (J¬𝜙K𝒜 , J¬𝜓K𝒜))
= n (J(¬𝜙 ∧ ¬𝜓)K𝒜)
= J¬(¬𝜙 ∧ ¬𝜓)K𝒜 .

84

metatheory of ℒ1

𝜙 𝜓 (𝜙 ↑ 𝜓) (𝜙 ↓ 𝜓)
𝑇 𝑇 𝐹 𝐹
𝑇 𝐹 𝑇 𝐹
𝐹 𝑇 𝑇 𝐹
𝐹 𝐹 𝑇 𝑇

Table 5.2: Sheffer Stroke and Peirce Arrow

apart from whether it can express a 2- or more place truth function, consider the
1-place function t which is constantly true. Since t(𝑇) = t(𝐹), we would need a
sentence 𝜙 involving only negation such that in even one case J𝜙K𝒜 = J¬𝜙K𝒜 ;
this clearly cannot be.

A set of truth functions is functionally incomplete iff there is some truth func-
tion which is not constructible from functions in that set. The examples just con-
sidered show that {n} is functionally incomplete; since ¬ cannot express t, so t

can’t be constructed solely from n.
Given our definition of a connective, we can imagine extending our language

ℒ1 by adding new sentence-forming operators that express different truth func-
tions. (We need to extend the formation rules in the syntax accordingly too, but
that is straightforward once we know the arity of the new connectives.) We could
add the 0-place connective ⊤ – this is like a sentence letter with a fixed interpret-
ation, 𝑇 in every structure. As we know from the dnf theorem, adding ⊤ doesn’t
add to the expressive power of the language: ⊤ is logically equivalent to (𝑃 ∨ ¬𝑃),
and so adding it would be redundant. Adding ∧ to the language ℒ¬, in which the
only connective is negation, is not redundant: ℒ¬,∧ is functionally complete and
ℒ¬ is not.

Sheffer Stroke and Peirce Arrow The connectives ↑ and ↓ can be added to a
language, with the truth tables in Table 5.2. The ↑, sometimes also written |, is
called the Sheffer stroke; the ↓ has no standard name, but is sometimes called the
Peirce arrow.

Each of these connectives is expressively adequate. The Sheffer stroke is: ¬𝜙
is logically equivalent to (𝜙 ↑ 𝜙), and (𝜙 ∧ 𝜓) is logically equivalent to ((𝜙 ↑ 𝜓) ↑
(𝜙 ↑ 𝜓)). The case of the Peirce arrow is left for an exercise.

85

elements of deductive logic

Definition 83 (nand and nor).

nand(𝑥, 𝑦) =df
⎧⎪
⎨
⎪⎩

𝐹 if 𝑥 = 𝑦 = 𝑇 ;

𝑇 otherwise.

nor(𝑥, 𝑦) =df
⎧⎪
⎨
⎪⎩

𝑇 if 𝑥 = 𝑦 = 𝐹 ;

𝐹 otherwise.

Each of these truth functions is by itself functionally complete. E.g., we may con-
struct n and k using just nand:

n(𝑥) = nand(𝑥, 𝑥); and

k(𝑥, 𝑦) = nand(nand(𝑥, 𝑦),nand(𝑥, 𝑦)).

Obviously ↑ expresses nand and ↓ expresses nor.

5.3 Duality

Duality ∧ and ∨, as well as ↑ and ↓, are what is known as duals of one another.

Definition 84 (Duality). The dual of a truth-functional connective is that con-
nective whose truth table results from that of the given connective by replacing
every occurrence of 𝑇 by 𝐹 and every occurrence of 𝐹 by 𝑇 (see Table 5.34).

Other connectives have duals too: 𝜙 ↔ 𝜓 is dual to the operator ↮ (where 𝜙 ↮ 𝜓
is true just in case 𝜙 and 𝜓 have different truth values). Negation ¬ is an interesting

𝜙 𝜓 𝜙 ∧ 𝜓 𝜙 ↑ 𝜓
𝑇 𝑇 𝑇 𝐹
𝑇 𝐹 𝐹 𝐹
𝐹 𝑇 𝐹 𝐹
𝐹 𝐹 𝐹 𝑇

⇔

𝜙 𝜓 𝜙 ∨ 𝜓 𝜙 ↓ 𝜓
𝐹 𝐹 𝐹 𝑇
𝐹 𝑇 𝑇 𝑇
𝑇 𝐹 𝑇 𝑇
𝑇 𝑇 𝑇 𝐹

Table 5.3: Duality Illustrated Using Truth Tables

4Note that the right hand truth table is written upside down, but obviously the order of the rows doesn’t
matter to a truth table.

86

metatheory of ℒ1

case: it is its own dual, as can readily be verified by transforming the truth table
for ¬𝑃 appropriately.

TheDualityTheorem for ∧, ∨ Suppose that 𝜙 is a sentence of ℒ1 which involves
only connectives in {∧, ∨, ¬} (any sentence of ℒ1 will be equivalent to some such
𝜙). Now we define two operations on sentences of this form:

1. Let 𝜙 be the sentence that results from uniformly substituing ⌜¬𝑠⌝ for each
sentence letter ⌜𝑠⌝ in 𝜙 (even those already negated).

2. Let 𝜙⋆ be the sentence that results from replacing each connective in 𝜙 by
its dual.

Note to begin that ¬𝑛𝑒𝑔𝜙 = ¬𝜙 and 𝜙 ∧ 𝜓 = 𝜙 ∧ 𝜓 , because the overlining opera-
tion applies only to sentence letters – it doesn’t matter whether we apply it to the
constituents first then apply the connectives, or apply the connectives first then
apply the overlining operation.

Lemma 54 (Duality for Conjunction and Disjunction)
For any 𝜙, 𝜙⋆ ⫤⊨ ¬𝜙.

Proof. Base case: 𝜙 is just a sentence letter 𝑠: so that 𝜙⋆ = 𝑠, and ¬𝜙 = ¬¬𝑠, which
are equivalent.

Induction step:

1. 𝜙 is ¬𝜓 , and the hypothesis holds for 𝜓 . Then 𝜙⋆ = (¬𝜓)⋆ = ¬(𝜓⋆), because
¬ is its own dual. Because the theorem holds of 𝜓 , ¬(𝜓⋆) ⫤⊨ ¬¬𝜓 ; but
¬¬𝜓 = ¬¬𝜓 = ¬𝜙.

2. 𝜙 is (𝜓 ∧𝜒), and the hypothesis holds for 𝜓, 𝜒 . 𝜙⋆ = (𝜓 ∧𝜒)⋆ = 𝜓⋆ ∨𝜒⋆. By
the induction hypothesis, 𝜓⋆ ∨𝜒⋆ ⫤⊨ ¬𝜓 ∨¬𝜒 . By DeMorgan, ¬𝜓 ∨¬𝜒 ⫤⊨
¬(𝜓 ∧ 𝜒), which is ¬(𝜓 ∧ 𝜒) = ¬(𝜙).

3. 𝜙 is (𝜓 ∨ 𝜒); much as for ∧.

Theorem 55 (Duality for Conjunction and Disjunction)
If 𝜙⋆ is dual to 𝜙 and 𝜓⋆ is dual to 𝜓 , then 𝜙 ⊨ 𝜓 iff 𝜓⋆ ⊨ 𝜙⋆.

87

elements of deductive logic

Proof. Suppose 𝜙 ⊨ 𝜓 . Then, by Substitution of each sentence letter by its nega-
tion, 𝜙 ⊨ 𝜓 . By Contraposition, ¬𝜓 ⊨ ¬𝜙. By the Duality Lemma, 𝜓⋆ ⊨ 𝜙⋆.

Corollary 56
If 𝜙 ⫤⊨ 𝜓 , 𝜙⋆ ⫤⊨ 𝜓⋆.

Each De Morgan equivalence in Theorem 52 follows from the other, given Corol-
lary 56.

Theorem 57 (Duality for Tautologies)
If ⊨ 𝜙, then ⊨ ¬(𝜙⋆).

Proof. Suppose ⊨ 𝜙. Since 𝜙 is true in every structure, 𝜙 is also true in every
structure (obvious by substitution). So ⊨ 𝜙. By the Duality Lemma, 𝜙 ⫤⊨ ¬𝜙⋆. So
⊨ ¬𝜙⋆.

DualityGeneralised Every truth functional connective⊕ – in any truth-functional
language – has a dual, which we denote ⊕⋆ by extending our previous notation.
A set of truth functors ℂ = {⊕1, … , ⊕𝑛} is self-dual iff ℂ = {⊕⋆

1 , … , ⊕⋆
𝑛 }. It is

obvious that {¬} is self-dual. Given the result above, the set {∧, ∨} is self-dual, as
∨ = ∧⋆ and ∧ = ∨⋆.

If 𝒜 is a structure, let 𝒜 ⋆ be the structure such that for all 𝜙, 𝒜 ⋆(𝜙) = 𝑇 ⋆

iff 𝒜(𝜙) = 𝑇 . Consider just those languages ℒ such that a connective ⊕ is in ℒ
iff ⊕⋆ is in ℒ . (ℒ1is among these languages.) The dual 𝜙⋆ of a sentence 𝜙 of ℒ
results from replacing every connective in 𝜙 by its dual. Then we can show:

J𝜙K𝒜 = n(
q

𝜙⋆y
𝒜 ⋆) .

5.4 Interpolation

Craig Interpolation Theorem for Sentential Logic

Theorem 58 (Craig Interpolation)
If 𝜙 ⊨ 𝜓 , and there is a non-empty set 𝐵 of sentence letters occurring in both 𝜙 and
𝜓 , then there is a sentence 𝜒 (an interpolant) such that both 𝜙 ⊨ 𝜒 and 𝜒 ⊨ 𝜓 , and
each sentence letter in 𝜒 is in 𝐵.

88

metatheory of ℒ1

Proof. Let the members of 𝐵 be enumerated 𝑏1, … , 𝑏𝑛.
Let {ℬ1, … , ℬ2𝑛 } be a set of structures every pair of which differ on their

assignment of a truth value to at least one 𝑏 ∈ 𝐵. Define a 𝑛-place truth function
𝑓𝜒 , for every structure ℬ𝑖:

𝑓𝜒 (⟨|𝑏1|ℬ𝑖
, … , |𝑏𝑛|ℬ𝑖 ⟩) =

⎧⎪
⎪
⎨
⎪
⎪⎩

𝐹
if there is a structure 𝒜 which
agrees with ℬ𝑖 on 𝐵 in whichJ𝜓K𝒜 = 𝐹 ;

𝑇 otherwise.

By construction, 𝑓𝜒 is a total truth function. The sentence 𝜒 that (by dnf) ex-
presses 𝑓𝜒 is our needed interpolant.

• 𝜒 clearly entails 𝜓 , since by construction no structure that makes 𝜒 true
makes 𝜓 false (since every structure agrees with some ℬ𝑖 on 𝐵).

• Moreover, 𝜒 is entailed by 𝜙. Suppose 𝜙 is true in some structure 𝒞 , but 𝜒 is
not. By definition, 𝜒 is false in 𝒞 because (i) either 𝜓 is false in 𝒞 , or (ii) 𝜓 is
false in a structure just like 𝒞 in what it assigns to themembers of 𝐵. Option
(i) is excluded, because 𝜙 ⊨ 𝜓 . So if 𝜒 is false in 𝒞 , it must be because some
structure agreeing with 𝒞 on 𝐵 makes 𝜓 false. This structure need differ
from 𝒞 only in what it assigns to sentence letters in 𝜓 that are not in 𝜙,
because obviously it is some difference in those sentence letters that makes
𝜓 true in 𝒞 and false in the other structure. But then the other structure
need not differ from 𝒞 at all in the truth values of sentence letters in 𝜙; and
we may therefore assume it does not. So that structure must make 𝜙 true
– since 𝜙 ⊨ 𝜓 , 𝜓 is both true and false in that structure. Contradiction; so
there is no such 𝒞 , by reductio. But 𝒞 was arbitrary, so 𝜙 ⊨ 𝜒 .

The Craig Interpolation Theorem actually names the version of this result
proved for predicate logic (Craig, 1957).
Corollary 59
If 𝜙 is logically equivalent to 𝜓 , and there is a non-empty set 𝐵 of sentence letters
occuring in both 𝜙 and 𝜓 , then there is a sentence 𝜒 logically equivalent to both 𝜙
and 𝜓 such that each sentence letter in 𝜒 is in 𝐵.

Proof. Straightforward from transitivity of entailment and Theorem 58.

89

elements of deductive logic

There was some philosophical rationale behind interest in interpolation the-
orems. The instrumentalists were a group of philosophers of science who were
sceptical of unobservable theoretical entities, to the point where they thought
there was no good way of understanding a language which purported to refer to
such entities. So they said that terms like ‘electron’, which is a theoretical term
referring to an entity whose existence is inferred from observation of intermedi-
aries rather than being observed directly, are strictly speaking meaningless. One
might worry whether this cripples our science: what sort of particle physics could
we do if we had to get rid of the word ‘electron’? Craig’s Interpolation Theorem
offers some help here. Suppose thatT is sentence of (formalised) physics, includ-
ing subsentences which purport to refer to electrons, etc. And supposeO is some
purely observational consequence of T – the sort of claim that might be used to
test the theory, or make a practical difference. Then the Craig Interpolation The-
orem says there is a sentence T/E purely using observational terms (since those
are the only sort that occur in O) that is a consequence of T and which entails
O. T/E is, in some sense, the purely observational empirical content of T. And
– said the instrumentalists – this is great! For every sentence of physics which
makes reference to theoretical entities, we can come up with a theoretically hy-
genic sentence which does not, which is also a consequence of the theory, but
which is framed in purely observational vocabulary.

But note that the interpolated sentence isn’t a hygienic as it was supposed. For
suppose we have a sentence in our observation language that means everything
is observable. We have negation; so there will be a sentence true iff something
is unobservable. This is supposedly expressed in the ‘acceptable’ vocabulary, but
of course it makes a claim about purely theoretical unobservable entities. So the
philosophical significance of the interpolated sentence seems negligible:

The empirical import of a theory cannot be isolated in this syntactical
fashion, by drawing a distinction among theorems in terms of vocab-
ulary. If that could be done,T/Ewould say exactly whatT says about
what is observable and what it is like, and nothing more. But any un-
observable entity will differ from the observable ones in the way it
systematically lacks observable characteristics. As long as we do not
abjure negation, therefore, we shall be able to state in the observa-

90

metatheory of ℒ1

tional vocabulary (however conceived) that there are unobservable
entities, and, to some extent, what they are like. The quantum theory,
Copenhagen version, implies that there are things which sometimes
have a position in space, and sometimes have not. This consequence
I have just stated without using a single theoretical term. Newton’s
theory implies that there is something (to wit, Absolute Space) which
neither has a position nor occupies a volume. Such consequences are
by no stretch of the imagination about what there is in the observ-
able world, nor about what any observable thing is like. The reduced
[interpolated] theory T/E is not a description of part of the world
described by T; rather, T/E is, in a hobbled and hamstrung fashion,
the description by T of everything. (van Fraassen, 1980: 54–5)

5.5 Compactness

Theorem 58 is interesting regardless of philosophical programs it may have been
associated with. It tells us that, to understand what is going on in an argument,
we need only consider the sentence letters in common to premises and conclu-
sion. Since there are only finitely many of those, the correctness or otherwise of
entailments between sentences reduces to a computationally tractable problem:
look at the (finitely many) sentences that constitute the premise and conclusion;
determine the sentence letters in common; and then see if you can construct an
interpolant.

Infinitely Many Premises But this procedure fails at the first step if we allow
arbitrary sets of premises on the left hand side of the entailment. If the set of
premises is finite, then we can simply consider the conjunction of all its members,
which will be finite. But what happens to the notion of an interpolant, and the
idea that entailment is always mediated only by sentence letters occurring in both
premises and conclusion, if the set of premises is infinite?

This is not merely a theoretical worry. Consider this argument in English:

(1) There is at least 1 thing.

(2) There are at least 2 things.

91

elements of deductive logic

(3) There are at least 3 things.
⋮

(𝑛) There are at least 𝑛 things.
⋮

(C) There are infinitely many things.

This argument is valid. However, it needs to make essential use of infinitely many
of its premises. For any finite set of premises of this argument can be jointly true
while the conclusion is false.5

Compactness English is thus a language in which there are valid arguments
with infinitely many premises, but where no finite subset of those premises entails
the conclusion. Let us introduce a technical term.

Definition 85 (Compactness). An interpreted language ℒ is said to be compact
iff any unsatisfiable infinite set of sentences of ℒ has a finite unsatisfiable subset.
Contrapositively: if every finite subset of some Γ is satisfiable, then Γ is satisfiable.

Since Γ entails 𝜙 iff Γ ∪ {¬𝜙} is unsatisfiable, English is not a compact language.
The union of all the premises stating that there are at least 𝑛 things together with
the claim that there are only finitely many things is unsatisfiable, yet any finite
subset of that set must contain at most finitely many of the premises, and no such
finite subset of the premises will be unsatisfiable by itself, or unsatisfiable with
the claim that there are at most finitely many things.

Compactness for ℒ1 Is ℒ1 compact?This question can be answered in a number
of ways. In this chapter, we show directly, just by consideration of the semantics
of ℒ1, that ℒ1 is in fact compact. In chapter 7, after we consider a derivation
system for ℒ1, we can use the adequacy of that system to provide another more
proof of compactness for ℒ1(Corollary 87).

Compactness for ℒ1 has the immediate consequence that if Γ ⊨ 𝜙, then there
is some finite set of premises Γ′ such that Γ′ ⊨ 𝜙; every valid argument in ℒ1 with

5Each premise entails all the earlier premises; and each premise by itself is true in some finite situation.
So if we took only finitely many of these premises, they are collectively equivalent to their highest
numbered member (𝑘), and then all those finitely many premises will be true in a situation which has
𝑘 or more things in it, for some finite 𝑘.

92

metatheory of ℒ1

infinitely many premises has a corresponding valid argument with only finitely
many premises. As suggested above in connectionwith the interpolation theorem,
compactness is of interest in part because of the computational tractability of
compact languages. We allow, for mathematical reasons, infinite sets of sentences
to entail things. But we never need an infinite set of sentences to formulate an
argument: any conclusion expressible in ℒ1 that is validly entailed by infinitely
many premises formulated in ℒ1 is also validly entailed by some finite subset of
those premises. We will return to this topic below when we discuss decidability
(p. 96).

Definition 86 (Finite Satisfiability). We say that a set Γ is finitely satisfiable iff
every finite subset of Γ is satisfiable (i.e., each has a model – each is consistent).

Theorem 60 (Compactness)
If Γ is finitely satisfiable then Γ is satisfiable.

This theorem can be proved a number of ways. It is a fairly quick consequence
of the Completeness theorem for the natural deduction formalism for sentential
logic, which we prove in chapter 6. In this chapter, we will prove it directly, in
what is probably the most involved proof in this book. The proof comes in several
stages, marked out below.

Note that the converse of Compactness – that satisfiability entails finite satis-
fiability – is trivial from the structural rules.

Proof of Compactness, Stage 1: Definition of Γ𝑖s Suppose that Γ is finitely satis-
fiable. The set of sentence letters occurring in Γ is enumerable, so let its members
be enumerated 𝑠1, 𝑠2, ….

We define a sequence of supersets of Γ as follows:

Γ0 = Γ

⋮

Γ𝑛+1 =
⎧⎪
⎨
⎪⎩

Γ𝑛 ∪ {𝑠𝑛+1} if Γ𝑛 ∪ {𝑠𝑛+1} is finitely satisfiable;

Γ𝑛 ∪ {¬𝑠𝑛+1} otherwise.

Proof of Compactness, Stage 2: Γ𝑖s are finitely satisfiable

93

elements of deductive logic

Lemma 61
Each Γ𝑖 is finitely satisfiable.

Proof. Base case: Γ0 = Γ, which is finitely satisfiable by hypothesis.
Induction step: Suppose that each Γ𝑖, 𝑖 ⩽ 𝑛, is finitely satisfiable. Now suppose

Γ𝑛+1 is not.Then, by definition of Γ𝑛+1, neither Γ𝑛∪{𝑠𝑛+1} nor Γ𝑛∪{¬𝑠𝑛+1} is finitely
satisfiable.

So there must be finite subsets Δ and Θ of Γ𝑛 such that both Δ, 𝑠𝑛+1 ⊨ and
Θ, ¬𝑠𝑛+1 ⊨. By weakening, both Δ, Θ, 𝑠𝑛+1 ⊨ and Δ, Θ, ¬𝑠𝑛+1 ⊨.

But Δ ∪ Θ is a finite subset of a finitely satisfiable set, so is consistent. In any
structure 𝒜 in which all the members of Δ ∪ Θ are true, either J𝑠𝑛+1K𝒜 = 𝑇 orJ¬𝑠𝑛+1K𝒜 = 𝑇 . So either Δ, Θ, 𝑠𝑛+1 ⊭ or Δ, Θ, ¬𝑠𝑛+1 ⊭. Contadiction; so Γ𝑛+1 is
finitely satisfiable.

Proof of Compactness, Stage 3: Define a structure from the Γ𝑖s For all 𝑠𝑖, define

𝒢 (𝑠𝑖) =
⎧⎪
⎨
⎪⎩

𝑇 if 𝑠𝑖 ∈ Γ𝑖;

𝐹 otherwise (i.e., if ¬𝑠𝑖 ∈ Γ𝑖).

For any 𝑘, Γ𝑘 is finitely satisfiable; since for all 𝑖 ⩽ 𝑘, either 𝑠𝑖 ∈ Γ𝑘 or ¬𝑠𝑖 ∈ Γ𝑘,
the finite set of literals

𝑆𝑘 = {𝑠𝑖 ∈ Γ𝑘 ∶ 𝑖 ⩽ 𝑘} ∪ {¬𝑠𝑖 ∈ Γ𝑘 ∶ 𝑖 ⩽ 𝑘}

is a subset of Γ𝑘 and is consistent.
By construction, for any 𝑘, and for all 𝜎 ∈ 𝑆𝑘, J𝜎K𝒢 = 𝑇 . Moreover, every

structure 𝒢 ′ which agrees with 𝒢 on the sentence letters in 𝑆𝑘 also assigns 𝑇 to
all members of 𝑆𝑘. (And obviously, by construction, only those structures which
agree on these sentence letters can satisfy 𝑆𝑘.)

Proof of Compactness, Stage 4: 𝒢 satisfies Γ Suppose 𝒢 does not satisfy Γ.Then
for some 𝛾 ∈ Γ, J𝛾K𝒢 = 𝐹 .

𝛾 has finitelymany sentence letters occurring in it; let 𝑠𝑘 be the highest numbered.
Since every 𝜎 ∈ 𝑆𝑘 is true in every structure which agrees with 𝒢 on every 𝑠𝑖,
𝑖 ⩽ 𝑘, 𝛾 is false in every such structure.

94

metatheory of ℒ1

So 𝑆𝑘 ∪ {𝛾} is unsatisfiable. But it is a finite subset of Γ𝑘, which is finitely
satisfiable, so 𝑆𝑘∪{𝛾} satisfiable. Contradiction; so 𝒢 must satisfy Γ. Γ is satisfiable
if all of its finite subsets are.

5.6 An Alternative Proof of Compactness

In the proof of Compactness just given, we built up the structure that satisfies Γ by
creating ever larger supersets of Γ – we added literals one-by-one in a way that
preserves finite satisfiability, and then showed that the structure read off those
literals satisfies Γ.

In this alternative proof of compactness, we build up the structure that satisfies
Γ by creating a sequence of structures that converges ever closer to the desired
structure, by getting more and more of the sentence letters needed to satisfy Γ
right, until eventually every sentence letter has been dealt with.

𝑛-Acceptable structures Suppose that Γ is a finitely satisfiable set of sentences,
and 𝑠1, 𝑠2, … is an enumeration of the sentence letters occurring as constituents
of sentences in Γ. Let S𝑛 be the set consisting of the first 𝑛 sentence letters in Γ
under the enumeration, i.e., S𝑛 = {𝑠1, 𝑠2, … , 𝑠𝑛}. (S0 is the empty set.)

Call an ℒ1-structure ℬ 𝑛-acceptable iff, for each finite subset Δ ⊆ Γ, there
exists a structure which agrees with ℬ on S𝑛 which satisfies Δ. (Perhaps this is
ℬ itself, or perhaps ℬ assigns something to a sentence letter 𝑠𝑛+𝑖 which prevents
it from satisfying Δ.)

Define a series of ℒ1-structures as follows:

• 𝒜0 is some arbitrarily chosen structure.

• If (i) ℬ agrees with 𝒜𝑛 on S𝑛 and (ii) ℬ assigns 𝑇 to 𝑠𝑛+1 and (iii) ℬ is
(𝑛 + 1)-acceptable, then let 𝒜𝑛+1 be ℬ; otherwise let 𝒜𝑛+1 be any structure
which agrees with 𝒜𝑛 on S𝑛 and which assigns 𝐹 to 𝑠𝑛+1.

Each 𝒜𝑛 is 𝑛-acceptable We now prove by induction on 𝑛 that each 𝒜𝑛 is 𝑛-
acceptable (i.e, 𝒜0 is 0-acceptable, 𝒜1 is 1-acceptable, and so on).

95

elements of deductive logic

Obviously 𝒜0 is 0-acceptable; to be 0-acceptable is for each finite subset of Γ
to agree with 𝒜0 on the set of sentence letters in S0; since the latter is the empty
set, any finite subset of Γ agrees with 𝒜0 on that set.

For the induction step, suppose there is some 𝒜𝑛 which is 𝑛-acceptable, but
𝒜𝑛+1 is not. Since by definition of the 𝒜𝑖s, if there was any (𝑛 + 1)-acceptable
structure which agrees with 𝒜𝑛 on S𝑛 and which assigned 𝑇 to 𝑠𝑛+1, 𝒜𝑛+1 would
be an example of such a structure. So 𝒜𝑛+1 must assign 𝐹 to 𝑠𝑛+1. But from the
induction hypothesis that 𝒜𝑛+1 is not 𝑛-acceptable, some finite set Δ ⊂ Γ is not
satisfied by any structurewhich agreeswith 𝒜𝑛+1 onS𝑛+1. So Δ cannot be satisfied
by any structurewhich agreeswith 𝒜𝑛 onS𝑛 (since it can’t be satisfied by a variant
of 𝒜𝑛 which assigns 𝑇 to 𝑠𝑛+1, or one that assigns 𝐹 , and they are the only options),
contrary to the assumption that 𝒜𝑛 is 𝑛-acceptable. So 𝒜𝑛+1 must in fact be (𝑛+1)-
acceptable.

Compactness Again Let 𝒜 be a structure such that, for all 𝑖, J𝑠𝑖K𝒜 = J𝑠𝑖K𝒜𝒾
(that

is, for each 𝑖, 𝒜 agrees with the 𝑖-th structure 𝒜𝑖 on the value it assigns to the 𝑖-th
sentence letter 𝑠𝑖).

Suppose 𝒜 isn’t a model for Γ. Then there is a 𝜙 ∈ Γ such that J𝜙K𝒜 = 𝐹 .
Let 𝑠𝑘 be the highest numbered sentence letter occurring in 𝜙. Then 𝒜𝑘 must
make 𝜙 true, since {𝜙} is a finite subset of Γ and 𝒜𝑘 is 𝑘-acceptable. But then
every structure which agrees with 𝒜𝑘 on S𝑘 will make 𝜙 true; and 𝒜 is one such
agreeing structure. Contradiction – 𝒜 must satisfy Γ.

But since Γ was arbitrary, we’ve shown that if Γ is finitely satisfiable, then Γ
is satisfiable. This is compactness.

5.7 Decidability

Effective Procedures An effective procedure for determining some query is an
automatic and mechanical algorithm that terminates in a finite time with a correct
‘yes’ or ‘no’ answer.

A property is decidable iff there is an effective procedure which tests for it.

Turing Machines and Turing’s Thesis The notion of an effective procedure has
only been introduced informally here, but it can be made precise in a number of

96

metatheory of ℒ1

different ways (Boolos et al., 2007: chs. 1–8). In the 1930s, Turing introduced the
notion of a Turing machine, which is in effect an extremely simplified computer
(Turing, 1937). The simplicity of Turing machines establishes that anything they
can do really is computable by an effective procedure, in the intuitive sense. What
they primarily do is compute functions: when given a argument as input, a well-
designed Turing machine will give a certain value as output, and the totality of
all such input-output pairs will be a function.

Turing’s thesis is the claim that any effectively computable function can be
calculated by some Turing machine. This prima facie remarkable claim cannot be
proved purely mathematically: it is a philosophical claim about the pre-theoretical
notion of ‘effectively computable’. But some evidence in its favour can be provided.
First wemight note that the class of functions calculable by Turingmachines is the
same class of functions calculable by another independent attempt to characterise
the notion of an effective procedure, Church’s theory of recursive functions, also
developed in the 1930s. That these two quite different ways to make the informal
notion of computability precise end up coinciding is some evidence for the suc-
cess of both in capturing some robust notion. Second, no one has developed any
example of a Turing-uncomputable function that is, intuitively, represented by an
effective procedure. That a philosophical claim has survived 80 years of attempts
to provide counterexamples is some evidence in its favour!

Finite Decidability Using Truth Tables

Theorem 62 (Decidability of Finite Validity)
If Γ is a finite set of sentences of ℒ1, then it is decidable whether Γ ⊨.

Proof. Suppose Γ is a finite set of ℒ1 sentences. Each 𝛾 ∈ Γ is only finitely long,
so there are 𝑛 sentence letters occurring in Γ, for some finite 𝑛. The following
describes an effective procedure that can be followed to determine whether Γ is
unsatisfiable.

Construct a truth-table with 2𝑛 lines such that each line corresponds
to some structure assigning truth values to each sentence letter in
Γ; this can be done mechanically in a finite time. For each 𝛾 ∈ Γ,
determine its truth value in each row; this can be done mechanically
in a finite time for each 𝛾 in each row, and there are finitely many

97

elements of deductive logic

rows, so the truth value of each 𝛾 in every class of structures that
agree on sentence letters in Γ can be determined mechanically in a
finite time. Since Γ is finite, we can determine the truth value of each
sentence in Γ in every structure in a finite time.

Check each row of the truth table to see if all sentences in Γ have
been assigned 𝑇 : If they all have, in some row, then stop, and answer
‘No’ to the query, ‘Is Γ ⊨?’. If no row has all 𝛾 ∈ Γ assigned 𝑇 , then
answer ‘Yes’. There are only finitely many rows, so this final check
can be done in a finite time. All steps can be finitely mechanised, and
there are finitely many steps: inconsistency is decidable.

This has the immediate consequence that it is decidable whether Γ ⊨ 𝜙 (just
check whether Γ, ¬𝜙 ⊨ by Theorem 26), and thus that validity is decidable.

Definition 87 (Recursivity). A set 𝑁 ⊆ ℕ is recursive iff there is an effective pro-
cedure such that, given an arbitrary number 𝑛 ∈ ℕ, tells us whether 𝑛 ∈ 𝑁 or
𝑛 ∉ 𝑁 .

A recursive set has an associated decision procedure that sorts every candidate
number into members and non-members. Example: the set of prime numbers is
recursive. Given a number 𝑛, successively try to divide 𝑛 by all numbers between
2 and 𝑛/2. This task is finite: if you succeed in finding a divisor, 𝑛 isn’t prime, and
if you don’t, it is prime. Either way, you find out in a finite time.

Because of the relationship between ℒ1 sentences and numbers established
by the code in Lemma 22, we can by courtesy extend the notion of a recursive
set of ℒ1 sentences in the obvious way: a set of ℒ1 sentences is recursive iff
there is an effective procedure which decides whether an arbitrary ℒ1 sentence
is a member of it or not. Theorem 62 shows that the set of ℒ1 contradictions is
recursive. Any ℒ1 sentence is equivalent to a conjunction, by the cnf theorem.
An contradiction is thus equivalent to some contradictory conjunction 𝛿1 ∧ … ∧
𝛿𝑛, where each 𝛿𝑖 is a disjunction of literals. But a conjunction 𝛿1 ∧ … ∧ 𝛿𝑛, is a
contradiction iff the finite set {𝛿1, …, 𝛿𝑛} is unsatisfiable. Since whether a finite
set is unsatisfiable is decidable, and whether two finite sentences are logically
equivalent is also decidable (exercise), for any sentence it is decidable whether

98

metatheory of ℒ1

it is a contradiction or not. So the set of contradictions is recursive. A similar
argument shows that the set of all ℒ1 tautologies is recursive.

Recursive Enumerability A query is positively decidable iff an effective proced-
ure will terminate and correctly answer ‘Yes’ in a finite time. A query is negatively
decidable iff an effective procedure will terminate and correctly answer ‘No’ in a
finite time. It is decidable iff it is both positively and negatively decidable.

Definition 88 (Recursive Enumerability). A set 𝑆 is recursively enumerable iff
there is an effective procedure that successively lists all and only the members
of 𝑆 . (More formally, if 𝑆 is the range of a computable function whose domain
is a subset of ℕ – this is just like the definition of a enumeration in Definition 45
except that now we require the enumeration function to be computable.)

If 𝑆 is infinite, this procedure will never halt. Nevertheless, if 𝑆 is recursively
enumerable, every member of 𝑆 will eventually be listed after some finite time
from the beginning of the procedure.

Recursive and Recursively Enumerable All recursive sets are recursively enu-
merable. At stage 𝑛, apply the procedure to check whether 𝑛 ∈ 𝑁 or not; if yes,
print ‘𝑛’; if no, print nothing; then apply the same procedure to 𝑛 + 1. Begin at
𝑛 = 1, and this will successively enumerate the members of 𝑁 .

But not all recursively enumerable sets are recursive. If 𝑁 is recursively enu-
merable, whether 𝑛 ∈ 𝑁 is positively decidable: for we just have to set the 𝑁-
enumerating procedure in motion, watch its output, and if 𝑛 comes up, we stop
the procedure and announce that 𝑛 ∈ 𝑁 . But if in fact 𝑛 ∉ 𝑁 , we will fruitlessly
watch the output of the 𝑁-enumerating procedure forever, never sure whether
the next output will be 𝑛 or not. (In reality, it will never come up, but we don’t
know that.)

For a concrete example, consider the set of prime gaps, where a prime gap is a
number 𝑛 such that it is the difference between successive primes (prime numbers
between which there are no other prime numbers: so 7 and 13 are successive
primes with a gap of 4). The set of prime gaps is {𝑛 ∶ ∃𝑖(𝑛 = 𝑝𝑖+1 − 𝑝𝑖)}. This
set is not recursive – given an arbitrary number 𝑛 that is not a prime gap, no
effective procedure will determine that. We can effectively generate primes, and

99

elements of deductive logic

once we have generated them, we can check their gaps – so if 𝑛 is a prime gap,
we’ll eventually discover that after only a finite time. But until we generate all
the infinitely many prime numbers, we cannot survey the whole and see that our
unluckily chosen number number isn’t among the prime gaps.

We can extend the notion of recursive enumerability to sentences of ℒ1 too,
and finite sets of sentences of ℒ1. Lemma 22 gives us a representation of ℒ1 sen-
tences as numbers; we can then use that same coding to represent finite sequences
of numbers as numbers too. Hence we may encode a finite set of ℒ1 sentences by
a number; and we may then say that a set of ℒ1 sentences, or a set of sets of ℒ1
sentences, is recursively enumerable if the corresponding sets of code numbers
are recursively enumerable.

Positive Decidability of Unsatisfiability It is not possible to effectively determ-
ine the members of every set of ℒ1 sentences. For the number of effective pro-
cedures is countable, given the plausible assumption that an effective procedure
can be specified by a finite recipe. (See the exercises for more on uncomputable
functions.) But the number of infinite sets of ℒ1 sentences is uncountable (being
the powerset of the countable set of all ℒ1 sentences). So not every enumerable
set of sentences Γ can be effectively enumerated. But those whose members can
be effectively listed – the recursively enumerable sets – can also be effectively
checked for unsatisfiability.

Theorem 63 (Positive Decidability of Unsatisfiability)
If Γ is a recursively enumerable set of ℒ1 sentences, then if Γ ⊨, there is an effective
procedure that will demonstrate its unsatisfiability.

Proof. Let the sentences in Γ be enumerated 𝛾1, …, 𝛾𝑛, … by some recursive func-
tion that enumerates it.

At each stage 𝑖, an initial subset 𝐺𝑖 = {𝛾1, …, 𝛾𝑖} will have been listed by the
enumeration procedure. Before moving on to produce 𝛾𝑖+1, apply the procedure
from Theorem 62 to 𝐺𝑖; if 𝐺𝑖 is unsatisfiable, then halt and say that Γ is unsatis-
fiable. If 𝐺𝑖 is satisfiable, then move on to generate 𝛾𝑖+1 and repeat the process.

If Γ is unsatisfiable, then by Compactness there is some 𝑗 such that 𝐺𝑗 is finite
and unsatisfiable. Any finite unsatisfiable subset of Γ will have its members in
some finite initial subset of Γ. (Obviously 𝐺𝑘 for 𝑘 > 𝑗 will also be unsatisfiable.)

100

metatheory of ℒ1

So if Γ is unsatisfiable, this process will eventually detect that by coming across
some finite initial subset of Γ which is unsatisfiable.

If Γ is satisfiable, however, this procedure will never halt: it will keep checking
larger and larger initial subsets of Γ for unsatisfiability, never finding any of them
to be unsatisfiable, but also never running out of new larger candidates to check.

This procedure is effective but resource inefficient – depending on the details
of how Γ is enumerated, a more optimised algorithm could be designed. But the
limitation that it cannot check for satisfiability is not a practical limitation, but an
in principle one. Thus whether a set is unsatisfiable is positively decidable (if we
apply it to an unsatisfiable set, our procedurewill tell us that it is unsatisfiable), but
not negatively decidable (if we apply it to a satisfiable set, our procedure and any
similar procedure will not halt in its fruitless search for an unsatisfiable subset).

Exercises

1. (a) Show that (𝜙 ∧ 𝜓) ∧ 𝜒) is logically equivalent to ⟚ (𝜙 ∧ (𝜓 ∧ 𝜒)).

(b) Show that (𝜙 ∧ 𝜓) is logically equivalent to (𝜓 ∧ 𝜙).

(c) What significance do the foregoing results have for the truth-function that ‘∧’
expresses?

2. (a) Show that if there are 𝑛 sentence letters in 𝑆 , there are 2𝑛 sentences of the
form 𝔠𝒜 defined in the proof of the dnf theorem.

(b) Explain clearly why, in the proof of the dnf theorem, the sentence 𝔡 there
constructed expresses the truth function 𝑓 .

3. Prove, by an argument analogous to the dnf theorem, this claim:

Theorem 64 (cnf)
Every truth function is expressed by a sentence in Conjunctive Normal Form.

4. Show that all truth-functions which can be expressed using only → and ∧ are pos-
itive. (Prove by induction on complexity of sentences.)

5. The proof of theorem 50 was only sketched. Fill in these two crucial gaps.

(a) Show that 𝜙 ∨ 𝜓 is logically equivalent to (𝜓 → 𝜙) → 𝜙;

(b) Show (by induction on complexity of sentences, and using the above result)
that each conjunct of a cnf sentence will be equivalent to either (i) an arrow
sentence without negation, or (ii) a conjunct of the form ⋁𝑖 ¬𝑠𝑖.

101

elements of deductive logic

(c) Show that a necessary and sufficient condition for a sentence 𝜙 to be logically
equivalent to a sentence involving just the truth functional connectives → and
∧ is that the sentence has the value 𝑇 in any structure that assigns the value
𝑇 to each sentence letter in 𝜙.

6. (a) Show that {∨, ¬} is expressively adequate.

(b) Is {→, ¬} expressively adequate?

(c) Is {↔, ∧, →, ∨} expressively adequate?

(d) Is any connective in ℒ1 expressively adequate by itself?

(e) Prove that ↓ is expressively adequate.

(f) How many 2-place truth-functional connectives are expressively adequate by
themselves?

(g) Consider the 0-place connective ⊥ that expresses the constant 0-place func-
tion 𝑓 ∶ ∅ ↦ 𝐹 . Is this expressively adequate, or can you add a connective
to get an expressively adequate set (where the added connective is not itself
expressively adequate)?

7. (a) Consider the self-dual set of connectives {→, →⋆}. Is this set of connectives ex-
pressively adequate? Is self-duality either necessary or sufficient for express-
ive adequacy of a set of connectives?

(b) Show that if a two-place truth functional connective ⊕ is self-dual, then the
function that expresses it, 𝑓⊕, must be such that 𝑓⊕(𝑇 , 𝐹) ≠ 𝑓⊕(𝐹 , 𝑇) and
𝑓⊕(𝐹 , 𝐹) ≠ 𝑓⊕(𝑇 , 𝑇). Make use of this result, establish how many self-dual
two-place truth functors there are.

(c) Let 𝜙 and 𝜓 be sentences of ℒ¬,∧,∨. We say that a sentence 𝜙 is dualable iff for
all 𝒜 , (J𝜙K𝒜 ⋆)⋆ = J𝜙⋆K𝒜 .

i. Prove that if 𝜙 and 𝜓 are dualable, so too are ¬𝜙, (𝜙 ∧ 𝜓), and (𝜙 ∨ 𝜓).
ii. Prove using this result that all sentences of ℒ¬,∧,∨ are dualable.

8. Let ℒ↑,↓ be the language which has ↑ and ↓ as its only connectives.

(a) For any 𝜙 in ℒ↑,↓, and any structure 𝒜 , show that J𝜙K𝒜 = n(J𝜙⋆K𝒜 ⋆).

(b) For any ℒ↑,↓-sentence 𝜙, let 𝜙⋆ be the sentence which results from replacing
every connective in 𝜙 by its dual, and let 𝜙 be the result of substituting (𝑃𝑖 ↑ 𝑃𝑖)
for every sentence letter 𝑃𝑖 occurring in 𝜙.

i. Prove that for every ℒ↑,↓ sentence 𝜙, 𝜙⋆ is logically equivalent to (𝜙 ↑ 𝜙).

102

metatheory of ℒ1

ii. Prove that if 𝜙 and 𝜓 are ℒ↑,↓ sentences, 𝜙 ⊨ 𝜓 iff 𝜓⋆ ⊨ 𝜙⋆.

9. Find an interpolant for the following sequents. Be sure in each case to give the
simplest interpolant (i.e., find the most elegant sentence that is equivalent to your
chosen interpolant).

(a) ((𝑄 ∨ 𝑃) → 𝑅) ⊨ ((𝑃1 ∧ ¬𝑅) → ¬𝑄);

(b) (¬(𝑃 ∨ 𝑄) ∧ (𝑃 ↔ 𝑅)) ⊨ ((𝑅 → 𝑃) ∧ ¬(𝑃1 ∧ 𝑅));

(c) ((𝑄2 ↔ 𝑄) ∧ ¬((𝑅 → ¬𝑃1) ∨ ¬(𝑃 → 𝑄))) ⊨ (𝑅1 → (𝑃2 → (¬𝑃 ∨ 𝑄)));

10. (a) Let Γ be a possibly infinite set of sentences of ℒ1 such that Γ ⊨. Show that
there is a finite disjunction, 𝛿, each disjunct of which is the negation of a
sentence in Γ, and such that ⊨ 𝛿.

(b) Consider the following relation holding between sets of sentences:

Where Γ and Δ are any sets of sentences, Γ ⊨⋆ Δ is correct iff every
structure which satisfies every 𝛾 ∈ Γ is also one which satisfies at

least one 𝛿 ∈ Δ.

Show that if Γ ⊨⋆ Δ and neither is empty (though either or both may be
infinite), there is a finite conjunction of ℒ1 sentences in Γ,

Φ = (𝜙1 ∧ … ∧ 𝜙𝑚),

and a finite disjunction of ℒ1 sentences in Δ,

Ψ = (𝜓1 ∨ … ∨ 𝜓𝑛),

such that Φ ⊨ Ψ. (You may assume the Compactness theorem.)

(c) A set of sentences of English is compossible just in case it is possible for them
all to be true together. An analogue for the compactness theorem in English
would be: for every infinite set 𝐸 of English sentences not all compossible,
there is a finite subset of 𝐸 whose members are not all compossible.

i. Show that this analogue of compactness fails for English.

ii. What does this show about translations from English into ℒ1?

11. Intuitively, any effective proceduremust be able to be written down by a finite string
of sentences in some language – say, English.

(a) Give an argument that the set of effective procedures is countable.

103

elements of deductive logic

(b) Let a recipe be any finite set of English sentences. Consider the set 𝐸 of recipes.
(It is obvious that the set of effective procedures in English which compute
one-place functions whose domain is (a subset of) the natural numbers will
be a subset of 𝐸.) This set is countable; let 𝑓𝑛 be the function – if there is one
– computed by the 𝑛-th recipe in 𝐸 under some enumeration of 𝐸. Define

𝑑(𝑛) =
⎧⎪
⎨
⎪⎩

0 if 𝑓𝑛(𝑛) is defined and equal to 1;

1 otherwise

i. Show that there is no effective procedure for computing 𝑑.
ii. Show that there is no effective procedure for deciding if a recipe is an

effective procedure, and therefore that while the set of recipes 𝐸 can
be effectively produced, some subsets of 𝐸 (in particular, the one cor-
responding to the set of effective procedures) cannot be effectively pro-
duced.

(c) Give an argument for the claim that there is an effective procedure for de-
termining whether two ℒ1 sentences are logically equivalent.

Answers to selected exercises on page 244.

104

Part III

Sentential Logic: Derivations

105

Chapter 6

Tableau Derivations in ℒ1

6.1 Derivations

The key notion in logic is, as we’ve said earlier (section 4.3), consequence: the
notion of some sentences following from another. So far, we’ve understood con-
sequence in terms of entailment, so that 𝜙 is a consequence of Γ just in case every
structure in which all the sentences in Γ are true (in which Γ is satisfied), is also
a structure in which 𝜙 is true.

Consequence as a Semantic Notion There is, however, something a bit strange
about understanding consequence solely in this way. On this account, what un-
derlies whether some sentences have a certain consequence 𝜙 are facts about the
class of structures in which those sentences are true, in particular, whether that
class is a subset of some further class which corresponds to the class of structures
in which 𝜙 is true. Rather than reasoning from Γ to 𝜙, we reason about the struc-
tures in which Γ and 𝜙 are true. And this seems to be a detour. Compare these
two English arguments:

106

tableau derivations in ℒ1

(4) If it’s raining, I won’t ride
my bike.

(5) It’s raining.

(6) Therefore, I won’t ride my
bike.

(4′) ‘If it’s raining, I won’t ride
my bike’ is true.

(5′) ‘It’s raining’ is true.

(6′) Therefore, ‘I won’t ride my
bike’ is true.

The second argument does the same job as the first, when supplemented with
this principle: For any sentence 𝑆 ,

(T-schema) ⌜𝑆⌝ is true iff 𝑆 .

But it is needlessly complex, detouring through the metalanguage when the first
object-language only argument does the same job. English is its own metalan-
guage, so the detour isn’t so noticeable. But in ℒ1, where the metalanguage is
English, and therefore quite distinct from ℒ1 itself, the results can be striking.
The standard technique for evaluating an argument in ℒ1 – truth tables – pro-
duces results that require a great deal more to understand them than is required
to understand ℒ1. ℒ1 is a very simple language, which cannot express much. To
understand a truth table, however, one has to understand the notion of truth; of
a structure; of a sentence having a truth value in a structure; and all the set the-
oretic and mathematical background to these notions. This shows already that
the activities of deriving (6) and deriving (6′) may be quite different, needing dif-
ferent conceptual resources. Young children, for example, might well be able to
run through the object language reasoning without being able to reason in the
metalanguage.

FormalArgument Thegoodness of the object language argument (4)–(6) doesn’t
consist in anything more than the fact that its first premise is a conditional, the
antecedent of which is the second premise and the consequent of which is the con-
clusion. We don’t need to know anything more than this fact about the structure
of the argument, and the rules governing conditional implication, to establish that
this object language argument is good.The rule governing conditional implication
in question is this:

107

elements of deductive logic

(Modus Ponens) If claims ⌜𝜙⌝ and ⌜If 𝜙 then 𝜓⌝ occur in the course of an argu-
ment, you may subsequently derive ⌜𝜓⌝.

You don’t need to knowwhat 𝜙 or 𝜓 mean to obey this rule – you don’t even need
to know what ‘if — then —’ means. You just need to be able to follow the rule.
Maybe it is purely formal features of argumentation like this that allow young
children to follow and produce chains of reasoning in ignorance of semantic no-
tions. Of course, in cases like the above the metalanguage argument complements
the object language argument, by showing the formal argument to have a legitim-
ate form, one where the premises really do entail the conclusion. So it is not as if
the metalanguage argument is otiose. What it does seem to be is unduly complex
for carrying out an inferential task that one might more directly deploy the object
language argument to accomplish. At present, we have no choice, since we have
no tools for reasoning directly between ℒ1 sentences rather than detouring via
the semantics. So perhaps we ought to remedy that lack.

Philosophical Considerations Some have thought that it is philosophically prefer-
able to develop systems of formal argumentation in a language, rather than having
to always evaluate those arguments using its semantics. Some have been motiv-
ated by scepticism about truth – perhaps motivated by the Liar paradox (‘This
sentence is not true’).The technical notion of satisfaction in an ℒ1-structure which
is at the heart of semantics for ℒ1 doesn’t seem to be susceptible to the same sort
of paradox, not least because we cannot formulate self-referential sentences in
ℒ1. But some have thought that if ℒ1 is to be a paradigm for evaluating natural
language arguments, then we ought to avoid beginning with semantic notions in
formal languages to avoid being forced to begin with semantic notions when we
turn to natural language.

Other considerations in favour of developingmethods of object language formal
argument come from thinking about effective computation. One nice feature of
formal arguments likemodus ponens is that it is fairly clear that they are effectively
implementable. It might not be easy to program a computer to evaluate whether
every model in which 𝑃 → 𝑄 and 𝑃 are true is also one in which 𝑄 is true. But it
is easy to program a computer to add 𝑄 to a body of claims if 𝑃 and 𝑃 → 𝑄 are
already among those claims. Machines are good at performing mechanical syn-

108

tableau derivations in ℒ1

tactic manipulations, and rather worse at evaluating expressions for their mean-
ing. Since it is desirable to be able to carry out formal reasoning in ℒ1 effectively,
we need to develop techniques that a ‘mere’ computer might be able to use.

Some even hold out the hope that these formal inference rules might be all
there is to intelligent behaviour. A system following a complicated enough set of
formal rules might produce outputs indistinguishable from the intelligent beha-
viour produced by creatures like us. Not only would this hold out the promise
of ‘artificial intelligence’, it might lead to a dissolution of philosophical puzzles
about our own conscious reasoning behaviour. Maybe for all we know, we are
just complicated formal rule following systems.

Finally – more mundane, but perhaps most significant historically – it is often
the case that the development of formal languages runs ahead of their semantics.
We might begin by trying to translate some fragment of natural language into
a formal language, introducing some bits of formal language to represent cer-
tain natural language expressions. We might characterise the behaviour of those
formal language constructions by some rules, hoping thereby to capture some sig-
nificant part of the natural language expressionswithwhichwe began.We can use
these rules to construct certain arguments, which may mirror in their structure
intuitively acceptable natural language arguments. This might give us some con-
fidence that we’ve captured something interesting in the natural language. But we
don’t have anything yet that looks like a full theory of meaning for this language
–we don’t have enough to construct a relation of entailment, for example. But this
wouldn’t prevent us from going on and developing various rival formal systems
to capture various aspects of natural language. We might have some informal un-
derstanding of those languages in virtue of the fact that they were constructed
to mimic natural language. But we might not be confident that every formal ar-
gument that our system endorses corresponds to a real entailment, nor confident
that our system can capture every real entailment. The case of sentential logic
is not typical here. Rather more typical is the case of modal logic – the logic of
‘necessarily’ and ‘possibly’. In this case various inequivalent and rival systems of
formal argument were set up as early as the 1930s, but the semantics for those lan-
guages which allowed a precise account of modal entailment did not come along
until the 1960s. It would have been absurd to suggest that people shouldn’t have
been investigating the formal structure of modal arguments for those 30 years.

109

elements of deductive logic

The informal gloss on their syntax was enough for people to pursue interesting
formal results in their system, even if a complete semantics is nevertheless the
ideal.

Derivations A derivationwill be a certain structured collection of ℒ1 sentences,
and a derivation system will be a collection of rules that dictate how to create a
derivation. (Many texts use the word ‘proof’ for what I am calling derivations, and
the branch of logic known as ‘proof theory’ is in fact the mathematical theory of
formal derivations.)

We will use derivations to implement argument in ℒ1 directly, without need-
ing to appeal to semantic notions like truth and satisfaction. However, a good
derivation system for ℒ1 will correspond to its semantics, in the sense that every
acceptable derivation of 𝜙 from Γ will correspond to an entailment of 𝜙 by Γ; and
every entailment will correspond to an acceptable derivation. Proving that the
derivation systems we consider are adequate to the semantics for ℒ1 in this sense
is the main task of chapter 7 and chapter 9.

There are many derivation systems, giving rise to many different kinds of de-
rivation. In this book, we look at two in detail: truth trees or tableaux, in the present
chapter; and natural deduction in chapter 8. We will also briefly consider a third
derivation system in chapter 9, an axiomatic system.

6.2 Trees

Before introducing our derivation system, let me introduce the idea of a tree. In-
formally, a tree is a collection of nodes, organised into branches, and all stemming
from a single root node. (I give the precise definition, and show that our trees are
indeed trees, in chapter 7.) We are only going to be concerned here with trees
whose nodes are ℒ1 sentences. I begin by defining an ℒ1-branch:

Definition 89 (ℒ1-Branch). An ℒ1-branch is a finite ordered sequence of ℒ1 sen-
tences.

An ℒ1-tree will be made up of ℒ1-branches. Ordinarily, we assume that branches
begin at the point of divergence from the parent branch or trunk. But ℒ1-branches
will not: they continue all the way to the root.

110

tableau derivations in ℒ1

𝑃
𝑄

𝑃 ∧ 𝑄
𝑅

𝑃 ∨ 𝑄

¬𝑅 ¬(𝑃 ∧ 𝑄)

𝐵1 = ⟨𝑃 , 𝑄, 𝑃 ∧ 𝑄, 𝑅⟩;
𝐵2 = ⟨𝑃 , 𝑄, 𝑃 ∨ 𝑄, ¬𝑅⟩;
𝐵3 = ⟨𝑃 , 𝑄, 𝑃 ∨ 𝑄, ¬(𝑃 ∧ 𝑄)⟩.

Figure 6.1: An ℒ1-tree and its associated ℒ1-branches

Definition 90 (ℒ1-Tree). An ℒ1-tree T is a set of ℒ1-branches such that there
is some sequence of ℒ1 sentences ⟨𝜙1, …, 𝜙𝑛⟩ that is the initial subsequence of
every branch 𝐵 ∈ T. (This common initial subsequence is called the trunk, and
the initial node common to all branches is called the root.)

ℒ1-branches onℒ1-trees thus overlap one another, by having initial subsequences
in common. Two ℒ1-branches diverge at a position 𝑖 if they share an initial se-
quence up to position 𝑖, but differ at position 𝑖 at least. Because two ℒ1-branches
are identical iff they have the same sentences in the same positions, there cannot
be an ℒ1-tree which diverges and has the same sentences on each branch after
the divergence.

Drawing ℒ1-Trees Where two ℒ1-branches overlap, we do not need to rep-
resent the sentences in the overlap twice, so when we draw an ℒ1-tree, we will
draw any sentences (including the root node) on which all ℒ1-branches overlap
first, then when there is a divergence between ℒ1-branches we will split the ℒ1-
tree, drawing then that subset of ℒ1-branches which agree on one path of the
divergence, and then that subset of ℒ1-branches which agrees on the other path,
and repeat until we have drawn all the nodes of the ℒ1-branches. (Assuming the
ℒ1-tree is finite, every ℒ1-branch terminates in a final node, known as a leaf.)
An ℒ1-tree meeting this definition and represented as suggested is pictured in
Figure 6.1.

It is useful to note that the ℒ1-tree pictured contains another ℒ1-tree as a
proper part. For the ℒ1-branches 𝐶1 = ⟨𝑃 ∨ 𝑄, ¬𝑅⟩ and 𝐶2 = ⟨𝑃 ∨ 𝑄, ¬(𝑃 ∧ 𝑄)⟩
together meet the definition of an ℒ1-tree with root node 𝑃 ∨𝑄. We may formally

111

elements of deductive logic

define this notion.

Definition 91 (Occurs Within). Anℒ1-treeT occurs within anℒ1-treeU iff there
exists some finite sequence 𝜎 such that (i) prefixing every ℒ1-branch inT with 𝜎
yields an ℒ1-branch in U, and (ii) every ℒ1-branch in U which begins with 𝜎 is
the result of prefixing some ℒ1-branch in T with 𝜎.1

I will from now on often drop the qualification ‘ℒ1-tree’ and simply talk of
‘trees’. When it matters for the detail of some argument, I will keep the termino-
logical distinction intact.

6.3 Tableaux

Wenow turn to our promised derivation system. I will informally outline the basic
idea, before giving a formal definition. The next section will give some worked
examples.

The idea of tableau is to show that we can give a mechanical and automatic
test of unsatisfiability of a set of sentences for a language – a test that can be
applied even if we are in total ignorance of the intended semantic interpretation
of the language. That will also be a test for validity of an associated argument, by
Theorem 26. So tableaux is a formal representation in the object language of the
proof technique of reductio.

An ordinary reductio involves some judgement about how to pursue the con-
tradiction required to show the falsity of the reductio assumption. In a formal
derivation, we don’t want to have to involve judgement, since judgement will
depend on understanding the contents of the materials on which we are operat-
ing. The key observation is this: when some ℒ1 sentences are unsatisfiable, that
is because there is no consistent way of assigning 𝑇 and 𝐹 to the sentence let-
ters involved in those sentences to generate a structure in which each of the ini-
tial sentences is true. So if we can mechanically extract from a set of sentences
its consequences for literals, we can then mechanically check whether there is a
structure which makes all the unnegated literals true and negated literals false.

1Alternatively, for each sequence 𝜎𝑖, let Σ𝑖 be the subset of U containing all ℒ1-branches begininng
with 𝜎𝑖. T occurs within U iff there exists some 𝜎𝑗 such that T consists of all final subsequences of
ℒ1-branches occuring in Σ𝑗 obtained by removing the initial subsequence 𝜎𝑗 .

112

tableau derivations in ℒ1

If there is not, that must be because a sentence letter and its negation are both
consequences of assuming the original set to be satisfiable.

Tableaux Formally Defined That is the guiding idea. Here is the formal defini-
tion implementing it.

Definition 92 (Tableaux). A tableau (plural tableaux) is an ℒ1-tree T such that
every sentence 𝜙 on a node of T and any ℒ1-branch 𝐵 ∈ T meets one of the
following conditions:

1. 𝜙 is a member of an initial subsequence of every ℒ1-branch in T; or

2. 𝐵 has of one of these forms:

(a) ⟨𝜌, …, ¬¬𝜙, …, 𝜙, …⟩;

(b) ⟨𝜌, …, (𝜙 ∧ 𝜓), …, 𝜙, 𝜓, …⟩;

(c) ⟨𝜌, …, ¬(𝜙 ∨ 𝜓), …, ¬𝜙, ¬𝜓, …⟩;

(d) ⟨𝜌, …, ¬(𝜙 → 𝜓), …, 𝜙, ¬𝜓, …⟩; or

3. Any pair of ℒ1-branches 𝐵1, 𝐵2 which share an initial subsequence Σ =
⟨𝜌, …, 𝛿, …⟩ on which some sentence 𝛿 appears, have one of these forms
(remember that ‘⌢’ is the concatentation operator on sequences):

(a) 𝐵1 = Σ ⌢⟨𝜙, …⟩, 𝐵2 = Σ ⌢⟨𝜓, …⟩, and 𝛿 = (𝜙 ∨ 𝜓);

(b) 𝐵1 = Σ ⌢⟨¬𝜙, …⟩, 𝐵2 = Σ ⌢⟨¬𝜓, …⟩, and 𝛿 = ¬(𝜙 ∧ 𝜓);

(c) 𝐵1 = Σ ⌢⟨¬𝜙, …⟩, 𝐵2 = Σ ⌢⟨𝜓, …⟩, and 𝛿 = (𝜙 → 𝜓);

(d) 𝐵1 = Σ ⌢⟨𝜙, 𝜓…⟩, 𝐵2 = Σ ⌢⟨¬𝜙, ¬𝜓, …⟩, and 𝛿 = (𝜙 ↔ 𝜓);

(e) 𝐵1 = Σ ⌢⟨𝜙, ¬𝜓, …⟩, 𝐵2 = Σ ⌢⟨¬𝜙, 𝜓, …⟩, and 𝛿 = ¬(𝜙 ↔ 𝜓).

Definition 93 (Generation of a tableau). A finite set of sentences Γ generates an
ℒ1-tableauT iff there is some sequence 𝑆 such that each 𝛾 ∈ Γ occurs once in 𝑆 ,
no sentence not in Γ occurs in 𝑆 , and 𝑆 is a common initial subsequence of every
ℒ1-branch on T (i.e., is the trunk).

113

elements of deductive logic

The same set of sentences can generate many tableaux, by taking the members of
the set in different sequence, and applying the tableaux rules in different order.
(See the two tableaux pictured in Figure 6.4, both generated by {(𝑃 ∧ 𝑄), (¬𝑃 ∨
¬𝑄)}.) And the same tableau can be generated by more than one set of sentences.
Consider this one-branched tableaux: {⟨(𝑃 ∧ 𝑄), 𝑃 , 𝑄⟩}. It could have been gener-
ated from {(𝑃 ∧𝑄)} in accordance with the conjunction rules; or by {(𝑃 ∧𝑄), 𝑃 , 𝑄}
in accordance with the condition on initial subsequences.

Pictorial Representation of Tableaux This precise definition is a bit hard to
grasp, admittedly. It may be easier if we consider the tree structure pictorially.
Then Definition 92 amounts to saying: If we have an finite set of sentences Γ,
then construct an ℒ1-tree generated by Γ such that every node on every branch
subsequent to the shared trunk has been inscribed in accordance with the tableau
rules pictured in Figure 6.2. You may read these rules as follows (in accordance
with Definition 92):

• The list rules in Figures 6.2a, 6.2d, 6.2f and 6.2i say: if a sentence of the form
at the top of the rule occurs somewhere on a branch, then the sentence(s)
at the bottom of the rule occur lower on the branch;

• The branch rules (all other rules in Figure 6.2) say: if a sentence of the form
at the top of the rule occurs somewhere on on two branches which share an
initial subsequence, then the sentence(s) on the left at the bottom of the rule
are the first sentence(s) on one branch after that shared initial subsequence,
and the sentence(s) on the right are the first sentence(s) on the other branch
after that shared initial subsequence.

Here’s the idea. Suppose we begin with the set {𝑃 ∧ 𝑄, 𝑄 → 𝑅, ¬(𝑃 ∧ 𝑅}.
Inscribe this set in a sequence 𝑆 = ⟨𝑃 ∧ 𝑄, 𝑄 → 𝑅, ¬(𝑃 ∧ 𝑅)⟩ – this is not the
only way to do it, but it doesn’t matter which way. The construction can be seen
in Figure 6.3. We begin by inscribing the initial generating sequence in 6.3a. We
apply the conjunction rule from Figure 6.2a in 6.3b, and then apply the conditional
rule from Figure 6.2e in 6.3c.

Finished Tableaux The tableau in Figure 6.3 satisfies Definition 92. But there is
more we could do – for we could apply the negated conditional rule to ¬(𝑃 ∧ 𝑅).

114

tableau derivations in ℒ1

𝜙 ∧ 𝜓
⋮

𝜙
𝜓

(a) Conjunction

¬(𝜙 ∧ 𝜓)
⋮

¬𝜙 ¬𝜓
(b) Negated Conjunction

𝜙 ∨ 𝜓
⋮

𝜙 𝜓
(c) Disjunction

¬(𝜙 ∨ 𝜓)
⋮

¬𝜙
¬𝜓

(d) Negated disjunction

𝜙 → 𝜓
⋮

¬𝜙 𝜓
(e) Conditional

¬(𝜙 → 𝜓)
⋮

𝜙
¬𝜓

(f) Negated Conditional

𝜙 ↔ 𝜓
⋮

𝜙
𝜓

¬𝜙
¬𝜓

(g) Biconditional

¬(𝜙 ↔ 𝜓)
⋮

𝜙
¬𝜓

¬𝜙
𝜓

(h) Negated Biconditional

¬¬𝜙
⋮

𝜙
(i) Double Negation

Figure 6.2: Sentential Tableau Rules

115

elements of deductive logic

𝑃 ∧ 𝑄
𝑄 → (𝑃 ∧ 𝑅)

¬(𝑃 ∧ 𝑅)
(a) The generating
sequence…

𝑃 ∧ 𝑄
𝑄 → (𝑃 ∧ 𝑅)

¬(𝑃 ∧ 𝑅)

𝑃
𝑄

(b) …applying the
conjunction rule…

𝑃 ∧ 𝑄
𝑄 → (𝑃 ∧ 𝑅)

¬(𝑃 ∧ 𝑅)

𝑃
𝑄

¬𝑄 (𝑃 ∧ 𝑅)
(c) …appling the con-
ditional rule…

Figure 6.3: Steps to constructing a Tableau

When there is more that we could do to extend a tableau, we will say that the
tableau is unfinished. Let us make this precise.

Definition 94 (Pruning Tips). A branch 𝐵 results from pruning a branch 𝐵′ iff 𝐵
is a (proper or improper) initial subsequence of 𝐵′. If 𝐵′ = 𝐵 ⌢ 𝑇 , we say that 𝑇
is the tip of 𝐵′ with respect to 𝐵.

Definition 95 (Extends). A tableau T′ extends T iff T is a tableau and it results
from pruning every branch in T′.

Alternatively, a tableau extends another iff it results from that tableau by some
number of applications of the tableau rules to some or all of its branches.

Definition 96 (Finished). A tableauT is finished iff any branch 𝐵′ on any tableau
T′ that extends 𝐵 on T is such that the tip of 𝐵′ with respect to 𝐵 contains only
sentences which are already on 𝐵.

A tableau is finished not when we run out of rules to apply – we never will, since
we can apply them repeatedly and keep extending any branch – but rather when
once we start repeating ourselves with the application of the tableau rules. We
see that repetition when any extension of a tableau, which comes by adding new
sequences as the tips of old branches, ends up with those tips containing only
sentences already appearing on the old branches.

116

tableau derivations in ℒ1

Can Tableaux be Finished? We should reassure ourselves that tableaux can be
finished – after all, it is a requirement on tableaux that they consist of finite
branches, and we don’t (yet) have a proof that we can reach the stage of repeating
ourselves finitely far from the initial subsequence. So let us reassure ourselves in
this respect.

Lemma 65 (Tableau Rules are Complexity-Decreasing)
If a tableau rule can be applied to a sentence 𝜙, any sentences on the tableau licensed
by that rule are of lower complexity than 𝜙.

Proof. Recall that the complexity of a sentence is the sum of the arities of the
connectives occuring within it (Definition 56). We can see by direct inspection
that the tableau rules all involve a decrease in complexity. I show a couple of
representative cases, letting 𝑐𝑜𝑚𝑝(𝜙) stand for the complexity of 𝜙:

• If 𝜙 = ¬¬𝜓 , then 𝑐𝑜𝑚𝑝(𝜙) = 𝑐𝑜𝑚𝑝(¬𝜓) + 1 = 𝑐𝑜𝑚𝑝(𝜓) + 2, and so the
complexity of the sentence licensed by the double negation rule is less than
the complexity of the double negation to which it is applied.

• If 𝜙 = 𝜓 → 𝜒 , then 𝑐𝑜𝑚𝑝(𝜙) = 𝑐𝑜𝑚𝑝(𝜓) + 𝑐𝑜𝑚𝑝(𝜒) + 2. The conditional
rule licenses 𝜒 on one branch, which has complexity 𝑐𝑜𝑚𝑝(𝜒) < 𝑐𝑜𝑚𝑝(𝜓) +
𝑐𝑜𝑚𝑝(𝜒) + 2; and licenses ¬𝜓 on the other branch, which has complexity
𝑐𝑜𝑚𝑝(𝜓)+1. Even if 𝜒 is a sentence letter with complexity zero, 𝑐𝑜𝑚𝑝(¬𝜓) =
𝑐𝑜𝑚𝑝(𝜓) + 1 < 𝑐𝑜𝑚𝑝(𝜓) + 2 ⩽ 𝑐𝑜𝑚𝑝(𝜓) + 𝑐𝑜𝑚𝑝(𝜒) + 2 = 𝑐𝑜𝑚𝑝(𝜙).

• If If 𝜙 = ¬(𝜓 ∧ 𝜒), then 𝑐𝑜𝑚𝑝(𝜙) = 𝑐𝑜𝑚𝑝(𝜓 ∧ 𝜒) + 1 = 𝑐𝑜𝑚𝑝(𝜓) + 𝑐𝑜𝑚𝑝(𝜒) +
3. The negated rule licenses ¬𝜒 on one branch and ¬𝜓 on the other. But
𝑐𝑜𝑚𝑝(¬𝜒) = 𝑐𝑜𝑚𝑝(𝜒)+1 < 𝑐𝑜𝑚𝑝(𝜒)+3 ⩽ 𝑐𝑜𝑚𝑝(𝜓)+𝑐𝑜𝑚𝑝(𝜒)+3 = 𝑐𝑜𝑚𝑝(𝜙).
Parallel reasoning shows that 𝑐𝑜𝑚𝑝(¬𝜓) < 𝑐𝑜𝑚𝑝(𝜙).

We can now show that each finished tableau can be finite and hence a tableau
– roughly because each tableau is generated by a finite generating set, in which
each member has finite complexity, and the rules produce finitely many more
sentences of lower complexity.

Theorem 66 (Finitude of Tableaux)
The smallest tableau generated by a finite set Γ is finite.

117

elements of deductive logic

Proof. (Sketch.) Suppose we begin with a finite generating set Γ, so that every
branch in the finished tableau begins with ⟨𝛾1, …, 𝛾𝑛⟩. Every sentence on every
branch subsequent to this initial subsequence will be the result of finitely many
applications of the tableau rules to some 𝛾𝑖 and its further consequences. (Because
the tableau is the smallest finished tableau, we do not ever apply the rules to any
sentence on a branch more than once.) But each tableau rule results in extending
some branch by only finitely many sentences of strictly lower complexity than the
sentence to which it is applied, by Lemma 65. Since every ℒ1 sentence is of finite
complexity, beginning with some 𝛾𝑖 ends up yielding sentence letter(s) or negated
sentence letter(s) after finitely many applications of the tableau rules, having pro-
duced only finitely many intermediate sentences of decreasing complexity along
the way. And at that point we cannot apply the tableau rules any further without
repetition, since they do not permit us to extend a branch by applying a rule to a
literal. After we have exhaustively applied every tableau rule possible to each sen-
tences in Γ and the resulting sentences, we will have produced only finitely many
sentences, only finitely many times, before we run out of sentences to which we
have not already applied the rules. So any finished branch beginning with Γ is
finite. By König’s Lemma (proved in the next chapter – Theorem 89), an infinite
tableau must have an infinite branch, so any tableau with only finite branches
must be itself finite.

Accordingly, we can be sure that mechanical application of the tableau rules to
a finite generating set will yield a finished finite tree which meets the conditions
for being a finished tableau.

6.4 Closure and Order

Definition 97 (Closed). A branch on a finished tableau is closed if there is a sen-
tence 𝜙 such that both 𝜙 and ¬𝜙 occur on that branch; otherwise it is open. A
tableau is closed iff every branch in it is closed.

Some people prefer to define a closed branch more strictly as one on which a
sentence letter and its negation both appear; it is a fairly immediate though tedi-
ous consequence of the tableau rules that a finished tableau will be closed in the

118

tableau derivations in ℒ1

(𝑃 ∧ 𝑄)
(¬𝑃 ∨ ¬𝑄)

𝑃
𝑄

¬𝑃 ¬𝑄
(a) List then
branch.

(𝑃 ∧ 𝑄)
(¬𝑃 ∨ ¬𝑄)

¬𝑃
𝑃
𝑄

¬𝑄
𝑃
𝑄

(b) Branch
then list.

Figure 6.4: Two Tableaux Generated by the Same Set

stricter sense iff it is closed in our sense, because if 𝜙 and ¬𝜙 occur on a branch,
eventually a sentence letter from 𝜙 and its negation will also occur on an exten-
sion of that branch, and so will already occur on a finished branch. (The converse
is trivial since sentence letters are sentences.)

Order in Tableaux We saw earlier that one and the same set can generate dif-
ferent tableaux, by taking the members of that set in different orders or applying
the list and branch rules in different orders. An example is pictured in Figure 6.4.
Does this ever matter? In particular: is there any case where one finished tableaux
generated by Γ is closed, but another is not? It turns out the answer is no.

Compare the two tableau in Figure 6.4. They differ in which order the list and
branch rules are applied. So the branches (which are just sequences coincident on
their initial subsequence) differ in the order of what is on them. But the set of sen-
tences on each branch is the same, nomatter in what order the rules are applied: in
both tableaux, there is a branch with the members {𝑃 ∧𝑄, ¬(𝑃 ∧𝑄), 𝑃 , 𝑄, ¬𝑃 } and
a branch with the members {𝑃 ∧ 𝑄, ¬(𝑃 ∧ 𝑄), 𝑃 , 𝑄, ¬𝑄}. This is entirely general.

Lemma 67 (Order and Branch Membership)
Each finished tableau generated by a finite set Γ has the same number of branches;
and for each branch on any finished tableau generated by Γ, there is a branch on
every other finished tableau generated by Γ with the same members though in a
possibly different order.

Proof. (Sketch.) A sentence gets to be on a branch of a tableau either by being a
member of the generating set Γ, or by resulting from an application of a rule to

119

elements of deductive logic

an earlier sentence on the branch. If it is a member of the generating set, it is a
member of every branch of every finished tableau generated by Γ, though it may
come in a different position.

Say that Γ𝑖+1 is a tableau development of a finite set Γ𝑖 iff it contains Γ𝑖 as a
subset, and either (i) for some sentence in Γ𝑖 to which a tableau list rule applies,
Γ𝑖+1 results from adding both listed sentences to Γ𝑖, or (ii) for some sentence in
Γ𝑖 to which a tableau branch rule applies, Γ𝑖+1 results from adding just one of the
branched sentences to Γ𝑖. Γ′ is a finished development of Γ iff it is the last member
of a sequence of sets beginningwith Γ, each a development of its predecessor, such
that any development of Γ′ is Γ′ itself. It is crucial to note that two sequences of
developments can terminate in the same finished development.

There is a one-one correspondence between finished branches on a tableau
generated by Γ and developments of Γ. This is immediate by construction. For
each sentence on each branch comes from a previous ‘stage’ of construction of the
branch by the tableau rules, and each stage corresponds to a development of the
previous stage, and so each finished branch corresponds to a finished development
of the initial subsequence common to all branches (the generating set). Since any
tableau generated by Γ has branches in one-one correspondence with the finished
developments of Γ, each such tableau has the same number of branches.

And each branch on such a tableau has a corresponding branch on any other
such tableau, the one corresponding to the same development. If there were some
branch 𝐵 on some finished tableauTgenerated by Γ that shared membership with
no branch onT′, then that branch would have as its members a finished develop-
ment of Γ that was not present as a branch ofT′. Without loss of generality, there
is somemember of 𝐵 that doesn’t appear on any branch onT′. But where did that
sentence come from? Not from the generating set; and not from anything that res-
ults from an application of the rules to the generating set, since the branches are
finished. But there is no other way for a sentence to get into a development, or
onto the corresponding branch; so there is no such sentence.

Since the property of being open (or closed) depends only on the members of
the branch, and not on their order, rearranging the order on the branches pre-
serves openness (and closedness). So if one tableau varies from another just in
the order to which the rules have been applied to sentences on branches, then the

120

tableau derivations in ℒ1

first is closed iff the second is closed.
Theorem 68 (Order Irrelevant)
If any finished tableau generated by Γ closes, every finished tableau generated by Γ
closes.

Proof. The tableau rules are just a way of generating developments of the gen-
erating set and conveniently representing them in tree form. What matters for
openness are the developments, and since we get the same developments on any
finished tableau generated by Γ, by Lemma 67, then any finished tableau gener-
ated by Γ contains an open branch for any open development of Γ, and a closed
branch for any closed development of Γ. So if T is closed, that is because every
development of Γ closes, so any tableau T′ generated by Γ is also closed.

So really, order doesn’t matter: mechanically applying the rules to Σ in any or-
der you wish, to produce a finished tableau, will generate a closed tableau if any
tableau generated by Σ closes. That’s not to say that it doesn’t matter in some
sense. The tree representation of tableaux permits us to write just once any ini-
tial subsequence shared by two or more branches, and only account for the sub-
sequent divergences by branching. If we apply list rules first where possible, then
branch rules, we extend those shared initial subsequences before divergence, and
thus extend the number of sentences we need to write just once. This can be read-
ily seen in Figure 6.4, in which 6.4a contains 6 sentence tokens, while 6.4b con-
tains 8. But the underlying sequences are two 5-membered sequences, each cor-
responding to the one of the two finished developments of {(𝑃 ∧ 𝑄), (𝑃 ∨ 𝑄)}.

6.5 Tableaux Derivations

We are now in a position to describe our derivations.

Definition 98 (Tableau Derivation). A tableau derivation of 𝜙 from Γ is any fin-
ished closed tableau generated by Σ ∪ {¬𝜙}, where Σ is a finite subset of Γ.

We say that 𝜙 is derivable from Γ, written Γ ⊢ 𝜙, iff there is a tableau derivation
of 𝜙 from Γ. We write Γ ⊬ 𝜙 to express that there is no tableau derivation of 𝜙
from Γ.

121

elements of deductive logic

This is a purely formal and syntactic analogue of the notion of entailment – hence
the notation which is reminiscent of the turnstile we use for entailment. Likewise
there are syntactic analogues of tautologies and (un)satisifable sets.

Definition 99 (Theoremhood). We say that 𝜙 is a theorem of the tableau deriva-
tion system iff there is a finished closed tableau generated by {¬𝜙}, and we write
this ⊢ 𝜙.

Definition 100 (Syntactic Consistency). We say that a set of ℒ1 sentences Γ is
syntactically inconsistent iff there is a finished closed tableau generated by some
finite set Σ ⊆ Γ, which we write Γ ⊢. A set of sentences is syntactically consistent
iff it is not inconsistent, i.e., if every finished tableau generated by a finite subset
of Γ contains at least one open branch.

These definitions are formulated to allow 𝜙 to be derivable from an infinite
set Γ iff there is a tableau derivation of 𝜙 from some finite subset of Γ. This is
as it must be, since our tableau are made of ℒ1-branches, each of which is finite
(Definition 89), and so the generating set must be finite. But this means that there
may be more than one derivation of 𝜙 from Γ, each making use of different finite
subsets of Γ ∪ {¬𝜙}. Indeed, note that the definition doesn’t require that we make
use of all members of Γ in the generating set of a tableau derivation even when Γ
is finite.

The Nature of These Definitions In a sense, these definitions don’t need any
further explanation.This tells you the rules for manipulating a set of ℒ1 sentences
in such a way as to construct a successful derivation. What justifies our adopting
these rules? Nothing, as yet: we can treat them as purely formal, like the rules of
chess. The rules of chess tell you what things are permissible at each stage of the
game. So too, the tableau rules tell you which ℒ1-trees are tableaux, given the
rules governing what has to be on the branches of a tableau. When the tableau is
finished, like when a game of chess is finished, one can look back and consider
the aesthetics of the resulting tree or game. But there isn’t much more that can be
said by way of justification for why one constructed it in that way, other than that
in chess one aims to finish in a winning position, and in the ‘game’ of tableaux,

122

tableau derivations in ℒ1

one aims to produce a finished tableau.2

In another sense, of course, we want our derivations to have certain proper-
ties, and we’ve used some suggestive notation. We want every inconsistent set
to be unsatisfiable; and we want every successful derivation to correspond to an
entailment. So we hope that Γ ⊢ 𝜙 iff Γ ⊨ 𝜙. We don’t yet know if our hopes are to
be granted; perhaps we made a mistake in formulating our derivation system. In
chapter 8, when we prove soundness and completeness for this derivation system,
we’ll see that our notation wasn’t presumptuous: it is the case that whenever Γ
entails 𝜙, 𝜙 is also derivable from Γ, and vice versa.

Multiple Derivations Consider the generating set {¬¬(𝑃 ∨ 𝑄), ¬𝑃 , ¬𝑄}. Con-
struction of the corresponding closed tableau is straightforward (left for exercise).
Recalling Definition 98, we need to figure out how to decompose this generating
set into a set of premises and a singleton set of the negated conclusion. There are
three ways to do this:

1. {¬¬(𝑃 ∨𝑄), ¬𝑃 , ¬𝑄} = {¬¬(𝑃 ∨𝑄), ¬𝑃 }∪{¬𝑄}, so that ¬¬(𝑃 ∨𝑄), ¬𝑃 ⊢ 𝑄;

2. {¬¬(𝑃 ∨𝑄), ¬𝑃 , ¬𝑄} = {¬¬(𝑃 ∨𝑄), ¬𝑄}∪{¬𝑃 }, so that ¬¬(𝑃 ∨𝑄), ¬𝑄 ⊢ 𝑃 ;

3. {¬¬(𝑃 ∨𝑄), ¬𝑃 , ¬𝑄} = {¬𝑃 , ¬𝑄}∪{¬¬(𝑃 ∨𝑄)}, so that ¬𝑃 , ¬𝑄 ⊢ ¬(𝑃 ∨𝑄).

All three derivations correspond to the same tableau. The tableau ‘doesn’t care’
which are the premises and conclusions: it simply tests a set of claims for syntactic
inconsistency.

6.6 Tableaux in practice

The official definition of a tableau (Definition 92) is ‘static’: it says that an already
finished tree is a tableau iff it meets certain conditions. But the pictorial present-
ation of the rules suggests a dynamic route to the construction of tableaux. We
begin with a finite generating set Σ. We enumerate Σ in some order – it doesn’t

2In chess, unlike tableaux, playing one permissible move often precludes playing other permissible
moves, and the game finishes before every permissible move has been played. In tableaux, there is
only one permissible move at each node, and a finished tableau is such that every node which could
have a rule apply to it, has had that rule applied to it. So the aesthetic interest in tableaux is restricted
to the order one considers the nodes, but that isn’t a huge amount of artistic freedom.

123

elements of deductive logic

matter which, as we just saw (Theorem 68) – and then successively apply the
tableau rules in some order to create a finished tableau. In this section, I will dis-
cuss some heuristics for the construction of tableaux. The metatheory of tableaux
does not depend on these heuristics, nor on the various decorations on tableaux
that I describe in this section. But if you are ever tasked with producing some ex-
amples of tableaux to demonstrate various claims about tableau derivability, these
heuristics may be useful.

Heuristics in the Construction of Tableaux Begin by inscribing the members of
your generating set, given the enumeration you have made of it – 𝜎1, …. Inscribe
𝜎1 as the root node, and then each 𝜎𝑖 successively below it, all on the trunk with
no branching.

If all the members of Σ were literals – either sentence letters or negated sen-
tence letters – we’re done: no tableau rules apply, and this is already a finished
and boring tableau. But this is a rare case. Suppose then that our tableau starts
out unfinished.

We will bring it closer to being finished by applying a tableaux rule to some 𝜙
on the tableau. This involves adding, to the bottom of each unfinished branch on
which 𝜙 appears, either a sentence 𝜓 that is a constituent of 𝜙, or the negation
of 𝜓 . If the rule applied is a list rule, we will add perhaps one but typically two
sentences to the bottom of each branch; if the rule applied is a branch rule, we
will create new branches by adding two nodes at the bottom of each branch on
which 𝜙 appears and inscribing the appropriate sentences, one in each node.

Once we’ve applied a rule to a sentence, and added the relevant sentences,
we’re done with that sentence. We can informally indicate that we’re done with
a sentence by drawing a box around it.3 But these boxes – as well as the signs to
indicate a closed branch – are useful scaffolding for the construction of a tableau
by a person, not part of the official definition. We can then return to apply the
tableau rules to a sentence at a node not previously dealt with.

We know already that this process finishes after a finite time, even carried
out completely mechanically. But we ought not be completely mechanical. We
should apply list rules before branch rules to save unnecessarily early divergence

3This is the convention adopted by Beall and van Fraassen (2003). Others use check marks to indicate
that a sentence at a node has been ‘dealt with’ (Jeffrey, 2006).

124

tableau derivations in ℒ1

of branches. If you can see that a sentence on your branch has a constituent that
would cause a branch on which it appears to close, you may as well apply the rule
to it and close the branch.The branch may not be finished, but since an unfinished
closed branch stays closed even if finished, you do not need to write out all the
further nodes of a closed branch – if what you care about is tableau derivations,
rather than the construction of finished tableaux for their own sake.

AWorked Example I illustrate this procedure, for an example generating set, in
Figure 6.5. Begin by writing down the generating set {𝑃 ∧ 𝑄, ¬¬(¬𝑃 ∨ ¬𝑄)}, and
take the first sentence of that tableau under this enumeration, 𝑃 ∧ 𝑄. It is a con-
junction; by the rules for conjunctions, we know that if this sentence occurs on the
tableau, both conjuncts can be inscribed, extending the branch, as in Figure 6.5(b).
Next we turn to ¬¬(¬𝑃 ∨ ¬𝑄); we see by the rules for negation, a double negation
permits the inscription of the enclosed sentence without the two negation signs.
So we inscribe ¬𝑃 ∨ ¬𝑄, and box the original sentence, as in Figure 6.5(c).

Now we come to something different. The rules for disjunction are branching
rules: they don’t tell us to inscribe new sentences on the same branch, but to
inscribe one sentence on one branch, and another sentence on another: one for
each disjunct, as in Figure 6.5(d).

Having applied the branching rule and created two branches on this tableau,
we can break the sentences in the tableau down no further: we have the smallest
(possibly negated) constituents of the sentences in question. So this tableau is fin-
ished – anything else licensed by the tableau rules would simply repeat something
occuring in an earlier node. We see, now, if the tableau is closed. And we can see
that every branch – which runs all the way from the root to the leaf node – is
in fact closed. We mark this, unofficially, by inscribing ⊗ beneath the terminal
leaf node of each closed branch in Figure 6.6(a). (Again, this is decoration; really,
a branch is closed iff a sentence and its negation both occur, whether we write
the ⊗ or not.) Since the tableau is finished and closed, this is a tableau deriva-
tion of ¬(¬𝑃 ∨ ¬𝑄) from (𝑃 ∧ 𝑄) – a tableau derivation of one of the De Morgan
equivalences (Theorem 52).

Compare the result to the tableau from Figure 6.6(b); here, the right-most
branch is open, and no unboxed sentences occur earlier on the branch that would
license anything new to potentially close it. So this tableau is finished and open; it

125

elements of deductive logic

𝑃 ∧ 𝑄
¬¬(¬𝑃 ∨ ¬𝑄)

(a) Setting out the set to gener-
ate a tableau.

𝑃 ∧ 𝑄
¬¬(¬𝑃 ∨ ¬𝑄)

𝑃
𝑄

(b) First step: conjunction.

𝑃 ∧ 𝑄
¬¬(¬𝑃 ∨ ¬𝑄)

𝑃
𝑄

¬𝑃 ∨ ¬𝑄
(c) Dealing with double nega-
tion.

𝑃 ∧ 𝑄
¬¬(¬𝑃 ∨ ¬𝑄)

𝑃
𝑄

¬𝑃 ∨ ¬𝑄

¬𝑃 ¬𝑄
(d) Dealing with disjunction.

Figure 6.5: Steps in the construction of a tableau.

is not a derivation of ¬𝑄 from (𝑃 → 𝑄) → 𝑃 , and because any tableau generated
by that set will have the same properties as this one, there is no such derivation:
(𝑃 → 𝑄) → 𝑃 ⊬ ¬𝑄.4

Schematic Tableaux Consider the schematic tableau (schematic, because it in-
volves variables over sentences 𝜙, 𝜓 , etc., rather than particular sentences 𝑃 , 𝑄,
etc.) pictured in Figure 6.7. This demonstrates that 𝜙 → 𝜓, 𝜓 → 𝜒 ⊢ 𝜙 → 𝜒 ,
for any 𝜙, 𝜓, 𝜒 . So any tableau derivation involving sentences of this form – any
uniform substitution of ℒ1 sentences for these variables into this tableau – will
also be closed, and the corresponding derivation exists. Note that I don’t bother
to add new sentences below the occurrence of 𝜒 on the rightmost branch even
though strictly speaking our mechanical tableau construction procedure requires
it: that branch is closed, so every extension of it would remain closed, as adding

4In fact, we can read off from the open branches a structure - the one where all sentence letters occuring
on the branch are assigned 𝑇 and all negated sentence letters are assigned 𝐹 – where the premise is
true and the conclusion false. So when 𝑃 and 𝑄 are both true, the conclusion is false, but the premise
true. This fact will be of significance in the next chapter when we prove completeness.

126

tableau derivations in ℒ1

𝑃 ∧ 𝑄
¬¬(¬𝑃 ∨ ¬𝑄)

𝑃
𝑄

¬𝑃 ∨ ¬𝑄

¬𝑃
⊗

¬𝑄
⊗

(a) Closing the tableau from
Figure 6.5.

(𝑃 → 𝑄) → 𝑃
¬¬𝑄

𝑄

¬(𝑃 → 𝑄)
𝑃

¬𝑄
⊗

𝑃

(b) An open tableau.

Figure 6.6: Open and closed tableaux.

𝜙 → 𝜓
𝜓 → 𝜒

¬(𝜙 → 𝜒)

𝜙
¬𝜒

¬𝜓

¬𝜙
⊗

𝜓
⊗

𝜒
⊗

Figure 6.7: Tableaux for 𝜙 → 𝜓, 𝜓 → 𝜒 ⊢ 𝜙 → 𝜒 .

new sentences to an inconsistent set cannot render it consistent.This is evenmore
sensible if the sentence 𝜙 is itself subject to tableau rules – the schematic tableau
shows we never need to apply any rules to 𝜙, even if some apply, to determine
whether the corresponding derivation exists.

Two Further Examples

1. Consider the generating set {𝑃 → (𝑅 ∧ 𝑄1), (𝑄1 ∨ 𝑃1) → ¬𝑄, ¬¬(𝑃 ∧ 𝑄).
The tableau is shown in Figure 6.8(a). This tableau is closed; hence there is a
derivation corresponding to our original generating set: 𝑃 → (𝑅∧𝑄1), (𝑄1∨
𝑃1) → ¬𝑄, ⊢ ¬(𝑃 ∧ 𝑄) .

127

elements of deductive logic

𝑃 → (𝑅 ∧ 𝑄1)
(𝑄1 ∨ 𝑃1) → ¬𝑄

¬¬(𝑃 ∧ 𝑄)

𝑃 ∧ 𝑄
𝑃
𝑄

¬𝑃
⊗

𝑅 ∧ 𝑄1
𝑅
𝑄1

¬(𝑄1 ∨ 𝑃1)
¬𝑄1
¬𝑃1
⊗

¬𝑄
⊗

(a) Example 1.

(𝑃 ∧ ¬𝑄) → 𝑃1
¬𝑄 ∨ ¬𝑅

¬¬(𝑃 ∧ 𝑄1)

𝑃 ∧ 𝑄1

¬𝑄
𝑃
𝑄1

¬(𝑃 ∧ ¬𝑄)

¬𝑃
⊗

¬¬𝑄
⊗

𝑃1

¬𝑅
𝑃
𝑄1

¬(𝑃 ∧ ¬𝑄)

¬𝑃
⊗

¬¬𝑄
𝑄

𝑃1

(b) Example 2.

Figure 6.8: Tableaux for our further examples.

2. Consider the argument (𝑃 ∧ ¬𝑄) → 𝑃1; ¬𝑄 ∨ ¬𝑅; therefore ¬(𝑃 ∧ 𝑄1). The
tableau is pictured in Figure 6.8(b). As is readily seen, this tableau is open;
there is no successful derivation corresponding to this argument.

Further Reading

Tableaux were introduced in roughly the form discussed here by Smullyan (1968). Other
texts which use various forms of tableaux for sentential logic are Beall and van Fraassen
2003; Bostock 1997; Hodges 2001; Jeffrey 2006; Priest 2008 and Smith 2012.

Exercises

1. Construct a tableau for the generating set {¬¬(𝑃 ∨ 𝑄), ¬𝑃 , ¬𝑄}, mentioned on page
123.

2. Provide tableaux derivations demonstrating the following:

(a) ⊢ ((𝑃 ↔ (𝑃 ∨ 𝑃)) ∧ (𝑃 ↔ (𝑃 ∧ 𝑃)));

(b) ⊢ ((𝑃 ↔ 𝑄) ↔ ((𝑃 → 𝑄) ∧ (¬𝑄 ∨ 𝑃)));

128

tableau derivations in ℒ1

(c) ⊢ ((𝑃 → 𝑄) ↔ ((𝑃 ∧ ¬𝑄) → (𝑃 ∧ ¬𝑃)));

(d) ⊢ (((𝑃 → 𝑄) ∧ ¬𝑄) → ¬𝑃);

(e) ⊢ ((𝑃 → 𝑄) → ((𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅))).

3. Provide tableaux derivations demonstrating the following:

(a) 𝑃 ∨ (𝑄 ∧ 𝑅) ⊢ (𝑃 ∨ 𝑄) ∧ (𝑃 ∨ 𝑅);

(b) (𝑃 ∧ 𝑄) ∨ (𝑃 ∧ 𝑅) ⊢ 𝑃 ∧ (𝑄 ∨ 𝑅);

(c) 𝑃 ⊢ (𝑄 ↔ ¬𝑄) → ¬𝑃 ;

(d) (𝑃 → 𝑄) → 𝑄 ⊢ 𝑃 ∨ 𝑄;

(e) 𝑃 ↔ 𝑄 ⊢ ¬(𝑃 ∧ 𝑄) → (¬𝑃 ∧ ¬𝑄).

4. Construct finished open tableaux demonstrating the following;

(a) ((𝑃 ∧ 𝑅) → 𝑄) ⊬ 𝑅 ∧ (𝑃 → 𝑄);

(b) (𝑃 ∨ 𝑄), 𝑃 ⊬ ¬𝑄;

(c) (𝑃 ↔ 𝑄), (𝑅 → 𝑃) ↔ (𝑄 → 𝑅).

5. Show the remaining cases in the proof of Lemma 65.

6. Prove that if ⊢ 𝜙, then for any 𝜓 , ⊢ 𝜓 → 𝜙.

Answers to selected exercises on page 249.

129

Chapter 7

Tableau Metatheory:
Soundness and Completeness

7.1 Derivations and Semantic Arguments

At the beginning of the previous chapter, we mentioned a number of considera-
tions thatmotivate the development of formal object language derivation systems.
Now that we have an example of such a system for ℒ1, we may reflect on how it
compares to evaluating arguments by directly discussing ℒ1-structures.

One thing to note is that the tableau system can be considerablymore efficient.
Consider this argument:

(𝑃 ∧ (𝑄1 ∧ (𝑄2 ∧ (𝑄3 ∧ (𝑄4 ∧ 𝑄5)))) ⊢ (𝑃 ∨ (𝑅1 ∨ (𝑅2 ∨ (𝑅3 ∨ (𝑅4 ∨ 𝑅5)))).

We can see the tableau derivation demonstrating the correctness of this claim in
Figure 7.1 closes vey quickly. Even if we finish the tableau by applying the con-
junction and negated disjunction rules repeatedly, the whole thing will be fewer
than 30 lines.

It is easy to see – by giving a semantic argument that basically parallels this
tableau derivation – that this argument is a valid entailment. But demonstrating
this via truth tables would involve a truth table of 211 = 2048 rows, which is

130

tableau metatheory

𝑃 ∧ (𝑄1 ∧ (𝑄2 ∧ (𝑄3 ∧ (𝑄4 ∧ 𝑄5))))
¬(𝑃 ∨ (𝑅1 ∨ (𝑅2 ∨ (𝑅3 ∨ (𝑅4 ∨ 𝑅5))))

𝑃
(𝑄1 ∧ (𝑄2 ∧ (𝑄3 ∧ (𝑄4 ∧ 𝑄5)))

¬𝑃
¬(𝑅1 ∨ (𝑅2 ∨ (𝑅3 ∨ (𝑅4 ∨ 𝑅5)))

⊗

Figure 7.1: A brief tableau.

prohibitively unwieldy.The tableau procedure is no less mechanical than the truth
table procedure, but is considerably more efficient in this case.

On the other hand, consider an invalid argument like

(𝑃 ∨ (¬𝑃 ∨ (¬¬𝑃 ∨ (¬¬¬𝑃 ∨ ¬¬¬¬𝑃)))) ⊭ (𝑃 ∧ (¬𝑃 ∧ (¬¬𝑃 ∧ (¬¬¬𝑃 ∧ ¬¬¬¬𝑃)))).

The truth table is two lines, on each of which the premise is true and the con-
clusion false. But the tableau, with its many uses of the disjunction and negated
conjunction rules, branches extensively and is much less convenient to workwith.

This pattern is fairly representative. To show an argument invalid, we need
to demonstrate the existence of just one structure in which the premises are true
and the conclusion false. But checking invalidity by the construction of an attemp-
ted derivation involves the construction of a finished open tableau. In bad cases,
this construction will take a long time to complete. To show an argument valid
involves demonstrating the non-existence of a counterexample structure, which
may require consideration of a great many structures. But a direct derivation of
the conclusion from the premises may be more efficient.

We cannot yet recommend that we use semantic techniques to demonstrate
invalidity, and formal derivations to demonstrate validity. This is because we do
not yet know whether every valid argument has a corresponding derivation; nor
do we know whether every derivation corresponds to a valid argument. It turns
out that every valid argument is derivable, and every correctly constructed deriv-
ation can be associated with a valid argument. Both of these facts will be proved
later in this chapter (section 7.3), when we discuss the soundness and complete-
ness of the tableau derivation system with respect to the semantics of ℒ1.

131

elements of deductive logic

7.2 Transforming Derivations

Sometimes when we have a tableau derivation, we can use purely formal manip-
ulations on the tree to construct other derivations. While trees can and do have
other trees occuring within them (Def. 91), the trees which occur within a given
tableau will always not meet the conditions for being a tableau themselves. But
often simple modifications will enable us to convert one tableau into another,
taking sub-trees of a tableau and re-using them in a new tableau.

Structural Rules We proved some structural rules for ⊨ (section 4.8). We can
show that analogous rules apply to ⊢. (I leave the demonstration of weakening
for an exercise.)

Theorem 69 (⊢ Permutation)
Γ, 𝜓, 𝜒, Δ ⊢ 𝜙 iff Γ, 𝜒, 𝜓, Δ ⊢ 𝜙.

Proof. Immediate consequence of Theorem 68.

Theorem 70 (⊢ Contraction)
Γ, 𝜓, 𝜓 ⊢ 𝜙 iff Γ, 𝜓 ⊢ 𝜙.

Proof. Γ, 𝜓, 𝜓 ⊢ 𝜙 iff there is a finished closed tableau generated by some finite
set Σ ∪ {𝜓, 𝜓, ¬𝜙}, where Σ ⊆ Γ. But any tableau generated by Σ ∪ {𝜓, 𝜓, ¬𝜙}
is generated by Σ ∪ {𝜓, ¬𝜙}, and vice versa, because those generating sets are
identical (Def. 93).

Syntactic Deduction Just as we proved the deduction theorem (Theorem 33)
for the semantic turnstile, we can prove a syntactic deduction theorem for the
syntactic turnstile.

Theorem 71 (Syntactic Deduction)
Γ, 𝜙 ⊢ 𝜓 iff Γ ⊢ 𝜙 → 𝜓 .

Proof. If: Assume Γ ⊢ 𝜙 → 𝜓 . Then there is at least one finite set Σ, a subset of
Γ, such that every finished tableau T which is generated by Σ ∪ {¬(𝜙 → 𝜓)}
is closed. Take one such tableau, where the first tableau rule applied was the
negated conditional rule (Figure 6.2(f)), so that each branch of the tableau be-
gins ⟨𝛾1, … , 𝛾𝑛, ¬(𝜙 → 𝜓), 𝜙, ¬𝜓⟩, where each 𝛾𝑖 ∈ Σ ⊆ Γ. We have already dealt

132

tableau metatheory

with ¬(𝜙 → 𝜓), so the sentences which close every branch on this tableau derive
from Σ or from 𝜙 or ¬𝜓 . Hence, we can construct a closed tableau where every
branch begins ⟨𝛾1, … , 𝛾𝑛, 𝜙, ¬𝜓⟩; hence some finite subset of Γ∪{𝜙, ¬𝜓} generates
a closed tableau, hence Γ, 𝜙 ⊢ 𝜓 .The only interesting case is if the original tableau
had a branch which closed because of the presence of (𝜙 → 𝜓) on it. But then an
application of the branching conditional rule to that node gives one branch with
¬𝜙 occurring on it, which closes since 𝜙 occurs in the trunk; and another branch
with 𝜓 occurring on it, which closes since ¬𝜓 occurs in the trunk.
Only if: We assume that Γ, 𝜙 ⊢ 𝜓 . Then there is a closed finished tableaux that is
generated by a finite subset of Γ ∪ {𝜙, ¬𝜓}. If we modify this tableau by inserting
¬(𝜙 → 𝜓) above 𝜙 on every branch, the modified tree is closed also. Since 𝜙 and
¬𝜓 can come from ¬(𝜙 → 𝜓) (Figure 6.2(f)), this modified tree in fact satisfies
the conditions for being a tableau. Since the original tableau is finished, and the
modified tableau contains the results of applying tableau rules to the only new
node, this is a finished tableau generated by a finite subset of {Γ, ¬(𝜙 → 𝜓)},
which means that Γ ⊢ 𝜙 → 𝜓 .

Now I’ll prove some lemmas preliminary to proving a historically important
theorem, Cut (Theorem 76). All of the following four lemmas involve showing
that some tableau derivations can be converted into other tableau derivations, in
such a way that the syntactic derivability mirrors what is intuitively provable in
virtue of the meaning of the sentences involved.
Lemma 72
Γ ⊢ 𝜙 iff Γ, ¬𝜙 ⊢.

Proof. Γ ⊢ 𝜙 iff there exists a finite set Σ ⊆ Γ such that there is a finished closed
tableau generated by Σ ∪ {¬𝜙}. This holds in turn iff Σ ∪ {¬𝜙} is inconsistent (by
Definition 100).

Lemma 73
Γ, ¬¬𝜙 ⊢ iff Γ, 𝜙 ⊢.

Proof. Only If: If Γ, ¬¬𝜙 ⊢, there is a finished closed tableau generated by Σ ∪
{¬¬𝜙}, where Σ is a finite subset of Γ. Take such a tableau in which the first rule
applied to the generating set was the ¬¬ rule (Figure 6.2(i)). Remove the node con-
taining ¬¬𝜙: the tableauwill still be closed.Why? Either Σ itself already contained

133

elements of deductive logic

some sentence and its negation; or the tableau closed because of some application
of a tableau rule to 𝜙 (the result of applying the double negation rule to ¬¬𝜙); or
the tableau closed because ¬¬𝜙 and its negation occurred on the tableau. In the
first two cases, it is obvious that removing ¬¬𝜙 made no difference to whether the
tableau is closed. So consider the third case. There are two subcases: either ¬¬¬𝜙
occurs on the tableau, or ¬𝜙 does (both are negations of ¬¬𝜙). If the latter, the
tableau is closed because both 𝜙 and ¬𝜙 occur. If the former, since the tableau is
finished, some application of the double negation rule was made to ¬¬¬𝜙 at some
stage, so that ¬𝜙 occurs as well as 𝜙, again closing the relevant branch.
If: If Γ, 𝜙 ⊢, there is a finished closed tableau generated by Σ ∪ {𝜙}. Modify this
tableau by inserting ¬¬𝜙 above the node containing 𝜙. The resulting tree remains
closed; it also satisfies the conditions for being a tableau generated by Σ ∪ {¬¬𝜙},
since 𝜙 comes from an earlier node by application of the double negation rule. So
Γ, ¬¬𝜙 ⊢.

Lemma 74
If Γ ⊢ ¬(𝜙 ∧ 𝜓) then Γ, 𝜙 ⊢ ¬𝜓 .

Proof. If Γ ⊢ ¬(𝜙 ∧ 𝜓), then there is a finite Σ ⊆ Γ such that every finished tableau
generated by Σ ∪ {¬¬(𝜙 ∧ 𝜓)} is closed, and by Lemma 73, so too is every finished
tableau generated by Σ ∪ {𝜙 ∧ 𝜓}. Consider such a tableau in which the first
rule applied was the conjunction rule (Figure 6.2(a)); this is also a finished closed
tableau generated by Σ∪{𝜙∧𝜓, 𝜙, 𝜓}. Remove the node containing 𝜙∧𝜓 , and the
resulting tree remains a closed tableau. Either the tableau is closed because of the
results of applying the tableau rules to 𝜙 and 𝜓 ; or some branch of the tableau is
closed because it contains ¬(𝜙 ∧ 𝜓). But, because the tableau is finished, any such
branch also contains either ¬𝜙 or ¬𝜓 ; either way, it will then close because of the
presence of 𝜙 and 𝜓 earlier. So Γ, 𝜙, 𝜓 ⊢; by Lemma 73, Γ, 𝜙, ¬¬𝜓 ⊢; by Lemma
72, Γ, 𝜙 ⊢ ¬𝜓 .

Lemma 75
If Γ ⊢ (𝜙 ∧ 𝜓), then Γ ⊢ 𝜙 and Γ ⊢ 𝜓 .

Proof. If Γ ⊢ (𝜙∧𝜓), there is a finished closed tableau generated by Σ∪{¬(𝜙∧𝜓)}
where Σ is a finite subset of Γ. Suppose the first rule applied was the negated
conjunction rule (Figure 6.2(b)), giving two branches, both beginning with the

134

tableau metatheory

members of Σ and ¬(𝜙 ∧ 𝜓), but one continuing with ¬𝜙, and the other with ¬𝜓 .
Because the tableau is closed, every branch beginning like those two branches is
closed. Suppose we delete the node containing ¬(𝜙 ∧ 𝜓), but keep ¬𝜙. We will
also therefore prune off the branch with ¬𝜓 occurring on it. But the pruned tree
remains a closed tableau, either because the tableau branches close due to the
application of some tableau rule to ¬𝜙, or because 𝜙 ∧ 𝜓 occurs somewhere on
the tableau; since it is finished, 𝜙 also appears, which closes the branch. The same
goes, mutatis mutandis, for the other pruning. So Γ ⊢ 𝜙 and Γ ⊢ 𝜓 .

Now we are in a position to prove the Cut theorem (or at least one theorem that
commonly goes under that name.)
Theorem 76 (Cut)
If Γ ⊢ 𝜙 and Γ ⊢ ¬𝜙 then Γ ⊢.

Proof. We prove by (strong) induction on the complexity of 𝜙.
Base case: suppose 𝜙 is a sentence letter. Then there is a finite Π1 ⊆ Γ such that
Π1 ∪{¬𝜙} generates a finished closed tableau, and another finite Π2 ⊆ Γ such that
Π2 ∪ {¬¬𝜙} generates a finished closed tableau. Let Σ = Π1 ∪ Π2 – Σ too will be a
finite subset of Γ. And note that adding more sentences to the trunk of a finished
closed tableau will render it unfinished, but it will remain closed – finishing it will
mean adding new leaves and possibly branches to already closed branches. So we
can conclude that there is a finished closed tableau generated by Σ ∪ {¬𝜙}, and a
finished closed tableau generated by Σ ∪ {¬¬𝜙}.

Suppose there is a finished open tableau T generated by Σ alone. Inserting
𝜙 at the base of the trunk of T must render it closed, which means that each
open branch must already have contained ¬𝜙. But since each tableau generated
by Σ ∪ {¬𝜙} is also closed, those branches must already have contained 𝜙 – those
branches cannot in fact have been open. So any tableaux generated by Σ must be
closed, and hence Σ is inconsistent and so are all of its supersets, including Γ.
The induction step: 𝜙 is complex, and the induction hypothesis is that for each less
complex constituent 𝜓 of 𝜙, and for any set Δ such that Δ ⊢ 𝜓 and Δ ⊢ ¬𝜓 ,
then Δ ⊢. I consider two cases explicitly, those where 𝜙 is either a negation or a
conjunction:

1. 𝜙 = ¬𝜓 . We assume Γ ⊢ 𝜙 and Γ ⊢ ¬𝜙, i.e., by Lemma 72, Γ, 𝜙 ⊢ and
Γ, ¬𝜙 ⊢. Because 𝜙 = ¬𝜓 , we also have Γ, ¬𝜓 ⊢ and Γ, ¬¬𝜓 ⊢. By Lemma

135

elements of deductive logic

73, Γ, 𝜓 ⊢. By the induction hypothesis applied to the simpler constituent
𝜓 , Γ ⊢ .

2. 𝜙 = (𝜓 ∧ 𝜒). Again, we assume (a) Γ ⊢ (𝜓 ∧ 𝜒) and (b) Γ ⊢ ¬(𝜓 ∧ 𝜒).
By Lemma 75 applied to (a), we have Γ ⊢ 𝜒 . But if a tableau generated by
Σ ∪ {¬𝜒} closes, so does one generated by Σ ∪ {𝜓, ¬𝜒}, where Σ is a finite
subset of Γ. So Γ, 𝜓 ⊢ 𝜒 . By Lemma 74 applied to (b), we have Γ, 𝜓 ⊢ ¬𝜒 .
By the induction hypothesis Γ, 𝜓 ⊢. But from Lemma 75 applied to (a), we
also have Γ ⊢ 𝜓 ; by Lemma 72, Γ, ¬𝜓 ⊢; and by the induction hypothesis,
Γ ⊢.

3. Other cases left for exercises; you will also need to establish lemmas paral-
lelling Lemmas 74–75 for disjunction, conditional, and biconditional.

What does the Cut Theorem show? Basically this: if you can get a tableau
generated by Γ and ¬𝜙 to close, and you can get a tableau generated by Γ and 𝜙 to
close, then you could already have got a tableau generated by Γ to close: whatever
appeal you made respectively to 𝜙 and ¬𝜙, it was inessential that they appeared
on the trunk. (Either they weren’t used, or they were derivable from something
else already in Γ.) The interest of Cut in derivation systems is in showing that
our derivations can all be ‘direct’ in a sense: if we can derive something with the
assistance of either 𝜙 or ¬𝜙, then we can derive it without detouring through that
assistance.1 Here is another way of making the same point.

Theorem 77 (Cut Again)
If Γ, 𝜙 ⊢ 𝜓 and Γ ⊢ 𝜙 then Γ ⊢ 𝜓 .

Proof. Suppose Γ, 𝜙 ⊢ 𝜓 ; then Γ ∪ {¬𝜓}, 𝜙 ⊢ by Lemma 72 (and the fact that
what flanks the turnstile are sets in which order doesn’t matter). Suppose Γ ⊢ 𝜙;
then Γ, ¬𝜙 ⊢, and Γ ∪ {¬𝜓}, ¬𝜙 ⊢ (by Weakening for ⊢, proved in exercises). By
Theorem 76, Γ ∪ {¬𝜓} ⊢, i.e., Γ ⊢ 𝜓 .

In fact, this theorem is equivalent to Theorem 76. Note the parallel with The-
orem 38.

1This is more important when we consider natural deduction derivations in Chapters 8–9, where the
Cut theorem is used to show that in principle all derivations can have a particularly elegant form
where sentences are first broken down into simpler constituents and then built back up to establish
the desired conclusions.

136

tableau metatheory

Theorem 78 (Transitivity of Derivability)
If Γ ⊢ 𝜙 and 𝜙 ⊢ 𝜓 , then Γ ⊢ 𝜓 .

Proof. Assume 𝜙 ⊢ 𝜓 . Then by weakening Γ, 𝜙 ⊢ 𝜓 . Assume Γ ⊢ 𝜙. Then by
Theorem 77, Γ ⊢ 𝜓 .

This shows is that any two-step derivation has a short-cut: if we can derive 𝜓 from
something we can derive from Γ, well, we could have derived 𝜓 directly.

7.3 Soundness and Completeness

Soundness and completeness are properties that a specified derivation system for
sentences in a given language may or may not have with respect to a particular
semantic interpretation of the language.

Definition 101 (Soundness). A derivation system 𝑃 in a given language is sound
with respect to a semantic interpretation of the language just in case whenever
there is a derivation which establishes Γ ⊢𝑃 𝜙, it is the case that Γ ⊨ 𝜙.

Definition 102 (Completeness). A derivation system 𝑃 in a given language is
complete with respect to a semantic interpretation of the language just in case
whenever it is the case that Γ ⊨ 𝜙, there is a derivation which establishes Γ ⊢𝑃 𝜙.

Obviously we’ve already talked informally about the correspondence between
⊨ and ⊢ we are about to establish, and we designed our derivation system with
one eye on capturing all and only correct entailments in derivations. But those
intentions in the design of these derivation systems could have gone awry, so
it is important to check they have not. So we prove soundness for our tableau
derivation system.

7.4 Soundness of the Tableaux Derivation System

We begin by proving soundness of the tableaux system. We will prove it in this
form: that every syntactic theorem – derivable sentence – is a semantic theorem,
so that if ⊢ 𝜙 then ⊨ 𝜙.2

2Other proofs of soundness for tableau derivation systems can be found in Bostock (1997: 165–7),
Hodges (2001: 119), and Jeffrey (2006: 33–4), among many others.

137

elements of deductive logic

Lemma 79 (Tableau rules preserve satisfiability)
If a tableau is generated by a satisfiable negated sentence, there is at least one branch
on that tableau such that every sentence on that branch is simultaneously satisfiable.
That is: if there is an ℒ1 structure 𝒜 such that J¬𝜙K𝒜 = 𝑇 , there is some branch 𝐵
on a tableau generated by {¬𝜙} such that for all sentences 𝛽 ∈ 𝐵, J𝛽K𝒜 = 𝑇 .

Proof. Weprove the lemma by induction on the length of tableau branch 𝐵. In effect,
we consider a sequence of (mostly unfinished) tableaux, such that each member
extends the preceding member by application of one of the tableau rules.

Base case:Consider the smallest tableauxT generated by {¬𝜙}: the single node
⟨¬𝜙⟩. Since this is the only member of the only branch on T, and by hypothesis
it is assigned 𝑇 by 𝒜 , the lemma holds in this case.

Induction step: Assume that the lemma holds of a branch 𝐵 on tableau T𝑛.
Then we show the lemma holds of a branch 𝐵+ on a tableau T𝑛+1 obtained from
T𝑛 by one additional application of a rule in Figure 6.2 to a sentence in 𝐵 on 𝑇𝑛.
There are three cases.

1. We apply the Double Negation Rule (Figure 6.2(i)). Then some sentence on
𝐵 is of the form ¬¬𝜒 , and we add 𝜒 to the bottom of the branch to get
𝐵+. Since the valuation function induced by the ℒ1 structure 𝒜 is classical,J𝜒K𝒜 = J¬¬𝜒K𝒜 = 𝑇 , as required by the lemma.

2. We apply a non-branching rule to some sentence on 𝐵. Then we add two
sentences to the bottom of 𝐵. If we applied, for example, the Negated Con-
ditional rule (Figure 6.2(f)) to ¬(𝜓 → 𝜒), we added 𝜓 and ¬𝜒 to the bottom
of 𝐵 to get 𝐵+. By the rules on classical valuations, J¬(𝜓 → 𝜒)K𝒜 = 𝑇 iffJ𝜓 → 𝜒K𝒜 = 𝐹 iff J𝜓K𝒜 = 𝑇 and J𝜒K𝒜 = 𝐹 iff J𝜓K𝒜 = 𝑇 and J¬𝜒K𝒜 = 𝑇 ,
as required.

Similarly for the Conjunction rule: J𝜓 ∧ 𝜒K𝒜 = 𝑇 iff J𝜓K𝒜 = 𝑇 and J𝜒K𝒜 =
𝑇 . So the lemma holds of 𝐵+. (The Negated Disjunction rule is left as an
exercise.)

3. We apply a branching rule to some sentence on 𝐵. We then get two new
branches, 𝐵+

1 and 𝐵+
2 , either of which can satisfy the lemma (but we only

need one of them to satisfy it: the lemma only says that there is at least one
branch on a tableau such that all of the sentences on it are assigned 𝑇 by 𝒜).

138

tableau metatheory

For instance, if we apply Disjunction (Figure 6.2(c)) to 𝜓 ∨ 𝜒 , 𝐵+
1 = 𝐵 ∪ {𝜓}

and 𝐵+
2 = 𝐵 ∪ {𝜒}. Since by the rules for classical valuations, J𝜓 ∨ 𝜒K𝒜 = 𝑇

iff either J𝜓K𝒜 = 𝑇 or J𝜒K𝒜 = 𝑇 ; that is, the lemma holds of at least one of
𝐵+

1 or 𝐵+
2 .

Similarly for the Negated Conjunction rule: If ¬(𝜙 ∧ 𝜓) ∈ 𝐵, then ¬𝜙 ∈ 𝐵+
1

and ¬𝜓 ∈ 𝐵+
2 . J¬(𝜙 ∧ 𝜓)K𝒜 = 𝑇 iff J𝜙 ∧ 𝜓K𝒜 = 𝐹 iff J𝜙K𝒜 = 𝐹 or J𝜓K𝒜 = 𝐹

iff J¬𝜙K𝒜 = 𝑇 or J¬𝜓K𝒜 = 𝑇 . (The Conditional rule is left as an exercise.)

That completes the induction.

Lemma 79 shows that the tableau rules preserve satisfiability: any tableau,
finished or otherwise, generated by a satisfiable sentence has at least one branch,
all of whose elements are simultaneously satisfiable. Now we are in a position to
prove soundness.

Theorem 80 (Soundness)
If ⊢ 𝜙 then ⊨ 𝜙.

Proof. Assume that ⊢ 𝜙. Then every finished tableau generated by {¬𝜙} is closed.
Assume for reductio that ⊭ 𝜙. Then there is an ℒ1 structure 𝒜 that makes

¬𝜙 true: J¬𝜙K𝒜 = 𝑇 . By Lemma 79, there is a finished tableau T generated by
¬𝜙, with a branch 𝐵 such that for every 𝛽 ∈ 𝐵, J𝛽K𝒜 = 𝑇 . Since the valuation
function induced by 𝒜 is classical, for any ℒ1 sentence 𝜓 , if 𝜓 ∈ 𝐵, then ¬𝜓 ∉ 𝐵.
(Since for any structure 𝐴, J𝜓K𝒜 ≠ J¬𝜓K𝒜 , and every sentence on 𝐵 is satisfied in
some structure and hence all have the same truth value in that structure.) Hence
𝐵 cannot be closed; hence T is not closed. But T is generated by {¬𝜙}, and our
initial assumption was that any finished tableau generated by {¬𝜙} is closed. So
our reductio hypothesis must be wrong; that is, it must instead be true that ⊨ 𝜙.
But now we’ve shown ⊨ 𝜙 on the assumption that ⊢ 𝜙.

Having proved the theorem, we can easily extend it to the general case of an
arbitrary argument.

Theorem 81 (General Soundness)
If Γ ⊢ 𝜙 then Γ ⊨ 𝜙.

139

elements of deductive logic

Proof. Recall that Γ ⊢ 𝜙 iff there is a finished closed tableau generated by a finite
set Σ ∪ {¬𝜙}, where Σ ⊆ Γ, i.e., iff Σ ⊢ 𝜙.

Assume that Γ ⊢ 𝜙. Then there is a finite set Σ∪{¬𝜙} = {𝜎1, …, 𝜎𝑛, ¬𝜙} which
generates a finished closed tableau. By repeated applications of the Deduction
theorem for tableaux (Theorem 71), ⊢ (𝜎1 → (𝜎2 → (…(𝜎𝑛 → 𝜙)))). By Soundness
(Theorem 80), ⊨ (𝜎1 → (𝜎2 → (…(𝜎𝑛 → 𝜙)))). By repeated applications of the
Deduction theorem for entailment (Theorem 33), Σ ⊨ 𝜙. Since Σ ⊆ Γ, Γ ⊨ 𝜙, by
Weakening for ⊨.3

7.5 Completeness for Tableaux

Theproof of completeness for the tableaux derivation system is relatively straight-
forward. The idea is simple: we show that, if set of sentences Γ is consistent, then
Γ is satisfiable. Recall that (Definition 100) a set of sentences Γ is syntaxctically
consistent if every finished tableau generated by a finite subset of Γ has an open
branch. We will use this fact to show that there is a structure in which all the
members of Γ are true. To do this, we have to show an intermediate lemma, to
the effect that an open branch can be used to determine a structure which makes
each sentence on the branch true.
Lemma 82 (Hintikka’s Lemma)
If 𝐵 is an open branch on a finished open tableau generated by a finite set of ℒ1
sentences Σ, then there is an ℒ1 structure ℬ such that for every sentence 𝛽 on 𝐵,J𝛽Kℬ = 𝑇 .

Proof. Suppose there is an open branch on a finished tableau generated by Σ, 𝐵.
Define an ℒ1 structure ℬ as follows: for every sentence letter 𝑠,

ℬ(𝑠) =
⎧⎪
⎪
⎨
⎪
⎪⎩

𝑇 if 𝑠 occurs in some node on 𝐵;

𝐹 if ¬𝑠 occurs in some node on 𝐵;

𝑇 otherwise.

3Actually (because Weakening as stated only applies to a single sentence) what we need is the stronger
claim (still obviously correct), that for any set Δ, if Σ ⊨ 𝜙, then Σ ∪ Δ ⊨ 𝜙. And we then let Δ = Γ ⧵ Σ,
so that Σ ∪ Δ = Γ, and the result follows.

140

tableau metatheory

Because 𝐵 is an open branch, this successfully defines an ℒ1 structure: no sen-
tence letter and its negation both occur on 𝐵, so this definition assigns one and
only one value to each ℒ1 sentence letter. (It is thus a classical structure, and
induces a classical two-valued valuation of all sentences.)

We show by induction on complexity on sentences that for every sentence 𝛽
on 𝐵, J𝛽Kℬ = 𝑇 . Because this is a tableau construction, the neatest way to think
about the induction on complexity is that the base case comprises those sentences
to which no tableau rule applies, and the induction step involves consideration of
sentences to which tableau rules apply. (Our base ‘case’ thus encompasses literals,
rather than just sentence letters.)
Base case: Suppose 𝛽 occurs on 𝐵, and is a literal: either is a sentence letter or a
negated sentence letter. If the former, by construction, ℬ(𝛽) = 𝑇 , so J𝛽Kℬ = 𝑇 , by
the definition of an ℒ1 structure. If the latter, i.e., 𝛽 = ¬𝑠 for some sentence letter
𝑠, J𝛽Kℬ = 𝑇 iff J𝑠Kℬ = 𝐹 iff ℬ(𝑠) = 𝐹 iff ¬𝑠 occurs on 𝐵; which of course it does.
Induction step: Suppose 𝛽 is a complex sentence, and the lemma holds of its less
complex constituents. There are three cases of interest, corresponding to different
tableau rules: 𝛽 is a double negation; a branch rule can be applied to 𝛽; or a list
rule can be applied to 𝛽.

1. 𝛽 is a double negation, ¬¬𝜙. Then, because this is a finished branch, 𝜙 ap-
pears on 𝛽; because the lemma holds of less complex constituents, J𝜙Kℬ =
𝑇 . So J¬𝜙Kℬ = 𝐹 , and J¬¬𝜙Kℬ = 𝑇 , i.e., J𝛽Kℬ = 𝑇 .

2. 𝛽 can have a list rule applied to it. Let us choose Negated Conditional, so
𝛽 = ¬(𝜙 → 𝜓). Then 𝜙 and ¬𝜓 appear on 𝐵, because the tableau is finished,
and by the induction hypothesis J𝜙Kℬ = J¬𝜓Kℬ = 𝑇 . Therefore by the
rules on the valuation function, J𝜙 → 𝜓Kℬ = 𝐹 , and J¬(𝜙 → 𝜓)Kℬ = 𝑇 ,
i.e., J𝛽Kℬ = 𝑇 , as required. Analogous reasoning applies to the other list
rules.

3. 𝛽 can have a branch rule applied to it. Let 𝛽 = 𝜙 ∨ 𝜓 . Then either 𝜙 or 𝜓
appears on 𝐵; hence either J𝜙Kℬ = 𝑇 or J𝜓Kℬ = 𝑇 , which by the rules
on the valuation function, means that J𝜙 ∨ 𝜓Kℬ = 𝑇 , i.e., J𝛽Kℬ = 𝑇 , as
required. Analogous reasoning applies to the other branch rules.

That suffices to show the lemma.

141

elements of deductive logic

Theorem 83 (Completeness for tautologies)
If ⊨ 𝜙 then ⊢ 𝜙.

Proof. We prove the equivalent contrapositive, namely, that if it is not the case
that 𝜙 is a syntactic theorem (which we write ‘⊬ 𝜙’) then it is not the case that 𝜙
is a semantic theorem (‘⊭ 𝜙’).

Assume that ⊬ 𝜙. Then there is a finished open tableau generated by {¬𝜙}
which has an open branch, 𝐵. Let ℬ be the structure induced by 𝐵, in accordance
with Hintikka’s Lemma (Lemma 82). By that lemma, every sentence occurring on
𝐵 is true in ℬ. Since ¬𝜙 appears on 𝐵, as the root, J¬𝜙Kℬ = 1. Hence there is a
structure which makes 𝜙 false, so ⊭ 𝜙.

Theorem 83 states that every tautology is derivable. This can easily be exten-
ded to arguments with finitely many premises:

Theorem 84 (Completeness for finite arguments)
When Γ is finite, if Γ ⊨ 𝜙 then Γ ⊢ 𝜙.

Proof. If Γ ⊨ 𝜙, and Γ is a finite set {𝛾1, … , 𝛾𝑛}, then (by repeated applications
of the Deduction theorem for entailment (Theorem 33), (𝛾1 → (𝛾2 → (… (𝛾𝑛 →
𝜙) …))) is a tautology. By Theorem 83, ⊢ (𝛾1 → (𝛾2 → (… (𝛾𝑛 → 𝜙) …))). By
repeated applications of the deduction theorem for tableaux (Theorem 71), Γ ⊢
𝜙.

Completeness for Arbitrary Arguments Theorem 84 shows that if an argument
with finitely many premises is valid, there is a tableau derivation of the conclusion
from the premises. But what if there are infinitely many premises in Γ? Could a
claim validly follow from infinitely many premises, and yet there be no tableau
derivation associated with that argument?

We already have enough materials to see that the answer is no.

Theorem 85 (Completeness from Compactness)
For any set of ℒ1 sentences Γ, if Γ ⊨ 𝜙 then Γ ⊢ 𝜙.

Proof. If Γ ⊨ 𝜙, then Γ ∪ {¬𝜙} is unsatisfiable. By Compactness (Theorem 60), if
Γ ∪ {¬𝜙} is unsatisfiable, then for some finite set Σ ⊆ Γ, Σ ∪ {¬𝜙} is unsatisfiable,
i.e., Σ ⊨. Accordingly, Σ ⊨ 𝜙. By Theorem 84, Σ ⊢ 𝜙; and since Σ ⊆ Γ, Γ ⊢ 𝜙.

142

tableau metatheory

We can also prove completeness directly without detouring through compact-
ness. There are no infinite tableaux, so we need to pursue our goal with some sub-
tlety. Rather than consider a tree generated by the entire infinite set Γ, we will
consider a sequence of finite tableaux, each of which is generated by successively
more of Γ, and each of which contains the previous tableau as a proper part.

Theorem 86 (Completeness Directly)
For any set of ℒ1 sentences Γ, if Γ ⊨ 𝜙 then Γ ⊢ 𝜙.

Proof. Let Γ be enumerated 𝛾1, …. LetT0 be a finished tableau generated by {¬𝜙},
and let eachT𝑛 be a finished tableau generated by ⟨𝛾𝑛, …, 𝛾1, ¬𝜙⟩, whereT𝑛 is con-
structed fromT𝑛−1 by adding 𝛾𝑛 as the topmost node, and applying any applicable
tableau rule to it by extending any branch in T𝑛−1 at the leaf, and then finishing
the resulting tableau by extending that leaf to a tip by application of tableau rules.
Note immediately that T𝑖 is a proper part of T𝑖+1; and if any branch is closed in
T𝑖, every branch including it in T𝑖+1 remains closed.

If any T𝑖 closes, then we can apply (84) to conclude that Γ ⊢ 𝜙, since it is
generated by a finite subset of Γ ∪ {¬𝜙}. So let us assume for reductio that every
T𝑖 is open. Since closed branches never reopen, the fact that every tableau in
our sequence is open means that each tableau contains at least one open branch
that is contained within an open branch on all later tableaux in the sequence. By
Hintikka’s Lemma 82, for each T𝑖 there is an ℒ1 structure ℬ𝑖 that makes each
member of {¬𝜙, 𝛾1, …, 𝛾𝑖} true. Because each subsequent tableau retains at least
one branch that is open on its predecessor, we know more specifically that this
ℬ𝑖 can be chosen in such as way that it also makes true 𝛾𝑖+1. And this is true for
every T𝑖, so in fact there is a single structure ℬ such that each T𝑖 has an open
branch all of whose members are true in ℬ.

Since Γ ∪ {¬𝜙} is unsatisfiable, however, at least one 𝛾𝑗 ∈ Γ is false in ℬ. But
𝛾𝑗 occurs in every open branch onT𝑗 , including the branch all of whose members
are true in ℬ. Contradiction: not all of the T𝑖s can be open.

This in effect amounts to another proof of compactness.

Corollary 87 (Compactness from Completeness)
If Γ ⊨ then for some finite subset Σ of Γ, Σ ⊨.

143

elements of deductive logic

Proof. If Γ ⊨, then by Theorem 86, Γ ⊢. By the definition of ‘⊢’ in Definition
98, there is a finished closed tableau generated by some finite subset Σ of Γ. By
Soundness (Theorem 80), Σ is unsatisfiable.

The proofs of Soundness and Completeness together show that whatever we
can show using the semantic notions of satisfaction and truth in a structure, we
could have equally well demonstrated by using the purely mechanical device
of tableau derivation. A few simple rules for manipulating and deriving con-
sequences from a collection of ℒ1 sentences, simple enough that you could teach
them to a child or a computer, nevertheless turn out to be powerful enough to
demonstrate the correctness of every valid argument (and the incorrectness of
every invalid argument) in propositional logic. This might not seem all that sur-
prising – after all, it is fairly transparent to see that the rules governing tableaux
were precisely chosen to have the right semantic properties. (Theywere not plucked
randomly out of thin air.) But look again: isn’t it at least a little remarkable that
notions of truth and meaning can have their practical significance (in sorting ar-
guments into conclusive and non-conclusive) captured entirely by formal rules
which depend only on syntax? This is yet another sense in which our logic is
formal: semantic consequence is extensionally equivalent to formal syntactic de-
rivability.

7.6 Finitude and Decidability

In chapter 5 we considered issues around decidability by considering an effective
procedure for checking validity using truth tables. We can use tableau deriva-
tions in an effective procedure too. In the previous chapter we showed that any
finite set of ℒ1 sentences generates a finished finite tableau (Theorem 66), and the
procedure described in the proof for generating a finished tableau from a finite
generating set is an effective one. So we can certainly produce finished tableau in
a finite time.

Effective Evaluation of Tableaux For a decision procedure, however, we need to
do more than produce a finished tableau – we need to check whether that tableau
is closed. But since every ℒ1 tree is finite, comprised of finitely many branches,

144

tableau metatheory

we can effectively check by exhaustive search whether it is closed. Enumerate the
branches in some order; take the first branch, then for each node 𝜙 on the branch,
check whether each branch descendent 𝜓 to see whether 𝜙 is of the form ¬𝜓 or
𝜓 is of the form ¬𝜙. If all the branches are closed, the tableau is closed. But we
only needed to check finitely many nodes on finitely many branches, so we can
perform this check in finite time.

ATableauDecision Procedure Because a closed tableauwill remain closedwhen
finished, an unfinished closed tableau still shows the generating set to be incon-
sistent.This suggests the following decision procedure for inconsistency of a finite
set Γ of ℒ1 sentences:

1. EnumerateΓ = 𝛾1, …, 𝛾𝑛, and inscribe a tableauT0 which contains ⟨𝛾1, …, 𝛾𝑛⟩
as its only branch.

2. Check whether T0 is closed; if it is, terminate with the report that Γ is
inconsistent; otherwise continue to step 3.

3. If T𝑖 is the last tableau constructed, then apply the tableau rules to 𝛾𝑖+1,
and then to any sentences resulting from 𝛾𝑖+1, and to sentences resulting
from them, etc. (Since each ℒ1 sentence is of finite complexity, this process
involves the generation of only finitely many sentences before the tableau
rules no longer apply. The key is that after this process the only sentences
which have not had tableau rules applied to them are original members of
Γ.)

4. Apply the check for closure toT𝑖+1. If it is closed terminate with the report
that Γ is inconsistent; if it is open, and 𝛾𝑖+2 ∈ Γ, then return to step 3; if is is
open and each 𝛾 ∈ Γ has already had tableau rules applied to it, terminate
with the report that Γ is consistent.

This procedure is a decision procedure for inconsistency: it terminates in a
finite time after the construction of a finished tableau, and reports either open or
closed. Because of the soundness and completeness theorems, this is also another
decision procedure for unsatisfiability of finite sets of ℒ1 sentences (Theorem 62).

145

elements of deductive logic

PositiveDecidability for Infinite Inconsistency We’ve already shown that there
is no decision procedure as to whether or not an infinite set of ℒ1 sentences is
unsatisfiable. Because of soundness and completeness, if the question of consist-
ency of an infinite set of sentences were decidable, we could use that procedure
to construct a decision procedure for satisfiability. So consistency must also be
undecidable.

But, just as earlier (Theorem 63), the question of inconsistency is positively
decidable: if a recursively enumerable set of sentences is inconsistent, we can
describe an effective procedure demonstrating that.The procedure is to beginwith
our enumeration of Γ, 𝛾1, …. At stage 𝑖, take the set Γ𝑖 = {𝛾1, …, 𝛾𝑖} to be the
generating sequence for a tableau T𝛾𝑖 ; apply the procedure described above to
check whether Γ𝑖 is inconsistent. If it is, terminate with the message that Γ is
inconsistent. If not, move on to stage 𝑖+1. It can readily be seen that this procedure
will not terminate if Γ is consistent: the search for inconsistency will continue,
constructing larger and larger open tableaux at each stage.

7.7 Alternate Tableau Systems

Consider these two rules:

¬(𝜙 ∧ 𝜓)

¬𝜙 ∨ ¬𝜓

¬(𝜙 ∨ 𝜓)

¬𝜙 ∧ ¬𝜓

7.8 Trees and Tableaux

In this section some general theorems about trees are proved that are useful for
situating the metatheory of tableaux in its mathematical context.

The Set-theoretic Conception of Tree The more general definition of a tree is
set-theoretic:

Definition 103 (General Tree). A treeT is a pair ⟨𝑁, ⪯⟩ where 𝑁 is a set of items
(‘nodes’), and ⪯ is a partial order on 𝑁 , such that (i) there is a root node 𝑟 ∈ 𝑁
such that for all 𝑛 ∈ 𝑁 , 𝑟 ⪯ 𝑛, and (ii) for each 𝑛 ∈ 𝑁 , the set {𝑥 ∈ 𝑁 ∶ 𝑥 ⪯ 𝑛} is
well-ordered by ⪯ (recall Definition 33).

146

tableau metatheory

The nodes in this definition are otherwise featureless indices, individuated en-
tirely by their place in the tree structure. In ℒ1-trees, a given sentence can occur
more than once on a branch, but a node cannot occur more than once in any tree.
So if we want to show that ℒ1-trees from Definition 90 are trees in the sense of
Definition 103, we will have to come up with some way of associating ℒ1 sen-
tences with nodes. The simplest way is to label the tree. A labelled tree is a tree
together with a total function 𝑓 from 𝑁 into the set of ℒ1 sentences, which as-
signs to each node a sentence as label. The function is into, so a given sentence
might label more than one node.

Theorem 88 (ℒ1-trees are labelled trees)
Each ℒ1-tree corresponds to a labelled tree.

Proof. We want to show that, if we have an ℒ1-tree T, there is a corresponding
treeT′. So we need to show (1) that there is an appropriate set of nodes; (2) there
is a partial order; (3) there is a root node; (4) the branches are well-ordered; and
(5) there is a labelling function.

1. If 𝑋 is a sequence ⟨𝑥1, …, 𝑥𝑛, …⟩, define an index set 𝑋𝑛 as follows: 𝑋𝑛 =
{⟨𝑥𝑖, 𝑖⟩ ∶ 𝑥𝑖 ∈ 𝑋}. This transforms an ordered sequence of items into an
unordered set of item, position pairs.

Recalling that an ℒ1-branch is just a sequence of ℒ1 sentences, and an ℒ1-
tree is just a set of ℒ1-branches, there will be an index set for each ℒ1-
branch in T. The union of all index sets for ℒ1-branches in our ℒ1-tree T
will be the set 𝑁 of nodes for our desired tree T′. Each ⟨sentence, index⟩
pair occuring on some branch is included. Because sets with the samemem-
bers are identical, and when branches overlap they have the same sentences
at the same position, then we do not have redundancy: though every ℒ1-
branch shares the root node, the pair ⟨𝜌, 1⟩ will be added to the union of all
index sets ‘several times’, but of course we end up with just one member
of the set for that shared node. Since we have said nothing about what the
set of nodes is to consist in, it is perfectly acceptable for this complex set of
pairs to be the set of nodes for T′.

2. We need to define the partial order ⪯ on 𝑁 . Since each member of 𝑁 is of
the form ⟨𝜙, 𝑖⟩, it suffices to define it on pairs of this form. We will say that

147

elements of deductive logic

⟨𝜙, 𝑖⟩ ⪯ ⟨𝜓, 𝑛⟩ iff there is an ℒ1-branch on T that includes 𝜙 at position 𝑖
and 𝜓 at position 𝑗, and 𝑖 ≤ 𝑗. So defined, ⪯ is a partial order (Definition 32):
it is transitive (since if 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑧, then all of 𝑥, 𝑦, 𝑧 fall on the same
ℒ1-branch, and the transitivity of ≤ ensures that 𝑥 ⪯ 𝑧); it is reflexive (since
≤ is reflexive; and it is antisymmetric (since if 𝑥 ⪯ 𝑦 and 𝑦 ⪯ 𝑥, then 𝑥 and
𝑦 fall on the same ℒ1-branch and 𝑖 ≤ 𝑗 and 𝑗 ≤ 𝑖, which entails that 𝑖 = 𝑗,
and since there is only one sentence at each position in a branch, 𝑥 = 𝑦).

3. Since every ℒ1-branch on T shares a common initial subsequence, each
begins with some sentence 𝜙. So ⟨𝜙, 1⟩ is the root node of T′.

4. Recall that a well-ordering is a total order on a set such that every non-
empty subset has a least member – there are no infinite descending chains.
We need to show that ⪯, as defined, when restricted to sets of the form
{𝑥 ∈ 𝑁 ∶ 𝑥 ⪯ 𝑛} for some 𝑛 ∈ 𝑁 , is a well-ordering. Since 𝑥 ⪯ 𝑦 only if 𝑥
and 𝑦 fall on the same ℒ1-branch, the sets of this form are index sets of ini-
tial subsequences of ℒ1-branches. Restricted to these intial subsequences, ⪯
is total because ≤ is total; and since the initial subsequences are sequences,
they can be mapped one-one onto subsets of ℕ, and the least number prin-
ciple then entails that ≤ is a well-ordering on these initial subsequences, so
that ⪯ is a well-ordering on the corresponding index sets.

5. The labelling function is: 𝑓(⟨𝜙, 𝑖⟩) = 𝜙. This simply labels a node with its
first element, which is the sentence from the original ℒ1-tree.

Infinite Trees The set-theoretic account of trees permits trees with infinitely
many nodes. Such a tree might be infinitely tall, with an infinite branch descend-
ing from the root; or it might be infinitely wide, with infinitely many branches.
But if there are only finitely many branches from each node, an infinite tree must
have an infinite branch.
Lemma 89 (König’s Lemma for Trees)
Every finitely-branching tree containing infinitely many sentences has an infinite
branch.

Proof. (See also Beall and van Fraassen (2003: 152).) Let us say that 𝜓 is a descend-
ent of 𝜙 iff there is a branch on which both occur and where 𝜓 occurs after 𝜙 in

148

tableau metatheory

the sequence. If a tree contains infinitely many sentences, the root node 𝜈0 must
have infinitely many descendents.

Suppose a node 𝜈𝑛 on an infinite tree has infinitely many descendents. Then
there is a node 𝜈𝑛+1 immediately posterior to and on the same branch as 𝜈𝑛 with
infinitely many descendents. For if every branch 𝐵 on which 𝜈𝑛 occurs is such that
the next item in the sequence after 𝜈𝑛 has only finitely many descendents, then
every branch on which 𝜈𝑛 occurs must be finite. Since 𝜈𝑛 has infinitely many des-
cendents, there must be infinitely many branches 𝐵𝑖 agreeing with 𝐵 up through
𝜈𝑛 but disagreeing on the next item in the sequence: 𝐵𝑖 = ⟨𝜌, …, 𝜈𝑛, 𝜙𝑖, …, 𝜆⟩. But
this cannot be a tree, since for any finitely branching tree, there are at most finitely
many distinct branches agreeing with 𝐵 up through 𝜈𝑛. So at least one immediate
descendent of 𝜈𝑛 must have infinitely many descendents; pick one and call it 𝜈𝑛+1.

We have shown that the root 𝜈0 has infinitely many descendents, and that if a
node 𝜈𝑛 has infinitely many descendents, then there is an immediate descendent
𝜈𝑛+1 which also has infinitely many descendents.The sequence ⟨𝜈0, …, 𝜈𝑛, …⟩ is an
infinite sequence of ℒ1 sentences, each of which follows from previous members
of the sequence by the tree rules. So it is an infinite tree branch.

We used this lemma in the proof of the finitude of tableaux (Theorem 66), where
the finitude of finished ℒ1 tableau branches was used to establish the finitude of
ℒ1 tableaux.

Further Reading

Smullyan (1968), Beall and van Fraassen (2003), Hodges (2001), Bostock (1997: ch. 4) and
Jeffrey (2006) all discuss the metatheory of tableaux systems in ways that may be illumin-
ating to consider in comparison to the results and discussion offered above.

Exercises

1. Show Weakening for ⊢: that if Γ ⊢ 𝜙 then Γ ∪ Δ ⊢ 𝜙 for any Δ.

2. Prove that Theorem 77 entails Theorem 76, thus showing that those two theorems
are equivalent.

3. Assuming the soundness theorem, prove that if Γ ⊨ 𝜙 is an incorrect sequent then
Γ ⊢ 𝜙 is also incorrect.

149

elements of deductive logic

4. Consider an operator ⊙ defined by the following tableau rules:

(𝜙 ⊙ 𝜓)

(𝜙 ⊙ 𝜙)
(𝜓 ⊙ 𝜓)

((𝜙 ⊙ 𝜓) ⊙ (𝜙 ⊙ 𝜓))

𝜙 𝜓

(a) Which truth-function does ⊙ express? (I.e., which truth function is character-
ised by these tableau rules?)

(b) If these rules were the only rules for a system of tableau, under what condi-
tions should a branch be counted as closed?

(c) Are these tableau rules sound?

5. A fellow student argues as follows:

If the derivation system just introduced is complete, then whenever
Γ ⊨ 𝜙, there is a derivation that shows Γ ⊢ 𝜙. But proofs are finite; so if
Γ is infinite, there is no proof that Γ ⊢ 𝜙 – so the system is not complete!

How should you respond?

Answers to selected exercises on page 251.

150

Chapter 8

Natural Deduction Derivations
in ℒ1; Soundness and
Completeness

Inferentialism A less sceptical take on any mooted correspondence between
formal arguments which follow good rules and valid arguments is that the formal
rules do in fact provide meanings for the expressions of the language. Rather than
simply setting down the meanings of expressions by stipulation, or despairing
about how there could be any facts about meaning at all, we might think meaning
emerges from the underlying syntax.

This inferentialism……XXX

8.1 Natural Deduction Proofs

Proof In the last chapter, we saw that using truth tables was a decidable method
for evaluating sequents, but it is cumbersome and inelegant. Here, we consider
elegant and powerful proof systems for sentential logic.

A proof in the informal sense is something which establishes the truth of some
claim. Our proofs are structures made out of sentences of ℒ1, with the following

151

elements of deductive logic

desirable properties:

• Each step in the proof involves an obviously correct rule.

• Whenever the earlier sentences are true, the later sentences will be also;
so the terminal conclusion of a proof should always be true whenever the
assumptions are.

• All the logical truths should have a proof.

In this chapter, we’ll see that there do exist proofs that meet these conditions
for ℒ1; and thus that we can establish various claims in ℒ1 without needing to
consider all the ℒ1-structures.

Natural Deduction: Assumptions and ⊢ The first proof system is the natural
deduction system introduced in The Logic Manual.

In this system, every proof begins with assumptions. Any sentence may be an
assumption. A proof terminates with a conclusion.

Whenever there is a correctly constructed proof that 𝜙, on the basis of as-
sumptions 𝛾1, … , 𝛾𝑛, we write this syntactic sequent:

𝛾1, … , 𝛾𝑛 ⊢ 𝜙.

This is to be read ‘𝜙 is provable from 𝛾1, … , 𝛾𝑛’, or ‘𝛾1, … , 𝛾𝑛 syntactically entail(s)
𝜙’. If 𝜙 can be proved with no assumptions at all, we write ⊢ 𝜙; in that case, we
say that 𝜙 is a theorem.

Any sentence 𝜙 may be assumed; applying no rules at all, the proof there-
fore terminates with 𝜙. So 𝜙 ⊢ 𝜙; not perhaps the most interesting result, but
nevertheless intuitively correct.

Natural Deduction Rules As any assumption is a proof on its own, our rules
are rules for constructing new proofs from existing proofs, often (but not always)
retaining the assumptions of the existing proofs.

Some rules permit an assumption to be discharged. Suppose you have a proof
of 𝜙 on the basis of assumption 𝛾 . You thus show that if you had a proof of 𝛾 ,
then you could construct a proof of 𝜙; and this on its own is a proof of 𝛾 → 𝜙,

152

natural deduction in ℒ1

[𝛾]⋅⋅⋅
𝜙

→Intro
𝛾 → 𝜙

𝛾 → 𝜙 𝛾
→Elim

𝜙

[𝜙]⋅⋅⋅𝜓

[𝜙]⋅⋅⋅¬𝜓
¬Intro

¬𝜙

[¬𝜙]⋅⋅⋅𝜓

[¬𝜙]⋅⋅⋅¬𝜓
¬Elim

𝜙

Table 8.1: Natural Deduction Rules for ℒ¬,→

whether or not 𝛾 is actually true. The assumption 𝛾 has been discharged. Note that
𝛾 needn’t be used, or even occur in the proof, to be discharged: the rules entitle
one to discharge every occurence of a sentence – even if there are none!

We can consider two types of obvious rules: those which construct a proof of
a new sentence of less complexity than sentence proved by the existing proof(s),
and those which construct a proof of a sentence of increased complexity. We call
the first type of rule elimination rules, and the second type introduction rules.

Natural Deduction Rules for ℒ¬,→ Let us consider for themoment the fragment
of ℒ1 involving only ¬ and →, ℒ¬,→. We have in this fragment four rules, laid out
in Table 8.1, elimination rules and introduction rules for each connective. I write
[𝛾] to show that the rule permits the assumption 𝛾 to be discharged. Call this
system of rules, plus the rules about assumptions, 𝑁𝐷¬,→.

Deduction Theorem for 𝑁𝐷¬,→

Theorem 90 (Deduction Theorem)
Γ ⊢ 𝜓 → 𝜙 iff Γ, 𝜓 ⊢ 𝜙.

Suppose Γ, 𝜓 ⊢ 𝜙. Then we can apply →Intro as follows:

Γ, [𝜓]⋅⋅⋅
𝜙

→Intro
𝜓 → 𝜙

153

elements of deductive logic

Therefore, Γ ⊢ 𝜓 → 𝜙. Similarly, suppose Γ ⊢ 𝜓 → 𝜙:

Γ⋅⋅⋅
𝜓 → 𝜙 𝜓

→Elim
𝜙

That is, Γ, 𝜓 ⊢ 𝜙.

¬Elim can be replaced by ¬¬Elim Consider the rule:

¬¬𝜙
¬¬Elim

𝜙

This rule can obviously be derived from our rules: the correctness of the syntactic
sequent ¬¬𝜙 ⊢ 𝜙 is demonstrated by this proof:

¬¬𝜙 [¬𝜙]
¬Elim

𝜙

But with ¬¬Elim we can show the rule ¬Elim is redundant, using ¬Intro:

[¬𝜙]⋅⋅⋅𝜓

[¬𝜙]⋅⋅⋅¬𝜓
¬Intro

¬¬𝜙
¬¬Elim

𝜙

8.2 A Little More Proof Theory

‘Proof theory’ is the mathematical examination of proofs conceived of as math-
ematical objects in their own right. In this section we explore a little of what this
involves. We’ve already seen one some proof theory in section 1 of this chapter,
where we showed the redundancy of the proof rule ¬Elim in the presence of
¬¬Elim, and vice versa.

The Language ℒ𝐷𝑃 Consider the language ℒ𝐷𝑃 which contains all sentence
letters, and all sentences involving only the connectives ∧, →, and also contains a

154

natural deduction in ℒ1

[𝜙]⋅⋅⋅𝜓

[𝜙]⋅⋅⋅
𝜓 → ⊥

¬Intro𝐷𝑃𝜙 → ⊥

[𝜙 → ⊥]⋅⋅⋅𝜓

[𝜙 → ⊥]⋅⋅⋅
𝜓 → ⊥

¬Elim𝐷𝑃𝜙

Table 8.2: Negation rules in ℒ𝐷𝑃

sentential constant ⊥. A sentential constant is syntactically like a sentence letter,
but (unlike sentence letters) it gets a constant interpretation in every structure –
in this case, for any structure 𝒜 , |⊥|𝒜 = 𝐹 . The atomic sentences of ℒ𝐷𝑃 thus
include ⊥ and all sentence letters; complex sentences are then built up in the usual
way.

Translating between ℒ𝐷𝑃 and ℒ1 It’s clear that the ℒ1 sentence ‘¬𝜙’ expresses
the same truth function as the ℒ𝐷𝑃 sentence ‘𝜙 → ⊥’ (consideration of a truth
table will suffice to show this). Using this translation, we can give ℒ𝐷𝑃 -versions
of the natural deduction rules for ¬ in ℒ1, as seen in Table 8.2.

With the negation rules as specified, we can prove this:

Theorem 91 (Alternative Negation Rules for ℒ𝐷𝑃)
Π is a proof of some sequent in the language ℒ𝐷𝑃 that makes a use 𝑢 of one of the
Table 8.2 versions of Halbach’s rules iff there is another proof Π′ of the same sequent
which replaces that use 𝑢 by a construction which only uses this rule for ¬ (together
with the rules for →):

[𝜙 → ⊥]⋅⋅⋅
⊥

⊥C𝜙

Proof. If: There are two cases. Case 1: Suppose Π is a proof that makes use of
¬Intro𝐷𝑃 . Then we can replace that use by the following construction, which

155

elements of deductive logic

yields another proof Π′ which uses only the rules for →:

[𝜙]⋅⋅⋅𝜓

[𝜙]⋅⋅⋅
𝜓 → ⊥

→ Elim
⊥

→ Intro
𝜙 → ⊥

Case 2: Suppose Π is a proof that makes use of ¬Elim𝐷𝑃 . Then we can replace that
use by the following construction, which yields another proof Π′ which uses only
the new rule ⊥C and the rule →Elim:

[𝜙 → ⊥]⋅⋅⋅𝜓

[𝜙 → ⊥]⋅⋅⋅
𝜓 → ⊥

→ Elim
⊥

⊥C𝜙

Only if : Suppose Π is a proof which makes use of the new rule ⊥C. Then we
may replace that use by the following construction which uses only the old rules
for → and ¬Elim𝐷𝑃 .

[𝜙 → ⊥]⋅⋅⋅
⊥

[⊥]
→ Intro

⊥ → ⊥
¬Elim𝐷𝑃𝜙

Reducing Complexity of Proofs Return now to the ℒ1-fragment containing
only →, ∧, ¬. Let the (degree of) complication of a sentence be the number of con-
nectives occurring in the sentence (a sentence letter has degree of complication
0, if 𝜙 and 𝜓 have degree of complication 𝑚 and 𝑛 respectively, then (𝜙 ∧ 𝜓) has
degree of complication 𝑚 + 𝑛 + 1, etc.) We can now show:

Theorem 92 (Reducing Complexity of Proofs)
If Π is a proof in Halbach’s system for ℒ→,∧,¬ that Γ ⊢ 𝜙, in which the most com-
plicated sentence resulting from an application of ¬Elim is 𝜓 , then (when 𝜓 is not
atomic) there is a distinct proof Π′ of Γ ⊢ 𝜙 in which the results of all applications of

156

natural deduction in ℒ1

¬Elim are less complicated than 𝜓 . Indeed, there exists a proof Π† of that sequent,
in which the result of every application of ¬Elim is atomic.

Proof. Suppose that the most complicated result of ¬Elim in Π is 𝜓 . So part of Π
looks like this:

Γ [¬𝜓]⋅⋅⋅𝜒

Δ [¬𝜓]⋅⋅⋅¬𝜒
¬Elim

𝜓

𝜓 is complicated (not a sentence letter), so given there are three connectives in
this language, there are three cases:

1. 𝜓 = ¬𝜋. In which case replace that part of the proof sketched above with
this one:

Γ
[𝜋] [¬𝜋]

¬Intro
¬¬𝜋⋅⋅⋅𝜒

Δ
[𝜋] [¬𝜋]

¬Intro
¬¬𝜋⋅⋅⋅¬𝜒

¬Intro
¬𝜋

2. 𝜓 = 𝜋 ∧ 𝜉. Proof left for Exercise.

3. 𝜓 = 𝜋 → 𝜉. In which case replace that part of the proof sketched above
with this one:

Γ

[𝜋 → 𝜉] [𝜋]
→ Elim

𝜉 [¬𝜉]
¬Intro

¬(𝜋 → 𝜉)⋅⋅⋅𝜒

Δ

[𝜋 → 𝜉] [𝜋]
→ Elim

𝜉 [¬𝜉]
¬Intro

¬(𝜋 → 𝜉)⋅⋅⋅¬𝜒
¬Elim

𝜉
→ Intro

𝜋 → 𝜉

Notice that applying these replacements repeatedly to uses of ¬Elim in a proof
will eventually replace all complex sentences in uses of ¬Elim by simpler ones. All

157

elements of deductive logic

sentences of ℒ1 are finitely complex, and all proofs involve only finitely many
applications of a given rule, this process terminates after a finite time with only
atomic sentences as the conclusions of uses of ¬Elim.

It is clear that we can put the results of Theorems 91 and 92 together, to estab-
lish that, in the system which involves the normal rules for ∧ and →, and has ⊥C

as its only other rule, if Π is a proof in the system 𝐷𝑃 that Γ ⊢𝐷𝑃 𝜙, then there
exists a proof of that sequent, Π†, in which the result of any application of ⊥C is
atomic. (I leave the proof as a problem.)

Further Reading

Natural deduction was invented by Gentzen (1969), the founder of proof theory. The proof
theory of natural deduction systems discussed in this chapter is based on Prawitz (2006: 39–
41); he uses Theorems 91 and 92, and the last problem, and proves the famous ‘cut elim-
ination’ theorem for natural deduction, unfortunately a topic beyond the scope of these
notes.

The axiom system here was developed by Jan Łukasiewicz, simplifying Frege’s system:
see Borkowski and Słupecki (1958: p. 25). (The Polish notation used in this article is initially
confusing, but has the wonderful feature that it is entirely unambiguous without the use of
parentheses.) See also Bostock (1997: ch. 5–6); he gives a direct proof of the completeness
of a system based on Ł at pp. 217–9.

Exercises

1. (a) Devise introduction and elimination rules for a natural deduction system for
the language ℒ↑ with the Sheffer Stroke as its only connective, being sure to
fully justify your answer. How many such rules do we need?

(b) Suppose in a system of natural deduction 𝑁𝐷 for ℒ1 we replaced the ¬Elim
rule by the following, ex falso quodlibet:

𝜓 ¬𝜓
EFQ

𝜙

i. Is the resulting system 𝑁𝐷′ equivalent (in terms of what can be proved)
to the original system? (Justify your answer; it is somewhat difficult to
prove conclusively, but give some reasons for your view.)

158

natural deduction in ℒ1

ii. What happens if we, in addition, replace ¬Intro by the following rule,
tertium non datur, yielding the system 𝑁𝐷″?

[𝜙]⋅⋅⋅𝜓

[¬𝜙]⋅⋅⋅𝜓
TND

𝜓

(c) Consider the natural deduction system 𝑁𝐷→,∨ for the language ℒ→,∨ in which
the only connectives are →, ∨. Suppose we introduce to the language the zero-
place sentential constant ⊥, and add the following rules to the proof system,
yielding 𝑁𝐷→,∨,⊥:

⊥
⊥

𝜙

[𝜙 → ⊥]⋅⋅⋅
⊥

C
𝜙

i. Give a natural translation between ℒ→,∨,⊥ and ℒ→,∨,¬.

ii. Using that translation, can you show that the proof system 𝑁𝐷→,∨,⊥ just
introduced is equivalent to the natural deduction system 𝑁𝐷→,∨,¬ in-
volving just Halbach’s rules for →, ∨ and ¬?

(d) Amystery connective ⊕ has the following introduction and elimination rules:

𝜙 ⊕ 𝜓
⊕Elim

𝜓

𝜙
⊕Intro

𝜙 ⊕ 𝜓

i. Show that no system containing a connective defined by these rules is
sound.

ii. What limits should be placed on the ability of introduction and elimin-
ation rules to define or characterise the inferential role of a connective
in light on this result? (This question invites discussion, not a definitive
answer. You may wish to consult Prior (1960).)

(e) Relatedly to 1.(d).ii:

i. Check, by means of truth tables, that (((𝑃 → 𝑄) → 𝑃) → 𝑃) is a tauto-
logy.

ii. Give a natural deduction proof of (((𝑃 → 𝑄) → 𝑃) → 𝑃).

159

elements of deductive logic

iii. Every valid argument involving only sentences containing∧ as their only
connective can be proved valid using just the rules ∧Intro and ∧Elim. In
that sense, ∧ is completely characterised by its introduction and elimin-
ation rules. What do the previous results show about → in this connec-
tion?

2. Prove the omitted case (where the complex sentence is a conjunction) in the proof
of Theorem 92.

3. Show that, in the system which involves the normal rules for ∧ and →, and has ⊥C

as its only other rule, if Π is a proof in the system 𝐷𝑃 that Γ ⊢𝐷𝑃 𝜙, then there exists
a proof of that sequent, Π†, in which the result of any application of ⊥C is atomic.

160

Chapter 9

Natural Deduction
Metatheory: Soundness and
Completeness

9.1 Soundness for Natural Deduction

Soundness and Completeness A proof system 𝑃 in a given language is sound
with respect to a semantic interpretation of the language just in case whenever
there is a proof which establishes Γ ⊢𝑃 𝜙, it is the case that Γ ⊨ 𝜙.

A proof system 𝑃 in a given language is complete with respect to a semantic
interpretation of the language just in case whenever it is the case that Γ ⊨ 𝜙, there
is a proof which establishes Γ ⊢𝑃 𝜙.

In this section and the next, we will show that the natural deduction system
𝑁𝐷¬,→ just introduced is sound and complete for the standard semantics of ℒ¬,→.
Given the expressive adequacy of ℒ¬,→, that also shows the completeness of the
natural deduction system with respect to ℒ1; to show the soundness of that sys-
tem, we also need to show that the other rules of the system 𝑁𝐷 are also sound.

Soundness of 𝑁𝐷¬,→

161

elements of deductive logic

Theorem 93
The Rules of 𝑁𝐷¬,→ are sound.

Proof. Suppose that Γ ⊢ 𝜙. We show by induction on the complexity of proofs
that Γ ⊨ 𝜙.

Base case: The least complex proof is a single node, 𝜙, establishing 𝜙 ⊢ 𝜙. In
this case, any structure which assigns 𝑇 to 𝜙 clearly assigns 𝑇 to 𝜙, so 𝜙 ⊨ 𝜙, i.e.,
Γ ⊨ 𝜙.

Induction step: Suppose Γ ⊢ 𝜙, established by applying one of the natural
deduction rules to some previously obtained proofs to obtain a proof of 𝜙. There
are four cases:

→Elim From a proof of 𝜓 on assumptions Δ, and a proof of 𝜓 → 𝜙 on assump-
tions Θ, obtain a proof of 𝜙 on assumption Γ = Δ ∪ Θ. By the induction
hypothesis, Δ ⊨ 𝜓 and Θ ⊨ 𝜓 → 𝜙, so every structure which makes all of
the members of Γ true, makes 𝜓 and 𝜓 → 𝜙 true, and therefore 𝜙 must be
true in all such structures, showing that Γ ⊨ 𝜙.

→Intro From a proof of 𝜙 on assumptions Γ ∪ {𝜓}, apply →Intro to obtain a
proof of 𝜓 → 𝜙 on assumption Γ (discharging 𝜓). But since by hypothesis
Γ, 𝜓 ⊨ 𝜙, by the deduction theorem, Γ ⊨ 𝜓 → 𝜙.

¬Elim From a proof of 𝜓 on assumptions Γ, ¬𝜙 and a proof of ¬𝜓 on assumptions
Γ, ¬𝜙, obtain a proof of 𝜙 on assumptions Γ, discharging ¬𝜙. Since Γ, ¬𝜙 ⊨ 𝜓
and Γ, ¬𝜙 ⊨ ¬𝜓 , it follows that Γ, ¬𝜙 ⊨; therefore Γ ⊨ 𝜙.

¬Intro From a proof of 𝜓 on assumptions Γ, 𝜙 and a proof of ¬𝜓 on assumptions
Γ, 𝜙, obtain a proof of ¬𝜙 on assumptions Γ, discharging 𝜙. Since Γ, 𝜙 ⊨ 𝜓
and Γ, 𝜙 ⊨ ¬𝜓 , it follows that Γ, 𝜙 ⊨; therefore Γ ⊨ ¬𝜙.

Thus all the rules preserve soundness; no proof in 𝑁𝐷¬,→ can be constructed other
than using these rules; so 𝑁𝐷¬,→ is sound.

162

natural deduction metatheory

9.2 Completeness

Consistency A set of sentencesΓ is called (syntactically) consistent iffΓ ⊬ ¬(𝜙 →
𝜙). Otherwise it is inconsistent, also written Γ ⊢. Equivalently, consider this proof:

Γ⋅⋅⋅
¬(𝜙 → 𝜙)

[𝜙]
→ Intro

𝜙 → 𝜙
¬Elim

𝜓

If we have a proof of ¬(𝜙 → 𝜙), we have a proof of arbitrary 𝜓 from the assumption
Γ; so we can say that Γ is consistent iff there is a sentence not provable from Γ.

A set of sentences Γ is maximally consistent iff it is consistent and for any
𝜙, if 𝜙 ∉ Γ, then Γ, 𝜙 ⊢ (one cannot add any more sentences while remaining
consistent).

Properties of Maximal Consistent Sets: Deductive Closure

Lemma 94 (Deductive Closure)
If Γ is a maximal consistent set, then if Γ ⊢ 𝜙, then 𝜙 ∈ Γ.

Proof. Suppose that Γ ⊢ 𝜙, but 𝜙 ∉ Γ. Since Γ is maximal consistent, Γ, 𝜙 ⊢ ¬(𝜙 →
𝜙). Using →Intro and discharging 𝜙, we see that Γ ⊢ 𝜙 → (¬(𝜙 → 𝜙)). But now
use →Elim, and obtain Γ ⊢ ¬(𝜙 → 𝜙) i.e., Γ is inconsistent.

Properties of Maximal Consistent Sets: Negation Completeness

Lemma 95 (Negation Completeness)
If Γ is a maximal consistent set, then ¬𝜙 ∈ Γ iff 𝜙 ∉ Γ.

Proof. L to R: If both 𝜙 and ¬𝜙 were in Γ, we could prove ¬(𝜙 → 𝜙) by an applic-
ation of ¬Elim, showing Γ inconsistent.

R to L: If 𝜙 ∉ Γ, then Γ, 𝜙 ⊢ ¬(𝜙 → 𝜙):

Γ, [𝜙]⋅⋅⋅
¬(𝜙 → 𝜙)

[𝜙]
→ Intro

𝜙 → 𝜙
¬Intro

¬𝜙

Therefore, Γ ⊢ ¬𝜙; by Deductive Closure Lemma, ¬𝜙 ∈ Γ.

163

elements of deductive logic

Properties of Maximal Consistent Sets: Conditional Completeness

Lemma 96 (Conditional Completeness)
If Γ is any maximal consistent set, then 𝜙 → 𝜓 ∈ Γ iff whenever 𝜙 ∈ Γ, it follows
that 𝜓 ∈ Γ.

Proof. L to R: Suppose 𝜙 → 𝜓 ∈ Γ. Then Γ ⊢ 𝜙 → 𝜓 ; and if 𝜙 ∈ Γ, then Γ ⊢ 𝜙.
Apply →Elim, and establish Γ ⊢ 𝜓 , i.e., 𝜓 ∈ Γ.

R to L: Suppose that whenever 𝜙 ∈ Γ, 𝜓 ∈ Γ. Consider two cases:

1. 𝜙 ∈ Γ. So Γ = Γ ∪ {𝜙}. Moreover, 𝜓 ∈ Γ, so Γ, 𝜙 ⊢ 𝜓 . Apply →Intro and
discharge 𝜙 to show Γ ⊢ 𝜙 → 𝜓 .

2. 𝜙 ∉ Γ. Then Γ, 𝜙 ⊢ ¬(𝜙 → 𝜙). But then Γ, 𝜙 ⊢ 𝜓 (by a similar proof as just
above); applying →Intro and discharge 𝜙, Γ ⊢ 𝜙 → 𝜓 .

Properties of Maximal Consistent Sets: Satisfiability

Theorem 97 (Maximal Consistent Sets Satisfiable)
Every maximal consistent set is satisfiable (i.e., has a model).

Proof. Suppose Γ is amaximal consistent set in ℒ→,¬. For 𝑠 a sentence letter, define
a structure 𝒜 : 𝒜(𝑠) = 𝑇 iff 𝑠 ∈ Γ.

For any 𝜙, J𝜙K𝒜 = 𝑇 iff 𝜙 ∈ Γ. Proof by induction on complexity of sentences.
The base case, 𝜙 a sentence letter, is immediate.

Suppose 𝜙 is complex. There are two cases:

1. 𝜙 = ¬𝜓 . 𝜙 ∈ Γ iff 𝜓 ∉ Γ, by Negation Completeness; iff by the induction
hypothesis, J𝜓K𝒜 = 𝐹 ; iff by the clause on ¬, J𝜙K𝒜 = 𝑇 .

2. 𝜙 = (𝜓 → 𝜒). 𝜙 ∈ Γ iff if 𝜓 ∈ Γ then 𝜒 ∈ Γ (by Conditional Completeness);
iff if J𝜓K𝒜 = 𝑇 then J𝜒K𝒜 = 𝑇 ; iff J𝜙K𝒜 = 𝑇 .

Completeness

Theorem 98 (Completeness for ℒ¬,→)
If Γ ⊨ 𝜙, then Γ ⊢ 𝜙.

164

natural deduction metatheory

Proof. We prove the contrapositive. So assume that Γ ⊬ 𝜙. (Assuming that Γ itself
is consistent; if it is not, then clearly the theorem holds fairly trivially.)

We’ll construct a maximal consistent set Γ+, a superset of Γ, such that Γ+ ⊬ 𝜙.
By consistency of Γ+, 𝜙 ∉ Γ+; by the Negation Completeness lemma, ¬𝜙 ∈ Γ+.

But by the Satisfiability Theorem, Γ+ has a model, 𝒜 . Since Γ ⊆ Γ+, for all
𝛾 ∈ Γ, J𝛾K𝒜 = 𝑇 ; but since ¬𝜙 ∈ Γ+, J¬𝜙K𝒜 = 𝑇 , so J𝜙K𝒜 = 𝐹 . So Γ ⊭ 𝜙, as
required.

We now show how to construct Γ+ from Γ, completing the proof.

The Construction of Maximal Consistent Γ+ Supposing Γ ⊬ 𝜙, construct Γ+

as follows.

1. Enumerate the sentences of ℒ¬,→, {𝜎1, 𝜎2, …}.

2. Let Γ0 = Γ.

3.

Γ𝑛+1 =
⎧⎪
⎨
⎪⎩

Γ𝑛 ∪ {¬𝜎𝑛+1} if Γ𝑛, 𝜎𝑛+1 ⊢ 𝜙;

Γ𝑛 ∪ {𝜎𝑛+1} otherwise (i.e., if Γ𝑛, 𝜎𝑛+1 ⊬ 𝜙).

4. Let Γ+ = ⋃𝑖 Γ𝑖.

It is clear that Γ ⊆ Γ+. It is also clear that Γ+ ⊬ 𝜙, for at no stage was a sentence
added to any Γ𝑛 that permitted a proof of 𝜙.

Finally, Γ+ is a maximal consistent set, since (by construction), for every 𝜎𝑖,
either 𝜎𝑖 ∈ Γ+ or ¬𝜎𝑖 ∈ Γ+. Thus Γ+ has the properties required to prove Com-
pleteness stated just above.

Completeness for ℒ1 We’ve shown the Completeness Theorem for the restric-
ted language ℒ¬,→. But by Expressive Adequacy, any sentence of ℒ1 can be ex-
pressed in ℒ¬,→. So we can assure ourselves that any truth function expressible in
ℒ1 can be expressed in ℒ¬,→, and any valid argument in ℒ1 has a corresponding
provably correct sequent in ℒ¬,→.

For completeness of ℒ1, we cannot rest there. What if the rules of ℒ1 don’t
suffice to show the equivalence of some arbitrary ℒ1 sentence 𝜙 with a sentence

165

elements of deductive logic

only involving ¬ and →? In that case, while a sentence logically equivalent to 𝜙
is provable, 𝜙 may not be.

We thus need additional lemmas showing that maximal consistent sets

• Contain 𝜙 ∧ 𝜓 iff they contain both 𝜙 and 𝜓 ;

• Contain 𝜙 ∨ 𝜓 iff they contain at least one of 𝜙 or 𝜓 ;

• Contain 𝜙 ↔ 𝜓 iff they contain 𝜙 iff they contain 𝜓 .

Then the Satisfiability Theorem must be extended to include these new cases; and
the remainder of the theorem is proved as above.

Compactness Again Consideration of the nature of natural deduction proofs
should convince you that any conclusion 𝜙 drawn on the basis of assumptions Γ
can be constructed by some finite application of the rules to finitely many sen-
tences in Γ. Provability is essentially a finite notion: proofs are things that can be
constructed.

This observation, informal though it is, can be made precise, to yield another
proof of the Compactness theorem. Since, by Completeness, every correct semantic
sequent Γ ⊨ is provable, and every proof is a finite object using only finitely many
members of Γ, then by Soundness there is a correct semantic sequent Γ′ ⊨ where
Γ′ is a finite subset of Γ.

9.3 Axioms

Axiomatic Systems Another proof system we will now briefly consider is an
axiomatic (or Hilbert-style) proof system.

This is familiar in mathematics: one begins with some axioms (normally inter-
preted as ‘obvious’ or ‘certain’ truths), and by applications of some very simple
truth-preserving rules of inference, one derives further truths.

If one’s axioms are well chosen, one should be able to prove all and only truths
about a given subject matter from the axioms characterising that subject matter.
This was Euclid’s method in the Elements: he showed that all and only the truths
of Euclidean geometry could be established on the basis of his well chosen axioms.

166

natural deduction metatheory

Axioms for Sentential Logic In an axiomatic system, one begins with theorems,
the axioms, and applies the rules of inference to preserve theoremhood.

Our axiom system Ł is very simple. It has three axiom-schemata, in the lan-
guage ℒ¬,→:

A1 ⊢Ł (𝜙 → (𝜓 → 𝜙));

A2 ⊢Ł ((𝜙 → (𝜓 → 𝜒)) → ((𝜙 → 𝜓) → (𝜙 → 𝜒)));

A3 ⊢Ł ((¬𝜓 → ¬𝜙) → (𝜙 → 𝜓)).

Any sentence of ℒ¬,→ can be substituted into these axiom schemata to generate
an instance of an axiom. Any axiom is a theorem.

The system has one rule (apart from substitution): Modus Ponens, then rule
that if ⊢Ł 𝜙 and ⊢Ł 𝜙 → 𝜓 , then ⊢Ł 𝜓 .

A proof in Ł is any sequence of theorems, each of which is either an axiom or
follows by modus ponens from earlier theorems.

A Proof in Ł The system Ł is elegant, but proofs in it can be unnatural to say
the least: (I annotate lines of the proof with the axiom scheme used.)

1. ⊢Ł (𝑃 → ((𝑃 → 𝑃) → 𝑃)) → ((𝑃 → (𝑃 → 𝑃)) → (𝑃 → 𝑃)) (A2)

2. ⊢Ł (𝑃 → ((𝑃 → 𝑃) → 𝑃)) (A1)

3. ⊢Ł ((𝑃 → (𝑃 → 𝑃)) → (𝑃 → 𝑃)) (MP 1, 2)

4. ⊢Ł (𝑃 → (𝑃 → 𝑃)) (A1)

5. ⊢Ł (𝑃 → 𝑃) (MP 3, 4)

This is (apparently) the shortest proof of 𝑃 → 𝑃 in Ł!

Soundness of Ł It is a trivial exercise (and hence left for an exercise) to show
that Ł is sound. That is, show:

• All the axioms of Ł are tautologies.

• The rule of Ł preserves tautologousness.

167

elements of deductive logic

Equivalence of Ł and 𝑁𝐷¬,→ Wenow show that, perhaps surprisingly, the proof
systems Ł and 𝑁𝐷¬,→ are equivalent – everything that can be proved in one can
be proved in the other. This shows, too, that Ł is sound and complete.

Everything provable in Ł is provable in 𝑁𝐷

Theorem 99
If ⊢Ł 𝜙 then ⊢ 𝜙.

Proof. The proof is straightforward: show that each axiom is provable in 𝑁𝐷, and
show that the rule modus ponens is a valid rule in 𝑁𝐷.

The second part is easy; if ⊢ 𝜙 and ⊢ 𝜙 → 𝜓 , then appending an instance of
→Elim to the preceding proofs is a proof of 𝜓 .

Then it is just a matter of proving the axioms. I show A1:

[𝜙]
→ Intro

𝜓 → 𝜙
→ Intro

𝜙 → (𝜓 → 𝜙)

Proofs fromAssumptions in Ł Theugly proof of ⊢Ł 𝑃 → 𝑃 two paragraphs back
shows the benefits of working with assumptions. A proof of 𝜙 from assumptions Γ
in Ł is a sequence of axioms,members of Γ, or follows from preceding members by
modus ponens, and the last line of which is 𝜙. This is a legitimate notion, because
one can show:
Theorem 100 (Deduction Theorem for Ł)
Γ ⊢Ł 𝜙 iff for some finite set of sentences 𝛾1, … , 𝛾𝑛 actually used in the proof of 𝜙,
⊢Ł (𝛾1 → (𝛾2 → … (𝛾𝑛 → 𝜙) …)).

It suffices to show that Γ, 𝜓 ⊢Ł 𝜙 iff Γ ⊢Ł 𝜓 → 𝜙. I leave the proof for an exercise.

Everything Provable in 𝑁𝐷 is provable in Ł

Theorem 101
If ⊢ 𝜙, then ⊢Ł 𝜙.

168

natural deduction metatheory

Proof. Induction on length of proofs: we show that the shortest proofs of 𝑁𝐷 are
provable in Ł, and that the rules are provable transitions.

Certainly the shortest proof, the single node 𝜙, shows that 𝜙 ⊢ 𝜙; but 𝜙 ⊢Ł 𝜙
is shown by the deduction theorem given ⊢Ł 𝜙 → 𝜙.

Suppose we extend some existing proofs by applying the rules of 𝑁𝐷:

→Elim We have Γ ⊢ 𝜙 and Γ ⊢ 𝜙 → 𝜓 , and extend by →Elim. But this is obvi-
ously modus ponens, so Γ ⊢Ł 𝜓 .

The case of →Intro is shown by the deduction theorem. I leave you to show the
cases for negation.

Further Reading

Natural deduction was invented by Gentzen (1969), the founder of proof theory. The proof
theory of natural deduction systems discussed in section 4 of this chapter is based on Praw-
itz (2006: 39–41); he uses Theorems 91 and 92, and the last problem, and proves the famous
‘cut elimination’ theorem for natural deduction, unfortunately a topic beyond the scope of
these notes.

The axiom system here was developed by Jan Łukasiewicz, simplifying Frege’s system:
see Borkowski and Słupecki (1958: p. 25). (The Polish notation used in this article is initially
confusing, but has the wonderful feature that it is entirely unambiguous without the use of
parentheses.) See also Bostock (1997: ch. 5–6); he gives a direct proof of the completeness
of a system based on Ł at pp. 217–9.

Exercises

1. Using themodel soundness proof for the restricted natural deduction system 𝑁𝐷¬,→,
show, by analysing proofs constructed using the remaining rules of the full Halbach
system 𝑁𝐷, that the system 𝑁𝐷 is sound.

2. The Completeness proof for ℒ¬,→ relied on various lemmas concerning the beha-
viour of maximal consistent sets with regard to the connectives ¬ and →. Show that

(a) analogous lemmas hold for ∧, ∨ and ↔.

(b) the Satisfiability Theorem holds for the full language ℒ1.

(c) the full Natural Deduction system is complete for ℒ1 with respect to the in-
tended semantics.

169

elements of deductive logic

3. (a) Show that the axiomatic system Ł introduced is sound.

(b) Show that the axioms A2 and A3 of Ł are provable in natural deduction:

i. A2. ⊢Ł ((𝜙 → (𝜓 → 𝜒)) → ((𝜙 → 𝜓) → (𝜙 → 𝜒)));
ii. A3. ⊢Ł ((¬𝜓 → ¬𝜙) → (𝜙 → 𝜓)).

4. Suppose that Γ, 𝜓 ⊢Ł 𝜙, shown by a proof Π. Define the 𝜓-transform of Π, written
Π𝜓 , as the sequence that results from prefixing ‘𝜓 →’ to the front of every sentence
in Π. Show that each sentence in Π𝜓 is provable from assumptions Γ in Ł. Since
obviously 𝜓 appears on Π, 𝜓 → 𝜓 appears on Π𝜓 , and that is provable from Γ. So
you need to show that

(a) the prefixed axioms (i.e., those 𝜓 → 𝛿 in Π𝜓 where 𝛿 is an axiom) are provable
from Γ (hint: use A1);

(b) the prefixed assumptions (i.e., those 𝜓 → 𝛾 in Π𝜓 where 𝛾 ∈ Γ) are provable
from Γ;

(c) If 𝜒 followed by modus ponens from early claims in Π, 𝜓 → 𝜒 follows from
earlier prefixed claims in Π𝜓 (hint: use A2).

Using these results, show the deduction theorem for Ł.

5. Show the other cases for the equivalence of 𝑁𝐷 and Ł:1

(a) Show that if Γ, 𝜙 ⊢Ł 𝜓 and Γ, 𝜙 ⊢Ł ¬𝜓 , then Γ ⊢Ł ¬𝜙.

(b) Show that if Γ, ¬𝜙 ⊢Ł 𝜓 and Γ, ¬𝜙 ⊢Ł ¬𝜓 , then Γ ⊢Ł 𝜙. (Equivalently, show that
if Γ ⊢Ł ¬¬𝜙, then Γ ⊢Ł 𝜙.)

1These proofs are quite elusive; I propose treating this question as optional.

170

Part IV

Predicate Logic

171

Chapter 10

The Syntax and Semantics of
ℒ2

10.1 Syntax of ℒ2

ℒ2 We now have a good grip on ℒ1. But many valid arguments in English can’t
be captured by a valid argument in sentential logic.

One reason for this is the lack of non-truth-functional connectives in ℒ1 (con-
sider English ‘possibly’, ‘it will be that’, ‘it ought to be that’, or even ‘𝑆 knows
that’). We are not going to remedy this lack now.

Another reason for the inability of ℒ1 to capture valid arguments is that the
analysis ℒ1 provides of an English sentence stops at the truth-functional structure
of the sentence. But English sentences have additional internal structure which
arguments may make use of.

Consider: ‘John loves James; therefore, John loves someone’. This is valid, but
the best ℒ1 formalisation is the incorrect sequent: 𝑃 ⊨ 𝑄. The validity of this
argument depends on the internal structure of the sentences. So now we look at
a logic with the resources to formalise this additional structure.

The Syntax of ℒ2: ℒ1 alphabet and Predicate Letters The alphabet of ℒ2– the
constituents out of which ℒ2-sentences may be formed – includes the alphabet

172

the syntax and semantics of ℒ2

of ℒ1. So it contains infinitely many sentence letters, as well as the logical con-
nectives ¬, ∨, ∧, →, ↔, and the parentheses (,).

The alphabet of ℒ2 contains predicate letters. A predicate letter has argument
places (intuitively, representing the number of designators or variables required
to make a grammatical formula). The number of argument places of a predicate
letter is called its arity. For each arity 𝑛 ⩾ 0, we introduce infinitely many pre-
dicate letters: 𝑃 𝑛, 𝑄𝑛, 𝑅𝑛, 𝑃 𝑛

1 , 𝑄𝑛
1, 𝑅𝑛

1, …. Where 𝑛 = 0, we omit the index. (So any
expression of the form 𝑃 𝑛

𝑘 , 𝑄𝑛
𝑘, or 𝑅𝑛

𝑘, where 𝑛, 𝑘 are either missing or a numeral
‘1’, ‘2’, etc. will be a predicate letter.)

We permit zero-place predicate letters, and identify these with the sentence
letters of ℒ1.

The Syntax of ℒ2: Constants, Variables, Quantifiers The alphabet of ℒ2 in-
cludes infinitely many constants, 𝑎, 𝑏, 𝑐, 𝑎1, 𝑏1, 𝑐1, ….

ℒ2 also contains infinitely many variables, 𝑥, 𝑦, 𝑧, 𝑥1, 𝑦1, 𝑧1, ….
And ℒ2 contains infinitely many quantifiers, ∀𝜐 and ∃𝜐, where 𝜐 is any vari-

able. ∀ is the universal quantifier; ∃ is the existential (sometimes, particular) quan-
tifier.

Variables and constants are collectively known as terms.

Atomic Formulae and Formulae of ℒ2

Definition 104 (Atomic Formula). If Φ𝑛 is a predicate letter of arity 𝑛 ⩾ 0, and
𝜏1, … , 𝜏𝑛 are 𝑛 terms (not necessarily all distinct), then Φ𝜏1 … 𝜏𝑛 is an atomic for-
mula of ℒ2.

It follows that all sentence letters are atomic formulae.

Definition 105 (Formula).

1. Any atomic formula is a formula of ℒ2.

2. If 𝜙 and 𝜓 are formulae of ℒ2, then so are ¬𝜙, (𝜙 ∨ 𝜓), (𝜙 ∧ 𝜓), (𝜙 → 𝜓),
and (𝜙 ↔ 𝜓).

3. If ∀𝜐 and ∃𝜐 are quantifiers and 𝜙 is a formula, then so are ∀𝜐𝜙 and ∃𝜐𝜙.

173

elements of deductive logic

4. Nothing else is a formula of ℒ2.

We permit brackets and the arity of predicate letters to be dropped in accordance
with Halbach, §4.4.

Free and Bound Occurrences of Variables

Definition 106 (Free and Bound Variable Occurrences).

1. All variable occurrences in atomic formulae are free.

2. If some variables occur freely in 𝜙 and 𝜓 , they remain free in ¬𝜙, (𝜙 ∨ 𝜓),
(𝜙 ∧ 𝜓), (𝜙 → 𝜓), and (𝜙 ↔ 𝜓).

3. No occurrence of 𝜐 is free in ∀𝜐𝜙 or ∃𝜐𝜙; all other variable occurrences in
𝜙 remain free in ∀𝜐𝜙.

A variable occurrence is bound iff it is not free.

A variable occurs freely in 𝜙 iff there is at least one free occurrence of that
variable in 𝜙. If a variable occurs freely in 𝜙, 𝜙 is an open formula.

Definition 107 (Sentence of ℒ2). An ℒ2-formula 𝜙 is a sentence (or ‘closed for-
mula’) of ℒ2 iff no variable occurs freely in 𝜙.

10.2 Semantics of ℒ2

Semantics for ℒ2: Domains As in ℒ1, the idea is to specify meanings (or ex-
tensions) for the basic parts of the language, and systematically show how the
meaning of complex expressions depends on the meanings of the parts and their
relations. But nowwe have sub-sentential constituents of formulae, which cannot
be assigned truth-values as their extensions, so ℒ1 structures cannot suffice for
ℒ2.

We begin with the notion of a domain 𝐷. This is a non-empty set of objects
– any objects – from which are drawn the semantic values of constants. (So the
meaning of a constant will be an object.) The meaning of a predicate letter will
be a property or relation on the domain. For our purposes, a subset of the domain

174

the syntax and semantics of ℒ2

will suffice for a property (intuitively, those things in the domain which have the
property); and a subset of 𝐷×𝐷 will suffice for a 2-place relation. In general, then,
the semantic value of a 𝑛-ary predicate letter will be a subset of 𝐷 × … ×⏟

𝑛
𝐷 = 𝐷𝑛.

The attentive reader will have noticed a potential oddity here. The semantic
value assigned to a 2-place predicate letter will be a set of pairs, and that assigned
to a 3-place predicate letter will be a set of triples, etc. Shouldn’t the semantic
value assigned to a 1-place monadic predicate letter be a set of 1-tuples, rather
than a subset of the domain? That is, shouldn’t the semantic value of a predicate
be something like 𝑋 = {⟨𝑥1⟩, …, ⟨𝑥𝑛⟩, …}, rather than 𝑋′ = {𝑥1, …, 𝑥𝑛, …}? The
still more attentive reader will recall that, by Definition 15, ⟨𝑥𝑖⟩ = 𝑥𝑖, so that
𝑋 = 𝑋′. A subset of the domain turns out to be a set of ordered 1-tuples, so the
interpretation of all 𝑛-ary predicate letters is uniform: a set of 𝑛-tuples.

ℒ2 Structures and Variable Assignments

Definition 108 (ℒ2-Structure). Anℒ2-structure𝒜 is an ordered pair ⟨𝐷, 𝐼⟩where
𝐷 (‘the domain’) is any non-empty set, and 𝐼 (‘the interpretation’) is a function

• which assigns an element of 𝐷 to every constant;

• which assigns a subset of 𝐷𝑛 to every predicate letter of arity 𝑛 > 0;

• and which assigns a truth value (𝑇 or 𝐹) to any predicate letter of arity 0
(sentence letter).

Variables do not have a fixed extension, even in a particular structure. But they
may be ‘temporarily’ assigned semantic values:

Definition 109 (Variable Assignment). A variable assignment 𝛼 over 𝒜 is a func-
tion which assigns each variable in ℒ2 a member of 𝐷𝒜 .

Semantic Values of Simple Expressions Let us extend the notation J⋅K𝒜 to mean
the semantic value of any ℒ2 expression in structure 𝒜 .

For formulae not involving variables, the assignment of semantic values (in
particular, truth values) to complex formulae in a given structure will be straight-
forward. But what to do about variables – in particular, assigning semantic values

175

elements of deductive logic

to open formulae (those with free variables) and quantified formulae – poses some
delicate issues. Here I use an approach due to Tarski; later I explore some altern-
atives.

Begin by defining, for structure𝒜 and variable assignment 𝛼, J𝜙K𝛼
𝒜 = 𝐼𝒜 (𝜙) for

all 𝜙 in the domain of 𝐼𝒜 . (All constants, and predicate letters, including sentence
letters, thus receive a semantic value at this stage.) The variables of ℒ2 get the
obvious interpretation: J𝜐K𝛼

𝒜 = 𝛼(𝜐). We now assign truth values to the formulae
of ℒ2.

Satisfaction

Definition 110 (Satisfaction). Supposing 𝜙, 𝜓 to be formulae of ℒ2, 𝜐 a variable,
𝒜 a ℒ2-structure, and 𝛼 a variable assignment over 𝒜 . We say that 𝛼 satisfies 𝜙
under 𝒜 , J𝜙K𝛼

𝒜 = 𝑇 , as follows:

• JΦ𝜏1 … 𝜏𝑛K𝛼
𝒜 = 𝑇 iff ⟨J𝜏1K𝛼

𝒜 , … , J𝜏𝑛K𝛼
𝒜 ⟩ ∈ JΦK𝛼

𝒜 , where Φ is a 𝑛-ary predic-
ate letter (𝑛 > 0), and each 𝜏𝑖 is a term.1

• J¬𝜙K𝛼
𝒜 = 𝑇 iff J𝜙K𝛼

𝒜 = 𝐹 .

• J𝜙 ∧ 𝜓K𝛼
𝒜 = 𝑇 iff J𝜙K𝛼

𝒜 = J𝜓K𝛼
𝒜 = 𝑇 .

• J𝜙 ∨ 𝜓K𝛼
𝒜 = 𝑇 iff J𝜙K𝛼

𝒜 = 𝑇 or J𝜓K𝛼
𝒜 = 𝑇 .

• J𝜙 → 𝜓K𝛼
𝒜 = 𝑇 iff J𝜙K𝛼

𝒜 = 𝐹 or J𝜓K𝛼
𝒜 = 𝑇 .

• J𝜙 ↔ 𝜓K𝛼
𝒜 = 𝑇 iff J𝜙K𝛼

𝒜 = J𝜓K𝛼
𝒜 .

• J∀𝜐𝜙K𝛼
𝒜 = 𝑇 iff J𝜙K𝛽

𝒜 = 𝑇 for all variable assignments 𝛽 over 𝒜 differing
from 𝛼 at most in their assignment to 𝜐.

• J∃𝜐𝜙K𝛼
𝒜 = 𝑇 iff J𝜙K𝛽

𝒜 = 𝑇 for at least one variable assignment 𝛽 over 𝒜
differing from 𝛼 at most in its assignment to 𝜐.

1Recall the discussion of ordered 1-tuples at the beginning of this section when applying this definition
to monadic predicates.

176

the syntax and semantics of ℒ2

Explaining Satisfaction The definition of satisfaction may appear puzzling at
first.

The clause for atomic formulae is fairly straightforward. A variable assign-
ment satisfies an atomic formula in a structure just in case the ordered sequence
of the objects which are the semantic values of the constants and variables, under
that assignment, have the property or stand in the relation which is the semantic
value of the predicate letter.

The quantifier clauses are also fairly clear:

• A universally quantified sentence ∀𝜐𝜙 is satisfied just in case 𝜙 is satisfied
in every variable assignment that holds everything fixed except possibly
the semantic value of 𝜐 – i.e., no matter what 𝜐 denotes, 𝜙 is satisfied.

• An existentially quantified sentence ∃𝜐𝜙 is satisfied just in case 𝜙 is satis-
fied in at least one variable assignment that holds everything fixed except
possibly the semantic value of 𝜐 – i.e., there is a semantic value for 𝜐 on
which 𝜙 is satisfied.

Truth The notion of truth is then defined in terms of satisfaction:

Definition 111 (Truth). A sentence 𝜙 is true in 𝒜 iff J𝜙K𝛼
𝒜 = 𝑇 for every variable

assignment 𝛼 over 𝒜 .

Notice that while open formulae can be always satisfiable, they cannot be true
– that property is reserved for sentences. (If we had not restricted the notion, the
open formula 𝑃 𝑥 ∨ ¬𝑃 𝑥, which is assigned true under every variable assignment,
would count as true – yet intuitively, at most it expresses a truth conditional on
some constant being substituted for 𝑥, not unconditionally as a sentence does.)

10.3 Some Semantic Theorems About ℒ2

Semantic Sequents for ℒ2 We now extend the semantic turnstile ⊨ to ℒ2. With
the new definition of satisfaction and truth in a model in hand, we can define the
old notions in much the same way:

1. If 𝜙 is true in all ℒ2-structures, 𝜙 is a tautology or logical truth, written ⊨ 𝜙.

177

elements of deductive logic

2. If 𝜙 is true in no ℒ2-structure, 𝜙 is a contradiction, written 𝜙 ⊨.

3. A set Γ of ℒ2 sentences is semantically consistent iff there is some ℒ2-
structure in which each 𝛾 ∈ Γ is true; otherwise Γ is inconsistent, written
Γ ⊨.

4. 𝜙 is logically equivalent to 𝜓 iff both sentences are true in the same ℒ2-
structures, written 𝜙 ≡ 𝜓 . (Some logicians use this symbol to represent the
object language biconditional connective, which we represent by ↔ – do
not be confused.)

Definition 112 (Validity in ℒ2). An argument from Γ to 𝜙 is valid (Γ entails 𝜙)
iff in every ℒ2-structure in which each 𝛾 ∈ Γ is true, 𝜙 is true also. We write again
Γ ⊨ 𝜙.

Some Theorems About Entailment in ℒ2 Many of the theorems about ⊨ we
proved for ℒ1 in Chapter 2 still hold, with exactly the same proofs.

Structural Rules All the structural rules (Permutation, Weakening, and Contrac-
tion) still hold.

Cut If Γ, 𝜙 ⊨ 𝜓 and Γ ⊨ 𝜙, then Γ ⊨ 𝜓 .

Transitivity If Γ ⊨ 𝜙 and 𝜙 ⊨ 𝜓 , then Γ ⊨ 𝜓 .

Contraposition If 𝜙 ⊨ 𝜓 iff ¬𝜓 ⊨ ¬𝜙.

Deduction Theorem Γ, 𝜙 ⊨ 𝜓 iff Γ ⊨ 𝜙 → 𝜓 .

We now prove some theorems that depend on the new machinery we’ve intro-
duced.

Quantifier Interdefinability

Theorem 102 (Interdefinable Quantifiers)
For all structures 𝒜 , and all variable assignments 𝛼,

• J∀𝜐𝜙K𝛼
𝒜 = J¬∃𝜐¬𝜙K𝛼

𝒜 ;

• J∃𝜐𝜙K𝛼
𝒜 = J¬∀𝜐¬𝜙K𝛼

𝒜 .

178

the syntax and semantics of ℒ2

Proof. I show only the first case. J∀𝜐𝜙K𝛼
𝒜 = 𝑇 iff for all 𝜐-variant assignments 𝛽,J𝜙K𝛽

𝒜 = 𝑇 ; iff J¬𝜙K𝛽
𝒜 = 𝐹 ; iff J∃𝜐¬𝜙K𝛼

𝒜 = 𝐹 (if not, there would be a 𝛽 whereJ¬𝜙K𝛽
𝒜 = 𝑇); iff J¬∃𝜐¬𝜙K𝛼

𝒜 = 𝑇 .

Substitution of Co-Designating Terms

Theorem 103 (Substitution of Co-Designators)
Let 𝜏1 and 𝜏2 be terms, and let 𝜙[𝜏2/𝜏1] be the formula which results from substituting
𝜏2 for at least some free occurrences of 𝜏1 in 𝜙, where none of those occurrences is in
the scope of ∀𝜏2 or ∃𝜏2 (let constants vacuously occur free). Then, for any structure
𝒜 and any variable assignment 𝛼: If J𝜏1K𝛼

𝒜 = J𝜏2K𝛼
𝒜 , then J𝜙K𝛼

𝒜 = J𝜙[𝜏2/𝜏1]K𝛼
𝒜 .

Proof. By induction on length of formulae.
Base case: Suppose 𝜙 is an atomic formula, Φ𝜃1 … 𝜃𝑛, where perhaps some

𝜃𝑖 = 𝜏1. But JΦ𝜃1 … 𝜃𝑛K𝛼
𝒜 = 𝑇 iff ⟨J𝜃1K𝛼

𝒜 , … , J𝜏1K𝛼
𝒜 , … , J𝜃𝑛K𝛼

𝒜 ⟩ ∈ JΦK𝛼
𝒜 ; sinceJ𝜏1K𝛼

𝒜 = J𝜏2K𝛼
𝒜 , ⟨J𝜃1K𝛼

𝒜 , … , J𝜏2K𝛼
𝒜 , … , J𝜃𝑛K𝛼

𝒜 ⟩ ∈ JΦK𝛼
𝒜 , i.e., J𝜙[𝜏2/𝜏1]K𝛼

𝒜 = 𝑇 .
Induction step: Suppose 𝜙 is complex, and the theorem holds for 𝜓, 𝜒 less com-

plex than 𝜙 and each variable assignment 𝛼 over 𝒜 . We consider some represent-
ative cases, leaving others for exercises:

• For the first case, suppose 𝜙 = ¬𝜓 . It follows from the induction hypothesis
that J¬𝜓K𝛼

𝒜 = 𝑇 iff J¬𝜓[𝜏2/𝜏1]K𝛼
𝒜 = 𝑇 ; by the clause on negation, that holds

iff J(¬𝜓)[𝜏2/𝜏1]K𝛼
𝒜 = 𝑇 , i.e., iff J𝜙[𝜏2/𝜏1]K𝛼

𝒜 = 𝑇 .

• Suppose 𝜙 = 𝜓 ∨ 𝜒 . J𝜓 ∨ 𝜒K𝛼
𝒜 = 𝑇 iff either J𝜓K𝛼

𝒜 = 𝑇 or J𝜒K𝛼
𝒜 = 𝑇 ;

by the induction hypothesis, iff J𝜓[𝜏2/𝜏1]K𝛼
𝒜 = 𝑇 or J𝜒[𝜏2/𝜏1]K𝛼

𝒜 = 𝑇 ; by
substitution, iff J(𝜓 ∨ 𝜒)[𝜏2/𝜏1]K𝛼

𝒜 = 𝑇 , i.e., iff J𝜙[𝜏2/𝜏1]K𝛼
𝒜 = 𝑇 .

• Suppose 𝜙 = ∀𝜐𝜓 . J∀𝜐𝜓K𝛼
𝒜 = 𝑇 iff for any variable assignment 𝛽 which

agrees with 𝛼 except perhaps on 𝜐, J𝜓K𝛽
𝒜 = 𝑇 . By the induction hypo-

thesis, and the fact that it holds for all variable assignments, that holds iffJ𝜓[𝜏2/𝜏1]K𝛽
𝒜 = 𝑇 (note here we use the assumption that 𝜏1 doesn’t occur in

the scope of any quantifier thatwould bind 𝜏2).That holds iff J∀𝜐𝜓[𝜏2/𝜏1]K𝛼
𝒜 =

𝑇 (again, it is required 𝜐 ≠ 𝜏2), i.e., iff J𝜙[𝜏2/𝜏1]K𝛼
𝒜 = 𝑇 .

179

elements of deductive logic

Satisfaction of Sentences

Theorem 104 (Satisfaction of Sentences)
If 𝜙 is a ℒ2-sentence, then for every structure 𝒜 and all variable assignments 𝛼, 𝛽,J𝜙K𝛼

𝒜 = J𝜙K𝛽
𝒜 .

Proof. by induction on complexity. Base case: 𝜙 is an atomic formula. It is a sen-
tence, so no variables occur in 𝜙 = Φ𝜏1 … 𝜏𝑛; since constants receive a constant
interpretation in 𝐴, if 𝜙 is satisfied by any variable assignment it is satisfied by
any other.

Induction step: Suppose the theorem holds for less complex sentences 𝜓 and
all variable assignments over 𝒜 . The only interesting cases are the quantifiers, so
let 𝜙 = ∀𝜐𝜒 .

1. 𝜒 is a sentence (so the quantification is vacuous). Then for any 𝛼, 𝛽 J𝜒K𝛼
𝒜 =J𝜒K𝛽

𝒜 , so J∀𝜐𝜒K𝛼
𝒜 = J∀𝜐𝜒K𝛽

𝒜 .

2. 𝜒 is not a sentence; since 𝜙 is, only 𝜐 occurs free in 𝜒 . Suppose for some
𝛼, 𝛽, J𝜙K𝛼

𝒜 ≠ J𝜙K𝛽
𝒜 . Without loss of generality, suppose J𝜙K𝛼

𝒜 = 𝑇 . Then for
every variable assignment 𝛾 differing from 𝛼 at most on 𝜐, J𝜒K𝛾

𝒜 = 𝑇 .

But for at least one variable assignment 𝛿 differing from 𝛽 on at most 𝜐,J𝜒K𝛿
𝒜 = 𝐹 .

Let 𝜏 not occur in 𝜒 , and let J𝜏K𝛿
𝒜 = J𝜐K𝛿

𝒜 . Then by the Substitution of Terms
Theorem, J𝜒K𝛿

𝒜 = J𝜒[𝜏/𝜐]K𝛿
𝒜 = 𝐹 . By the induction hypothesis, for every

𝛾 , J𝜒[𝜏/𝜐]K𝛾
𝒜 = 𝐹 . In particular, for some 𝛾∗ which is like 𝛼 except that it

assigns J𝜏K𝒜 to be the extension of 𝜐, J𝜒[𝜏/𝜐]K𝛾∗

𝒜 = 𝐹 . But since J𝜏K𝛾∗

𝒜 = J𝜐K𝛾∗

𝒜 ,J𝜒K𝛾∗

𝒜 = 𝐹 ; contradicting our assumption that every 𝜐-variant of 𝛼 satisfied
𝜒 . So there is no case where J𝜙K𝛼

𝒜 ≠ J𝜙K𝛽
𝒜 .

Quantifiers: Universal Elimination/Existential Introduction

Theorem 105
Suppose 𝜙 is a formula in which only 𝜐 occurs free, and 𝜏 any constant. Then:

• ∀𝜐𝜙 ⊨ 𝜙[𝜏/𝜐];

• 𝜙[𝜏/𝜐] ⊨ ∃𝜐𝜙.

180

the syntax and semantics of ℒ2

Proof. I only show the second. Suppose that 𝒜 is a structure in which 𝜙[𝜏/𝜐]
is true. Then in every variable assignment 𝛼 according to which J𝜏K𝛼

𝒜 = J𝜐K𝛼
𝒜 ,J𝜙[𝜏/𝜐]K𝛼

𝒜 = J𝜙K𝛼
𝒜 (by the substitution of co-designating terms). There will be

such a variable assignment 𝛼; so by the clause for ∃, J∃𝜐𝜙K𝒜 = 𝑇 .

Quantifiers: Universal Introduction/Existential Elimination

Theorem 106
Suppose 𝜙 is a formula in which at most 𝜐 occurs free, and 𝜏 any constant not oc-
curring in Γ or 𝜙. Then:

• If Γ ⊨ 𝜙[𝜏/𝜐], then Γ ⊨ ∀𝜐𝜙.

• If Γ, 𝜙[𝜏/𝜐] ⊨ 𝜓 then Γ, ∃𝜐𝜙 ⊨ 𝜓 , provided 𝜏 does not occur in 𝜓 .

Proof. Suppose that every structure 𝒜 which makes Γ true makes 𝜙[𝜏/𝜐] true.
𝜏 does not occur in Γ, so every structure 𝒜 ′ just like 𝒜 except perhaps in the
value of 𝐼𝒜 ′ (𝜏) also makes all of Γ true. Then 𝜙[𝜏/𝜐] is true in every such 𝜏-variant
structure 𝒜 ′. Suppose 𝛽 is a variable assignment where J𝜙K𝛽

𝒜 = 𝐹 . There is some
𝒜 ′ where 𝐼𝐴′ (𝜏) = J𝜐K𝛽

𝒜 , so J𝜙[𝜏/𝜐]K𝒜 ′ = 𝐹 . Contradiction; there is no such
variable assignment, so ∀𝜐𝜙 is true in every structure 𝒜 which makes all of Γ
true.

Substitution of Equivalent Formulae

Theorem 107 (Substitution of Equivalent Formulae)
Suppose 𝜙 and 𝜓 are formulae, in which 𝜐1, … , 𝜐𝑛 occur free. Suppose 𝛿 is a some
sentence in which 𝜙 occurs as a subformula. Then ∀𝜐1 … ∀𝜐𝑛(𝜙 ↔ 𝜓) ⊨ 𝛿 ↔ 𝛿[𝜓/𝜙].

Proof. In every structure 𝒜 in which ∀𝜐1 … ∀𝜐𝑛(𝜙 ↔ 𝜓) is true, 𝜙 ↔ 𝜓 is satis-
fied by every variable assignment agreeing on variables except possibly the 𝜐𝑖s.
But clearly if for every variable assignment 𝛼 J𝜙K𝛼

𝒜 = J𝜓K𝛼
𝒜 , a straightforward

induction on complexity of 𝛿 will establish the result.

181

elements of deductive logic

10.4 Alternative Semantics for ℒ2

Semantics only for sentences Objection: ‘Why are open formulae being assigned
truth values at all? They couldn’t express any proposition, and we should only assign
truth to formulae which could express propositions: sentences.’

The easiest way to secure this result is as follows:

• Redefine formulae of ℒ2 so that no open formula is a formula at all. We
will thus alter the formation rules so that we do not add quantifiers to bind
variables in open formulae, but rather to (i) substitute a variable 𝜉 for zero or
more occurrences of some constant 𝜏 in 𝜙; (ii) say that ∀𝜉𝜙[𝜉/𝜏] and ∃𝜉𝜙[𝜉/𝜏]
are formulae.

• Replace the semantic clauses involving satisfaction with something like
this:

– J∀𝜉𝜙K𝒜 = 𝑇 iff for every individual 𝑖 ∈ 𝐷𝒜 , and every structure 𝒜 ′

just like 𝒜 except perhaps in the semantic value of 𝜏 , if J𝜏K𝒜 ′ = 𝑖, thenJ𝜙[𝜏/𝜉]K𝒜 ′ = 𝑇 .

This alternative semantics gives a recursion on truth rather than satisfaction.

‘Substitutional’ Quantification Objection: ‘I like the idea that universal quanti-
fication is kind of like an infinite conjunction of all of its instances. Do we need to
make the confusing detour through variable assignments? ’

Here is the idea behind this objection.What ∀𝑥𝑃 𝑥 reallymeans is thatwhatever
constant 𝑎 one substitutes for 𝑥, 𝑃 𝑎 will be true. This is made more precise as fol-
lows: where 𝜙 is a formula with at most 𝜐 free,

• J∀𝜐𝜙K𝒜 = 𝑇 iff for any constant 𝜏 , J𝜙[𝜏/𝜐]K𝒜 = 𝑇 .

These alternative truth conditions quickly go awry if there are unnamed objects
in the domain. For instance, in an uncountable domain (like the real numbers), as
there are only countably many constants in ℒ2, there are entities which cannot
be the semantic value of any constant. Suppose we enumerate the constants 𝑎𝑖,
letting 𝐼𝒜 (𝑎𝑖) = 𝑖. Then on the domain of the real numbers, since every constant

182

the syntax and semantics of ℒ2

denotes an integer, ∀𝑥(Integer(𝑥)) looks like it will be true in 𝒜 on the substitu-
tional reading; yet this is highly counterintuitive.

say something about corner-quotes

Truth for Open Formulae Objection: ‘Wait! We do have the resources to explain
the truth of an open formula: it is true whenever it is true under every variable as-
signment. So why be so restrictive?’

On this proposal, ⊨ 𝜙 iff 𝜙 is true in every structure under every variable
assignment. In effect, therefore, an open formula 𝜙 with free variables 𝜐1, … , 𝜐𝑛
will be a tautology iff its universal closure (the result of binding all free variables
with universal quantifiers) ∀𝜐1 … ∀𝜐𝑛𝜙 is a tautology.

Yet this is problematic; for then this will be a correct sequent:

𝑃 𝑥 ⊨ ∀𝑥𝑃 𝑥.

But the deduction theorem then fails! For

⊨ 𝑃 𝑥 → ∀𝑥𝑃 𝑥 iff ⊨ ∀𝑥(𝑃 𝑥 → ∀𝑥𝑃 𝑥),

and the right hand side sequent is clearly incorrect.

Further Reading

Tarski’s original definition of satisfaction and truth can be found in Tarski (1933). (This
is a translation of his 1936 paper.) Bostock (1997: §§3.4–3.6) gives a semantics, and proves
many theorems, in which the basic semantic clauses involve recursion on truth rather than
satisfaction. Kripke (1976) contains an interesting though technical discussion of the merits
and problems with the substitutional intepretation of the quantifiers.

Exercises

1. Suppose we define a sentence 𝜙 to be true⋆ in 𝒜 iff J𝜙K𝛼
𝒜 = 𝑇 for at least one variable

assignment 𝛼 over 𝒜 . Show that 𝜙 is true in 𝒜 iff it is true⋆ in 𝒜 .

2. Prove that, for all structures 𝒜 and variable assignments 𝛼, J∃𝜐𝜙K𝛼
𝒜 = J¬∀𝜐¬𝜙K𝛼

𝒜 .

3. Prove that if 𝜐 is not free in 𝜙, J∀𝜐𝜙K𝛼
𝒜 = J𝜙K𝛼

𝒜 . If 𝜙 is a sentence, show that 𝜙 and
∀𝜐𝜙 are logically equivalent.

183

elements of deductive logic

4. Prove that, if 𝜐 and 𝜈 are variables, 𝜙 a formula not containing 𝜐, and 𝜙[𝜐/𝜈] the
formula that results from replacing every occurence of 𝜈 in 𝜙 with 𝜐 – even those that

occur in quantifiers ∀𝜈, ∃𝜈 – then for any structure 𝒜 and any variable assignment
𝛼, there exists a variable assignment 𝛽 on 𝒜 such that J𝜙K𝛼

𝒜 = J𝜙[𝜐/𝜈]K𝛽
𝒜 .

5. Prove that, for any structure 𝒜 , if Φ and Ψ are 𝑛-ary predicate letters such thatJΦK𝒜 = JΨK𝒜 , 𝜙 a formula, and 𝜙[Ψ/Φ] the formula that results from replacing
every occurrence of Φ in 𝜙 with Ψ, then for any variable assignment 𝛼 over 𝒜 ,J𝜙K𝛼

𝒜 = J𝜙[Ψ/Φ]K𝛼
𝒜 . Then prove that, if 𝜙 is a sentence, 𝜙 is true in 𝒜 iff 𝜙[Ψ/Φ] is

true in 𝒜 .

6. Suppose 𝜙 is a formula in which only 𝜐 occurs free, and 𝜏 any constant. Prove that
∀𝜐𝜙 ⊨ 𝜙[𝜏/𝜐].

7. Suppose 𝜙 is a formula in which at most 𝜐 occurs free, and 𝜏 any constant not oc-
curring in Γ or 𝜙. Prove that if Γ, 𝜙[𝜏/𝜐] ⊨ 𝜓 then Γ, ∃𝜐𝜙 ⊨ 𝜓 , provided 𝜏 does not
occur in 𝜓 .

8. Show that, if 𝜏 and 𝜃 are any constants:

(a) If Γ ⊨ 𝜙 then Γ[𝜏/𝜃] ⊨ 𝜙[𝜏/𝜃].

(b) If Γ ⊨ then Γ[𝜏/𝜃] ⊨.

9. Suppose 𝜙 and 𝜓 are any formulae, in which possibly (but not necessarily) 𝜐1, … , 𝜐𝑛

occur free. Suppose 𝛿 is a some sentence in which 𝜙 occurs as a subformula. Using
induction on complexity of 𝛿, establish the result that ∀𝜐1 … ∀𝜐𝑛(𝜙 ↔ 𝜓) ⊨ 𝛿 ↔
𝛿[𝜓/𝜙]. (Hint: you might want to consider an induction showing joint satisfiability
of any formulae 𝛾 and 𝛾[𝜓/𝜙].)

10. Show that ∀𝜉(𝜙 ↔ 𝜓) ⊨ ∀𝜉𝜙 ↔ ∀𝜉𝜓 .

11. Give a full specification of the alternative formation rules for a language ℒ2
′ in

which there are no open formulae. Show that the sentences of ℒ2 are the formulae
of ℒ2

′.

12. Give a semantic clause for ∃ on the alternative semantics using recursion on truth as
specified on page 182.

13. Show the following:

(a) ∀𝑥(𝑃 𝑥 ∧ 𝑄𝑥) ≡ ∀𝑥𝑃 𝑥 ∧ ∀𝑥𝑄𝑥;

(b) ∃𝑥(𝑃 𝑥 ∧ 𝑄𝑥) ⊨ ∃𝑥𝑃 𝑥 ∧ ∃𝑥𝑄𝑥. Why not vice versa?

(c) ∃𝑦∀𝑥𝑃 𝑥𝑦 ⊨ ∀𝑥∃𝑦𝑃 𝑥𝑦. Why not vice versa?

184

the syntax and semantics of ℒ2

14. If 𝜐1 … 𝜐𝑛 is a sequence of variables, let ∀𝜐1 … 𝜐𝑛 be the string of quantifiers ∀𝜐1 … ∀𝜐𝑛.
Let 𝒫 be an arbitrary permutation of the order of a sequence. Show that ∀𝜐1 … 𝜐𝑛𝜙 ≡
∀𝒫 𝜐1 … 𝜐𝑛𝜙.

15. Explain why the ‘objectual’ reading of the quantifiers (i.e., the standard one) has no
difficulty with universal quantification over an uncountable domain.

Answers to selected exercises on page 251.

185

Chapter 11

Tableaux for ℒ2; Soundness

186

Chapter 12

Natural Deduction Derivations
in ℒ2; Soundness

12.1 Proofs in ℒ2

Proofs in ℒ2 In the case of ℒ1, a proof procedure was not strictly speaking
necessary. Every sentence of ℒ1 has only finitely many sentence letters, so a truth
table will need only to specify finitely many rows to capture what is true in every
ℒ1-structure.

But in ℒ2 we don’t have anything like a truth-table: one cannot simply survey
a finite number of cases to represent all the structures. (Intuitively, this is because
of the introduction of quantification – now a sentence may depend for its truth
on the way infinitely many things are, so surveying only finitely many of them
won’t suffice.) Brute force checking of semantic sequents is not possible.

Thus the introduction of a proof technique, to enable the derivation of some
ℒ2 claims from others, is crucial. Once more, we use natural deduction; again, we
abuse notation at let ⊢ stand for provability in ℒ2.

Natural Deduction The rules for the natural deduction system 𝑁𝐷2 include all
of those from the original system 𝑁𝐷. As ℒ2 includes all of ℒ1, everything prov-
able in 𝑁𝐷 is also provable in 𝑁𝐷2. But we include new rules to cover the quan-

187

elements of deductive logic

∀𝜐𝜙
∀Elim

𝜙[𝜏/𝜐]

⋅⋅⋅
𝜙[𝜏/𝜐]

∀Intro
∀𝜐𝜙

Provided 𝜏 doesn’t occur in 𝜙 or
in any undischarged assumption in
the proof of 𝜙[𝜏/𝜐].

𝜙[𝜏/𝜐]
∃Intro

∃𝜐𝜙

[𝜙[𝜏/𝜐]]⋅⋅⋅𝜓

⋅⋅⋅
∃𝜐𝜙

∃Elim
𝜓

Provided 𝜏 doesn’t occur in ∃𝜐𝜙, in
𝜓 , or in any undischarged assump-
tion other than 𝜙[𝜏/𝜐] in the proof
of 𝜓 .

Table 12.1: New Natural Deduction Rules for ℒ2

tifiers, laid out in Table 12.1. Throughout, let 𝜙[𝜏/𝜐] be the result of replacing free
occurrences of variable 𝜐 in 𝜙 by a constant 𝜏 .

Some Elementary Theorems About 𝑁𝐷2 Many of the theorems for 𝑁𝐷 con-
tinue to hold. For example, the proof of the deduction theorem in 𝑁𝐷 relied only
on the arrow rules, so carry directly over to 𝑁𝐷2.

Theorem 108 (Cut)
If Γ ⊢ 𝜙 and 𝜙, Δ ⊢ 𝜓 then Γ, Δ ⊢ 𝜓 .

Proof. We cannot, as in 𝑁𝐷, simply chain the proofs together, because Γ may
contain a constant 𝜏 which, in the proof that 𝜙, Δ ⊢ 𝜓 , is used in an application
of ∃Elim or ∀Intro (of course 𝜏 cannot appear in 𝜙 or Δ given the correctness of
Δ, 𝜙 ⊢ 𝜓). So we need to show that there is another proof of Δ, 𝜙 ⊢ 𝜓 which
doesn’t involve any such 𝜏 . I leave this for an exercise.

Proofs and Connectives The natural deduction proofs of many sequents in-
volving sentences with given connectives involve only the rules for those con-
nectives. For example, the sequent ∀𝑥∃𝑦(𝑃 𝑥∧𝑄𝑥) ⊢ ∃𝑦∀𝑥(𝑃 𝑥∧𝑄𝑥) can be proved
entirely using the rules for conjunction and the quantifiers.

But this is not true in general. Consider this: ∀𝑥(𝑃 ∨ 𝑄𝑥) ⊢ 𝑃 ∨ ∀𝑥𝑄𝑥. (Proof
below.)

This proof cannot be carried out using just the rules for disjunction and the
quantifiers.

188

natural deduction in ℒ2

The situation is very similar to a case in an earlier problem (Chapter 4, 1.(e),
page 159) where the natural deduction rules for → did not suffice to prove every
tautology involving → as its only connective.

Proof of ∀𝑥(𝑃 ∨ 𝑄𝑥) ⊢ 𝑃 ∨ ∀𝑥𝑄𝑥

∀𝑥(𝑃 ∨ 𝑄𝑥)
∀Elim

𝑃 ∨ 𝑄𝑎

[𝑃]

[¬(𝑃 ∨ ∀𝑥𝑄𝑥)]

[𝑃]
∨Intro

𝑃 ∨ ∀𝑥𝑄𝑥
¬Elim

¬𝑃
¬Elim

𝑄𝑎 [𝑄𝑎]
∨Elim

𝑄𝑎
∀Intro

∀𝑥𝑄𝑥
∨Intro

𝑃 ∨ ∀𝑄𝑥 [¬(𝑃 ∨ ∀𝑥𝑄𝑥)]
¬Elim

𝑃 ∨ ∀𝑥𝑄𝑥

Some ProofTheory: Uniqueness of ∃ Some philosophers have wanted to main-
tain that there are at least two senses of the English word ‘exists’. (They have
wanted to do this typically to distinguish a committal from a non-committal sense,
so they can accept the truth of claims like ‘there are at lest two prime numbers
less than 8’ and ‘there are at least two cities smaller than London’, while being
committed to cities, and avoiding committment to such mysterious entities as
numbers.) But these philosophers have typically also desired to speak a language
including both quantifiers; or at least to be able to translate between the two lan-
guages. There is however a fairly straightforward theorem which shows that this
situation is not possible: if there are two quantifiers which both meet the min-
imal requirements to be an existential quantifier, those quantifiers are logically
equivalent.

Theorem 109 (Harris 1982)
If there are two quantifiers ∃1 and ∃2 in a language, both governed by the standard
introduction and elimination rules for the quantifiers, then ∃1𝜐𝜙 is logically equival-
ent to ∃2𝜐𝜙.

Proof. Assuming that we have introduction and elimination rules for the two

189

elements of deductive logic

quantifiers, we can give the following natural deduction proof:

∃1𝜐𝜙
[𝜙[𝜏/𝜐]]

∃2Intro∃2𝜐𝜙
∃1Elim∃2𝜐𝜙

Obviously a precisely similar proof will show that ∃2𝜐𝜙 ⊢ ∃1𝜐𝜙.

Unless, then, we wish to introduce two different sorts of names, two different
sorts of predicates, etc., we cannot simply introduce two quantifiers into a lan-
guage – not, at least, if they are to meet the minimal conditions that quantifiers
should, namely, being characterised by our introduction and elimination rules.

12.2 Soundness of ℒ2

Soundness We are now in possession of a proof system 𝑁𝐷2, which character-
ises a provability turnstile ⊢. We now wish to show that this system is sound with
respect to the semantics for ℒ2 we introduced in the last chapter. That is, we wish
to prove

Theorem 110 (Soundness)
If Γ ⊢ 𝜙 then Γ ⊨ 𝜙.

As 𝑁𝐷2 extends 𝑁𝐷, and the rules of 𝑁𝐷 remain sound (verification of this is
left to an exercise), we just need to show that the new rules – the quantifier rules
– are sound. We also still know that the base case 𝜙 ⊢ 𝜙 is sound. So we just
consider proofs extended by the quantifier rules.

Soundness of ℒ2: ∀Elim and ∃Intro Suppose Γ ⊢ 𝜙, where 𝜙 is obtained from
an earlier proof by the use of the ∀Elim rule, and so is of the form 𝜓[𝜏/𝜐]. Then
there was a proof on the assumption Γ of ∀𝜐𝜓 .

By the induction hypothesis, Γ ⊨ ∀𝜐𝜓 . So every structure which makes all
the members of Γ true, makes ∀𝜐𝜓 true. By theorem 105 (proved on page 180),
∀𝜐𝜓 ⊨ 𝜓[𝜏/𝜐]. Since 𝜓[𝜏/𝜐] = 𝜙, 𝜙 will be true in every structure which makes Γ
true, i.e., Γ ⊨ 𝜙.

The proof for ∃Intro is similar. I leave it for an exercise.

190

natural deduction in ℒ2

Soundness of ℒ2: ∀Intro and ∃Elim The trickier case is if Γ ⊢ 𝜙 which was
obtained from ∃Elim. From a proof of ∃𝜈𝜓 on assumptions Δ, and a proof of 𝜙
on assumptions Θ, 𝜓[𝜏/𝜈], we obtain a proof of 𝜙 on assumption Γ = Δ ∪ Θ (with
appropriate restriction on where 𝜏 occurs). Since Δ ⊆ Γ, we have Γ ⊢ ∃𝜈𝜓 , and
by the induction hypothesis, Γ ⊨ ∃𝜈𝜓 .

SinceΘ ⊆ Γ, we haveΓ, 𝜓[𝜏/𝜈] ⊢ 𝜙, and by the induction hypothesisΓ, 𝜓[𝜏/𝜈] ⊨
𝜙. By theorem 106 (proved on page 181), Γ, ∃𝜈𝜓 ⊨ 𝜙. And by the Cut theorem,
Γ ⊨ 𝜙.

The soundness of ∀Intro is similarly demonstrated; I leave it for an exercise.

12.3 Completeness of ℒ2

Completeness

Theorem 111 (Completeness of ℒ2)
If Γ ⊨ 𝜙, Γ ⊢ 𝜙.

The proof extends the proof of completeness for ℒ1, roughly like this:

• First, show that, e.g., if Γ is a maximal consistent set, then ∃𝜐𝜙 ∈ Γ iff
𝜙[𝜏/𝜐] ∈ Γ for some constant 𝜏 . (This is analogous to the other closure
properties we showed.)

• Second, show that every maximal consistent set of ℒ2-sentences is satis-
fiable.

• Finally, show that if Γ ⊬ 𝜙, there is a maximal consistent set Γ+ such that
Γ ∪ {¬𝜙} ⊆ Γ+ – since it is maximal, Γ+ is satisfiable, so there is a model
where all of Γ is true and 𝜙 is false, so Γ ⊭ 𝜙. By contraposition, this shows
completeness.

We won’t prove this theorem here; the details are involved.

Compactness

Theorem 112 (Compactness)
If Γ is any set of ℒ2 sentences, then Γ is satisfiable iff every finite subset of Γ is
satisfiable.

191

elements of deductive logic

Again, compactness is a consequence of the finitude of proofs and the Complete-
ness Theorem. A direct proof, like that we gave for ℒ1 in Chapter 3, is more dif-
ficult in ℒ2, and again beyond the scope of this course.

Compactness has the consequence that certain relations are undefinable. In
English, the infinitely many sentences of the form ‘𝑥 is not a predecessor of…a
predecessor of 𝑦’ entail ‘𝑥 is not less than 𝑦’, but no finite subset does – but their
translation into the compact language ℒ2 must therefore fail. This is because the
relation between predecessor and less than is not definable in ℒ2.

12.4 Decidability and Undecidability

Completeness and Decidability

Theorem 113 (ℒ2 is positively decidable)
If ⊨ 𝜙, then there is an effective procedure demonstrating that.

Proof. Completeness shows that if 𝜙 is a theorem, there is a proof of it. By brute
force, we can generate finite proofs and spit out a proof of 𝜙 if one is to be had.
Since the set of sentences of ℒ2 is countable, and since every proof is of finite
length, consider the proofs of length 𝑛 which involve only the first 𝑚 ℒ2 sentences.
For each pair ⟨𝑚, 𝑛⟩ there are only finitely many such proofs; we can effectively
produce them. Since the set of pairs of integers are countable (exercise), there is
an enumeration of those pairs, hence we can effectively produce any finite proof.
But every theorem 𝜙 is proved by some such finite proof; so at some finite point in
the enumeration, we will reach an 𝑚 greater than the numbers of all the members
of a proof of 𝜙, and at some finite point spit out a proof of 𝜙 of length less than
𝑛.

Undecidability

Theorem 114
ℒ2 is negatively undecidable: if 𝜙 ⊭, no effective procedure exists which will show
that for any 𝜙 in a finite time.

Considering the effective procedure for positive decidability, we can see why this
won’t stop after a finite time (the proof of ¬𝜙 might always be achieved using the

192

natural deduction in ℒ2

next pair to be considered); but maybe there is another method that will termin-
ate?

There is not. Oneway of helping tomake this thought persuasive is to consider
a particular incorrect sequent: ∀𝑥∃𝑦𝑃 𝑥𝑦 ⊨ 𝑃 𝑎𝑎. One can certainly give a counter-
example to this (let the domain be the natural numbers, and ‘𝑃 ’ be interpreted as
‘<’). But is there an effective procedure for producing such counterexamples?

The Halting Problem If 𝑆 is a finite set of instructions, can we give an effective
procedure that determines whether it is the case that those instructions, carried
out on some acceptable input, will terminate after a finite time with some output?

Consider some enumeration of the set of finite sets of instructions; the halting
problem, if soluble, will entail the existence of an effectively computable function
ℎ(𝑖) that yields 1 if the 𝑖-th set of instructions halts with a defined output on input
𝑖, and 0 otherwise (i.e., ℎ(𝑖) = 0 if the 𝑖-th set of instructions determines a function
which is undefined on input 𝑖). Can there be such a function ℎ?

Sketch of Insolubility of the Halting Problem If there were such a function ℎ,
we could effectively compute the function 𝑔(𝑖) = 0 if the 𝑖-th set of instructions
is undefined on input 𝑖, and undefined otherwise. We could define 𝑔 by adding to
the instructions that compute ℎ the last instruction: if ℎ(𝑖) outputs 1, then check
if ℎ(𝑖) outputs 1. This last instruction will send give an infinite loop if ℎ(𝑖) is equal
to 1, rendering 𝑔(𝑖) undefined; but if ℎ(𝑖) = 0, then 𝑔(𝑖) = 0 too.

But 𝑔, if effectively computable, will be specified by a finite set of instructions;
let it be 𝑗-th in our list. Then 𝑔(𝑗) = 0 iff 𝑔(𝑗) is undefined, so it is undefined;
but then 𝑔(𝑗) must be defined. Contradiction; so there is no such 𝑔, and therefore
no such ℎ. The self-halting problem is insoluble, and therefore so is the halting
problem.

For a more humorous proof sketch, see Pullum (2008).

Undecidability and the Halting Problem It turns out that the undecidability of
ℒ2 is closely related to the Halting problem. For there is a way of associating to
each set of instructions 𝑖 an argument in ℒ2 such that the 𝑖-th set of instructions
halts on input 𝑖 iff the argument is valid. So if there was an effective test for in-
validity of an argument in ℒ2, the halting problem would be solvable. Since it is

193

elements of deductive logic

insoluble, we have
Theorem 115 (Undecidability of ℒ2)
ℒ2 is not decidable.

The translation essentially involves binary predicates (Jeffrey §8.7) and sentences
in which (sometimes) a universal quantifier is essentially in the scope of an exist-
ential quantifier. So we might wonder: are there fragments of ℒ2 that are decid-
able?

Prenex Normal Form A sentence 𝜙 of ℒ2 is in prenex normal form iff no quan-
tifier in 𝜙 occurs in the scope of any truth-functor (all quantifiers are in a block).
Theorem 116 (PNF)
Every sentence of ℒ2 is equivalent to a sentence in prenex normal form.

Proof. Theproofwill bework by showing that if 𝜙 is some sentence, any quantifier
which occurs somewhere in the middle of 𝜙 can be ‘moved’ to the left. The idea
is to show these equivalences:

1. ¬∀𝜐𝜙 ≡ ∃𝜐¬𝜙; (basically shown by Theorem 102)

2. ¬∃𝜐𝜙 ≡ ∀𝜐¬𝜙; (basically shown by Theorem 102)

3. 𝜓 ∧ ∀𝜐𝜙 ≡ ∀𝜐(𝜓 ∧ 𝜙) (𝜐 not free in 𝜓).

4. 𝜓 ∧ ∃𝜐𝜙 ≡ ∃𝜐(𝜓 ∧ 𝜙) (𝜐 not free in 𝜓).

Etc. The full proof is left for an exercise.

Decidability of ∀∃-sentences An ∀∃-sentence is a sentence in PNF in which all
universal quantifiers precede all existential quantifiers.
Theorem 117 (Decidability of ∀∃-sentences)
There exists an effective procedure which establishes the validity of any valid ∀∃-
sentence, and the invalidity of any invalid ∀∃-sentence.

The proof is as follows. We show how to reduce the question of validity of a
∀∃-sentence to the question of validity of a related quantifier-free sentence; and
such quantifier-free sentences of ℒ2 are decidable. For convenience, I abbreviate
∀𝑥1 … ∀𝑥𝑛 as ∀𝑥1 … 𝑥𝑛, and similarly for ∃.

194

natural deduction in ℒ2

Lemma on Quantifier-Free Sentences
Lemma 118 (Quantifier-Free Sentences)
If 𝜙 is a sentence of ℒ2, which is not a (substitution instance of a) truth-functional
tautology, then there is a structure 𝒜 in which J𝜙K𝒜 = 𝐹 and either (i) if 𝜙 contains
no constants, the domain of 𝒜 has one element; or (ii) otherwise, 𝒜 has an element
in its domain for each distinct constant occurring in 𝜙 and no other elements, and
each constant in 𝜙 is assigned a distinct element of the domain.

Proof. Hint: if 𝜙 is not a truth-functional tautology, there is an assignment of
truth-values to atomic sentences in 𝜙 that mimics an ℒ1-structure; and we can
construct an ℒ2-structure 𝒜 which agrees with that pseudo-ℒ1-structure on its
assignment to atomic sentences.

A corollary is that quantifier-free sentences of ℒ2 are decidable, since the truth-
table test decides truth-functional tautologies.

∃-sentences
Theorem 119 (Constant-free ∃-sentences)
If 𝜙 is a quantifier-free formula which contains only the variables 𝜈1, … , 𝜈𝑛 and
which contains no constants, then ⊨ ∃𝜈1 … 𝜈𝑛𝜙 iff ⊨ 𝜙[𝜏/𝜈1, … , 𝜏/𝜈𝑛].

Proof. R to L: Repeated applications of Existential Introduction (Theorem 105)
yield 𝜙[𝜏/𝜈1, … , 𝜏/𝜈𝑛] ⊨ ∃𝜈1 … 𝜈𝑛𝜙. By Cut, the result follows.

L to R: If ⊭ 𝜙[𝜏/𝜈1, … , 𝜏/𝜈𝑛], then by Lemma 118, there is a structurewith a one-
element domain 𝒜 where it is false. If J∃𝜈1, … 𝜈𝑛𝜙K𝒜 = 𝑇 , there is a variable as-
signment 𝛼 such that J𝜙K𝛼

𝒜 = 𝑇 ; but this variable assignment must assign J𝜏K𝛼
𝒜 to

each variable (there is only one element in the domain), so J𝜙[𝜏/𝜈1, … , 𝜏/𝜈𝑛]K𝛼
𝒜 =

𝑇 , contradiction. (Using Theorem 104.)

These ∃-sentences are equi-decidable with quantifier-free sentences.
Theorem 120 (Arbitrary ∃-sentences)
If 𝜙 is a quantifier free formula containing only 𝜏1, … , 𝜏𝑛 and 𝜈1, … , 𝜈𝑚, then

⊨ ∃𝜈1 … 𝜈𝑚𝜙 iff ⊨ ⋁(𝜙[𝜏𝑖/𝜈𝑗]),

where ⋁(𝜙[𝜏𝑖/𝜈𝑗]) is the disjunction of all the ways of substituting the constants
𝜏1, … , 𝜏𝑛 for the variables 𝜈1, … , 𝜈𝑚.

195

elements of deductive logic

I leave the proof of this for an exercise; it is along the same lines as the proof
of the proof for constant-free ∃-sentences.

Now we have shown that an arbitrary sentence involving only existential
quantification is valid iff some quantifier-free sentence is valid, and since the lat-
ter is decidable, so is the former. Now we just need to show that any ∀∃-sentence
is valid iff some ∃-sentence is valid.

∀∃-Sentences
Theorem 121 (∀∃-sentences and ∃-sentences)
If 𝜏1, … , 𝜏𝑚 don’t occur in 𝜙, then

⊨ ∀𝜐1 … 𝜐𝑚∃𝜈1 … 𝜈𝑛𝜙 iff ⊨ ∃𝜈1 … 𝜈𝑛𝜙[𝜏1/𝜐1, … , 𝜏𝑚/𝜐𝑚].

Proof. L to R: By repeated applications of ∀-Elimination (Theorem 105), we have

∀𝜐1 … 𝜐𝑚∃𝜈1 … 𝜈𝑛𝜙 ⊨ ∃𝜈1 … 𝜈𝑛𝜙[𝜏1/𝜐1, … , 𝜏𝑚/𝜐𝑚],

from which the result follows by Cut.
R to L: Because Γ is empty, and 𝜏1, … , 𝜏𝑚 don’t occur in 𝜙, we can use ∀-

Introduction (Theorem 106) repeatedly to show the theorem.

So any ∀∃-sentence is equi-valid with some quantifier-free sentence.

Elementary Quantifications and Monadic Sentences A sentence is an element-
ary quantification iff no quantifier occurs in the scope of any other. Some sen-
tenceswon’t be equivalent to any elementarily quantified sentence – e.g., ∀𝑥∃𝑦𝑅𝑥𝑦
can’t be put into that form.

An ℒ2 sentence ismonadic iff it contains at most unary (one-place) predicates.

Lemma 122 (Monadic and Elementary Sentences)
Every monadic sentence of ℒ2 is equivalent to some elementary quantification.

Proof. Left as a problem. The general idea is: since we have no binary predicates,
each bound variable in a sentence is associated with a unique quantifier, and we
can ‘drive in’ the quantifiers so that it binds only its own variable.

196

natural deduction in ℒ2

Corollary: Monadic ℒ2 decidable

Theorem 123 (Monadic ℒ2 sentences)
If 𝜙 is a monadic sentence of ℒ2, it is equivalent to a ∀∃-sentence.

Proof. Suppose 𝜙 is a monadic sentence. We can effectively produce a an ele-
mentary quantification 𝜙′, logically equivalent to 𝜙. But switching the order of
any quantifiers in that driven in sentence can’t change the truth-value (exercise).
And so we can reorder the quantifiers in 𝜙′ to get another logically equivalent
sentence 𝜙″ that is ∀∃. Each step is effective: monadic ℒ2 is decidable.

Further Reading

Further discussion of the Harris Theorem is in McGee (2006).
The completeness proof was first established by Gödel in his 1929 doctoral thesis; the

proof sketched here follows the later proof of Henkin (1949). The technique of associat-
ing (in)valid arguments with (un)defined computable functions mentioned in the proof
of undecidability is involved. An elementary version is in Jeffrey (2006: ch. 7–8). A more
sophisticated version is in Boolos et al. (2007: ch. 1–8).The connection between decidability
and the halting problem was shown by Church and Turing, independently: Turing’s result
is in Turing (1937). This technique for proving decidability of ∀∃-sentences is in Bostock
(1997: §3.9). He provides an alternative decision procedure for monadic ℒ2 in §3.8.

Exercises

1. Prove, using the hints in the chapter, the Cut Theorem: that if Γ ⊢ 𝜙 and Δ, 𝜙 ⊢ 𝜓 ,
then Γ, Δ ⊢ 𝜓 .

2. Explain why we could have used this rule instead of our ∀Intro:
⋅⋅⋅
𝜙

∀Intro
∀𝜐𝜙[𝜐/𝜏]

Provided 𝜏 doesn’t occur in any undis-
charged assumption in the proof of 𝜙.

3. Let 𝜓 be the result of substituting 𝜐 for all occurrences of 𝜏 in 𝜙. Show that this rule
is not sound (i.e., not truth-preserving)

If Γ, 𝜙 ⊢ 𝜒 then Γ, ∃𝜐𝜓 ⊢ 𝜒 , provided 𝜏 does not occur in Γ or in 𝜒 .

Can you think of a way of amending the rule to make it sound? (Hint: Theorem 10.3.)

4. Verify that all the rules of 𝑁𝐷 are sound with respect to the ℒ2 semantics.

197

elements of deductive logic

5. (a) Show that the rule ∃Intro is sound with respect to the ℒ2 semantics.

(b) Show that the rule ∀Intro is sound with respect to the ℒ2 semantics.

6. Explain why one cannot define the relation ‘𝑥 is an ancestor of 𝑦’ in terms of the
relation ‘𝑥 is a parent of 𝑦’. What resources could be added to the language to allow
this to be defined?

7. Sketch the proof that for any finite set of ℒ2 sentences, we can effectively produce
every proof that uses only sentences in that set.

8. Assuming that ∧, ¬, ∨ are the only truth functional connectives in 𝜙:

(a) Show that, where 𝜐 is not free in 𝜓 , that 𝜓 ∧ ∀𝜐𝜙 ≡ ∀𝜐(𝜓 ∧ 𝜙).

(b) Show that, where 𝜐 is not free in 𝜓 , that 𝜓 ∧ ∃𝜐𝜙 ≡ ∃𝜐(𝜓 ∧ 𝜙).

(c) Show that, where 𝜐 is not free in 𝜓 , that 𝜓 ∨ ∀𝜐𝜙 ≡ ∀𝜐(𝜓 ∨ 𝜙).

(d) Show that, where 𝜐 is not free in 𝜓 , that 𝜓 ∨ ∃𝜐𝜙 ≡ ∃𝜐(𝜓 ∨ 𝜙).

(e) Show that ∀𝜐𝜙 ∧ ∀𝜐𝜓 ≡ ∀𝜐(𝜙 ∧ 𝜓).

(f) Show that ∃𝜐𝜙 ∨ ∃𝜐𝜓 ≡ ∃𝜐(𝜙 ∨ 𝜓).

9. (a) Using the results in problem 8, plus the results on the interdefinability of quan-
tifiers from week 5, prove the PNF theorem for the fragment of ℒ2 without
arrow or biconditional.

(b) Prove the PNF in the following stronger form:

For every sentence 𝜙 in the arrow and biconditional-free frag-
ment of ℒ2, there is a logically equivalent sentence 𝜙′ in PNF that
has no more connectives than 𝜙.

(c) Can we extend the stronger result to the full language ℒ2?

10. Prove the Lemma on Quantifier-Free Sentences.

11. Prove the Theorem for Arbitrary ∃-Sentences.

12. Suppose that 𝜙 is a monadic ℒ2 sentence containing only ∧, ∨, ¬ as connectives in
addition to quantifiers.

(a) Show that we can construct a sentence 𝜙′ logically equivalent to 𝜙 inwhich no
quantifier occurs in the scope of any other – i.e., an elementary quantification.
(Consider exercises 8.(a–f), and recalling facts about DNF and CNF, thinking
particularly about giving a CNF ‘equivalent’ of an open formula in DNF and
vice versa.)

198

natural deduction in ℒ2

(b) Show that ∀𝜐𝜙 ∧ ∀𝜐𝜓 ≡ ∀𝜐𝜙 ∧ ∀𝜈𝜓[𝜈/𝜐] (and similarly for disjunction, and
other combinations of universal and existential quantifiers).

(c) Show that for any elementary quantification 𝜙′ we can construct a logically
equivalent sentence 𝜙″ in which any quantifier in 𝜙′ is brought to the front
and has scope over the others. (Tip: remember to use the result proved in
12.(b).)

(d) Show, using these results, that there is a ∀∃ sentence equivalent to any such
monadic 𝜙.

13. Prove that there is no sentence 𝜙 which contains just one occurrence of some two-
place connective, just one occurrence of any quantifier, which is in PNF and is equi-
valent to 𝑃 ↔ ∀𝑥𝑄𝑥. Is there any connective other than ↔ for which this also holds?
Why?

14. The Cantor Pairing Function is this function from ℕ × ℕ to ℕ:

𝜋(⟨𝑥, 𝑦⟩) = (𝑥 + 𝑦)(𝑥 + 𝑦 + 1)
2 + 𝑦.

Show that this function has an inverse (i.e., a function from natural numbers to
pairs of natural numbers). Show therefore that 𝜋 is one-one and onto, and that the
set of pairs of natural numbers is countable. (Hint: show that, given some 𝑧, we can
reconstruct a unique 𝑥 and 𝑦 from it such that 𝜋(⟨𝑥, 𝑦⟩) = 𝑧.)

199

Chapter 13

Syntax, Semantics, and
Derivations in ℒ=

13.1 Identity

Identity: Syntax and Semantics The language ℒ2 doesn’t have a privileged pre-
dicate for identity. Yet such a predicate is very useful in discussing binary rela-
tions.

We add to ℒ2 a binary predicate ‘=’. We add new atomic formulae: where 𝜏1
and 𝜏2 are any terms, ‘𝜏1 = 𝜏2’ is an atomic formula. We keep the same structures
as ℒ2, but give this new predicate a constant semantic value, so that in every
ℒ2-structure 𝒜 ,

(=) 𝐼𝒜 (=) = {⟨𝑥, 𝑥⟩ ∶ 𝑥 ∈ 𝐷𝒜 }

Of course the property that we intend this predicate to express could exist in
an ℒ2-structure already; the change is that we now give it a logically privileged
meaning. The satisfaction conditions are:

• J𝜏1 = 𝜏2K𝛼
𝒜 = 𝑇 iff ⟨J𝜏1K𝛼

𝒜 , J𝜏2K𝛼
𝒜 ⟩ ∈ J=K𝛼

𝒜 , i.e., iff J𝜏1K𝛼
𝒜 = J𝜏2K𝛼

𝒜 ; i.e., if J𝜏K𝛼
𝒜

is the very same object as J𝜅K𝛼
𝒜 .

Call the language which keeps all the old atomic formulae and formation rules

200

syntax, semantics, and derivations in ℒ=

of ℒ2, but adds these atomic formulae, ℒ=.

Some Theorems About Identity

Theorem 124 (Theoremhood of Identity)
For any constant 𝜏 , ⊨ 𝜏 = 𝜏 .

Proof. Suppose⊭ 𝜏 = 𝜏 for some 𝜏 .Then there is a structure𝒜 such that J𝜏 = 𝜏K𝒜 =
𝐹 , iff J𝜏K𝛼

𝒜 ≠ J𝜏K𝛼
𝒜 ; impossible.

Theorem 125 (Substitution of co-designating terms II)
𝜏 = 𝜅 ⊨ 𝜙[𝜏/𝜐] ↔ 𝜙[𝜅/𝜐].

Proof. Fairly immediate from the Substitution of Co-Designating Terms theorem
(chapter 5, page 179).

The Relation of Identity

Theorem 126 (Identity an Equivalence Relation)
• ⊨ ∀𝑥𝑥 = 𝑥;

• ⊨ ∀𝑥∀𝑦(𝑥 = 𝑦 → 𝑦 = 𝑥);

• ⊨ ∀𝑥∀𝑦∀𝑧((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧).

Theorem 127 (‘Leibniz’ Law’)
For any 𝜙 in which at most 𝜐 occurs free, ⊨ ∀𝜐∀𝜈(𝜐 = 𝜈 → 𝜙 ↔ 𝜙[𝜈/𝜐]).

Proofs left for exercises. Leibniz’ Law usually refers to this definition of identity
in second order logic: ∀𝜐∀𝜈(𝜐 = 𝜈 ↔ ∀Φ(Φ(𝜐) ↔ Φ[𝜈/𝜐](𝜈))).

Proofs in ℒ= To obtain a natural deduction system for ℒ=, 𝑁𝐷=, we add to
the rules of 𝑁𝐷2 the rules in Table 13.1, keeping all other rules. In =Elim-l and
=Elim-r, 𝜙 is a formula in which at most 𝜐 occurs free.

201

elements of deductive logic

[𝜏 = 𝜏]
=Intro

⋮⋅⋅⋅
𝜙[𝜏/𝜐]

⋅⋅⋅𝜏 = 𝜅
=Elim-r

𝜙[𝜅/𝜐]

⋅⋅⋅
𝜙[𝜏/𝜐]

⋅⋅⋅𝜅 = 𝜏
=Elim-l

𝜙[𝜅/𝜐]

Table 13.1: New Natural Deduction Rules for ℒ=

Dispensibility of =Elim-l/=Elim-r The two rules =Elim-l and =Elim-r obviously
offer very similar resources in proofs. If we could show that 𝜏 = 𝜅 ⊢ 𝜅 = 𝜏 using
just one of these rules, we could show the other to be dispensible.

Theorem 128 (Dispensibility of =Elim-r (or =Elim-l))
In the presence of the rule =Elim-l (respectively, =Elim-r), the functionality of =Elim-r
(=Elim-l) can be derived.

Proof. 𝜙[𝜏/𝜐]
[𝜅 = 𝜅] 𝜏 = 𝜅

=Elim-l.
𝜅 = 𝜏

=Elim-l
𝜙[𝜅/𝜐]

This is obviously equivalent to =Elim-r; a similar proof would show the dis-
pensibility of =Elim-l. (Note the use of =Intro.)

Soundness of ℒ=

Theorem 129 (ℒ= is Sound)
If 𝜙 is a sentence of ℒ=, then if ⊢ℒ= 𝜙 then ⊨ 𝜙.

Proof. We only need show that proofs extended by the new rules are sound.

• We have a proof of 𝜙 on assumption 𝜏 = 𝜏 , and apply =Intro to discharge
the assumption. Since by the Theoremhood of Identity, J𝜏 = 𝜏K𝒜 = 𝑇 in
every structure, and by the induction hypothesis J𝜙K𝒜 = 𝑇 if J𝜏 = 𝜏K𝒜 = 𝑇 ,
clearly J𝜙K𝒜 = 𝑇 .

• We have a proof of 𝜏 = 𝜅 on assumptions Γ, and a proof of 𝜙[𝜏/𝜐] on as-
sumptions Δ, and we extend to a proof of 𝜙[𝜅/𝜐] using =Elim-r on assump-
tions Γ ∪ Δ. By the induction hypothesis, for any 𝒜 where Γ ∪ Δ is sat-
isfied, J𝜏 = 𝜅K𝒜 = 𝑇 , and similarly J𝜙[𝜏/𝜐]K𝒜 = 𝑇 . By the Substitution of

202

syntax, semantics, and derivations in ℒ=

co-designating constants theorem of page 201 and logic, in any such 𝒜 ,J𝜙[𝜅/𝜐]K𝒜 = 𝑇 .

Further metalogical results It turns out that the proof of completeness of ℒ2
can be extended to provide a completeness proof for ℒ=.

Theorem 130 (Completeness of ℒ=)
If ⊨ 𝜙 then ⊢ 𝜙.

In the now familiar way, this can be adapted to a compactness proof.
Since ℒ2 is not decidable, and ℒ= contains ℒ2 as a part, ℒ= is not decidable

either. Obviously the monadic fragment of ℒ= is decidable (as ‘=’ is binary, the
monadic fragment is the same as that of ℒ2). A more interesting fragment is the
pure theory of identity – the fragment where the only atomic formulae are of the
form 𝜏 = 𝜅. This, it turns out, is decidable (Bostock, 1997: 329–31).

13.2 NumericalQuantification and theTheory ofDef-

inite Descriptions

Numerical Quantification: ‘At Least’ The ordinary interpretation of the sen-
tence ∃𝑥𝑃 𝑥 is that there are one or more things which satisfy 𝑃 . Obviously,
∃𝑥∃𝑦𝑃 𝑥 ∧ 𝑃 𝑦 does not express that there are two or more things which satisfy
𝑃 , because 𝑥 and 𝑦 may take the same values under a variable assignment. To
express that there are at least two 𝑃 s, we need to guarantee the distinctness of the
values of the variables. We can do this using identity:

∃𝑥∃𝑦((𝑃 𝑥 ∧ 𝑃 𝑦) ∧ ¬𝑥 = 𝑦).

Similarly,

∃𝑥∃𝑦∃𝑧((𝑃 𝑥 ∧ 𝑃 𝑦 ∧ 𝑃 𝑧) ∧ (¬𝑥 = 𝑦 ∧ ¬𝑦 = 𝑧 ∧ ¬𝑥 = 𝑧))

expresses that there are at least three distinct 𝑃 s. Let ∃𝑛𝜙 express that there are at
least 𝑛 things which satisfy 𝜙.

203

elements of deductive logic

Numerical Quantification: ‘At Most’, ‘Exactly’ Just as for ‘at least’, so we can
formalise ‘there are at most 𝑛 𝑃 s’. Under what circumstances are there at most
𝑛 things? Just in case, if we chose 𝑛 + 1 times, we would have to have chosen
some of the things twice: some of things chosen would have to be identical. So we
formalise ‘there are at most 2 𝑃 s’ as

∀𝑥∀𝑦∀𝑧((𝑃 𝑥 ∧ 𝑃 𝑦 ∧ 𝑃 𝑧) → (𝑥 = 𝑦 ∨ 𝑥 = 𝑧 ∨ 𝑦 = 𝑧)).

Formalise ‘there are at most 𝑛 𝜙s’ as ∀𝑛𝑥𝜙. Then we can say that there are exactly
𝑛 𝜙 as

∃𝑛𝑥𝜙 ∧ ∀𝑛𝑥𝜙.

There will be more or less concise ways of expressing this claim.

Definite Descriptions The ℒ= sentence 𝑃 𝑎 is often a good translation of simple
English sentences of subject-predicate form. Yet some sentences, with this appar-
ent form, cannot be translated in this way. Consider ‘The fourth-oldest college is
a college’. While ‘the fourth-oldest college’ is a referring expression, denoting a
particular item in the domain, it seems a bad idea to formalise this by a constant 𝑎.
For one thing, the English sentence is a tautology, but the proposed formalisation
is not. So some English expressions which, like constants, denote an object in the
domain, shouldn’t be formalised by constants. It is notable that ‘the fourth-oldest
college’ doesn’t name a particular college (Exeter) – it describes it. A definite de-
scription designates a particular thing by giving a description that the thing – and
only that thing – satisfies. We will look again at the relation between constants of
ℒ2/ℒ= and English referring expressions in Chapter 8.

So ‘the strongest man in the world’ designates that person who satisfies the
property of being a man stronger than any other. ‘Strongest’ entails uniqueness,
and this is generally true for definite descriptions: they fail to refer if more than
one thing satisfies the description (so ‘the college on Turl St’ fails, because there
are three such). Indefinite descriptions, such as ‘a strong man’, do not require
uniqueness.

Definite descriptions also seem to require existence of the thing they describe:

204

syntax, semantics, and derivations in ℒ=

the definite description ‘the present king of France’ fails because nothing satisfies
that description.

Definite Descriptions and Numerical Quantification Putting these ideas to-
gether, we might say that the definite description ‘the 𝑃 ’ refers to the unique
existing thing that is 𝑃 . But we know how to express that there is one and only
one 𝑃 , using numerical quantification – so we can say that ‘the 𝑃 is 𝑄’, because
we can say that there is one and only one 𝑃 , and it is 𝑄. Where 𝜙, 𝜓 are expres-
sions in which at most 𝜐 occurs free, let us introduce the notation � 𝜐 ∶ 𝜙 to denote
‘the 𝜐 such that 𝜙’, or simply, ‘the 𝜙’. One could permit this expression can take
the place of a constant, so if 𝜓𝜏 is well-formed, so is 𝜓(� 𝜐 ∶ 𝜙); the latter says ‘the
𝜙 is 𝜓 ’. Given our resources, though, we needn’t add this to the language, or deal
with the complications that ensue, for this expression can be defined:

Definition 113 (Definite Descriptions). 𝜓(� 𝜐 ∶ 𝜙) =df ∃𝜐(𝜓 ∧ ∀𝜈𝜙[𝜈/𝜐] ↔ 𝜐 = 𝜈).

This, essentially, is Russell’s analysis of the logical form of definite descriptions.

Descriptions and Scope One reason to suspect that definite descriptions aren’t
just ordinary names – and a corresponding reason to reject the descriptivist ac-
count of the meaning of the constants of natural language – is that descriptions,
unlike names, have scope. Consider

(*) The prime minister has always been Australian.

In ℒ=, there is no non-truth-functional operator ‘it always has been that 𝜙’. We
can mimic this (or maybe it is not mimicking) by quantifying over times. Let 𝑡 be
‘now’, ≺ be ‘is earlier than’, 𝑃 be ‘is prime minister at’, and 𝐴 be ‘is Australian’.
(*) has two readings:

∀𝑥(𝑥 ≺ 𝑡 → ∃𝑦((𝑃 𝑦𝑥 ∧ ∀𝑧(𝑃 𝑧𝑥 ↔ 𝑦 = 𝑧))) ∧ 𝐴𝑦);

∃𝑦((𝑃 𝑦𝑡 ∧ ∀𝑧(𝑃 𝑧𝑡 ↔ 𝑦 = 𝑧)) ∧ ∀𝑥(𝑥 ≺ 𝑡 → 𝐴𝑦)).

The first says: always the prime minster, whoever they’ve been, has been Aus-
tralian at the time of their prime ministership; the second says the present prime
minister has always been Australian.

205

elements of deductive logic

(Very similar results can be seen inmodal contexts of possibility and necessity.
We can again mimic the behaviour of the operator ‘possibly’ as an existential
quantifier over ‘possible worlds’, and ‘necessarily’ (like ‘always’) as a universal
quantifier.)

The problem is that in the case of names we seem not to see these scope prob-
lems. For this claim has only one reading:

(†) Kevin Rudd has always been Australian.

The existence of scopes for definite descriptions, is some evidence for the fact that
they are really quantifier expressions.

Yet there are some disanalogies. Consider

(‡) The present king of France is bald.

According to Russell’s theory, this is false – existence fails. But we may not share
that intuition; this claim may strike us as neither true nor false, or having a false
presupposition and thus unassessable.

Alternative Theories of Descriptions Strawson used our uncertain intuitions
about (‡) to argue that descriptions are often used referentially,

to mention or refer to some individual person or single object…,
in the course of doing what we should normally describe as making
a statement about that person [or] object.

When uttering a referring expression, one presupposes the existence of the thing.
But when our intentions go awry, and we have presupposed something false, the
utterance fails to have a truth value.

One truly weird way of dealing with (‡) is due to Meinong. This is to suppose
that definite descriptions always pick out something, but sometimes the things
picked out do not exist! Rather, according to Meinong, they subsist. Meinongian-
ism apaprently handles one type of problematic definition description with ease:

(¶) The present king of France does not exist.

But one might legitimately query whether a real success has been achieved here.
For Meinong, apparently empty definite descriptions, like the present king of

206

syntax, semantics, and derivations in ℒ=

France, do function referentially: they pick outmerely subsisting entities. But then
Meinong offers us an explanation as to why we cannot use existential generalisa-
tion (the English analogue of the ℒ2 rule ∃-intro) on such singular terms. For we
manifestly cannot use it, else the true claim (¶) would entail this false claim:

(!) There is something that does not exist.

13.3 Compactness and Cardinality

‘There are 𝑛 things’ and infinity We saw before that there is a set of ℒ= sen-
tences satisfiable only in infinite domains. If 𝑅 is a transitive asymmetric relation
(both of which properties are expressible by an ℒ= sentence), then ∀𝑥∃𝑦𝑅𝑥𝑦 will
be satisfiable in no finite domain. Can we give a set of sentences satisfiable in all
and only infinite domains?

Using the resources for numerical quantification, define n as ∃𝑛𝑥(𝑥 = 𝑥). Then
3 says there are at least three things.

Consider the set N = {n ∶ 𝑛 ∈ ℕ}. N is not satisfiable in any finite domain:
suppose it were satisfiable in domain of size 𝑚, then where 𝑛 = 𝑚 + 1, n would
be false and because n ∈ N, N is not satisfied. So N is satisfiable only in infinite
domains. Moreover, in every infinite domain, N is satisfied. (exercise).

N is thus an ‘axiomatisation of infinity’. It is a consequence of compactness
that there is no single ℒ= sentence which is an axiom of infinity (exercise).

Finitude Undefinable Since there is at least one sentence of ℒ= true only in
infinite domains, perhaps there is a sentence of ℒ= true only in finite domains?
Perhaps surprisingly, there is not.

Theorem 131 (Finitude Undefinable)
There is no set of ℒ=-sentences satisfiable in all and only finite domains.

Proof. Suppose 𝐹 𝐼𝑁 is a set of ℒ= sentences true in all and only finite domains.
𝐹 𝐼𝑁 ∪Nmust be unsatisfiable; by compactness, where Γ is a finite subset of 𝐹 𝐼𝑁
and Δ is a finite subset of N, Γ ∪ Δ is unsatisfiable. As Δ is a finite subset of N,
there is some greatest n ∈ Δ; in any model 𝒜 with a domain of size greater than
𝑛, Δ is satisfiable in 𝒜 . Since Γ ∪ Δ is unsatisfiable, Γ is unsatisfiable in any such

207

elements of deductive logic

model 𝒜 , so there is a model with a finite domain (any such 𝒜) in which 𝐹 𝐼𝑁 is
unsatisfiable, contrary to assumption. So there is no such 𝐹 𝐼𝑁 .

Löwenheim-Skolem Theorem
Theorem 132 (The Löwenheim-Skolem Theorem)
If Γ is a set of sentences of ℒ= which has an infinite model 𝒜 (of size 𝜔𝛼), then

Upward Γ has a model for every infinite size 𝜔𝛽 > 𝜔𝛼 .

Downward Γ has a countable model.

Proof. Upward: Extend the language for Γ to ℒ + by adding new constants 𝐶 such
that size of𝐶 is𝜔𝛽 . Consider the set ofℒ + sentencesΓ∗ = Γ∪𝑐𝑖 ≠ 𝑐𝑗 ∶ 𝑖 ≠ 𝑗, 𝑐𝑖, 𝑐𝑗 ∈ 𝐶 .
Since Γ is satisfiable, every finite subset of Γ∗ is satisfiable – by compactness (for
this uncountable language!), Γ∗ has a model, and the model must have cardinality
𝜔𝛽 .

Downward: too complex to be covered here, unfortunately – see, e.g., Boolos
et al. (2007: chs. 12–13).

Overspill

Theorem 133 (Overspill)
If a set of sentences has an arbitrarily large finite model, it has a countable model.

Proof. Let Γ have arbitrarily large finite models. Let Γ′ = Γ ∪N. Any finite subset
of Γ′ is a subset of Γ ∪ Δ, where Δ is a finite subset of N, with a greatest n ∈ Δ.
Since Γ has arbitrarily large models, Γ ∪ Δ has a model. But then every finite
subset of Γ′ has a model; by Compactness, Γ′ has a model. And by the downward
Löwenheim-Skolem theorem, it has a countable model (Boolos et al., 2007: 147).)

Skolem’s Paradox TheLöwenheim-Skolem theorem says that no first-order the-
ory can restrict itself to models of one infinite cardinality. But set theory is a
first-order theory: the Löwenheim-Skolem theorm says it has a (presuambly un-
intended) countable model, but set theory itself entails that there are uncountable
sets! This is Skolem’s paradox.

The resolution of the ‘paradox’ is to note that set theory

208

syntax, semantics, and derivations in ℒ=

only “says” that [some set] 𝑆 is nondenumerable in a relative
sense: the sense that the members of 𝑆 cannot be put in one-to-one
correspondence with a subset of ℕ by any 𝑅 in the model. A set 𝑆 can
be “nondenumerable” in this relative sense and yet be denumerable
“in reality”.This happenswhen there are one-to-one correspondences
between 𝑆 and ℕ but all of them lie outside the given model. What
is a “countable” set from the point of view of one model may be an
uncountable set from the point of view of another model. (Putnam,
1980: 465)

13.4 Further Directions of Research and Study in Lo-

gic

We could now proceed to extend, or alter our logic, in quite a few ways:

Enriching We could add still further to ℒ= or ℒ1, introducing modal operators
like ‘necessarily’ and ‘possibly’, temporal operators like ‘it was the case that’,
or even moral operators like ‘it ought to be that’, or stronger conditionals
like the counterfactual ‘If it had been the case that 𝜙, it would have been the
case that 𝜓 ’. Then we can prove results about these enriched systems.

Altering Some complain that ¬¬𝜙 ⊭ 𝜙; these intuitionists want to revise our
logic. Free logic permits constants to lack a designation in a model, and uni-
versally free logic abandons the requirement that the domain be non-empty;
these of course will also revise our logic as given.

Advancing We could augment our languages in another way too, perhaps intro-
ducing function symbols – operators on terms that yield terms – like + or ×.
We can then formalise languages of interest – most famously arithmetic, in
the Peano axioms, and prove various things about them. In this way we can
build up to one of the most celebrated results of twentieth century logic:

Theorem 134 (Gödel Incompleteness Theorems)
If 𝑇 is a consistent, finitely axiomatisable theory able to express elementary
arithmetic, then

• 𝑇 cannot prove every arithmetical truth;

209

elements of deductive logic

• 𝑇 cannot prove its own consistency (i.e., cannot prove an arithmetical
sentence that is true iff 𝑇 is consistent). (This second result obviously
entails the first given that 𝑇 is consistent.)

The proof is sadly beyond us.

In the next chapter, we will look at some of the philosophical issues arising for
the logic we have introduced. In particular, we will look at how well the operator
→ matches the English conditional, and howwell the semantics of designators and
relations for ℒ2 matches similar constructions in English. We’ll also reexamine
the sequent 𝜙, ¬𝜙 ⊢ 𝜓 .

Further Reading

Russell’s famous paper on definite descriptions is Russell (1956); the nearly as famous re-
sponse by Strawson is Strawson (1950). A good overall source is Ludlow (2013).

One much-discussed philosophical analysis of the consequences of the Löwenheim-
Skolem theorem is Putnam (1980). This article is very controversial! One response is Lewis
(1984).

Onmodal, temporal, etc., logics, a good treatment is by Beall and van Fraassen (2003); a
very elegant recent examination of these topics an the topicof non-classial logic generally
is Burgess 2009. Free logics are treated by Bostock (1997: §§8.4–8.7), and Lambert (2001).

A good text on the further development of metamathematics is Boolos et al. 2007.

Exercises

1. Prove the theorem called ‘Substitution of co-designating constants’ from page 201.

2. Prove the following

(a) ⊨ ∀𝑥𝑥 = 𝑥;

(b) ⊨ ∀𝑥∀𝑦(𝑥 = 𝑦 → 𝑦 = 𝑥);

(c) ⊨ ∀𝑥∀𝑦∀𝑧((𝑥 = 𝑦 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑧).

3. (a) Show that in the presence of =Elim, ∃Elim and ∃Intro, the rule =Intro can be
replaced by this rule (where 𝜏 is a constant):

[∃𝜐𝜐 = 𝜏]
=Intro†

⋮

210

syntax, semantics, and derivations in ℒ=

(b) What would be the effect of adopting, instead of our rule =Intro, this rule (in
the presence of the other rules of 𝑁𝐷2):

𝜙
=Intro*

𝜏 = 𝜏

(c) Can we replace both =Intro and =Elim by this pair of rules, in the presence of
the other rules of 𝑁𝐷2 (𝜙 is a formula in which at most 𝜐 occurs free):

𝜙[𝜏/𝜐]
=Intro‡

∃𝜐(𝜐 = 𝜏 ∧ 𝜙)

∃𝜐(𝜐 = 𝜏 ∧ 𝜙)
=Elim‡

𝜙[𝜏/𝜐]
4. Suppose 𝜙 is a formula in which at most 𝜐 occurs free, and in which 𝜈 does not occur

at all.

(a) Show that ⊨ ∀𝜐∀𝜈(𝜐 = 𝜈 → 𝜙 ↔ 𝜙[𝜈/𝜐]).

(b) Suppose for every formula 𝜙 with just 𝜐 free, not itself involving identity, and
any constants 𝜏 , 𝜅, we could show that J𝜙[𝜏/𝜐]K𝒜 = J𝜙[𝜅/𝜐]K𝒜 . Could we then
show that J𝜏 = 𝜅K𝒜 = 𝑇 ? (This is intended tomimic as best we can the second-
order quantification over properties in the definition of identity: the question
is, does it work in the right way?)

5. (a) Show that ∃𝑛+1𝑥𝑃 𝑥 ≡ ∃𝑥(𝑃 𝑥 ∧ ∃𝑛𝑦(𝑃 𝑦 ∧ ¬𝑥 = 𝑦)).

(b) Define ∀ ̃𝑛𝑥𝜙 as ¬∃𝑛𝑥¬𝜙. Give an English translation of ∀ ̃𝑛𝑥𝑃 𝑥.

6. In the analysis of definite descriptions, ∃𝜐(𝜓 ∧ (∀𝜈𝜙[𝜈/𝜐] ↔ 𝜐 = 𝜈)), could we replace
the ‘↔’ by ‘→’? If not, why? What about in this formulation: ∃𝜐(𝜓 ∧ (∀𝜈𝜐 = 𝜈 ↔
𝜙[𝜈/𝜐]))?

7. Give appropriate analyses in ℒ= of these claims, being sure to point out any cases
of ambiguity, and commenting on other issues:

(a) The number of planets is necessarily eight.

(b) The prime minister must be an honest person.

(c) There used to be a Labor prime minister.

8. What is the best way to formalise ‘𝑥 exists’ in ℒ=? What are the difficulties with a
Russellian analysis of (¶) ‘The present king of France does not exist’?

9. Can the Russellian analysis of descriptions deal with the following sentences?

(a) ‘The beer is all gone.’

(b) ‘He is tall, handsome, and the love of my life.’

211

elements of deductive logic

(c) ‘She is the proud owner of a Rolls Royce.’

10. Can we use identity and quantification to express ‘there are exactly as many 𝑃 s as
𝑄s’?

11. (a) Show that the infinite set of sentencesN is satisfied in every infinite domain.

(b) Show that there is no single ℒ=-sentence which is satisfied in 𝒜 iff N is sat-
isfied in 𝒜 .

12. A permutation on 𝑆 is a one-one function 𝜋 from 𝑆 to 𝑆 . If 𝒜 is a model, where 𝜋
is a function from the domain of 𝒜 to itself, let the permutation 𝜋(𝒜) be this model

• 𝐷𝒜 = 𝐷𝜋(𝒜).

• For any term 𝜏 , 𝐼𝜋(𝒜)(𝜏) = 𝜋(𝐼𝒜 (𝜏).

• For any 𝑛-ary predicate Φ,

𝐼𝜋(𝒜)(Φ) = {⟨𝜋(𝑥1), … , 𝜋(𝑥𝑛)⟩ ∶ ⟨𝑥1, … , 𝑥𝑛⟩ ∈ 𝐼𝒜 (Φ)}.

(a) Show the PermutationTheorem: for any sentence𝜙, and permutation 𝜋, J𝜙K𝒜 =J𝜙K𝜋(𝒜).

(b) Consider this passage:

the Permutation Theorem shows that, even if we can somehow
discount the problems raised by the [Skolem’s paradox and the Löwenheim-
Skolem Theorem], and settle on models with one fixed domain as
those which can truly claim to be abstractions of the world – even
then, there are asmany different reference relations holding between
the subsentential expressions of 𝑇 ’s language and theworld as there
are nontrivial permutations of the fixed domain, all of which under-
write the truth of exactly the same sentences, and, hence, equally
subserve the truth of the theses of 𝑇 . There being no basis for pref-
erence between these reference relations, realism’s doctrine that
there is a unique, privileged such relation is apparently discredited.
(Taylor, 2006: 53–4)

Assess and evaluate this argument. Do you accept the conclusion? If not, why
not?

Answers to selected exercises on page 253.

212

Part V

Beyond Classical Logic

213

Chapter 14

Modal and Temporal Logic

214

Chapter 15

Logic and Natural Language
Conditionals

15.1 Indicative Conditionals

‘If 𝜙, 𝜓 ’ and → Focus – for now – on the English conditional construction ‘If 𝜙,
𝜓 ’ where 𝜙 and 𝜓 are both sentences in a simple tense (i.e., ‘they walk’, ‘I walked’,
‘You will walk’) For example: ‘if you walk three blocks, you’ll see it on your left’;
or ‘If Australia was already inhabited, Cook didn’t discover it’. Such condition-
als have been called indicative conditionals in the literature, because their simple
tensed constituents are sometimes said to be in the ‘indicative mood’.

When translating English into our formal languages ℒ1 and ℒ2, we have all
been taught to render indicative conditionals using the material conditional →.
Youmay beworried, as others haveworried before you, that this is not an accurate
rendering. For, you may think, it is implausible that ‘If 𝜙, 𝜓 ’ is true whenever 𝜓
is true; and no more plausible to think that ‘if 𝜙, 𝜓 ’ follows just from the falsity
of 𝜙. Consider these two arguments:

(7) a. The Tigers will not lose every game this season;

b. Therefore: If the Tigers lose every game this season, they
will make it to the finals.

215

elements of deductive logic

(8) a. The Tigers will make it to the finals;

b. Therefore: If the Tigers lose every game this season, they
will make it to the finals.

Supposing that ‘if 𝜙, 𝜓 ’ expresses the same proposition as 𝜙 → 𝜓 , both of these
arguments should be valid. The first is an instance of the valid form ¬𝜙 ⊨ 𝜙 → 𝜓 ,
and the second is an instance of the valid form 𝜓 ⊨ 𝜙 → 𝜓 . But neither of these
arguments strike us as valid: even if we were in a good position to assent to the
premises, we should be reluctant to assent to the conclusion. That reluctance is
some evidence of invalidity (though perhaps not itself conclusive).

Can we do better in our logic? The first question we should address is: is there
a better option in ℒ1? And it seems that there is not. Suppose that ‘If 𝜙, 𝜓 ’ is ex-
pressed by some truth function 𝑓(|𝜙|, |𝜓|). One thing is definitely true; if |𝜙| = 𝑇
and |𝜓| = 𝐹 , we want 𝑓(|𝜙|, |𝜓|) = 𝐹 . This leaves us with 8 possible two-place
truth-functions. Another thingwewant is asymmetry – ‘if 𝜙, 𝜓 ’ should not always
have the same truth value as ‘if 𝜓 , 𝜙’. That is, there exists at least one structure
𝒜 where 𝑓(|𝜙|𝒜 , |𝜓|𝒜) ≠ 𝑓(|𝜓|𝒜 , |𝜙|𝒜). This rules out four further functions (it
rules out all those where 𝑓(𝐹 , 𝑇) = 𝐹), leaving us with four. Since we’ve just
suggested in our discussion of the arguments above that it is undesirable for the
truth of a conditional to follow just from the truth of the consequent or from the
falsity of the antecedent, it would surely be even worse if the conditional were
equivalent to the consequent or the negation of the antecedent. This rules out two
of our remaining truth functions, leaving us with just two: → and a function 𝑔
(expressed by ¬(𝜓 → 𝜙)). But 𝑔(𝑇 , 𝑇) = 𝐹 , hardly what we want from a condi-
tional. So the only truth-function which satisfies minimal conditions necessary to
count as a conditional is →.

Meaning as characterised by derivation rules Of course, this is not a strong
argument – that → is better than other candidates is no argument that → is it-
self adequate to give the truth conditions of the indicative conditional! But we
can offer better considerations. Given that our derivation system for ℒ1 is sound
and complete, there is a sense in which those rules – collectively – govern or fix
the meaning of the connectives. No other rules are necessary to ensure the right

216

logic and natural language conditionals

things are provable, the things which correspond exactly to the meaning of the
connectives.

Things may not be much different in natural languages. Of course we don’t
have soundness and completeness proofs, because we have neither a fully spelled
out semantics nor a formal derivation system for natural language. But we do
have characteristic patterns of inference for the connectives of English. Some of
these patterns of inference look remarkably like those for the formal connectives
of ℒ1, notably the rules governing ‘and’. (This is some motivation behind the
nomenclature of ‘natural deduction’ – it is natural in the sense that it formalises
intuitively fundamental characteristic patterns of inference for the corresponding
operators.)

Whatever else we might want to say about the English indicative conditional
‘if 𝜙, 𝜓 ’, it seems prima facie it should obey these rules:

Modus Ponens If you have established 𝜙, and you have established ‘if 𝜙, 𝜓 ’, then
you can on that basis establish 𝜓 .

Conditional Proof If you can establish 𝜓 , conditional on the assumption that 𝜙
and perhaps some supplementary assumptions Γ, then you can establish ‘if
𝜙, 𝜓 ’ solely on the basis of the assumptions in Γ.

It is obvious that something which obeys these rules looks very much like a con-
ditional. A conditional helps us neatly summarise reasoning from assumptions,
store it, and then use it when those assumptions come true – Conditional Proof
captures the first part, and modus ponens the last.

But if these two rules hold of the English conditional ‘if’, then we can offer an
argument that the English conditional is →. More precisely, the argument is that
‘If 𝜙, 𝜓 ’ is true iff 𝜙 → 𝜓 is:

Only If : Suppose that if 𝜙, 𝜓 . Assume 𝜙. By modus ponens, 𝜓 . By
→Intro, 𝜙 → 𝜓 , discharging the assumption.

If : Suppose that 𝜙 → 𝜓 . Assume 𝜙. We can now derive 𝜓 , by →Elim.
But we have now established 𝜓 on the basis of the assumption 𝜙,
together with the supplementary assumption 𝜙 → 𝜓 . By Conditional
Proof, we can establish that if 𝜙, 𝜓 on the basis of the supplementary
assumption 𝜙 → 𝜓 alone.

217

elements of deductive logic

There is another argument for the If direction, the ‘Or-to-If’ argument (Stal-
naker, 1975). Recall that the material conditional 𝜙 → 𝜓 is logically equivalent
to the disjunction ¬𝜙 ∨ 𝜓 . But the truth function expressed by ∨, a, is also ex-
pressed by English ‘or’. So from 𝜙 → 𝜓 we can conclude that either ¬𝜙 or 𝜓 . So
if it turns out that 𝜙, then 𝜓 (otherwise we have neither ¬𝜙 nor 𝜓). (You may
detect a disguised instance of conditional proof lurking in the background of this
argument.)

Replying to the apparent counterexamples –Grice If the above argumentworks,
we’re wrong to think that the cases where → doesn’t seem to behave like ‘If…’
are genuine counterexamples. The problematic argument forms above are in fact
valid, so our inclination to reject the inferences must be explained in some other
way.

The explanation offered is that, even though the conditional conclusions of
these arguments are true, they suggest something false, and that false suggestion
is what we are responding to when we find the arguments problematic. The no-
tion of ‘suggestion’ in play here has been precisely treated using Grice’s notion of
conversational implicature. Grice noted that many utterances seem to communic-
ate more than what is strictly said, and gave a series of principles that he argued
govern what is communicated by an utterance, based on what strictly it means
(Grice, 1989). One classic example is this: ‘some philosophers have beards’. An
utterance of this sentence conversationally implicates that not all philosophers
have beards, and that is what something most people will assume the speaker to
be committed to in their utterance. Yet this is not a consequence of the utterance:
‘some philosophers have beards; in fact, all of them do!’ can perfectly well be true,
and is no contradiction.

The Maxim of Quantity The principle Grice invokes to explain this implicature
is his ‘Maxim of Quantity’ – simply put, this is the principle that cooperative
speakers be as informative as they can be. A hearer, without good reason to think
otherwise, will assume that a speaker is being cooperative, and hence that when
the speaker utters a claim, it is also the most informative claim the speaker is
in a position to responsibly utter. One measure of informativeness is this: If 𝜙
entails 𝜓 , then 𝜙 is at least as informative than 𝜓 (for it carries the information

218

logic and natural language conditionals

that 𝜓 , and perhaps additional information too if 𝜓 does not entail 𝜙). Since ‘All
philosophers have beards’ entails ‘some philosophers have beards’, someone who
utters the latter utters something less informative than they could utter, if in fact
they thought that all philosophers have beards. Since they are cooperative and
did not utter the stronger claim, therefore, the hearer infers that the speaker did
not believe the stronger claim. So the hearer now knows that the speaker must
believe that some but not all philosophers have beards, and the speaker therefore
communicates that not all philosophers have beards to the hearer. Here is another
example:

Now, in ordinary life we expect each other to be at least moderately
generous with our information. So if you ask me where John is, and I
say ‘either in Oxford or in London’, you will tend to take for granted
that I am giving you as much information as I relevantly can. If you
later discover that I knew at the time that John was in Oxford … you
will think that I was mildly dishonest. For I allowed you to believe
that I did not know whether he was in Oxford or not; although I was
perhaps, in a casuistical kind of way, careful not to say, in so many
words…. But this much is obvious: if I say that John is either in Oxford
or in London, and say nothing more, then, if John is in fact in Oxford,
I have not said anything false, since what I do say is compatible with
all the relevant facts.(Thomson, 1990: 67)

ApplyingQuantity to conditionals This last example is pertinent to our present
concerns. The material conditional is equivalent to a disjunction ¬𝜙 ∨ 𝜓 . Any
disjunct of a disjunction entails the disjunction, so contains more information. So
an utterance of a disjunction implicates that neither disjunct is believed by the
speaker. As Thomson put it,

In saying ‘if 𝑝 then 𝑞’ a speaker will say something which is in general
anyway true or false. But by the act of making the statement he will
do other things, too. He will encourage us to think that he has some
or other reason for thinking that if 𝑝 then 𝑞 and that his reasons are
not such as to allow him to assert not-𝑝 nor such as to allow him to
assert 𝑞. (Thomson, 1990: 67–8)

219

elements of deductive logic

So if it is apparent that the speaker does believe either disjunct – either through
being committed to the consequent, or rejecting the antecedent, of the relevant
material conditional – we should be struck by the fact that the speaker has com-
municated an apparent contradiction.

In the case of the Tigers, the speaker who utters both the premises and con-
clusion of this argument communicates that they believe the consequent, and also
utters the conditional which conversationally implicates that the speaker does not
believe the consequent. So the hearer has a contradiction communicated to them
– little wonder, then, that these sentences sound so bad! But – and this is the
crucial part – nothing in this explanation of the badness of the conditional is se-
mantic. Nothing in this explanation undermines the idea that the truth conditions
of the English conditional construction are the same as those for the material con-
ditional.This is all to do with what we standardly take ourselves to be able to infer
from an utterance of a sentence with those semantics, and what goes wrong here
is that inference, not the semantics. If so, the truth conditions of ‘if’ might be those
of →. What makes it seem as though they are distinct is that, because sometimes
it is conversationally inappropriate to say some things even though they are true,
we get a strong negative reaction to certain true conditionals – and we get no
corresponding reaction to to sentences involving →, at least in part because those
sentences are not used in ordinary conversations and so no rules have sprung up
governing how they are to be used.

Trickier Cases All is not smooth sailing for the material conditional account of
‘If 𝜙, 𝜓 ’. I mention two trickier cases:

1. There seem to be cases where conditional proof goes wrong – most notice-
ably, in the case of assumptions made that explicitly contradict other things
we believe. This is especially apparent in so called counterfactual condition-
als – those (at least at first glance) that involve conditional reasoning about
circumstances that do not obtain. So consider the (apparently true) coun-
terfactual ‘If Univ had never existed, Exeter would have been the third old-
est college’. The conditional proof rationale for this is: if we can derive the
consequent from the assumption that Univ never existed and other things,
then we can derive the conditional from those other things alone. Yet since

220

logic and natural language conditionals

Univ’s existence is known to us, adding that assumption to our prior be-
liefs gives an inconsistent set of assumptions, from which any consequent
whatever follows. But ‘If Univ had never existed, Catz would have been the
third oldest college’ is clearly false, though it should be derivable on exactly
the same grounds. What we need to do, apparently, is modify which of our
prior beliefs can be retained when reasoning from this contrary-to-fact as-
sumption.

Many philosophers are agreed, however, that such cases should be treated
by analysing the ‘if’ involved in counterfactuals as distinct from the ‘if’
of the so-called indicative conditionals we’ve been dealing with so far – if
that suggestion is adopted, we may retain a material conditional analysis
of indicative ‘if’ while giving an alternative treatment of counterfactual ‘if’.
The classic early account of counterfactual ‘if’ is Lewis (1973).

2. There seem to be cases where the Gricean explanation should make a con-
ditional sound bad, but in which it does not. Consider: ‘You won’t fail EDL.
Even if you do, you will pass on the re-sit.’ The first sentence of this little
speech is a denial of the antecedent of the following conditional, so the con-
ditional should sound bad. But it sounds fine. The word ‘even’ may be held
responsible; but it is now up to the Gricean to explain how it interferes with
the ordinary Gricean mechanisms.

The Gibbard Argument So far, we’ve restricted our attention to conditionals
without conditional constituents. Conditionals with conditional antecedents are
fairly rare in natural language, but there are many examples of conditionals with
conditional consequents:

(9) a. If theywere outside, then if it rained, they gotwet (Edgington, 2014: §2.5);

b. If that’s a fish, then if it has lungs, it’s a lungfish (McGee, 1985);

c. If you drink one more can of beer then if I drink one more can of beer
then we’ll be completely out of beer (Kratzer, 2012: 88).

It appears, however, that these sort of right-nested conditionals are equivalent to
un-nested conditionals with conjunctive antecedents. Compare these examples to
those just above:

221

elements of deductive logic

(10) a. If they were outside and it rained, they got wet;

b. If that’s a fish and it has lungs, it’s a lungfish;

c. If you drink one more can of beer and I drink one more can of beer
then we’ll be completely out of beer.

What seems plausible for these examples has been elevated to a general principle
that a conditional with a conditional consequent is always equivalent to a condi-
tional with a conjunctive antecedent.

Import-Export ‘If 𝜙 then if 𝜓 , 𝜒 ’ and ‘If 𝜙 and 𝜓 , then 𝜒 ’ are logically equivalent.

Suppose we accept Import-Export as a general principle about conditionals. Then
we have the makings of another argument for the material conditional account of
‘If’.

The argument begins with a technical result about any conditional operator.

Theorem 135 (Gibbard)
Any conditional operator ⇒ which satisfies these three conditions is equivalent to the
material conditional (Gibbard, 1981):

Import-Export 𝜙 ⇒ (𝜓 ⇒ 𝜒) and (𝜙 ∧ 𝜓) ⇒ 𝜒 are logically equivalent.

Lower 𝜙 ⇒ 𝜓 entails 𝜙 → 𝜓 (i.e., the conditional entails the material conditional).

Upper 𝜙 ⊨ 𝜓 entails 𝜙 ⇒ 𝜓 (i.e., entailment entails the conditional)

Proof. Left for exercise.

The relevance of the theorem is that the English conditional ‘if’ does seem to
satisfy Upper, Lower, and Import-Export. The only mildly controversial one is ap-
parently the latter, but we’ve already seen how plausible it is in particular cases,

The Trickiest Case Here’s another problem case:

Opinion polls taken just before the 1980 election showed the Repub-
lican Ronald Reagan decisively ahead of the Democrat Jimmy Carter,
with the other Republican in the race, John Anderson, a distant third.
(McGee, 1985)

222

logic and natural language conditionals

There are only two Republicans in the race, so this is trivially true:

(11) If a Republican wins and it’s not Reagan, then it’s Anderson who wins.

(11) is a conditional with a conjunctive antecedent; if Import-Export is valid for
the English ‘if’, then we can derive

(12) If a Republican wins the election, then if it’s not Reagan who wins it will
be Anderson.

And since the polls overwhelmingly favour Reagan, it is almost certain he will
win, and so almost certain that the antecedent of this conditional (12) - i.e., ‘A
Republican will win the election’ – is true. It was certainly widely believed by
people at the time that a Republican would win, and it turned out to be true in the
end.

Assuming that if someone believes a conditional, and believes the antecedent
of that conditional, they can validly reason (using modus ponens) to the con-
sequent, this follows:

(13) If it’s not Reagan who wins, it will be Anderson.

But this is false: Anderson was a distant third in the polls, and the most likely
alternative to Reagan was Carter.

What has gone wrong? We’ve derived, from claims we believe to be true ((11)
and that a Republican will win), using Import-Export and modus ponens, a claim
we believe to be false: 13. The defender of the material conditional account of ‘if’
cannot object to either of these rules, since both Import-Export and modus ponens
are provably correct derivation rules for the material conditional. So they have to
argue that the apparently false conclusion is in fact true; or else deny either the
trivial truth (11), or deny that it is acceptable to reason from the highly probable
claim – that in fact turned out to be true, just as the polls indicated – that a Repub-
lican would win the election. None of these options looks particularly appealing,
and most philosophers and linguists have concluded that the material conditional
account of ‘if’ is thereby refuted. However, there has been no consensus about
what to offer in its place.

223

elements of deductive logic

Further Reading

Beall and van Fraassen (2003) and Burgess (2009) provide useful material on relevant and
conditional logics. On the topic of the English indicative conditional, a good guide is Edging-
ton (2014). In addition to the work of Grice andThomson cited above, Davis (2014) is a use-
ful source on conversational pragmatics. Stalnaker (1975) gives an account of the English
conditional which invalidates Import-Export; McGee (1985) argues that in fact the Eng-
lish ‘if’ doesn’t satisfy modus ponens. Edgington and Kratzer (2012) discuss more exotic
accounts.

Exercises

1. Give a proof of Gibbard’s theorem. (Hint: begin with the fact that all instances of
modus ponens for the material conditional are valid: ((𝜙 → 𝜓) ∧ 𝜙) ⊨ 𝜓 ; and then
argue from the assumption that 𝜙 → 𝜓 to the conclusion that if 𝜙, 𝜓 .)

2. (a) John argues that, since 𝜙 and 𝜓 together entail (in English) 𝜓 , if follows that
𝜓 entails ‘if 𝜙, 𝜓 ’. Evaluate John’s argument.

(b) Mary claims that ‘if 𝜙, 𝜓 ’ entails ‘if ¬𝜓 , ¬𝜙’. Evaluate Mary’s claim.

(c) Show how it would be possible to use John’s conclusion and Mary’s claim to
argue that 𝜙 → 𝜓 entails ‘if 𝜙, 𝜓 ’.

(d) Using the foregoing, give an argument that ‘if 𝜙,𝜓 ’ is a truth-functional con-
nective in English. Do you see any difficulties with your argument?

3. Contraposition names this schema, for an arbitrary conditional ‘⇒’: 𝜙 ⇒ 𝜓 ⊨ ¬𝜓 ⇒
¬𝜙.

(a) Show that contraposition holds when ⇒ represents the material conditional.

(b) Does contraposition fail when ⇒ represents the counterfactual conditional?
Why/why not?

(c) Does contraposition fail when ⇒ represents the strict conditional, 2(𝜙 → 𝜓)?
Why/why not? (You may assume any logic for 2 at least as strong as ℒK.)

4. Conditional excludedmiddle (CEM) is the principle that, for an arbitrary conditional
‘⇒’, and for any 𝜙, 𝜓 , the following is always true: 𝜙 ⇒ 𝜓 ∨ 𝜙 ⇒ ¬𝜓 .

(a) Show that CEM holds for the material conditional.

(b) Show that CEM fails for the strict conditional.

(c) Does CEMhold for the counterfactual conditional (consider Lewis’ Verdi/Bizet
example)?

224

logic and natural language conditionals

(d) If CEM is false, why is the most natural way to reject a conditional 𝜙 ⇒ 𝜓 to
say, ‘No, if 𝜙 then in fact it is/would have been that ¬𝜓 ’?

5. Does Import/Export hold for the counterfactual? Does it hold for the indicative?

Answers to selected exercises on page 253.

225

Chapter 16

Logic and Natural Language:
Entailment, Designators, and
Relations

16.1 Entailment

Another problematic feature of ℒ1 (somewhat related to the foregoing by the de-
duction theorem) are the so-called paradoxes of entailment.These are the following
valid sequents:

• 𝜙, ¬𝜙 ⊨ 𝜓 ;

• 𝜙 ⊨ 𝜓 ∨ ¬𝜓 .

But, some have objected, these are terrible inferences – we should never conclude,
on the basis of contradictory premises, anything; and while it may be safe to con-
clude a tautology from any premises, that is hardly a good argument to persuade
someone that the conclusion is a tautology.

Relevance Critics of these sequents have maintained that the failure here is one
of relevance. The arguments may be valid in the narrow sense, because there is

226

entailment, designators, and relations

no structure which satisfies the premises without also satisfying the conclusion
(in the former case, because no structure satisfies the premises; in the latter, be-
cause every structure satisfies the conclusion). But validity in this narrow sense is
too narrow –what we ordinarily understand to be a successful valid argument ex-
cludes these trivial cases of validity. The conclusion in a genuinely valid argument
– these critics say – should follow from, and be relevant to, the premises.

The Lewis Argument Yet there is a very simple argument, using ordinary Eng-
lish reasoning which is apparently impeccable, to support these ‘problematic’ se-
quents. It is known as the Lewis argument, after C. I. Lewis, one of its modern
rediscoverers.

(14) 𝜙 Assumption

(15) 𝜙 or 𝜓 Disjunction introduction, 1

(16) ¬𝜙 Assumption

(17) 𝜓 Disjunctive syllogism, 2, 3

‘Disjunctive syllogism’ is the rule that from 𝜙 ∨ 𝜓 and ¬𝜙 one can infer 𝜓 . (A
problem asks you to show that this is valid derived rule in the system ℒ1; it is
obviously a good rule for the English ‘or’.)

This argument seems to show that, even ordinarily, this form of apparently
irrelevant argument is valid. And who could object to disjunction introduction or
disjunctive syllogism, which seem like about the most basic things one can safely
say about disjunction.

The relevantist response – reject Disjunctive Syllogism The relevantist has a
response to this argument – reject disjunctive syllogism. For, they say, it goes
wrong in precisely this circumstance.The inferenceworks normally because, given
a true disjunction with one false disjunct, we can infer to the truth of the other
disjunct without checking to see whether it is true. (Disjunctive syllogism was
called ‘the dog’ by its Stoic inventors, because ‘even a dog uses this form of infer-
ence when it comes to a fork in the road, sniffs down one branch, and not finding
the scent there immediately takes off down the other branch, without stopping to
sniff’ (Burgess, 2009: 99–100).) But in this case, 𝜙 is also an assumption – so the

227

elements of deductive logic

fact that 𝜙 ∨ 𝜓 has a disjunct whose denial is an assumption doesn’t entail 𝜓 . If
there are cases where we can have inconsistent assumptions, like this, we should
expect disjunctive syllogism to go wrong.

Dialethism Some truly radical support for this line of argument can be found
from the dialethist position that some sentences are both true and false. If 𝜙 is
one such sentence, then both assumptions can be true (𝜙 because it is true, ¬𝜙
because 𝜙 is false). But 𝜓 , since it is arbitrary, can be chosen to be a plain falsehood,
giving a situation which is a counterexample to disjunctive syllogism. Dialethists
motivate their non-standard semantics by appeal to particular problem cases that
don’t seem to admit of any other solution. The best known is

L L is false.

The sentence L displayed above says of itself that it is false. If it is true, then L is
false (as that is what it says). But if it is false, then what it says is false, so it must
be true. So L is true iff it is false. The dialethist takes this proof at face value – L
is both true and false. But, despite the great difficulties more standard approaches
to the Liar paradox L have, few have found dialethism compelling (though it has
surprisingly able defenders).

Inconsistent belief Dialethism is too incredible to convincingly motivate the re-
jection of disjunctive syllogism. A weaker motivation is found in reasoning about
what we believe. If you are like me, you probably have some inconsistent beliefs
that you are not aware of. It is absurd to say that I therefore believe everything,
just because I have beliefs that entail everything. So it seems, the set of my be-
liefs is not plausibly closed under classical entailment (that is, the set of my beliefs
does not contain everything which is entailed by some things in my set of beliefs).
Disjunctive syllogism seems to fail for my beliefs; just because 𝜙 ∨ 𝜓 and ¬𝜙 are
among my beliefs does not mean that 𝜓 is one of my beliefs; for 𝜙 may be one
of my beliefs as well. The logic of belief, it may be said, is relevant. (The original
application of this kind of idea was to simple inference-drawing computers – if
they are not aware of when the body of information input contains a contradic-
tion, you should not allow them to draw conclusions using full classical logic.)
The problem with all this is that it doesn’t really seem like logic any more. There

228

entailment, designators, and relations

are no counterexamples to disjunctive syllogism, that is, structures where 𝜙 ∨ 𝜓
and ¬𝜙 are true but 𝜓 is false. Rather, there are cases where according to my be-
liefs 𝜙 ∨ 𝜓 and ¬𝜙 are true, and also according to my beliefs 𝜓 is not true. But it
is already well-known that, when we have a non-truth-functional operator like
‘according to my beliefs’, it won’t generally be true that classically valid sequents
remain correct when each sentence in the sequent is in the scope of the operator.
(Think of the non-truth-functional operator ‘possibly’: 𝜙, 𝜓 ⊨ 𝜙 ∧ 𝜓 is correct,
‘possibly 𝜙, possibly 𝜓 ⊨ possibly 𝜙 ∧ 𝜓 ’ is not correct – think of the case where
𝜓 = ‘the coin toss lands heads’, 𝜙 = ‘the coin toss lands tails’.)

16.2 Designators

Designators in ℒ2 and English The formal properties of ℒ2 have been estab-
lished; now we begin a relatively informal investigation into the possible connec-
tions between the semantics of ℒ2 and the semantics of English. We begin in this
section with a discussion of designation in both languages.

Direct Reference ℒ2 embodies a particularly simple view of the meaning of a
constant.

Definition 114 (Direct Reference). A referring expression directly refers iff the
meaning of the name is just its referent, the object denoted by the expression.

Constants in ℒ2 directly refer, because the meaning (semantic value) of 𝑎 in 𝒜 isJ𝑎K𝒜 , which is just an item in the domain of 𝒜 .
This is to be contrasted with any thesis of indirect reference, according to

which the semantic value of a denoting expression is something other than the
referent. The primary example here are definite descriptions; if Russell’s account
(recall chapter 13) is correct, for example, the meaning of a description is some-
how to be extracted from a complex quantified sentence; the referent (if any) is
determined by the meaning, but is not the meaning. This can clearly be seen if
we accept Russell’s treatment of ‘The present king of France is bald’, where the
sentence is meaningful even though the definite description fails to denote any-
thing. Given that the meaning of the sentence is determined by the meanings of

229

elements of deductive logic

its constituents, the definite description noun phrase must have a meaning, even
though it lacks a referent, and hence cannot be a directly referential expression.

Rigid Designation Direct reference is related to, but distinct from, the following
notion:

Definition 115 (Rigid Designator). A referring expression 𝑎 is a rigid designator
iff the referent of 𝑎 is the same object in every possible situation (possible world)
in which that object exists.1

It may seem that this doesn’t hold in ℒ2, because if 𝒜 ≠ ℬ, then it may be that
𝐼𝒜 (𝑎) ≠ 𝐼ℬ(𝑎). But for all that it may hold; the crucial fact to recognise is whether,
in a given situation, when we consider what is possible for 𝑎, we consider what is
possible for what 𝑎 refers to – in every situation in which that thing exists. Since
ℒ2 has no resources for discussing possibility, it is a moot point whether or not
rigid designation holds for it.

If an expression is directly referential, in a languagewith resources for discuss-
ing possibility and necessity, then it looks like it will also be a rigid designator.
Assume that we evaluate ‘Possibly, 𝐹 (𝑎)’ by seeing whether there is a possible
world in which 𝐹 (𝑎). If 𝑎 directly refers, the evaluation of ‘Possibly 𝐹 (𝑎)’ will pro-
ceed by evaluating whether actual meaning of 𝑎 – which is just some object a,
given direct reference – satisfies 𝐹 at each possibility in which a exists. So the
actual meaning of 𝑎, evaluated at each world, will remain constant.

The classic example of a non-rigid designator is also a simple definite descrip-
tion, like ‘the tallest person’. Suppose Jacques is the tallest person. Still, I can
perfectly well say ‘Possibly, Gill is the tallest person’, which is not synonymous
with ‘Possibly, Gill is Jacques’. At the possible world in which Gill is the tallest
person, the expression ‘the tallest person’, with its actual meaning, denotes her,
though it doesn’t denote her actually.

1Be careful not to confuse this with the claim that every possible use of ‘𝑎’ refers to the same thing
– this would be false. The idea is rather, when we actually evaluate the possibility of various things
about 𝑎 in some possible world 𝑤, we continue to hold fixed the actual meaning of 𝑎, rather than (for
example) what the residents of 𝑤 themselves would mean by their own utterance of ‘𝑎’. Suppose we
consider the possibility in which Aristotle hadn’t been called ’Aristotle’: we are still talking about the
person actually called ‘Aristotle’, even though residents of that possibility do not use that name to
denote anyone.

230

entailment, designators, and relations

Things are complicated by the existence of rigidified descriptions. As the name
suggests, they are rigid designators, but they are also descriptions which refer
indirectly. Consider ‘the actual tallest person’: intuitively, the meaning of this de-
scription evaluated at every possibility determines it to have a constant referent,
of Jacques. Because of this, ‘Possibly, Gill is the actual tallest person’ does seem
to entail that possibly, Gill is Jacques.

Names and Direct Reference in English For names in English, like ‘Antony
Eagle’ or ‘Aristotle’, there is no straightforward semantics for names as there is
for constants in ℒ2.

On the one hand, there is considerable syntactic and semantic evidence that
names in English function rather like the constants of ℒ2. Consider

(18) Antony Eagle is lecturing now.

(18) is true iff the thingAntony Eagle, designated by ‘Antony Eagle’, has the prop-
erty lecturing denoted by ‘is lecturing’, now, i.e., at the time designated by (this
use of) ‘now’.These seem remarkably like the clauses for the satisfaction of atomic
formulae of ℒ2; in that sense it looks like the meaning of ‘Antony Eagle’ is just
the thing it refers to.

Objection to Direct Reference: Informative Identities If ‘Hesperus’ denotes
Hesperus, and ‘Phosphorus’ denotes Phosphorus, then, since Hesperus is Phos-
phorus (both are names for Venus), then the meanings of ‘Hesperus’ and ‘Phos-
phorus’ are the same. So then why aren’t these sentences synonymous?:

(19) Hesperus is Hesperus.

(20) Hesperus is Phosphorus.

This objection trades on the fact that we receive information when told the
second claim, but we do not when told the first; hence they must yield different
information, and not be synonymous after all. One possible response is to say
that for all we know, we are in a situation where ‘Phosphorus’ names something
other than Venus; and what we are told by the second sentence is a contingent
fact about English, namely, that ‘Phosphorus’ means Phosphorus!

231

elements of deductive logic

Objection to Direct Reference: Empty Names If the meaning of a name is its
referent, then ‘Santa Claus is jolly’ is meaningless, yet we judge it to be true. And
don’t say it is true ‘in a fiction’ – for fictional English is the same as non-fictional
English, so if it is meaningless outside of the fiction, it is just as meaningless in-
side. But set that aside: negated existentials show that ‘Santa Claus’ is meaningful,
because ‘Santa Claus does not exist’ is straightforwardly true.

To be more explicit: ‘Santa Claus does not exist’ apparently expresses a truth.
This can be rendered in the language ℒ= by this translation: ‘¬∃𝑥(𝑥 = 𝑎)’, where
‘𝑎’ denotes Santa Claus. But since ‘𝑎 = 𝑎’ expresses a logical truth, it follows that
‘∃𝑥(𝑥 = 𝑎)’ expresses a logical truth of ℒ=, denying the apparent truth which
we translated. But this looks like a problem in English, as well as in formal lan-
guages: since ‘Santa Claus is identical to Santa Claus’ also expresses a truth, the
English claim ‘Something is identical to Santa Claus’ is also true. But if something
is identical to Santa Claus, Santa Claus does exist. To deny this is to deny claims
that seem tautologous in English.

This is a very serious objection to direct reference theories. Many have chosen
to bite the bullet, and accept that such sentences are in fact meaningless. Others
have chosen to accept some secondary notion of meaning, like a canonical de-
scription associated with the empty name, to play a name-like role in these kind
of claims. But there is no consensus on how to deal with this problem.

Objection toDirect Reference:TheRole ofDescriptions Many names are simply
introduced by descriptions; and certainly what most of us aim to communicate
when we use a name is a certain individual satisfying a certain canonical descrip-
tion that the hearer is familiar with – if there were no such description, ‘how do
people ever use names to refer to things at all?’ (Kripke, 1980: 28).

Reference Fixing Some descriptions are used to establish the reference: ‘Julius’
may be introduced into the language as ‘the inventor of the zipper’. But it is
no part of the meaning: consider the counterfactual situation where Julius
gets pipped by his rival.

Background knowledge If one knows a lot about Julius, and one’s hearers do too,
then one will expect that background knowledge to be useable when one
uses the name ‘Julius’. It may be difficult if not impossible for a speaker

232

entailment, designators, and relations

themselves to separate the meaning of ‘Julius’ from what they know about
Julius.

Opaque Contexts Consider

(21) Lois Lane believes that Superman is Superman;

(22) Lois Lane believes that Superman is Clark Kent.

It is fairly clear that in the context ‘Lois Lane believes that Superman is 𝑥’, one
cannot straightforwardly substitute co-referring expressions into 𝑥 and get a true
sentence. Such opaque contexts – those which do not permit substitution salva
veritate – are a problem for the direct reference theory, of course, but also for other
theories that think the objects of belief are propositions concerning the entities
one has the belief about.

Obviously ℒ2 lacks opaque contexts, as theorems about substitution of co-
referring constants proved in Chapter 10 show. This is an expressive weakness of
ℒ2 compared with English.

Other Designators in English There are several other natural language expres-
sions other than names and definite descriptions which have a designator role in
English.

Indexicals such as ‘I’, ‘you’, ‘here’, ‘now’, ‘actually’. This class may also include
demonstratives like ‘this’, ‘that’.

Count Nouns such as ‘chair’, ‘boy’, ‘piece of furniture’.

Non-Count Nouns such as ‘gold’, ‘dirt’, ‘intelligence’.

Count nouns can be handled by the apparatus of quantification in ℒ2, rather than
as designating expressions directly.

Indexicals The characteristic of an indexical expression is context sensitivity. ‘I’
refers to different people when uttered by different people: to me when I say ‘I
am tired’, to you if you utter that same string of words. Similarly with other ex-
pressions in this category, as they are sensitive to features of context – where the

233

elements of deductive logic

context of an utterance includes the speaker, time, place, etc., of the utterance –
and thus may have different referents in different contexts.

Despite the context-sensitivity of indexical reference, their meaning appears
constant. Distinguish (following Kaplan):

Content The content of an expression is its semantic value;

Character The character of an expression is a function from context to content.

The thesis is that indexicals have a constant character, but a variable content; and
character is plausibly a kind of meaning.

Pronouns – ‘she’, ‘they’, ‘it’ – may perhaps be analysed similarly.

Non-Count Nouns Non-count nouns are a certain type of non-plural referring
expression. One reasonable test is whether ‘𝜇’ can be grammatically substituted
into the expression ‘I want some 𝜇’. These fall into at least two kinds:

Mass Mass nouns, like ‘gold’ or ‘dirt’, denote a kind of stuff or substance, rather
than a particular thing.They typically display cumulative reference: if ‘being
gold’ is true of 𝑎 and 𝑏, then it is true of the sum 𝑎 + 𝑏 which has just 𝑎 and
𝑏 as parts.

Abstract Abstract nouns, like ‘intelligence’ or ‘generosity’, which seem to denote
qualities that something may possess, but can themselves have things pre-
dicated of them.

A full treatment of these nouns cannot be carried out in ℒ2; constants referring to
qualities, that we naturally translate as predicates like ‘being gold’, may require a
second order logic, which permits quantification over predicate variables as well
as individual variables.

16.3 More on Relations

Expressing Properties of Binary Relations in ℒ2 We talked about the proper-
ties of binary relations, modelled as sets, back in chapter 2.

We can use formulae of ℒ2 to express various properties of relations on an
entire domain. For example

234

entailment, designators, and relations

Reflexivity A relation 𝑅 is reflexive on 𝐷𝒜 if 𝑅 =
q

𝑃 2y
𝒜 andq

∀𝑥𝑃 2𝑥𝑥
y

𝒜 = 𝑇 .

Transitivity A relation 𝑅 is transitive on 𝐷𝒜 if 𝑅 =
q

𝑃 2y
𝒜 and

q
∀𝑥∀𝑦∀𝑧(𝑃 2𝑥𝑦 ∧ 𝑃 2𝑦𝑧) → 𝑃 2(𝑥𝑧)

y
𝒜 = 𝑇 .

Symmetry A relation 𝑅 is symmetric on 𝐷𝒜 if 𝑅 =
q

𝑃 2y
𝒜 andq

∀𝑥∀𝑦(𝑃 2𝑥𝑦 → 𝑃 2𝑦𝑧
y

𝒜 = 𝑇 .

Relations in English and ℒ2: Intension and Extension Is the semantic value of
an English predicate expression a property or relation as those are interpreted in
ℒ2-structures?

The property ‘is a person’ on the domain of Oxford students is the same prop-
erty as ‘is a student’; but even though they coincide in their members, we do not
think these predicates are synonymous. We may distinguish the property given

• in extension, by the list of things which satisfy it; or

• in intension, by a rule.

On this domain, two different rules give the same extension; and intuitively in
English the meaning is the property given intensionally.

Relations in English and ℒ2: Sparse and Abundant Properties Any set of pairs
is a binary relation. Yet this means that ‘is identical to’ is just as legitimate a rela-
tion as ‘is within 21metres of’; whereaswe think the former is amore fundamental
and non-accidental relation than the latter.Wemay think that the ‘real’ properties
are sparse and fundamental, and the abundant predicates like ‘grue’ and ‘within
21 metres of’ are less so, and do not correspond to genuine properties – but ℒ2
hardly allows us to draw that distinction.

So despite the fact that ‘grue’ and ‘green’ are both meaningful predicates of
English, we want to give quite different things to be their semantic values – per-
haps just a set of things for ‘grue’, but a real property greenness to be the semantic
value of ‘green’.

235

elements of deductive logic

Despite these problems, the case against English having a similar semantics
for predicates to ℒ2 is rather weaker than that against English having a similar
semantics for designators.

Further Reading

The best defence of dialethism is Priest (2006); the application of relevant logic to incon-
sistent data sets is Belnap (1977).

A wonderful book on names and description is Kripke (1980). A modern classic: amaz-
ingly, it is more or less a transcription of a series of lectures originally delivered without
notes. A useful source on empty names is Caplan (2006). The topic of empty names is one
main topic of another famous series of lectures by Kripke (2013).

Exercises

1. (a) Show that the following derivation rules are acceptable in our framework:

i. Modus Ponens: If ⊨ 𝜙 and ⊨ 𝜙 → 𝜓 , then ⊨ 𝜓 .

ii. Disjunctive Syllogism: If ⊨ 𝜙 ∨ 𝜓 and ⊨ ¬𝜙, then ⊨ 𝜓 .

iii. Reductio ad Absurdum: If 𝜙 ⊨ 𝜓 and 𝜙 ⊨ ¬𝜓 then ⊨ ¬𝜙.

(b) In our system each acceptable rule of inference has a corresponding correct
semantic sequent (for example, the sequent 𝜙, (𝜙 → 𝜓) ⊨ 𝜓 corresponds
to modus ponens). Consider now this rule of inference in English: if 𝜙 is a
truth of logic, then ‘Necessarily, 𝜙’ is too. Is this rule intuitively correct? Is
the corresponding sequent ‘𝜙 ⊨English Necessarily 𝜙’ intuitively correct?

2. Say that 𝜙 ⊨ 𝜓 is a perfect sequent iff it is correct, and 𝜙 is satisfiable, and 𝜓 is not a
tautology. Say that a sequent is perfectible iff it is a substitution instance of a perfect
sequent.

(a) Show that there must be a sentence letter in common between 𝜙 and 𝜓 is a
perfectible sequent. (Hint: use the Craig InterpolationTheorem (page 88), plus
properties of substitution.)

(b) Give examples to show that perfectible entailment is not transitive (i.e., that
there are cases where 𝜙 perfectibly entails 𝜓 , where 𝜓 perfectibly entails 𝜒 ,
but where 𝜙 does not perfectibly entail 𝜒 .)

(c) Which of the structural rules of §4.8 (page 66) are perfectibly inappropriate
(i.e., take perfectible sequents to non-perfectible sequents.)?

236

entailment, designators, and relations

3. Which of the relations expressed by the following English predicates are equivalence
relations:

(a) ‘𝑥 entails 𝑦’, on the domain of sentences of ℒ2.

(b) ‘𝑥 is logically equivalent to 𝑦’, on the domain of sentences of ℒ2.

(c) ‘If {𝑥} is consistent, then {𝑥} ∪ {𝑦} is consistent’ on the domain of sentences
of ℒ2.

4. Show that ∀𝑥∀𝑦(¬𝑥 = 𝑦 → (𝑃 𝑥𝑦 ∨ 𝑃 𝑦𝑥) ≡ ∀𝑥∀𝑦(𝑥 = 𝑦 ∨ 𝑃 𝑥𝑦 ∨ 𝑃 𝑦𝑥).

5. Showby suitable reasoning that in a finite domain, for any partial order 𝑅, ∃𝑥∀𝑦(𝑅𝑦𝑥 →
𝑥 = 𝑦). Give a counterexample to this condition in an infinite domain.

6. Give a graph, on some non-empty domain, of a relation 𝑅 which satisfies this con-
dition: ∀𝑥∀𝑦(𝑅𝑥𝑦 → ∃𝑧((𝑥 ≠ 𝑧) ∧ (𝑦 ≠ 𝑧) ∧ 𝑅𝑥𝑧)). Can you give an example of a
relation which satisfies this condition (being sure to specify the domain)?

7. Wemight normally expect ‘is similar to’ to be a symmetric relation: after all, if there
is a respect in which 𝑎 is similar to 𝑏, then 𝑏 must be similar to 𝑎 in that very same
respect. But many people seem to judge that similarity is not symmmetric:

When people are asked to make comparisons between a highly famil-
iar object and a less familiar one, their responses reveal a systematic
asymmetry: The unfamiliar object is judged as more similar to the fa-
miliar one than vice versa. For example, people who know more about
the USA than about Mexico judge Mexico to be more similar to the USA
than the USA is to Mexico. (Kunda, 1999: 520)

(You might think also of the fact that it is much more natural to say that children
resemble their parents, than that parents resemble their children.)

Can you provide a rationale for these psychological results? Do they indicate that
people are systematically mistaken about the meaning of the relational predicate ‘is
similar to’, or do they indicate that our theory of similarity in terms of matching
respects of similarity is incorrect?

237

Appendix A

Answers to Selected Exercises

Exercises for Chapter 1: page 14

1. Wewant to show that the LNP holds.The LNP is a conditional claim: so we’ll assume
the antecedent (‘left hand side’) of the conditional, and show that the consequent
(‘right hand side’) must then hold, by reasoning using the strong principle.
We’ll reason by reductio. So we’ll assume that there is a non-empty set of natural
numbers 𝑀 with no least member. So now consider this property of natural num-
bers: 𝑛 is not being a member of 𝑀 , symbolised 𝑛 ∉ 𝑀 .
Pick some number 𝑘 at random. Suppose that none of 𝑘’s predecessors are in 𝑀 .
Could 𝑘 be in 𝑀? If it were, it would be the least member of 𝑀 , because it is the
earliest member of the natural number sequence to be found in 𝑀 . But 𝑀 has no
least member. So 𝑘 ∉ 𝑀 . Discharge our supposition, we get this conditional: if for
all 𝑛 < 𝑘, 𝑛 ∉ 𝑀 , then 𝑘 ∉ 𝑀 . Since 𝑘 was random, we didn’t use any specific
features of 𝑘 at all. So this reasoning would hold for any number at all. So we have
this claim: For all 𝑘 (if for all 𝑛 < 𝑘, 𝑛 ∉ 𝑀 , then 𝑘 ∉ 𝑀). This is in the right form to
apply strong induction. So we conclude: for all 𝑘, k ∉M.
But nowwe have a problem: for if no number is a member of 𝑀 , and 𝑀 is a subset of
the natural numbers, then there is only one option: 𝑀 is empty. Our suppositionwas
that 𝑀 is non-empty. So collectively, our suppositions have led to a contradiction.
We blame the supposition that 𝑀 has no least member, so we conclude that if 𝑀 is
a non-empty set of natural numbers, then it must have some least member.

2. Suppose there is some sentence operator not that when applied to some sentence

238

answers to selected exercises

𝑃 yields a sentence not-𝑃 which is true just in case 𝑃 is false, and false just in case
𝑃 is true. We can use this principle, along with plausible principles about truth and
disjunction, to argue that Bivalence leads to the LEM.

If Bivalence is true, then for every meaningful sentence 𝑃 , either 𝑃 is true or 𝑃 is
false. By our assumption about not, it follows that either 𝑃 is true or not-𝑃 is true.
But then ‘𝑃 or not-𝑃 ’ is true (by the principle that if 𝜙 is true or 𝜓 is true, then ‘𝜙
or 𝜓 ’ is true). If 𝜙 is true, then 𝜙. So for any meaningful 𝑃 , 𝑃 or not-𝑃 , which is the
LEM.

The argument from LEM to Bivalence is trickier. We cannot simply run the above
argument in reverse. Suppose we try: we assume the LEM, and then conclude that
for each 𝑃 , ‘𝑃 or not-𝑃 ’ is true. Does this mean that either 𝑃 is true or ‘not-𝑃 ’ is
true?

Not necessarily. Consider the case of vagueness. Suppose Alice is borderline tall,
neither definitely tall nor definitely not tall. It is natural to say that a sentence can be
true only if it is definite. A sentence is definite if it doesn’t contain any vague terms,
or if it does contain them, they don’t make a difference. One influential approach
to vagueness known as supervaluationism (Fine, 1975) says that the vague terms
don’t make a difference just in case the sentence would be true no matter how the
vague terms are made precise. So the sentence ‘Alice is tall’ is indefinite, because it
contains a vague term and on some ways of making ‘tall’ precise, it is true – those
where we make it precise by setting the boundary between tall and not-tall below
Alice’s height - and on other ways of making it precise, it is false. So ‘Alice is tall’
is indefinite, and thus neither true nor false. Hence Bivalence fails, according to the
supervaluationist.

But what about the sentence ‘Alice is tall or not-(Alice is tall)’? No matter where we
draw the boundary for ‘tall’ – so long as we do it the same way in each disjunct –
Alice will fall on one side or the other. So that sentence is definite: no matter howwe
make the vague expression precise, it doesn’t change the truth value. So the whole
sentence is definite. In fact, every instance of LEM is definitely true according to the
supervaluationist. So while ‘𝑃 or not-𝑃 ’ is always true, that doesn’t entail – says the
supervaluationist – that either 𝑃 is true or ‘not-𝑃 ’ is true. So the supervaluationist,
at least, wants to resist the argument from LEM to Bivalence.

239

elements of deductive logic

Exercises for Chapter 2: page 39

1. (a) 𝑋 ⊆ 𝑌 iff each member of 𝑋 is a member of 𝑌 . 𝑌 ⊆ 𝑋 iff each member of
𝑌 is a member of 𝑋. If both hold, then 𝑋 and 𝑌 have the same members. By
extensionality, 𝑥 = 𝑌 .

(b) If 𝑋 ⊆ 𝑌 then every member of 𝑋 is also a member of 𝑌 . If 𝑌 ⊂ 𝑍 , all the
members of 𝑌 (which include among them all the members of 𝑋) are members
of 𝑍 . So all the members of 𝑋 are also members of 𝑍 , i.e., 𝑋 ⊆ 𝑍 .

(d) If 𝑋 ⊂ 𝑌 , then all members of 𝑋 are members of 𝑌 , but not vice versa. So
there is at least one member of 𝑌 which is not a member of 𝑋. So 𝑌 ⊄ 𝑋.

2. (a) 𝑋 ∩ 𝑋 is the set which has all the members in both 𝑋 and itself; but that is
just the set which shares all its memberswith 𝑋, namely 𝑋 (by extensionality).
Similar reasoning shows 𝑋 ∪ 𝑋 = 𝑋.

(c) The set which contains all the members of 𝑋 and all the members of the empty
set can be distinct from 𝑋 only if there are members of the empty set, which
there are not.

(e) 𝑋 ∩ (𝑌 ∪ 𝑍) is the set containing just those members of 𝑋 which are also
members of 𝑌 or members of 𝑍 . There are thus two ways to be a member of
this set: be a member of 𝑋 and 𝑌 , or be a member of 𝑋 and 𝑍 (or both). That
is equivalent to: be a member of 𝑋 ∩ 𝑌 or a member of 𝑋 ∩ 𝑍 (or both). That is
equivalent to: be a member of (𝑋 ∩ 𝑌) ∪ (𝑋 ∩ 𝑍). Here we have exploited the
connection between conjunction and intersection, and disjunction and union,
mentioned in the text.

(g) The set 𝑋 ⧵ (𝑌 ∩ 𝑍) is the set of those members of 𝑋 which are not members
of both 𝑌 and 𝑍 . Something can be a member of this set just in case it is in 𝑋
but not in 𝑌 , or is in 𝑋 but not in 𝑍 (or both). Equivalently: be a member of
𝑋 ⧵ 𝑌 or a member of 𝑋 ⧵ 𝑍; equivalently, be a member of (𝑋 ⧵ 𝑌) ∪ (𝑋 ⧵ 𝑍).

4. (a) «𝑥, 𝑦» = «𝑢, 𝑣» iff {{𝑥}, {𝑥, 𝑦}} = {{𝑢}, {𝑢, 𝑣}} iff either (i) {𝑥} = {𝑢} and
{𝑥, 𝑦} = {𝑢, 𝑣} or (ii) {𝑥} = {𝑢, 𝑣} and {𝑥, 𝑦} = {𝑢}. Case (ii) only holds when
𝑥 = 𝑦 = 𝑢 = 𝑣, because extensionality entails that identical sets must have
the same number of members. In that degenerate case, the theorem holds. In
the non-degenerate case where 𝑥 ≠ 𝑦, case (i) must hold. But case (i) holds iff
𝑥 = 𝑢 and 𝑦 = 𝑣, by extensionality again.

(b) If 𝑥 = 𝑦 then «𝑥, 𝑦» = {{𝑥}, {𝑥, 𝑥}} = {{𝑥}, {𝑥}} = {{𝑥}}.

240

answers to selected exercises

5. (c) The powerset of any set 𝑍 contains sets which have members of 𝑍 as their
only members. So ℘(𝑋) only contain sets of things from 𝑋; ℘(𝑌) only con-
tains sets of things from 𝑌 . So all the members of ℘(𝑋) ∪ ℘(𝑌) are ‘pure’ sets
– it has no members which are sets mixing members of 𝑋 and 𝑌 (except if
𝑋 ∩ 𝑌 is non-empty). By contrast, ℘(𝑋 ∪ 𝑌) does contain such mixed sets.
In fact, it is easy to see that as long as there is an 𝑋 ⧵ 𝑌 and 𝑌 ⧵ 𝑋 are both
non-empty, then ℘(𝑋) ∪ ℘(𝑌) ⊂ ℘(𝑋 ∪ 𝑌).
For example, let 𝑋 = {1, 2}, 𝑌 = {2, 3}. {1, 3} ∈ ℘(𝑋 ∪ 𝑌), but {1, 3} ∉
℘(𝑋) ∪ ℘(𝑌); by extensionality, ℘(𝑋) ∪ ℘(𝑌) ≠ ℘(𝑋 ∪ 𝑌).

17. (c) i. The successor function which maps each number to its immediate suc-
cessor (i.e., succ(𝑥) = 𝑥 + 1) is into ℕ but not onto, since there is no 𝑛
such that succ(𝑛) = 0 but 0 ∈ ℕ.

ii. The identity function fromnatural numbers into integersℤ = {…, −3, −2, −1, 0, 1, 2, 3…}
is one-one, since each number is mapped to itself and no other number.
But it is not a bijection, because there is no natural number 𝑛 such that
𝑛 = −1.

iii. Any function which is not one-one has no inverse. So consider the squar-
ing function on integers, sq(𝑥) = 𝑥2 for any 𝑥 ∈ ℤ. Since sq(2) =
sq(−2) = 4, the relation which is the inverse of sq contains the pairs
⟨4, 2⟩ and ⟨4, −2⟩, and so is not a function.

iv. An argument which is its own inverse is such that 𝑓(𝑓(𝑥)) = 𝑓 −1(𝑓 (𝑥)) =
𝑥. Identity is its own inverse. A more interesting case is negation n, dis-
cussed in chapter chapter 4. n = {⟨𝑇 , 𝐹 ⟩, ⟨𝐹 , 𝑇 ⟩}; swap the order of each
pair, and we get the same set back. Another example is the function ro-

tate 180˚ on the domain of compass directions: apply the function twice,
and we get the original argument back again.

(d) The union of two functions is itself a function iff the constituent functions are
not defined on any argument(s) in common. Since both constituent functions
are relations, their union is a relation too (though perhaps on a different –
larger – domain); and that relation meets the condition for being a function
iff any 𝑎 which is in the domain of one constituent function and in the domain
of the other is such that both functions assign to 𝑎 that same value.

Exercises for Chapter 3: page 51

1. Answer:

241

elements of deductive logic

For any numbers 𝑛 and 𝑚, ⌜𝑛 + 𝑚⌝ denotes a number, as long as ‘+’
denotes the addition operator.

3. Suppose that 𝜙 is a non-atomic ℒ1 sentence which is formed in accordance with
two formation rules. There are two possible cases: (i) 𝜙 begins with ¬. If 𝜙 was
also produced by one of the other formation rules, then 𝜙 = ⌜(𝜒 ⊕ 𝜋)⌝. If so, ‘¬’
would have to be the same symbol as ‘(’, which contradicts our supposition that no
connective is also a piece of punctuation. (ii) 𝜙 = ⌜(𝜒 ⊕ 𝜋)⌝ and 𝜙 = ⌜(𝜓 ⊗ 𝜔)⌝ for
sentences 𝜒, 𝜋, 𝜓, 𝜔 and binary connectives ⊕, ⊗. There are three options for where
the relevant occurence of ⊗ can occur in ⌜(𝜒 ⊕ 𝜋)⌝: it can occur somewhere in 𝜒 , it
can occur at ⊕, or it can occur somewhere in 𝜋.

• Suppose it occurs in 𝜒 . Then 𝜒 = ⌜𝜓 ⊗ 𝜎⌝ for some string 𝜎. By Theorem 20,
since 𝜒 is a sentence, 𝜓 is not, contradiction.

• So suppose it occurs in 𝜋. Then 𝜓 = ⌜𝜒 ⊕ 𝜎′⌝ for some string 𝜎′. Again by
Theorem 20, since 𝜓 is a sentence, 𝜒 is not, contradiction.

• So ⌜⊕ = ⊗⌝. But that would contradict our intitial assumption that ‘no char-
acter in any category is identical to any other character in that category’.

So there couldn’t be any such sentence 𝜙.

4. Suppose 𝜙 is any ℒ1 sentence, and every constituent sentence of 𝜙 of lower com-
plexity is uniquely readable. 𝜙 was either formed by applying negation to a uniquely
readable sentence, or applying one of the binary connectives to uniquely readable
sentences. By the result of the previous exercise, there is exactly one formation rule
that could have been applied to produce 𝜙, and it is uniquely determined which
formation rule was applied to construct 𝜙. So 𝜙 too is uniquely readable. By strong
induction, every sentence of ℒ1 is uniquely readable.

Exercises for Chapter 4: page 76

1. Γ ⊨ 𝜙 iff every ℒ1-structure 𝒜 in which each member of Γ is true is also one in
which 𝜙 is true; iff every ℒ1-structure 𝒜 in which each member of Γ is true is
also one in which ¬𝜙 is false; iff every ℒ1-structure 𝒜 is one in which at least one
member of Γ ∪ {¬𝜙} is false; iff Γ ∪ {¬𝜙} is unsatisfiable.

2. (a) When Γ ⊨ 𝜙, every line of the truth table on which each member of Γ gets a
𝑇 will be one on which 𝜙 also gets a 𝑇 .

242

answers to selected exercises

(b) When Γ is consistent, at least one line of the truth table will assign a 𝑇 to each
member of Γ.

(c) When 𝜙 is a contradiction, it will get 𝐹 on every line of the truth table.

(d) When 𝜙 and 𝜓 are logically equivalent, they get the same value on every line
of the truth table.

4. (a) Suppose 𝜒 = (𝜙 ∧ 𝜓). Then J𝜒K𝒜 = 𝐹 iff either J𝜙K𝒜 = 𝐹 or J𝜓K𝒜 = 𝐹 iff
either J𝜙K𝒜 ≠ 𝑇 or J𝜓K𝒜 ≠ 𝑇 iff J𝜙 ∧ 𝜓K𝒜 ≠ 𝑇 iff J𝜒K𝒜 ≠ 𝑇 .

(b) Suppose 𝜒 = (𝜙 → 𝜓). Then J𝜒K𝒜 = 𝐹 iff J𝜙K𝒜 = 𝑇 and J𝜓K𝒜 = 𝐹 iffJ𝜙K𝒜 ≠ 𝐹 and J𝜓K𝒜 ≠ 𝑇 iff J𝜙 → 𝜓K𝒜 ≠ 𝑇 iff J𝜒K𝒜 ≠ 𝑇 .

(c) Suppose 𝜒 = (𝜙 ↔ 𝜓). Then J𝜒K𝒜 = 𝐹 iff J𝜙K𝒜 ≠ J𝜓K𝒜 iff J(𝜙 ↔ 𝜓)K𝒜 ≠ 𝑇
iff J𝜒K𝒜 ≠ 𝑇 .

9. If 𝜙 and 𝜓 express the same truth-function 𝑓𝑛, and they contain the same sentence
letters 𝑠1, …, 𝑠𝑛 then in every structure 𝒜 ,

𝑓(𝒜(𝑠1), …, 𝒜(𝑠𝑛)) = J𝜙K𝒜 = J𝜓K𝒜 .

But then these two sentence have the same truth value in every ℒ1-structure, and
are logically equivalent. The restriction to sentences with the same sentence letters
is crucial. (𝑃 ∧ 𝑄) and (𝑃 ∧ 𝑅) both express the conjunction function k, but are not
logically equivalent.

If 𝜙 and 𝜓 contain the same 𝑛 sentence letters and are logically equivalent, then in
every ℒ1-structure 𝒜 , J𝜙K𝒜 = J𝜓K𝒜 . If 𝜙 expresses 𝑓 , then 𝑓(𝒜(𝑠1), …, 𝒜(𝑠𝑛)) =J𝜙K𝒜 = J𝜓K𝒜 . But since 𝜓 contains just 𝑠1, …, 𝑠𝑛 too, 𝜓 also expresses 𝑓 .

10. The underlying result is this: for any structure 𝒜 ,

J¬(𝜙 ↔ 𝜓)K𝒜 = J(¬𝜙 ↔ 𝜓)K𝒜 .

For J¬(𝜙 ↔ 𝜓)K𝒜 = 𝑇 iff J𝜙 ↔ 𝜓K𝒜 = 𝐹 iff J𝜙K𝒜 ≠ J𝜓K𝒜 iff J¬𝜙K𝒜 = J𝜓K𝒜 iffJ¬𝜙 ↔ 𝜓K𝒜 = 𝑇 .

Suppose we have some sentence of our language ℒ↔,¬, which has a constituent
which is a negated biconditional. We can apply the above result, andTheorem 46, to
derive that the sentence obtained by replacing this constituent by ‘pushing in’ the
negation to apply only to the antecedent of the biconditional is logically equivalent
to our original sentence. If we apply this procedure again to the new sentence, and
repeatedly the sentence obtained as a result of the procedure, we will eventually

243

elements of deductive logic

drive all negations to rest against sentence letters, and none will have any occur-
rence of ↔ in their scope. The procedure always reduces the complexity of any neg-
ated biconditional sentence, so it will terminate eventually because every sentence
has finite complexity. (In effect we have an induction on the maximal complexity of
constituents which are negated biconditionals: the procedure shows that if we have
a sentence with no negated biconditional constituent of complexity greater than 𝑖,
that is logically equivalent to a sentence with containing no negated biconditional
constituent of complexity greater than 𝑖 − 1; if our induction hypothesis is that all
sentences with a negated biconditional constituent of complexity no greater than
𝑖 − 1 are equivalent to sentences with no biconditional in the scope of negation, we
have our result. The procedure described may be a little easier to intuitively grasp
than induction on complexity of constituents.)
So consider ¬(¬(𝑃 ↔ 𝑄) ↔ 𝑅). We see that the sentence is a negated biconditional,
so we apply the procedure to obtain (¬¬(𝑃 ↔ 𝑄) ↔ 𝑅). We apply the procedure
to ¬(𝑃 ↔ 𝑄) obtaining (¬(¬𝑃 ↔ 𝑄) ↔ 𝑅). Finally, we apply the procedure to
¬(¬𝑃 ↔ 𝑄), obtaining ((¬¬𝑃 ↔ 𝑄) ↔ 𝑅).

Exercises for Chapter 5: page 101

1. (b) J𝜙 ∧ 𝜓K𝒜 = max (J𝜙K𝒜 , J𝜓K𝒜) = max (J𝜓K𝒜 , J𝜙K𝒜) = J𝜓 ∧ 𝜙K𝒜 , by com-
mutatively of ‘max’.

(c) k is commutative and associative. For, e.g., k (J𝜙K𝒜 , J𝜓K𝒜) = J𝜙 ∧ 𝜓K𝒜 =J𝜓 ∧ 𝜙K𝒜 = k (J𝜓K𝒜 , J𝜙K𝒜). Similarly, k(𝑥,k(𝑦, 𝑧)) = k(k(𝑥, 𝑦), 𝑧).

4. Our task is to construct a sentence in conjunctive normal form that expresses any
arbitrary truth function. Suppose we are given an 𝑛-place truth function. Select 𝑛
sentence letters {𝑠1, …, 𝑠𝑛}, and construct a sentence using them as follows.

• If in some structure 𝒜 , 𝑓(J𝑠1K𝒜 , …, J𝑠𝑛K𝒜) = 𝐹 , call 𝒜 an 𝑓 -disagreeing struc-
ture. If 𝒜 is an 𝑓 -disagreeing structure, let

𝑆𝒜
𝑖 =

⎧⎪
⎨
⎪⎩

𝑠𝑖 if J𝑠𝑖K𝒜 = 𝐹

¬𝑠𝑖 if J𝑠𝑖K𝒜 = 𝑇 .

For each 𝑓 -disagreeing structure 𝒜 , we can see that
q

𝑆𝒜
𝑖

y
𝒜 = 𝐹 .

• Define 𝔡𝒜 = [⋁𝑛
𝑖=1 𝑆𝒜

𝑖] for each 𝑓 -disgreeing structure 𝒜 . Since in each 𝑓 -
disagreeing structure, the disjuncts of this disjunction are all 𝐹 , the disjunc-
tion 𝔡𝒜 also is 𝐹 in an 𝑓 -disagreeing structure 𝒜 . Indeed, by construction,

244

answers to selected exercises

𝔡𝒜 is false only in 𝒜 and structures that agree with 𝒜 on sentence letters
in {𝑠1, …, 𝑠𝑛} – only those structures are guaranteed to be ones where every
disjunct is false.

There are only finitely many equivalence classes of structures that agree on
the setence letters in {𝑠1, …, 𝑠𝑛}; for each such class which contains an 𝑓 -
disagreeing structure, pick some 𝑓 -disgreeing structure from it at random.
There are finitely many of these chosen 𝑓 -disagreeing structures which can
be enumerated 𝒜1, …𝒜𝑚.

• Define 𝔠 = [⋁𝑚
𝑗=1 𝔡𝒜𝑗]. This conjunction is false whenever it has any false

conjunct, and true otherwise. It is thus false on every 𝑓 -disagreeing structure,
and true otherwise. So it expresses 𝑓 .

If there are no 𝑓 -disagreeing structures, let 𝔠 = (𝑃 ∨ ¬𝑃), which is obviously
true on every structure, just like 𝑓 , and is degenerately in CNF.

What we have done is create a sentence which says, ‘we are not in row 𝑥 and we
are not in row 𝑦 and … and we are not in row 𝑧’, for each row of the truth table for
𝑠1, …, 𝑠𝑛 where 𝑓 gets the value 𝐹 .

5. Recall that a truth-function is positive iff 𝑓(𝑇 , …, 𝑇) = 𝑇 . Suppose 𝜙 expresses 𝑓 .
We want to show that if 𝜙 contains only → and ∧ as its connectives, 𝑓 is positive.

Base case. 𝜙 is a sentence letter, 𝑠. If 𝑠 expresses 𝑓 , then 𝑓(J𝑠K𝒜) = 𝒜(𝑠). So if 𝒜(𝑠) =
𝑇 , 𝑓(𝑇) = 𝑇 . So 𝑓 is positive.

Induction step. 𝜙 is complex (a conjunction or conditional), and the induction hypo-
thesis holds of its simpler constituents 𝜙 and 𝜓 . Then 𝜓 and 𝜒 both express positive
truth functions, 𝑓𝜓 and 𝑓𝜒 – so 𝑓𝜓 (𝑇 , …𝑇) = 𝑇 = 𝑓𝜒 (𝑇 , …, 𝑇).

• 𝜙 = (𝜓 ∧ 𝜒). 𝜙 then expresses the truth function k(𝑓𝜓 (⋯), 𝑓𝜒 (⋯)). Since those
constituent truth functions are positive,

k(𝑓𝜓 (𝑇 , …, 𝑇), 𝑓𝜒 (𝑇 , …, 𝑇)) = k(𝑇 , 𝑇) = 𝑇 .

So 𝜙 expresses a positive truth function too.

• 𝜙 = (𝜓 → 𝜒). 𝜙 then expresses the truth function c(𝑓𝜓 (⋯), 𝑓𝜒 (⋯)). Since
those constituent truth functions are positive,

c(𝑓𝜓 (𝑇 , …, 𝑇), 𝑓𝜒 (𝑇 , …, 𝑇)) = c(𝑇 , 𝑇) = 𝑇 .

So 𝜙 expresses a positive truth function too.

245

elements of deductive logic

6. (b) Yes; (¬𝜙 → 𝜓) is logically equivalent to the disjunction (𝜙∨𝜓), and we already
know that disjunction and negation are together expressively adequate.

(d) No. The two-place connectives are all positive, and so cannot ever express a
truth-function which is not positive. Negation is not positive, but no sentence
involving only negation can be used to express any constant one-place truth
function, since n(𝑥) ≠ 𝑥, but for a constrant truth function 𝑓(𝑇) = 𝑇 or
𝑓(𝐹) = 𝐹 .

(e) ↓ is expressively complete: (𝜙 ↓ 𝜙) is logically equivalent to ¬𝜙; and ((𝜙 ↓
𝜓) ↓ (𝜙 ↓ 𝜓)) is logically equivalent to (𝜙 ∨ 𝜓). And we know that {¬, ∨} is
expressively complete.

(f) A 2-place truth-function is expressively adequate if it is able to express all 16
2-place truth functions.

• It cannot be positive (else it would not be able to express those 8 truth-
functions which get the value 𝐹 when given 𝑇 , 𝑇 as input) - this rules
out the 8 positive truth functions, leaving 8.

• It cannot be negative (i.e., 𝑓(𝐹 , 𝐹) = 𝐹), since it would not be able to
express those 8 truth functions which are not negative.

• This leaves 4 candidates:

𝑓↑ 𝑓n-right 𝑓n-left 𝑓↓

𝑇 𝑇 𝐹 𝐹 𝐹 𝐹
𝑇 𝐹 𝑇 𝑇 𝐹 𝐹
𝐹 𝑇 𝑇 𝐹 𝑇 𝐹
𝐹 𝐹 𝑇 𝑇 𝑇 𝑇

But 𝑓n-left is the truth-function 𝑓(𝑥, 𝑦) = n(𝑥), and 𝑓n-right is the truth-
function 𝑓(𝑥, 𝑦) = n(𝑦). Neither of these truth-functions is able to ex-
press any of the 8 truth functions where 𝑓(𝐹 , 𝑇) = 𝑓(𝑇 , 𝐹).

So only the connectives which express 𝑓↑ and 𝑓↓ are expressively complete by
themselves.

(g) ⊥ is not expressively adequate by itself, since it is not true in any structure and
so cannot express any positive truth-function. However, {→, ⊥} is express-
ively adequate: (𝑃 → ⊥) expresses the same truth-function as ¬𝑃 (because
that conditional expresses the function that yields 𝐹 iff only if 𝑃 is true and ⊥
is false, but since ⊥ is always false, iff 𝑃 is true). And it can be easily verified
that ((𝑃 → ⊥) → 𝑄) expresses disjunction (𝑃 ∨ 𝑄). And conjunction isn’t
expressively adequate itself.

246

answers to selected exercises

7. (a) We can express negation using → and →⋆ as follows: 𝑃 →⋆ (𝑃 → 𝑃) (or
𝑃 → (𝑃 →⋆ 𝑃)). Since {¬, →} are expressively adequate, so too is {→, →⋆}.
Self-duality is not sufficient for expressive adequacy, since {¬} is a self-dual
set without being expressively adequate. Nor is it necessary, since {↑} is ex-
pressively adequate without being a self-dual set.

(b) The definition of duality is such that if 𝑓(𝑥, 𝑦) = 𝑧 then 𝑓 ⋆(𝑥⋆, 𝑦⋆) = 𝑧⋆. If
𝑓 = 𝑓 ⋆, so that 𝑓 is self-dual, then if 𝑓(𝑇 , 𝐹) = 𝑧, 𝑓(𝐹 , 𝑇) = 𝑧⋆, so 𝑓(𝑇 , 𝐹) ≠
𝑓(𝐹 , 𝑇). Likewise 𝑓(𝑇 , 𝑇) ≠ 𝑓(𝐹 , 𝐹).
There are 16 2-place truth-functions. But 12 of them are such that either the
top line or bottom line of the truth-table are the same, or the two middle lines
of the truth table are the same. So only 4 could be self-dual: the four degenerate
truth-functions that track their first input or second input or their negations,
𝑓left, 𝑓n-left, 𝑓right, 𝑓n-right. These are self-dual, basically because when we ‘flip’
the truth table, these functions directly follow the flipped inputs to the truth-
functions, undistorted by any contribution from the other input.

9. (a) (¬𝑄 ∨ 𝑅);

(c) (𝑃 → 𝑄).

10. (b) If Γ ⊨⋆ Δ, then every structure which satisfies all of Γ satisfies at least one of
Δ. So there can be no structure which satisfies all of Γ and none of Δ. Let Δ̃
be the set which results from taking every member of Δ and negating it (i.e.,
Δ̃ = {¬𝛿 ∶ 𝛿 ∈ Δ}). Then Γ ∪ Δ̃ is unsatisfiable. By Compactness, some finite
subset of Γ ∪ Δ̃ is unsatisfiable – call that set 𝐺�̃�. There are three cases to
consider:

• 𝐺�̃� contains elements from both Γ and Δ̃. Let Φ be the conjunction of all
sentences in both Γ and 𝐺�̃�. Since the latter is finite, the conjunction is
finite: (𝜙1 ∧ … ∧ 𝜙𝑚). Let Ψ′ be the conjunction of all sentences in Δ̃ and
𝐺�̃�. Since Ψ′ is a conjunction of negated sentences (¬𝜓1 ∧ … ∧ ¬𝜓𝑛), it is
logically equivalent to a negated disjunction ¬(𝜓𝑖 ∨ … ∨ 𝜓𝑛) = ¬Ψ. (Note
that Ψ is the embedded disjunction.) Since 𝐺�̃� is unsatisfiable, Φ, ¬Ψ ⊨;
by Theorem 26, Φ ⊨ Ψ, and Φ and Ψ are of the right form.

• 𝐺�̃� contains elements only from Γ. Let Φ be the conjunction of every
sentence in 𝐺�̃�, and let Ψ be an arbitrary finite disjunction of members
from Δ. Since 𝐺�̃� ⊆ Γ, Φ is of the right form, and since Φ is a contradic-
tion, Φ ⊨ Ψ.

247

elements of deductive logic

• 𝐺�̃� contains elements only from Δ̃. Then every structure makes some
member of Δ true whose negation is in 𝐺�̃�. Let Ψ be the disjunction of
negations of every sentence in 𝐺�̃�; this is a finite tautologous disjunc-
tion. Let Φ be an arbitrary finite conjunction of members from Γ. Since
Ψ is a tautology, Φ ⊨ Ψ.

11. (a) The set of effective procedures is roughly the set of finite recipes in English.
Each such recipe is a finite sequence of characters drawn from a finite al-
phabet, and by the same argument as in the Key Lemma 22, there are only
countably many effective procedures. We suppose they can be recursively
enumerated because the set of finite sets of English sentences can be effect-
ively generated – this follows from the fact that we can effectively generate
finite subsets of ℕ.

(b) i. If there were an effective procedure for computing 𝑑, it would be a mem-
ber of 𝐸 – say it would be the 𝑘-th recipe under the relevant enumera-
tion of recipes. But if 𝑑 is computed by the 𝑘-th recipe, then 𝑑 = 𝑓𝑘. But
𝑑(𝑘) ≠ 𝑓𝑘(𝑘), by construction of 𝑑. So 𝑑 cannot be computed by the 𝑘-
th recipe. Since 𝑘 was arbitrary, 𝑑 cannot be computed by any effective
recipe specifiable in English.

ii. Suppose there were an effective procedure for sorting recipes into those
which are good (compute a function in a finite time) and those which
are garbage (not computing a function, not halting in a finite time.) This
procedure would determine a function:

𝑔(𝑖) =
⎧⎪
⎨
⎪⎩

1 iff the 𝑖-th recipe in 𝐸 is good;

0 otherwise.

If this function 𝑔 is effectively computable, then 𝑑 is effectively comput-
able. The recipe for computing each 𝑑(𝑛) is this:

On given input n, compute g(n)

If g(n) = 0, then set d(n) = 1.

If g(n) = 1, then compute f_n(n)

If f_n(n) = 1, then set d(n) = 2;

If f_n(n) ≠ 1, then set d(n) = 1.

If 𝑔 is a good test for effective procedures, every function in this little
flowchat is calculate by an effective procedure, so for each 𝑛, we determ-
ine the value of 𝑑(𝑛) in a finite time. So 𝑑 is effectively computable. But

248

answers to selected exercises

the previous exercise just showed that 𝑑 is not effectively computable,
hence 𝑔 is not effectively computable.
This shows that the set of effective procedures is recursively enumerable
but not recursive.

Exercises for Chapter 6: page 128

1. ¬¬(𝑃 ∨ 𝑄)
¬𝑃
¬𝑄

𝑃 ∨ 𝑄

𝑃
⊗

𝑄
⊗

2. (a) ¬((𝑃 ↔ (𝑃 ∨ 𝑃)) ∧ (𝑃 ↔ (𝑃 ∧ 𝑃)))

¬(𝑃 ↔ (𝑃 ∨ 𝑃))

𝑃
¬(𝑃 ∨ 𝑃)

¬𝑃
¬𝑃
⊗

¬𝑃
𝑃 ∨ 𝑃

𝑃
⊗

𝑃
⊗

¬(𝑃 ↔ (𝑃 ∧ 𝑃))

𝑃
¬(𝑃 ∧ 𝑃)

¬𝑃
⊗

¬𝑃
⊗

¬𝑃
(𝑃 ∧ 𝑃)

𝑃
𝑃
⊗

(e) ¬((𝑃 → 𝑄) → ((𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅)))

𝑃 → 𝑄
¬((𝑃 ∨ 𝑅) → (𝑄 ∨ 𝑅))

𝑃 ∨ 𝑅
¬(𝑄 ∨ 𝑅)

¬𝑄
¬𝑅

𝑃

¬𝑃
⊗

𝑄
⊗

𝑅
⊗

249

elements of deductive logic

3. (d) (𝑃 → 𝑄) → 𝑄
¬(𝑃 ∨ 𝑄)

¬𝑃
¬𝑄

¬(𝑃 → 𝑄)
𝑃

¬𝑄
⊗

𝑄
⊗

(e) 𝑃 ↔ 𝑄
¬(¬(𝑃 ∧ 𝑄) → (¬𝑃 ∧ ¬𝑄))

¬(𝑃 ∧ 𝑄)
¬(¬𝑃 ∧ ¬𝑄)

𝑃
𝑄

¬𝑃
⊗

¬𝑄
⊗

¬𝑃
¬𝑄

¬𝑃

¬¬𝑃
⊗

¬¬𝑄
⊗

¬𝑄

¬¬𝑃
⊗

¬¬𝑄
⊗

4. (a) (𝑃 ∧ 𝑅) → 𝑄
¬(𝑅 ∧ (𝑃 → 𝑄))

¬𝑅

¬(𝑃 ∧ 𝑅)

¬𝑃 ¬𝑅

𝑄

¬(𝑃 → 𝑄)
𝑃

¬𝑄

¬(𝑃 ∧ 𝑅)

¬𝑃
⊗

¬𝑅

𝑄
⊗

250

answers to selected exercises

(b) 𝑃 ∨ 𝑄
𝑃

¬¬𝑄

𝑄

𝑃 𝑄
6. Any finished tableau generated by {¬𝜙} is closed, because that is what ⊢ 𝜙 means.

Consider a tableau T generated by ¬(𝜓 → 𝜙). We apply the negated conditional
rule, adding 𝜓 and ¬𝜙 below the root node. Then we extend the resulting tableau by
adding the subsequent contents of every branch on some finished tableau generated
by {¬𝜙} to every branch stemming from ¬𝜙 on T. So T is closed (it may not be
finished, if there are tableau rules to apply to 𝜓 ; but it doesn’t matter, since adding
more sentences cannot unclose a closed branch). So ⊢ 𝜓 → 𝜙.

Exercises for Chapter 7: page 149

1.

2. (a) The truth function nor. Here is the informal argument. In any tableaux sys-
tem, for each connective, there is a rule for that connective, and a rule for the
negated connective. The left displayed rule clearly concerns the connective ⊙;
so perhaps the right displayed rule concern its ‘negation’? If so, given that
right-hand rule is of the form 𝜒 ⊙ 𝜒 , that must be how to express negation in
this system. So the left-hand rule now says: from 𝜙 ⊙ 𝜓 , conclude both that 𝜙
is false and 𝜓 is false; so 𝜙⊙𝜓 is sufficient for neither of 𝜙 or 𝜓 to be true.The
right-hand rule says: from the falsity of 𝜙 ⊙ 𝜓 , conclude that either 𝜙 or 𝜓 is
true. From both rules together, therefore, we know that both 𝜙 and 𝜓 being
false is necessary and sufficient for 𝜙 ⊙ 𝜓 to be true, i.e., that ⊙ expresses the
truth function nor(𝑥, 𝑦) = 1 iff 𝑥 = 0 and 𝑦 = 0.

(b) If both 𝜙 and 𝜙 ⊙ 𝜙 occur on a branch.

Exercises for Chapter 10: page 183

2. By Definition 110, J∃𝜐𝜙K𝛼
𝒜 = 𝑇 iff J𝜙K𝛽

𝒜 = 𝑇 for at least one variable assignment 𝛽
over 𝒜 differing from 𝛼 at most in its assignment to 𝜐, iff J¬𝜙K𝛽

𝒜 = 𝐹 iff J¬𝜙K𝛽
𝒜 ≠ 𝑇

251

elements of deductive logic

iff J∀𝜐¬𝜙K𝛼
𝒜 ≠ 𝑇 (since 𝛽 is a variable assignment differing from 𝛼 at most in what

it assigns to 𝜐), iff J¬∀𝜐¬𝜙K𝛼
𝒜 = 𝑇 .

7. If Γ, 𝜙[𝜏/𝜐] ⊨ 𝜓 , then every ℒ2-structure in which all of Γ and 𝜙[𝜏/𝜐] are satisfied is
also a structure in which 𝜓 is satisfied.

Suppose there is an ℒ2-structure 𝒜 in which all members of Γ are satisfied, and ∃𝜐𝜙
is satisfied, but 𝜓 is not. Then there is a variable assignment 𝛼 such that J𝜙K𝛼

𝒜 = 𝑇 .
There exists an altered structure 𝒜 ′ such that J𝜏K𝛼

𝒜 ′ = 𝛼(𝜏) – i.e., it assigns to 𝜏 what
𝛼 assigns to 𝜐 in 𝒜 . Since J𝜙K𝛼

𝒜 = 𝑇 , J𝜙[𝜏/𝜐]K𝒜 ′ 𝛼 = 𝑇 . Suppose Γ is also satisfied in
𝒜 ′ (if it is not, choose another altered structure in which it is: if there is none, then
Γ ∪ {∃𝜐𝜙} must be unsatisfiable, and the desired conclusion follows trivially). But
then 𝒜 ′ must make 𝜓 true by hypothesis. On the other hand, since 𝒜 ′ differs from
𝒜 only in what it assigns to 𝜏 , and 𝜏 doesn’t occur in 𝜓 , 𝜓 must also be false in 𝒜 ′

since we’ve assumed it is false in 𝒜 . Contradiction: so Γ, ∃𝜐𝜙 ⊨ 𝜓 .

10. Consider any ℒ2-structure 𝒜 which makes ∀𝜉(𝜙 ↔ 𝜓) true under some arbitrary
variable assignment 𝛼. 𝒜 is such that J𝜙 ↔ 𝜓K𝛽

𝒜 = 𝑇 for any variable assignments
𝛽 differing from 𝛼 at most in what they assign to 𝜉.
Suppose J∀𝜉𝜙K𝛼

𝒜 ≠ J∀𝜉𝜓K𝛼
𝒜 . Then for one such variable assignment 𝛽 differing from

𝛼 at most in what it assigns to 𝜉, J𝜙K𝛽
𝒜 ≠ J𝜓K𝛽

𝒜 . But since J𝜙 ↔ 𝜓K𝛽
𝒜 = 𝑇 , J𝜙K𝛽

𝒜 =J𝜓K𝛽
𝒜 . Contradiction; so J∀𝜉𝜙K𝛼

𝒜 = J∀𝜉𝜓K𝛼
𝒜 , and hence J∀𝜉𝜙 ↔ ∀𝜉𝜓K𝛼

𝒜 = 𝑇 .

15. An uncountable domain has too many members to be named; that was the problem
for substitutional quantification. But since all of our formula are finite, no open
formula of ℒ2 ever has more than finitely many variables needed to be assigned
values by any one variable assignment. So whenever we need to consider whether a
sentence is true, we only need to consider variable assignments which temporarily
assign names to finitely many members of the uncountable domain.

But we have enough variable assignments so that any object which can be dis-
cussed even indirectly can be temporarily named. So consider the problem case
∀𝑥(Integer(𝑥)) evaluated in a structure 𝒜 with domain of the reals ℝ and an in-
terpretation which assigns to every constant an integer. This quantified sentence is
nevertheless false, since there is a variable assignment 𝛼 on that structure which
assigns to 𝑥 some non-integer value, and JInteger(𝑥)K𝛼

𝒜 = 𝐹 .

252

answers to selected exercises

Exercises for Chapter 13: page 210

Exercises for Chapter 15: page 224

1. Each instance of the form ((𝜙 → 𝜓) ∧ 𝜙) ⊨ 𝜓 is a valid entailment. By Upper,
((𝜙 → 𝜓) ∧ 𝜙) ⇒ 𝜓 . By Import-Export, (𝜙 → 𝜓) ⇒ (𝜙 ⇒ 𝜓). By Lower, (𝜙 → 𝜓) →
(𝜙 ⇒ 𝜓). Assume 𝜙 → 𝜓 ; by modus ponens for →, we may conclude 𝜙 ⇒ 𝜓 . The
converse direction is immediate from Lower. So 𝜙 → 𝜓 is equivalent to 𝜙 ⇒ 𝜓 .

2. (a) John is using an informal analogue of the deduction theorem: that 𝜙, 𝜓 ⊨
𝜓 suffices for 𝜓 ⊨ If 𝜙, 𝜓 . This perhaps doesn’t seem plausible when 𝜙 is
arbitrary, though the general form seems defensible enough: when both 𝜙
and 𝜓 are actually used in the derivation of some conclusion 𝜒 , then 𝜓 alone
suffices for ‘If 𝜙, 𝜒 ’.

(b) This is contraposition, which looks very plausible for the English indicative
(though see below). For if 𝜙’s truth leads to 𝜓 ’s truth, as the conditional ap-
pears to represent, then if 𝜓 were false, it can’t still be that 𝜙 is true – other-
wise 𝜓 would be false and also true.

(c) Suppose 𝜙 → 𝜓 . This is equivalent to ¬𝜙 ∨ 𝜓 . If 𝜓 , then by John’s argument,
‘if 𝜙, 𝜓 ’. If ¬𝜙, then by John’s argument, ‘If ¬𝜓 , ¬𝜙’, so by Mary’s argument,
‘If 𝜙, 𝜓 ’. So on each disjunct, ‘If 𝜙, 𝜓 ’ follows. So 𝜙 → 𝜓 entails ‘If 𝜙, 𝜓 ’.

(d) As long as ‘If 𝜙, 𝜓 ’ entails 𝜙 → 𝜓 , we have logical equivalence and hence ‘if’ is
the material conditional. But both contraposition and the deduction theorem
may not be in the end correct for the English indicative.

3. (a) Consider any ℒ1 structure 𝒜 in which 𝜙 → 𝜓 is true. Either 𝜙 is false in 𝒜 or
𝜓 is true; iff either ¬𝜓 is false in 𝒜 or ¬𝜙 is true; iff ¬¬𝜓 is true in 𝒜 or ¬𝜙 is
true; iff ¬¬𝜓 ∨ ¬𝜙 is true in 𝒜 ; iff ¬𝜓 → ¬𝜙 is true in 𝒜 .

(b) Examples that seem to show contraposition failing for the counterfactual ex-
ist. Here are a couple:

(23) a. If Michael Jordan had been short, he wouldn’t have been really
short. (𝑆 2→ ¬𝑅𝑆)

b. So, If Michael Jordan had been really short, he wouldn’t have been
short. (𝑅𝑆 2→ ¬𝑆)

Intuitively, (23a) is true but (23b) false. Here’s another example. Suppose I have
chronic back pain, leaving me housebound.

253

elements of deductive logic

(24) a. If I’d been able to leave the house, I would (still) have had a bad
back.

b. So, If I hadn’t had a bad back, I wouldn’t have been able to leave
the house.

Intuitively, (24a) might be true – if I’d been able to leave the house, it would
have been because I’d improved just enough to do so, not been totally cured.
But then (24b) is false: I would easily have been able to leave the house then!
It is easy to draw similarity spheres which represent these situations in Lewis’
semantics.They have to have the closest 𝐴-world be a 𝐶-world, but the closest
¬𝐶-world still be an 𝐴-world.

(c) Suppose 2(𝜙 → 𝜓) holds at 𝑤, but 𝑣(𝑤,2(¬𝜓 → ¬𝜙)) = 𝐹 . Then there is an
accessible world 𝑤′ such that 𝑣(𝑤′, ¬𝜓 → ¬𝜙) = 𝐹 , so 𝑣(𝑤′, ¬𝜓) = 𝑇 and
𝑣(𝑤′, ¬𝜙) = 𝐹 , so that 𝑣(𝑤′, 𝜓) = 𝐹 and 𝑣(𝑤′, 𝜙) = 𝑇 . But then 𝑣(𝑤′, 𝜙 →
𝜓) = 𝐹 , hence 𝑣(𝑤,2(𝜙 → 𝜓)) = 𝐹 , contradiction. So there is no such 𝑤;
contraposition for the strict conditional is valid in any logic extending ℒK.

4. (a) In any ℒ1-structure 𝒜 , for any sentences 𝜙, 𝜓 either |𝜙|𝒜 = |𝜓|𝒜 or |𝜙|𝒜 =
|¬𝜓|𝒜 . If the former, |𝜙 → 𝜓|𝒜 = 𝑇 . If the latter, |𝜙 → ¬𝜓|𝒜 = 𝑇 . So in any
𝒜 , |(𝜙 → 𝜓) ∨ (𝜙 → ¬𝜓)|𝒜 = 𝑇 .

(b) Consider an ℒK model with domain {𝑤, 𝑤′}, such that 𝑣(𝑤, 𝜙) = 𝑣(𝑤′, 𝜙) = 𝑇 ,
𝑣(𝑤, 𝜓) = 𝐹 , 𝑣(𝑤′, 𝜓) = 𝑇 . Then 𝑣(𝑤, 𝜙 → 𝜓) = 𝐹 , 𝑣(𝑤′, 𝜙 → ¬𝜓) = 𝐹 .
Assume 𝑤ℛ𝑤 and 𝑤ℛ𝑤′; then 𝑣(𝑤,2(𝜙 → 𝜓)) = 𝐹 and 𝑣(𝑤,2(𝜙 → ¬𝜓)) =
𝐹 .

(c) Lewis’ example is: ‘if Bizet and Verdi had been compatriots, they would have
both been French’. He thinks: this is false. It is true that both would have been
French, or both Italian – the closest worldwhere they share a nationality is one
where only one of them has to change their actual nationality. In the similarity
semantics, the set of closest worlds where Bizet and Verdi are compatriots has
at least two members. Indeed, the violation of this condition is the formal
analogue of CEM: if there is a unique closest 𝐴-world, then since either 𝐶 or
¬𝐶 is true at it, either 𝐴2→ 𝐶 or 𝐴2→ ¬𝐶 is true actually.

(d) This is tough to answer. But it may only appear plausible because we consider
too few cases. Consider this: I have a fair coin in my pocket, which I never
toss. I say: ‘Had I tossed this coin, it would have landed heads’. This seems
false: part of what it is to be a fair coin is that there is no determinate fact
of the matter about what would happen if I toss it. You wish to deny what I

254

answers to selected exercises

say. But you do not deny it by asserting this equally false counterfactual: ‘Had
you tossed the coin, it would not have landed heads’. You rather should say:
‘It isn’t the case that had you tossed the coin, it would have landed heads’.

While asserting 𝐴 ⇒ ¬𝐶 suffices to deny 𝐴 ⇒ 𝐶 , it is not equivalent to
the negation of that conditional, in general. It is more plausible to equate
¬(𝐴 ⇒ 𝐶) with (𝐴 ⇒ ¬𝐶) in the case of the indicative. There we are con-
sidering just one world – actuality – and what must be true of it under the
supposition that 𝐴. Since just one of 𝐶, ¬𝐶 is true of actuality, one is true un-
der that supposition, which would give us CEM. But the counterfactual invites
us to consider alternatives to actuality, and there may be more than one such
alternative to be considered which can allow for violations of CEM.

5. It certainly seems good for both at first glance. Note immediately that since the
counterfactual satisfies both Upper and Lower, if the counterfactual satisfied Import-
Export, then by Gibbard’s theorem the counterfactual would be the material condi-
tional. So there must be violations of Import-Export in Lewis’ semantics. Consider:
(𝜙 ∧ 𝜓)2→ ¬𝜙 is always false (at least when there is some 𝜙 ∧ 𝜓 world). But we can
construct amodel where 𝜙2→ (𝜓 2→ ¬𝜙) is true. (’If I had picked your pocket, then
if you had been watching me the whole time, I wouldn’t have picked your pocket’ -
sounds a bit awkward but can see a reading on which it might be true.)

The indicative is more interesting, since people have used Import-Export to provide
counterexamples to modus ponens. Here’s McGee’s classic example:

I see what looks like a large fish writhing in a fisherman’s net a ways
off. I believe

If that creature is a fish, then if it has lungs, it’s a lungfish.

That, after all, is what onemeans by ‘lungfish’. Yet, even though I believe
the antecedent of this conditional, I do not conclude

If that creature has lungs, it’s a lungfish.

Lungfishes are rare, oddly shaped, and, to my knowledge, appear only
in freshwater. It is more likely that, even though it does not look like
one, the animal in the net is a porpoise.(McGee, 1985: 462–3)

The counterexample to modus ponens is supposed to arise because we think the
antecedent of the conditional (’that’s a fish’) is likely true, and yet the conditional
consequent likely false. Yet the conditional itself seems true – because it follows
from this true conditional by Import-Export:

255

elements of deductive logic

(25) If that creature is a fish and it has lungs, then it’s a lungfish.

We seem to have a choice: accept ‘if that creature has lungs, it’s a lungfish’; reject
Import-Export; or reject modus ponens. Many have found rejecting Import-Export,
and thus rejecting the nested conditional, the most palatable way out. The material
conditional accepts the conclusion; Stalnaker’s semantics for indicatives (which are
like Lewis’ semantics for counterfactuals) invalidates Import-Export.

256

Appendix B

Greek letters

𝛼, 𝐴 Alpha 𝜈, 𝑁 Nu
𝛽, 𝐵 Beta 𝜉, Ξ Xi
𝛾, Γ Gamma 𝜊, 𝑂 Omicron
𝛿, Δ Delta 𝜋, Π Pi
𝜖, 𝐸 Epsilon 𝜌, 𝑃 Rho
𝜁, 𝑍 Zeta 𝜎, Σ Sigma
𝜂, 𝐻 Eta 𝜏, 𝑇 Tau
𝜃, Θ Theta 𝜐, Υ Upsilon
𝜄, 𝐼 Iota 𝜙, Φ Phi
𝜅, 𝐾 Kappa 𝜒, 𝑋 Chi
𝜆, Λ Lambda 𝜓, Ψ Psi
𝜇, 𝑀 Mu 𝜔, Ω Omega

Table B.1: Table of Greek letters

257

List of Definitions

1 Weak Principle of Induction . . 8
2 Strong Principle of Induction . 9
3 Least Number Principle 10
4 Your Ancestors 17
5 Subset 18
6 Superset 18
7 Disjoint 18
8 Intersection 18
9 Relative Complement 18
10 Union 19
11 Power Set 20
12 Ordered Pair 21
13 Kuratowski Ordered Pair 21
14 Ordered 𝑛-tuple 23
15 Ordered 1-tuple 23
16 Binary Relation 24
17 Cartesian Product 24
18 𝑛-place Relation 24
19 Finite Directed Graph 24
20 Reflexive 25
21 Transitive 25
22 Symmetric 25
23 Anti-symmetric 25
24 Equivalence Relation 26
25 Serial 27
26 Path 27
27 Strong Connectedness 28
28 Weak Connectedness 28
29 Totality 28

30 Inverse 29
31 Complement 29
32 Ordering 29
33 Well-ordering 30
34 Unary Function 31
35 Function 32
36 Domain 32
37 Range 32
38 Partial and Total 32
39 Operator 32
40 Commutative 33
41 Associative 33
42 Into, Onto, etc. 33
43 Inverse 34
44 Finite 35
45 Enumeration 35
46 [Un]Countable 36
47 Equinumerosity 36
48 Cardinality 36
49 ≤ 36
50 String 43
51 Sentence Letters 45
52 Sentences of ℒ1 45
53 Arity 46
54 Scope 46
55 Main Connective 46
56 Complexity 49
57 Valuation 54
58 ℒ1-Structure 54

258

greek letters

59 ℒ1-valuation 55
60 Agreement of Structures 56
61 Satisfaction 58
62 Entailment 58
63 Tautology 58
64 Consequences 59
65 Theory 60
66 Negation Complete 60
67 Properties of arguments 61
68 Equivalence 65
69 Constituent sentence 68
70 Uniform Substitution 68
71 Substitution Instance 68
72 Truth Function 72
73 Expression 73
74 Truth-functional Connective . 74
75 Alternative ℒ1-valuation . . . 75
76 Base 75
77 Arbitrary Conjunction 78
78 Literal 78
79 Disjunctive Normal Form (dnf) 78
80 Expressive Adequacy 81
81 Functional Completeness . . . 82
82 Maximum and Minimum 82
83 nand and nor 85
84 Duality 86
85 Compactness 92
86 Finite Satisfiability 93
87 Recursivity 98
88 Recursive Enumerability . . . 99
89 ℒ1-Branch 110
90 ℒ1-Tree 111
91 Occurs Within 112
92 Tableaux 113
93 Generation of a tableau 113
94 Pruning Tips 116
95 Extends 116

96 Finished 116
97 Closed 118
98 Tableau Derivation 121
99 Theoremhood 122
100 Syntactic Consistency 122
101 Soundness 137
102 Completeness 137
103 General Tree 146
104 Atomic Formula 173
105 Formula 173
106 Free and Bound Variable Oc-

currences 174
107 Sentence of ℒ2 174
108 ℒ2-Structure 175
109 Variable Assignment 175
110 Satisfaction 176
111 Truth 177
112 Validity in ℒ2 178
113 Definite Descriptions 205
114 Direct Reference 229
115 Rigid Designator 230

259

List of Tables

4.1 Truth Table for the Standard Connectives . 58
4.2 A truth-function table for c . 72
4.3 The four 1-place truth functions . 73

5.1 De Morgan Equivalences . 84
5.2 Sheffer Stroke and Peirce Arrow . 85
5.3 Duality Illustrated Using Truth Tables . 86

8.1 Natural Deduction Rules for ℒ¬,→ . 153
8.2 Negation rules in ℒ𝐷𝑃 . 155

12.1 New Natural Deduction Rules for ℒ2 . 188

13.1 New Natural Deduction Rules for ℒ= . 202

B.1 Table of Greek letters . 257

260

List of Figures

2.1 Reflexivity and Transitivity . 25
2.2 Symmetry . 26
2.3 Connectedness and Totality . 28
2.4 Partial ordering of a set of sets by ⊆ . 30
2.5 Properties of functions . 34

6.1 An ℒ1-tree and its associated ℒ1-branches 111
6.2 Sentential Tableau Rules . 115
6.3 Steps to constructing a Tableau . 116
6.4 Two Tableaux Generated by the Same Set 119
6.5 Steps in the construction of a tableau. 126
6.6 Open and closed tableaux. 127
6.7 Tableaux for 𝜙 → 𝜓, 𝜓 → 𝜒 ⊢ 𝜙 → 𝜒 . 127
6.8 Tableaux for our further examples. 128

7.1 A brief tableau. 131

261

Bibliography

Beall, JC and van Fraassen, Bas C (2003),
Possibilities and Paradox. Oxford: Ox-
ford University Press.

———— and Restall, Greg, ‘Logical Con-
sequence’. In Edward N Zalta (ed.),
The Stanford Encyclopedia of Philo-

sophy. url plato.stanford.edu/entries/

logical-consequence/.

Belnap, Jr., Nuel D (1977), ‘A Useful Four-
Valued Logic’. In J Michael Dunn
and G Epstein (eds.), Modern Uses of

Multiple-Valued Logic, Dordrecht: D Re-
idel, pp. 8–37.

Bennett, Jonathan (2003), A Philosophical

Guide to Conditionals. Oxford: Oxford
University Press.

Boolos, George S, Burgess, John P, and Jef-
frey, Richard C (2007), Computability

and Logic. Cambridge: Cambridge Uni-
versity Press, 5 ed.

Boolos, George (1971), ‘The Iterative Con-
ception of Set’. Journal of Philosophy 68:
215–232.

Borkowski, L and Słupecki, J (1958), ‘The
Logical Works of J Łukasiewicz’. Studia
Logica, vol. 8: pp. 7–56.

Bostock, David (1997), Intermediate Logic.
Oxford: Oxford University Press.

Burgess, John P (2009), Philosophical Logic.
Princeton: Princeton University Press.

Caplan, Ben (2006), ‘Empty names’. In
Robert Stainton and Alex Barber (eds.),
The Encyclopedia of Language and

Linguistics: Philosophy and Language,
vol. 4, Oxford: Elsevier, pp. 132–136.

Craig, William (1957), ‘Three uses of
the Herbrand-Gentzen theorem in re-
lating model theory and proof the-
ory’. Journal of Symbolic Logic, vol. 22:
pp. 269–85.

Davis, Wayne (2014), ‘Implicature’. In Ed-
ward N Zalta (ed.), The Stanford En-

cyclopedia of Philosophy. url plato.

stanford.edu/entries/implicature/.

Dummett, Michael (1983), ‘The Philo-
sophical Basis of Intuitionist Logic’. In
Paul Benacerraf and Hilary Putnam
(eds.), Philosophy of Mathematics: Se-

lected Readings, Cambridge: Cambridge
University Press, 2 ed., pp. 97–129.

Edgington, Dorothy (2014), ‘Indicative
Conditionals’. In Edward N Zalta (ed.),

262

http://plato.stanford.edu/entries/logical-consequence/
http://plato.stanford.edu/entries/logical-consequence/
http://plato.stanford.edu/entries/implicature/
http://plato.stanford.edu/entries/implicature/

bibliography

The Stanford Encyclopedia of Philo-

sophy. url plato.stanford.edu/entries/

conditionals/.

Fine, Kit (1975), ‘Vagueness, Truth and Lo-
gic’. Synthese 30: 265–300.

van Fraassen, Bas C. (1980), The Scientific

Image. Oxford: Clarendon Press.

Gentzen, Gerhard (1969), ‘Investigations
into Logical Deduction’. In M E Szabo
(ed.), The Collected Papers of Gerhard

Gentzen, Amsterdam: North-Holland,
pp. 68–131.

Gibbard, Allen (1981), ‘Two RecentTheor-
ies of Conditionals’. In W L Harper, et
al., (eds.), Ifs, Dordrecht: D. Reidel, pp.
211–47.

Gowers, Timothy (ed.) (2008), The Prin-

ceton Companion to Mathematics. Prin-
ceton, NJ: Princeton University Press.

Grice, Paul (1989), ‘Logic and Conversa-
tion’. In Studies in the Way of Words,
Cambridge, MA: Harvard University
Press.

Halbach, Volker (2010), The Logic Manual.
Oxford: Oxford University Press.

Harris, John H (1982), ‘What’s so logical
about the ‘logical’ axioms?’ Studia Lo-

gica, vol. 41: pp. 159–71.

Henkin, Leon (1949), ‘The Completeness
of the First-Order Functional Calcu-
lus’. Journal of Symbolic Logic, vol. 14:
pp. 159–66.

Henle, James M, Garfield, Jay L, and
Tymoczko, Thomas (2011), Sweet

Reason. Chichester: Wiley-Blackwell,
2nd ed.

Heyting, A (1956), Intuitionism: An Intro-

duction. Amsterdam: North-Holland.

Hodges, Wilfrid (2001), Logic. London:
Penguin, 2nd ed.

Iemhoff, Rosalie (2015), ‘Intuitionism in
the Philosophy of Mathematics’. In Ed-
ward N Zalta (ed.), The Stanford Encyc-

lopedia of Philosophy. plato.stanford.

edu/entries/logic-intuitionistic/.

Jeffrey, Richard C (2006), Formal Logic: Its

Scope and Limits. Indianapolis: Hackett,
4th ed, with a supplement by John P
Burgess.

King, Jeff C (2003) ‘Tense, Modality,
and Semantic Values’. Philosophical Per-
spectives, vol. 17: pp. 195–246.

Kratzer, Angelika (2012) ‘Conditionals’. In
her Modals and Conditionals, Oxford:
Oxford University Press, pp. 85–108.

Kripke, Saul (1976), ‘Is There a Problem
About Substitutional Quantification?’
In Gareth Evans and John McDowell
(eds.), Truth and Meaning, Oxford: Ox-
ford University Press, pp. 324–419.

———— (1980), Naming and Necessity. Cam-
bridge, MA: Harvard University Press.

———— (2013), Reference and Existence. Ox-
ford: Oxford University Press.

263

http://plato.stanford.edu/entries/conditionals/
http://plato.stanford.edu/entries/conditionals/
http://plato.stanford.edu/entries/logic-intuitionistic/
http://plato.stanford.edu/entries/logic-intuitionistic/

elements of deductive logic

Kunda, Ziva (1999), Social Cognition: Mak-

ing Sense of People. Cambridge, MA:
MIT Press.

Lambert, Karel (2001), ‘Free Logics’. In
Lou Goble (ed.), The Blackwell Guide to

Philosophical Logic, Oxford: Blackwell.

Lewis, David (1973), Counterfactuals. Ox-
ford: Blackwell.

———— (1984), ‘Putnam’s Paradox’. Aus-

tralasian Journal of Philosophy, vol. 62:
pp. 221–36.

Ludlow, Peter (2013), ‘Descriptions’. In Ed-
ward N Zalta (ed.), The Stanford En-

cyclopedia of Philosophy. url plato.

stanford.edu/entries/descriptions/.

Machover, Moshé (1996), Set Theory, Logic,

andTheir Limitations. Cambridge: Cam-
bridge University Press.

McGee, Vann (1985), ‘A Counterexample
to Modus Ponens’. The Journal of Philo-

sophy, vol. 82: pp. 462–71.

———— (2006), ‘There’s a Rule for
Everything’. In Agustín Rayo and
Gabriel Uzquiano (eds.), Absolute

Generality, Oxford: Oxford University
Press, pp. 179–202.

Partee, Barbara H (1973), ‘Some Struc-
tural Analogies Between Tenses and
Pronouns in English’. Journal of Philo-

sophy, vol. 70: pp. 601–607.

————, ter Meulen, Alice andWall, Robert E
(1990), Mathematical Methods in Lin-

guistics. Dordrecht: Kluwer.

Potter, Michael (2004), Set Theory and Its

Philosophy. Oxford: Oxford University
Press.

Prawitz, Dag (2006), Natural Deduction: A

Proof-theoretic study. New York: Dover.

Priest, Graham (2006), In Contradiction.
Oxford: Oxford University Press, 2nd
ed.

———— (2008), An Introduction to Non-

Classical Logic. Cambridge: Cambridge
University Press, 2nd ed.

Prior, A N (1960), ‘The Runabout
Inference-Ticket’. Analysis, vol. 21:
pp. 38–9.

Pullum, Geoffrey K (2008), ‘Scooping the
Loop Snooper: a proof that the Halting
Problem is unsolvable’. url www.ling.

ed.ac.uk/~gpullum/loopsnoop.pdf.

Putnam, Hilary (1980), ‘Models and Real-
ity’. Journal of Symbolic Logic, vol. 45:
pp. 464–82.

Quine, W V O (1940) Mathematical Logic.
Boston, MA: Harvard University Press.

Restall, Greg (2000)An Introduction to Sub-

structural Logics. London: Routledge.

Richard, Mark (1986) ‘Quotation, gram-
mar, and opacity’, Linguistics and Philo-

sophy 9: 383–403.

Russell, Bertrand (1956), ‘On Denoting’. In
Logic and Knowledge, London and New
York: Routledge, pp. 41–56.

264

http://plato.stanford.edu/entries/descriptions/
http://plato.stanford.edu/entries/descriptions/
http://www.ling.ed.ac.uk/~gpullum/loopsnoop.pdf
http://www.ling.ed.ac.uk/~gpullum/loopsnoop.pdf

bibliography

Shapiro, Stewart (2000) Thinking About

Mathematics. Oxford: Oxford Univer-
sity Press.

———— (2013), ‘Classical Logic’. In Edward N
Zalta (ed.), The Stanford Encyclopedia

of Philosophy. url plato.stanford.edu/

entries/logic-classical/.

Sider, Theodore (2010), Logic for Philo-

sophy. Oxford: Oxford University Press.

Smith, Nicholas J J (2012), Logic: The Laws

of Truth. Princeton: Princeton Univer-
sity Press.

Smullyan, Raymond M (1968), First-Order

Logic. New York: Springer-Verlag.

Stalnaker, Robert C (1975), ‘Indicat-
ive Conditionals’. Philosophia, vol. :
pp. 269–86.

Strawson, P F (1950), ‘On Referring’.Mind,
vol. 59: pp. 320–44.

Tarski, Alfred (1933), ‘The Concept of
Truth in Formalized Languages’. In Lo-

gic, Semantics, Metamathematics, Indi-
anapolis: Hackett, 2nd ed., 1983, pp.
152–278.

———— (1936), ‘On the Concept of Lo-
gical Consequence’. In Logic, Semantics,

Metamathematics, Indianapolis: Hack-
ett, 2nd ed., 1983, pp. 409–420.

Taylor, Barry (2006), Models, Truth, and

Realism. Oxford: Oxford University
Press.

Thomson, J F (1990), ‘In Defense of ⊃’. The

Journal of Philosophy, vol. 87: pp. 57–70.

Turing, A M (1937), ‘On Computable
Numbers, with an Application to the
Entscheidungsproblem’. Proceedings

of the London Mathematical Society,
vol. 42: pp. 230–65.

265

http://plato.stanford.edu/entries/logic-classical/
http://plato.stanford.edu/entries/logic-classical/

	Introduction
	I Mathematical Preliminaries
	Mathematical Induction and Proof
	Inductive Proofs
	Proof by Reductio
	Intuitionism
	Further Reading
	Exercises

	Set Theory
	Sets
	Relations
	Functions
	Size
	Further Reading
	Exercises

	II Sentential Logic: Language and Meaning
	The Syntax of L1
	Strings and Quotation
	Sentences
	Proofs About Syntax
	Proof By Induction on Complexity
	The Size of L1
	Exercises

	The Semantics of L1
	Semantics for L1
	Truth Tables
	Satisfaction, Entailment, and other Semantic Notions
	Consequences and Theories
	Entailment, Validity and Necessity
	Meaning, Possibility, and Time
	Entailment and the Connectives
	Structural Rules
	Substitution
	Truth-functions
	Exercises

	Metatheory of L1
	Disjunctive Normal Form
	Expressive Adequacy and Functional Completeness
	Duality
	Interpolation
	Compactness
	Alternative Proof of Compactness
	Decidability
	Exercises

	III Sentential Logic: Derivations
	Tableau Derivations in L1
	Derivations
	Trees
	Tableaux
	Closure and Order
	Tableaux Derivations
	Tableaux in practice
	Further Reading
	Exercises

	Tableau Metatheory
	Derivations and Semantic Arguments
	Transforming Derivations
	Soundness and Completeness
	Soundness of the Tableaux Derivation System
	Completeness for Tableaux
	Finitude and Decidability
	Alternate Tableau Systems
	Trees and Tableaux
	Further Reading
	Exercises

	Natural Deduction in L1
	Natural Deduction Proofs
	A Little More Proof Theory
	Further Reading
	Exercises

	Natural Deduction Metatheory
	Soundness for Natural Deduction
	Completeness
	Axioms
	Further Reading
	Exercises

	IV Predicate Logic
	The Syntax and Semantics of L2
	Syntax of L2
	Semantics of L2
	Some Semantic Theorems About L2
	Alternative Semantics for L2
	Further Reading
	Exercises

	Tableaux for L2
	Natural Deduction in L2
	Proofs in L2
	Soundness of L2
	Completeness of L2
	Decidability and Undecidability
	Further Reading
	Exercises

	Syntax, Semantics, and Derivations in L=
	Identity
	Numerical Quantification and the Theory of Definite Descriptions
	Compactness and Cardinality
	Further Directions of Research and Study in Logic
	Further Reading
	Exercises

	V Beyond Classical Logic
	Modal and Temporal Logic
	Logic and Natural Language Conditionals
	Indicative Conditionals
	Further Reading
	Exercises

	Entailment, Designators, and Relations
	Entailment
	Designators
	More on Relations
	Further Reading
	Exercises

	Answers to Selected Exercises
	Greek letters
	List of Definitions
	List of Tables
	List of Figures
	Bibliography

