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Abstract

Reasoning from inconclusive evidence, or ‘induction’, is central to science
and any applications we make of it. For that reason alone it demands the
attention of philosophers of science. This element explores the prospects of
using probability theory to provide an inductive logic, a framework for repres‐
enting evidential support. Constraints on the ideal evaluation of hypotheses
suggest that overall support for a hypothesis is represented by its probability
in light of the total evidence, and incremental support, or confirmation, in‐
dicated by an increased probability given the evidence than otherwise. This
proposal is shown to have the capacity to reconstruct many canons of the
scientific method and inductive inference. Along the way, significant objec‐
tions are discussed, such as the challenge from inductive scepticism and the
objection that the probabilistic approach makes evidential support arbitrary.
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About this Book

Open‐mindedness is a cognitive virtue – perhaps even a moral one (Arpaly
2011). To be open‐minded is to be disposed to consider other views, avoiding
rigidity in opinion. Yet it is not to be intellectually fickle. The open‐minded
person changes their mind in response to evidence, when confronted with
new facts or a new interpretation of old facts. Open‐mindedness is a virtue,
while fickleness is a vice, because the former conduces to our cognitive aims
– truth, knowledge, wisdom – while the latter does not. To put virtue into
practice however requires understanding what it is to respond to evidence. De‐
ductive logic can provide some background structure, but most of the time
managing our states of opinion involves ‘weighing evidence and judging prob‐
ability’ (Lipton 2004: 5). This book is about those notions.

In Section 1, I introduce our topic, distinguishing inductive inference from
deductive logic. I proposing that ‘inductive logic’ could serve as a good la‐
bel for the study of relations of evidential support and confirmation at a
time; however, the connection to inference is more fraught. Section 2 em‐
barks on the project of inductive logic by examining some previous qualitat‐
ive approaches, attempting to use logical features of the evidence and hypo‐
thesis under consideration to ground relations of evidential support. I note
some technical challenges for these proposals, but also note their susceptibil‐
ity to Hume’s venerable ‘problem of induction’. Section 3 starts on the positive
project, proposing to understand the degree to which a hypothesis is sup‐
ported as relative to a particular ideal perspective on the hypothesis, given
a background body of total evidence and a conception of evidential support.
It is there argued that these epistemic perspectives must have a probabilistic
structure, and that they are not necessarily to be identified with the actual
attitudes of any individual. Thus the account on offer is broadly Bayesian,

1



2

yet not wholly subjectivist. Having introduced the notion of overall degree
of support, I turn in Section 4 to the notion of incremental confirmation of
a hypothesis by evidence, sketching ways in which the Bayesian approach
explains successes of the scientific method, improves on the qualitative ac‐
counts discussed in Section 2 and on other probability‐based approaches, and
ultimately provides a framework for induction. I respond there to some chal‐
lenges to my proposal, while devoting the whole of Section 5 to what I see as
the most significant obstacle facing any broadly Bayesian approach to evid‐
ential support, the problem of identifying and justifying an appropriate epi‐
stemic perspective to take on a given issue of theory choice.

This book sits in a long tradition of other works on broadly Bayesian
approaches to epistemology and general philosophy of science.1 Because of
space constraints, interesting topics and challenges do not receive the atten‐
tion they perhaps deserve in this book; the interested reader is encouraged to
explore other treatments of the issues. In particular, I try to focus on the pos‐
itive development of a defensible inductive logic; many thoughtful objections
receive no overt response here, though I believe my approach is set up in a
way that forestalls some quite prominent criticisms. My overall approach dis‐
plays the clear influence of Howson (2000) and Fitelson (2005), and I draw in
part on my own earlier work (Eagle 2011; Eagle 2016a), though I have changed
mymind onmany things. I have silentlymade notation in quotations uniform
with the remainder of the book. I am grateful for the forbearance of the series
editors as I worked to complete this book, to students in my honours seminar
on Probability and Inductive Logic in 2021 who endured an early prototype,
to Marshall Abrams for facilitating a 2022 PSA symposium on randomness
where a version of §5.5 was presented, to Coffee in Common and Crave Spe‐
cialty Coffee for providing congenial working environments, and to Lizzie,
Sylvester, and Jonquil for their sometimes stretched patience and constant
encouragement.

1 Even a non‐exhaustive list is exhausting (Carnap 1962; Horwich 1982; Earman 1992;
Howson and Urbach 1993; Skyrms 2000; Hacking 2001; Bovens and Hartmann 2003;
Strevens 2006; Jeffrey 2008; Norton 2011; Weisberg 2011; Bradley 2015; Schupbach 2022;
Titelbaum 2022a; b). That is without including works on the philosophy of probability
more broadly.



Section 1

Logic, Induction, and
Inductive Logic

In this opening section, I introduce the notion of inductive logic. Given the
plurality of ways that philosophers have approached logic and induction, it is
important to get clear on these topics first in order to understand how they
may delineate the field of inductive logic. I begin in §1.1 with a discussion of
logic as a formal relation among sentences, contrasting that in §1.2 with induc‐
tion characterised as a species of ampliative reasoning. Meshing consequence
relations at a time with norms of reasoning over time is at first glance an inco‐
herent project, and this poses an initial challenge to the project of inductive
logic (§1.3). I suggest in §1.4 that this challenge can be defused by focusing on
an inductive logic that is not a theory of inductive reasoning, but is rather a
synchronic theory of evidential support and confirmation.

1.1 Logic

If Jonquil is younger than Sylvester, Sylvester is older than Jonquil. Jonquil
is younger than Sylvester. It is a formal consequence of these first two sen‐
tences that Sylvester is older than Jonquil. Logic is the science of formal con‐
sequence.

Formal consequence is a relation among sentences that obtains in virtue
of the form of those sentences. The form of a sentence is not merely a product
of its constituent letters, but also its syntactic structure. Accordingly, the form
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of a given sentence (string of symbols) will depend also on a choice of lan‐
guage, which will determine the phrasal structure assigned to the sentence.
(Or perhaps, each formal language has a particular approach tomodelling the
syntactic structure of a natural language sentence.) The most common lan‐
guages introduced in elementary logic courses offer quite different analyses
of the structure of our opening sentence If Jonquil is younger than Sylvester,
then Sylvester is older than Jonquil. Sentential logic offers an analysis into
‘basic’ sentences, which are connected by the structural word if ; it says the
sentence has the form (𝐽 → 𝑆). Predicate logic goes further; one might fruit‐
fully analyse those basic sentences, perhaps yielding the form (𝑌𝑗𝑠 → 𝑂𝑠𝑗)
involving names and two binary relational predicates. Other languages may
go even further, might be itself analysed — perhaps the comparative form is
older than is to be analysed morphologically, and that could be reflected in a
conception of structure adopted by some logical language.

A language not only delineates the form of sentences, but also assigns
meanings to the expressions in the language. A sentence 𝜙 is a formal con‐
sequence of some sentences Γ, relative to some language, just in case there
is no possible way to uniformly reinterpret the non‐structural expressions in
Γ and 𝜙 so as to make all the sentences in Γ true and 𝜙 false (Tarski 1983:
416–17). So 𝑆 is a formal consequence of If 𝐽, 𝑆 and 𝐽 in classical sentential lo‐
gic because, keeping fixed the meaning that language assigns to if, whatever
meanings are assigned to 𝐽 and 𝑆 will ensure the truth of 𝑆 given the truth of
If 𝐽, 𝑆 and 𝐽.

Formal consequence should be distinguished from other notions of con‐
sequence – for example, causal consequence (‘the vase broke as a consequence
of my knocking it over’). Causal consequence is contingent and substantive.
Whether a causal relation holds between two events can vary with the back‐
ground conditions (such as the presence of pre‐empting causes) and the laws
of nature. Formal consequence, while relative to a language, is an internal re‐
lation, necessitated by the forms of the sentences involved and the meanings
assigned by that language.

Logic on this conception is not a theory of reasoning or inference (Harman
1986: 3–6). This can be obscured by some otherwise attractive proof systems
for logic, such as natural deduction, which tend to encourage a conflation
between the principles describing the acceptable structures for formal proofs,



INDUCTION 5

and principles of natural inference. Yet while formal consequence is a relation
between sentences in a language at one time (a synchronic relation), reason‐
ing is a relation between states of opinion over time (a diachronic relation).
Given that inference essentially relates states of opinion, a correct theory of
reasoning will depend on what is distinctive about such states that may not
be shared with more general quasi‐linguistic entities like sets of sentences or
propositions. (Though sometimes a state of opinion might be represented by
a set of sentences, but even there the question which sets of sentences can
represent a state of opinion is not trivial.)

Perhaps facts about consequence in a speaker’s language can be pertin‐
ent to evaluating inferences that a speaker might make while reasoning. For
example, perhaps the fact that a speaker has a belief in a sentence with the
structure (𝜙 → 𝜓) and believes 𝜙might give that speaker prima facie grounds
to infer 𝜓. But even this holds only defeasibly. What is plausible is that there
is something synchronically unreasonable about having a state of opinion in
which someone is committed to Γ and ¬𝜙, where 𝜙 is a formal consequence
of Γ. But even that might not be all‐things‐considered unreasonable; what if
the believer doesn’t recognise the inconsistency (Harman 1986: 17–19)?

1.2 Induction

Induction, by contrast, is generally characterized as a species of inference.
Howson characterises the central question of induction as being how ‘our
hard‐won factual knowledge’ iss able to be ‘secured by any process of demon‐
strably sound reasoning’ (2000: 1). Inductive reasoning is the paradigm of
scientific reasoning, as when the scientific community adopted Hutton and
Lyell’s ‘Uniformitarian’ approach to geology (Lyell 1830). The Uniformitarians
argued that the same geological processes (erosion, deposition, lithification,
orogeny, etc.,) active today are also those responsible for shaping the land‐
scape of the Earth throughout time. Ripple marks in an exposed vertical rock
layer, far from the sea, are an apparent mystery. The uniformitarian explains
them as the concatenation over geological time of familiar processes: pos‐
tulating an ancient shallow sea in which the ripple marks were formed, the
covering of those rippled layers by subsequent sediments, the gradual folding
and uplift of the resulting sedimentary rock into a mountain range, and the
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erosion of that range over millions of years to reveal the ripples again to the
eye (Drexel, Preiss, and Parker 1993: 171–97).1 This simple and elegant hypo‐
thesis was opposed to the many unattested geological mechanisms invoked
ad hoc by the rival ‘Catastrophist’ school. The inductive inference here was
to one of these rival hypotheses as the best explanation of the agreed geolo‐
gical data (Lipton 2004). The preferredUniformitarian explanation postulates
a continuity or resemblance between present and past geological processes. In
postulating this continuity, the Uniformitarians also endorse another canon‐
ical form of inductive inference, from evidence of past geology to predictions
concerning future geology (Hume 1777). This itself is an example of a slightly
more general but very common pattern of reasoning, inverse inference from
features of a sample to those of the population from which it is drawn; which
in turn perhaps ought to be simply unified with inference to the best explan‐
ation (Harman 1965). I will treat all of these as kinds of inductive inference.

Inference to the best explanation and inverse inference are both exem‐
plified in ordinary reasoning as well as scientific contexts. We conclude that
the last evening train from the will depart late, on the basis that it’s always
been late; we may also conclude in turn that something is a little different
about the passengers on the last train, perhaps hypothesising that they are
particularly prone to the sorts of behaviours that cause delays.

While there are interesting special features of inverse inference as op‐
posed to the inference to the best explanation more generally, both exhibit
an ‘ampliative’ character that reasoning constrained to mimic formal con‐
sequence does not. In the example above, the Uniformitarian hypothesis is
not a formal consequence of the given geological evidence, because Cata‐
strophism is consistent with the evidence but incompatible with Uniformit‐
arianism. The resources provided by formal consequence allow the exclusion
of hypotheses that are inconsistent with the evidence, but do not provide
grounds to favour any of the hypotheses consistent with the evidence over
any other. By contrast, reasonable inductive inference can lead us to favour
one of many coherent hypothesis, as in the examples above. It is coherent to
suppose the future quite unlike the past; yet we habitually infer that the fu‐

1 This can include sudden changes, such as the radical reshaping of the ‘Channeled Scab‐
lands’ of western Washington by flooding (Baker 2009), as long as those changes them‐
selves are examples of currently active geological processes.
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ture will broadly resemble the past. As such, inductive inference ‘goes beyond’
the evidence: the result of inductive inference is not entailed by the logical
content of the evidence that prompted the inference. It is that feature which
will be our principal concern in what follows.

Here, and throughout, evidence is treated as propositional. It is the
evidence that volcanic rocks intruded into older sedimentary rocks that was
grounds for Hutton to favour the Uniformitarian idea that the formation and
erosion of rock was a continuous and ongoing process, over the ‘Neptunist’
idea that all rock was precipitated from a primordial sea in an event which
has no current parallel. The visible rocks are thus not the evidence, though
the evidence is about them, and is acquired as a response to engaging with
them. Likewise, when it is said that smoke is evidence of fire, this must be
understood as elliptical for something like that smoke is present is evidence
for the presence of fire.

Hume’s famous discussion of induction is largely prompted by his recog‐
nition that inductive inference isn’t exhausted by formal consequence. In sec‐
tion IV of the Enquiry Hume is concerned with discovering the foundation
for our ‘inferences from experience’ (Hume 1777: ¶4.21), and suggests that

all arguments from experience are founded on the similarity,
which we discover among natural objects, and by which we are
induced2 to expect effects similar to those, which we have found
to follow from such objects. (Hume 1777: ¶4.19)

Here induction is essentially diachronic. Of course Hume has a particu‐
lar conception of the largely unconscious psychological processes by which
we are led to beliefs that ‘go beyond the evidence of our memory and senses’
(Hume 1777: ¶4.4). This naturalistic account of induction leads Hume to con‐
clude that the interesting ideas about inductive reasoning principally concern
how it happens, as opposed to attempts to provide a rational justification for
that reasoning, which he thinks are not available. (We return to Hume’s in‐
ductive scepticism below, §2.4.)

Moreover, induction involves substantive reasoning – it is not merely
formal in character. A successful inductive inference is grounded not in

2 Strikingly, this is the only word cognate with ‘induction’ appearing in Hume’s text, where
it appears to denote an involuntary process forming our expectations.
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the formal structure of the evidence, but in its content. As Norton says,
‘inductions ultimately derive their licenses from facts pertinent to the matter
of the induction’ (Norton 2003: 650). Hume recognised that our inductive
habits rested on the pattern of causal relationships evident in our experience,
and the ‘supposition’ that future patterns ‘will be conformable to the past’
(Hume 1777: ¶4.19). What it will be reasonable to conclude will therefore
depend crucially on what kinds of patterns of causal relationships are ex‐
emplified in your evidence; and one’s inductive reasoning leads to inductive
knowledge only if that evidence is itself conformable to the true system of
causal relations instantiated in one’s reality. We know that the geological
future of the Himalayas will involve the continued uplift of the ranges as
the Indian plate ploughs into the Tibetan plateau. Were the geological laws
and mechanisms different, this conclusion (even if true) might not amount
to knowledge; perhaps the uplift of the Himalayas could have had some
catastrophist explanation instead.

1.3 Inductive Logic

Induction is about diachronic substantive reasoning from one state of opin‐
ion to conclusions that go beyond our experience, guided by the impact of
new evidence. Logic is about synchronic formal coherence relations among
sentences and sets of sentences. It might thus seem obvious that any project
of inductive logic rests on a mistake:

if we clearly distinguish reasoned change in view from argument,
we cannot suppose that the existence of inductive reasoning by it‐
self shows there is such a thing as inductive argument, nor can we
suppose that it shows there is an inductive logic. (Harman 1986:
5)

We ought not hastily follow Harman’s hint and embrace scepticism about
inductive logic. Deductive inference takes us from one state of opinion to an‐
other. While that transition is not governed by logic, it may well be that lo‐
gical properties of those initial and final states are part of the account of which
transitions are rationally permissible. ‘Inductive logic’ might be an apt name
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for the generalization of this project that involves characterizing synchronic
constraints that are needed to understand diachronic inductive inference.

To elaborate, consider the role logic plays in justifying inference from
premise to consequence. Let us represent a state of opinion as a set of sen‐
tences, for illustration. Suppose I begin with an opinion including (𝜙 → 𝜓),
and acquire the new evidence 𝜙. This new evidence is added, unreasoningly
and automatically, to my existing state of opinion. But its arrival does prompt
me to reason, to revise the newly augmented opinion, and I do so by reason‐
ing, coming to adopt a belief that 𝜓. This inference isn’t obligatory in light
of my existing opinion – I could give up my existing conditional opinion in‐
stead. But some logical facts do inform it. For example, my existing opinion
was lacking 𝜓, by which I mean that its constituents, including the new evid‐
ence, entailed 𝜓 but it did not contain 𝜓. That a state of opinion is lacking
with respect to some sentence is a synchronic logical property of that state of
opinion. The state to which I reasoned was not lacking in this sense, and it is
natural to think that when I reasoned to remedy a lack in my state of opinion,
I was at least doing something rationally permissible. Thus we might use a
logical constraint to articulate a proposed diachronic norm: if a given state
of opinion is lacking with respect to some claim, it is always rationally per‐
missible to reason to a subsequent state of opinion which is not lacking in
this respect. This norm will vindicate my reasoning as rationally permissible,
though of course the state of opinion which would have resulted had I simply
abandoned my view that 𝜙 would also have not been lacking with respect to
𝜓, and hence my reasoning was not rationally obligatory.

In this proposal, a formal logical property provides an important con‐
straint on answers to a normative question about synchronic belief, namely,
what can we rationally believe given a certain body of evidence?. It would not
be the whole story of rational inference, because it offers no theory of how
one ought to revise a coherent state on receipt of new evidence. So the syn‐
chronic question is distinct from, and prior to, the diachronic question what
ought we come to believe given some newly acquired evidence? That second
question genuinely concerns inference, the rationality of changes of opinion.
The first question concerns the coherence or structure, at a time, of a state
of opinion which already incorporates some body of evidence. Insofar as they
are both normative, the two questions should not be wholly independent of



10 LOGIC, INDUCTION, AND INDUCTIVE LOGIC

one another, for one may hope that any permissible change of opinion will
result in a permissible state of opinion.

Nevertheless, a purely synchronic constraint on our opinions can be com‐
bined with many different accounts of how they can be combined over time.
One might have a very liberal view, that all that matters is coherence at each
moment; it may not be irrational to have radical discontinuities between suc‐
cessive coherent states of opinion (Hedden 2015: 6–9, 28–55). An update rule
given such liberality might simply say: if one receives the new information
that 𝑝, update to a coherent state that includes 𝑝. One might require some‐
thing slightly stronger: if one’s attitude doesn’t include one’s total evidence,
one is irrational; this will requires that new information is always included,
alongside whatever elements of the old are retained. One might have various
stricter views that require stronger connections between existing and revised
states of opinion. For example, the AGM theory of belief revision requires
that a revised state must be a ‘minimal revision’ sufficient to incorporate the
new information 𝑝 (Alchourrón, Gärdenfors, and Makinson 1985; Gärdenfors
1988). On this theory, to update one first removes any commitment to ¬𝑝
from a state of opinion, but without removing any beliefs unnecessarily, then
expanding that amended state by 𝑝. Another quite different theory of belief re‐
vision requires not that successive states of opinion are as close to one another
as possible, given coherence, but that successive states of opinion must agree
with one another on ‘structural’ principles. For example, if doxastic states are
represented by probability assignments (a view we will discuss throughout
this book), the updating rule Conditionalization allows quite radical changes
in unconditional probability assignments, but requires ‘rigidity’: agreement
on conditional probabilities between existing and revised assignments (Weis‐
berg 2009: 14–16).

Let us set aside the issue of diachronic constraints on rationality. The sug‐
gestion we will explore is that ‘inductive logic’ would be an apt label for the
attempt to generalize the role of synchronic features of states of opinion in un‐
derstanding reasoning beyond purely logical features. This is a fraught topic.
There is some controversy over the principles characterizing formal features
of a set of sentences – for example, are they the principles of classical logic,
or perhaps some non‐classical relevance logic? But these controversies are
dwarfed in prevalence and scope by disputes over whether a given inductive
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opinion is licensed by some evidence. As cases of scientific controversy illus‐
trate, even the best positioned epistemic agents can disagree over what states
of opinion are appropriate, even when they incorporate a shared body of evid‐
ence. Supposing we agree that logical consistency is necessary for a state of
opinion to be rationally permitted, is it possible to articulate any plausible
characterization of those doxastic states that are rationally permissible given
some body of evidence? This is the central question of inductive logic.

1.4 Evidential Support

Suppose we have a piece of inductive reasoning; someone comes to adopt the
belief that Labor will win the next general election, prompted to that reas‐
oning by some newly acquired evidence about polling. This is an example of
inverse inference. The prior state includes some general background beliefs
about how the election works, information that makes the statistical proper‐
ties of the whole voting population determinative of the election result. To
that background opinion is added some new evidence about Labor’s domin‐
ance in the polls, plus doubtless some information indicative of the represent‐
ativeness of the polls. This acquisition is an augmentation of the background
opinion, though again, it is not itself taken to be a reasoned change of opinion,
but is assumed to be automatic. The information in this augmented existing
state of opinion does not entail that Labor will win the election, so the state
of opinion is not lacking with respect to that claim (unlike the example from
§1.3). But we might think there is a kind of attenuated lack here: while the ex‐
isting opinions don’t entail that Labor will win, they seem to strongly suggest
that Labor will win. This ‘suggestiveness’ of the evidence, at least relative to
the existing state of opinion, is a synchronic feature of that augmented state.
That the existing state of opinion fails to include a claim that is suggested,
on balance, by the other claims it does include is another synchronic feature,
analogous to a state being found wanting with respect to a given claim. Let’s
say that a state of opinion which fails to include some 𝜙 it suggests is unim‐
pressed with respect to 𝜙. Then we can propose various diachronic norms on
reasoning; for example, we could say that it is always rationally permissible to
infer to a state of opinion which is not unimpressed with respect to 𝜙 (i.e., a
state that includes 𝜙, or which fails to include some of the background opin‐
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ion which suggested 𝜙) from a state which was unimpressed with respect to
𝜙, and so on.

I don’t want to go into further detail concerning the above suggestion,
which is merely illustrative (and ultimately, again, to continue engaging the
issue of diachronic norms would take us too far afield). What I am interested
in is this notion of suggestiveness. To coin an official label, let’s say that this
is a case where the polling evidence provides confirmation of the hypothesis
that Labor will win. In fact, that piece of merely potential evidence can be re‐
cognised as supportive of a Labor victory, given the background opinion, be‐
fore it is even obtained. It is because it is a supportive piece of evidence that,
when it is eventually gathered, it forces a change of opinion. But whether a
relation of evidential support obtains is supposed to be a synchronic feature
of a given state of opinion, one that is prior to, but obviously constrains, ap‐
propriate reasoning from that state. The obvious proposal is that the theory
of such a relation would be aptly termed an inductive logic.

That a doxastic attitude is rational only if it is based on all the evidence
available to an agent has been termed the Principle of Total Evidence (Carnap
1947: 138–39). The relation of confirmation just introduced relates a single
piece of evidence to a hypotheses, and hence can’t justify a doxastic attitude
to a hypothesis but itself. There is a relation of evidential support that holds
between a body of (actual or potential) evidence and a hypothesis, not a single
piece of evidence in isolation. In the election example above, the background
information was initially distinguished from the newly acquired polling data.
But to understand the way that the polling data is supportive of a Labor vic‐
tory, in a way that figures in belief, we must include both in the body of evid‐
ence under consideration. To the extent that it is coherent to wonder how
a single piece of evidence bears on a hypothesis, it will be in virtue of coun‐
terfactually supposing that single piece of evidence to be the total evidence
and noting what it supports – typically, it will provide very little evidential
guidance in isolation from any auxiliary assumptions (Quine 1951).

We came to the notion of evidential support by noting that in good induct‐
ive inferences, the premises support the conclusion, given the background
assumptions in play. Another reason for distinguishing the diachronic and
synchronic aspects of inductive inference is that there are cases where an in‐
ductive inference isn’t licensed, but relations of evidential support are still
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apparently present. For example, if we have small sample of people relative
to a whole population, any evidence that all smokers in the sample have im‐
paired lung capacity will not be sufficient reason to accept that all smokers
have impaired lung capacity. Nevertheless, the evidence of that sample does
seem to confirm that conclusion, even if it is not enough to reach the level
where an inference is warranted.3

On this conception, part of the study of inductive inferencewould concern
the right way to characterise confirmation and evidential support; this would
be inductive logic proper.4 The remainder would concern how facts about
evidential support feed into principles of rational belief revision, such as the
proposal just above, or, as another example, the principle that when some
evidence 𝐸 supports 𝐻, that is a reason for you to believe 𝐻.5

There is no guarantee that factoring the study of induction into a syn‐
chronic and a diachronic component will bear fruit. Perhaps the difficulty of
articulating principles of diachronic rationality – telling us how to take ac‐
count of relations of evidential support in our reasoning – indicates that we
should approach inductive reasoning in some different way; but perhaps not.
The only way to proceed here is to attempt to construct a theory of evidential
support, and evaluate the project of inductive logic in light of the fruits or
failures of that attempt. That, in any case, is the constructive spirit behind
my approach in this book.

3 Forcing this example into the Procrustean bed of significance testing (Fisher 1935), we
might say that the sample statistics are suggestive without being ’significant’, where the
latter is a technical term for a result that (for devotees of the framework) prompts a
change in view, namely, the rejection of the null hypothesis. It is a weakness of the sig‐
nificance testing paradigm that it has much to say about the notion of significance, and
decisions to accept or reject hypothesis, and nothing at all to say about the prior notion
of evidential support.

4 This is what Strevens (2004) calls an ‘inductive framework’; he wants to reserve ‘inductive
logic’ for a full account of abductive reasoning, a mistake in light of our discussion above.

5 This would again be a defeasible principle; one can imagine a circumstance in which you
acquire evidence which supports𝐻, but only to a small degree. For example, suppose you
have some clinical trial data which shows a significant but small effect of a new painkiller.
(Perhaps in the treatment group there is a small decrease in self‐reported pain.) This is
some sense a reason to believe the drug works. But now suppose you were the drug’s
discoverer, and a big believer in the efficacy of the drug. The surprisingly marginal res‐
ults might prompt you to be less committed to the hypothesis that the drug works than
you were. So while the evidence supports the hypothesis, it does not do so to an extent
that licences your prior level of confidence, and hence you might be rational to take the
supporting evidence as a reason to move to a subsequent state of opinion that was less
committal about the hypothesis.



Section 2

Logic and Evidential Support

In this section I look at earlier approaches to the logic of induction, starting
with the purely logical approach of Hypothetico‐Deductivism in §2.1. Failures
of that approach motivated Hempel’s attempt to articulate necessary condi‐
tions on evidential support (§2.2), though they fell far short of sufficiency.
Problems with Hempel’s conditions reveal in §2.3 a more thoroughgoing dif‐
ficulty with any broadly formal approach to evidential support, namely, the
essential role of background assumptions. In §2.4 I suggest that background
assumptions are also vital in a successful treatment of Hume’s challenges to
induction, and provide a viable way for inductive logic to thread the needle
between scepticism and implausibility.

2.1 The Hypothetico‐Deductive Approach

An admirably simple proposal would be to give a theory of evidential support
using logical resources alone. Thatwould give us an inductive logic both inmy
more analogical sense, and in a stricter sense, being more or less continuous
with logic proper. One such proposal is the hypothetico‐deductive theory of
evidential support, which amounts to the thought that if some possible event
is predicted by a hypothesis, then the evidence of that event’s occurrence sup‐
ports the hypothesis.

Consider the example from §1.4 involving a sample in which all smokers
have impaired lung capacity. The idea was that this sample supports a hy‐
pothesis about the whole population. If the whole population is such that

14
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all smokers have impaired lung function, then one would predict (because
it follows logically) that every sample of the population would exhibit this
uniformity. Having in hand a sample that exhibits the uniformity and is just
what we’d expect if the population were uniform, we get some partial support
for the hypothesis that the whole population is uniform. This is made official
in what has come to be called:

Nicod’s Condition A universal generalisation that all 𝐹s are 𝐺s is supported
by any instance of an 𝐹 which is a 𝐺, and is undermined by any instance
of an 𝐹 which is not a 𝐺.(Hempel 1945a: 10)

Nicod’s condition isn’t a principle of logic: it links evidential support
provided by 𝐸 for 𝐻 to an entailment relation from 𝐻 to 𝐸, when 𝐻 takes
the form of a universal generalisation (given the auxiliary premise that there
are some 𝐹s). That this is a case of evidential support is supported by our
judgements about cases.

Another principle of the same sort, again indicating the presence of evid‐
ential support given some logical facts, systematises the idea that evidential
support should have deductive consequence as a limit case:

Entailment Condition If some evidence 𝐸 entails a distinct non‐
tautological statement 𝐻, then 𝐸 supports 𝐻. (Hempel 1945b: 103)

Alongside these sorts of principles, which indicate conditions which are
sufficient for evidential support, there are also principles which indicate ne‐
cessary conditions on evidential support. These principles state the logical
consequences of an evidential support relation between some sentences. For
example (noting that Hempel uses ‘confirms’ to refer to what we’ve been call‐
ing evidential support):

Equivalence Condition ‘If an observation report confirms a hypothesis 𝐻,
then it also confirms every hypothesis which is logically equivalent with
𝐻.’ (Hempel 1945b: 103)

Putting the Entailment Condition together with Nicod’s Condition leads
to a problem however, Hempel’s ‘paradox of the ravens’:
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if 𝑎 is both a raven and black, then a certainly confirms 𝑆1:
‘∀𝑥(Raven(𝑥) → Black(𝑥))’; and if 𝑑 is neither black nor a raven, 𝑑
certainly confirms 𝑆2: ‘∀𝑥(¬Black(𝑥)) → ¬Raven(𝑥)’. Let us now
combine this simple stipulation with the Equivalence Condition:
Since 𝑆1 and 𝑆2 are equivalent, 𝑑 is confirming also for 𝑆1; and
thus, we have to recognize as confirming for 𝑆1 any object which
is neither black nor a raven. Consequently, any red pencil, any
green leaf, and yellow cow, etc., becomes confirming evidence
for the hypothesis that all ravens are black. (Hempel 1945a: 14,
notation modified)

This is not plausible. Our judgment grows ‘out of the feeling that the hy‐
pothesis that all ravens are black is about ravens, and not about non‐black
things, nor about all things’(Hempel 1945a: 17). The conclusionHempel draws
is that Nicod’s Condition should be rejected in light of its ‘several deficiencies’
(Hempel 1945a: 22). Others have gone on to point out apparent direct counter‐
examples to the condition:

The hypothesis under examination is ‘All grasshoppers are
located outside the County of Yorkshire’. The observation of a
grasshopper just beyond the county border is an instance of
this generalisation and, according to Nicod, confirms it. But
it might be more reasonably argued that since there are no
border controls or other obstacles restricting the movement of
grasshoppers in that area, the observation of one on the edge
of the county increases the probability that others have actually
entered and hence undermines the hypothesis. … this is a case
where, relative to background information, the probability of
some datum is reduced by a hypothesis … which is therefore
disconfirmed….(Howson and Urbach 1993: 129; see also Good
1961; Swinburne 1971: 326)

2.2 Hempel’s Conditions of Adequacy

Hempel proposed a different approach. He listed ‘conditions of adequacy’
that any account of evidential support, or confirmation, had tomeet; we could
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think of these as platitudes about evidential support, and specifically, the re‐
lationship between evidential support and logical consequence. One of these
was the Entailment Condition. Another was the Consistency Condition, that
some evidence is compatible with the set containing every hypothesis it sup‐
ports (and hence that all the hypotheses supported by some evidence are con‐
sistent with one another). Hempel also endorsed the Equivalence Condition,
actually taken to follow from this stronger principle:

Consequence Condition ‘If an observation report confirms every one of a
class𝐾 of sentences, then it also confirms any sentencewhich is a logical
consequence of 𝐾.’ (Hempel 1945b: 103)

Hempel rejected any vestige of the hypothetico‐deductive approach, how‐
ever. The most minimal version of the idea that evidential support is the ‘con‐
verse’ of prediction is given by this principle:

Converse Consequence Condition If some evidence 𝐸 supports a hypo‐
thesis 𝐻, then 𝐸 also supports any logically stronger hypothesis 𝐻′ that
entails 𝐻 (Hempel 1945b: 104)

The Converse Consequence Condition might appear to have the support
of intuition. Often, when we accept that some data supports a hypothesis,
and later a stronger theory comes along that subsumes the first hypothesis,
then the support provided by the data should carry over to the subsuming hy‐
pothesis too. For example, Darwin’s theory of evolution was supported by the
observational evidence of the diversity of species, so when Darwinian evolu‐
tion was subsumed into the ‘modern synthesis’ together withMendel’s theory
of inheritance, that observational evidence supported the modern synthesis
too. That historical example looks like it fits the pattern of the Converse Con‐
sequence Condition.1

But in the presence of Hempel’s other conditions of adequacy – indeed,
even if the presence of just the Entailment Condition – the Converse Con‐
sequence Condition trivialises evidential support. Suppose 𝐸 and 𝐻 are any

1 Nicod’s Condition follows from Converse Consequence: 𝐹𝑎 ∧ 𝐺𝑎 entails 𝐹𝑎 → 𝐺𝑎, so by
the Entailment Condition, 𝐹𝑎 ∧ 𝐺𝑎 supports 𝐹𝑎 → 𝐺𝑎; ∀𝑥(𝐹𝑥 → 𝐺𝑥) entails 𝐹𝑎 → 𝐺𝑎;
so by Converse Consequence, 𝐹𝑎 ∧ 𝐺𝑎 supports ∀𝑥(𝐹𝑥 → 𝐺𝑥).
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two non‐tautological claims, and that their disjunction 𝐸 ∨ 𝐻 is also non‐
tautological. Thenwe can show that𝐸 supports𝐻 (Morvan 1999;Moretti 2003:
299):

(1) 𝐸 entails 𝐸 ∨ 𝐻 (logic)
(2) 𝐸 supports 𝐸 ∨ 𝐻 (Entailment Condition, 1)
(3) 𝐻 entails 𝐸 ∨ 𝐻 (logic)
(4) 𝐸 supports 𝐻 (Converse Consequence, 2, 3)

Hempel thus explicitly disavows the Converse Consequence Condition
along with Nicod’s Condition. The remaining conditions of adequacy are
however far too weak to pin down any definite notion of evidential support.
Hempel offered a theory of ‘instance confirmation’ intended to supplement
the conditions of adequacy, but it has not been easy to make precise what he
had in mind (Earman 1992: 66ff).

Indeed, we may not even want a notion of evidential support that co‐
heres with these conditions. Hempel’s instance confirmation was intended
to capture the same intuition that prompted Nicod’s Condition: that, at least
sometimes, an instance of a generalization supports that generalization. If
this intuition is to be respected, evidential support must be a relative, rather
than an absolute notion. This is reflected in my deliberate choice of termino‐
logy, because a hypothesis can receive some support despite being on balance
not credible. (To say that a hypothesis is ‘confirmed’, on the other hand, does
seem to suggest that it is on balance credible.) But then we can envisage cases
where our judgment is pretty straightforward that the conditions of adequacy
are violated. Consider this case

Missing Bushwalker A bushwalker is missing. We know from his trip inten‐
tions that he’s in the national park, but beyond that we have no reason
to favour any hypothesis: he could be north or south of the river run‐
ning through the middle of the park, and (independently) in either the
east, central, or west blocks, giving 6 possible sectors to search (i.e.,
north‐east, south‐central, etc.). Consider the hypothesis𝑊 that he’s in
the west sector, and the hypothesis not‐𝐸 that he’s not in the east sec‐
tor. Here 𝑊 entails not‐𝐸. We now get a report from searchers on the
ground: he’s not in north‐central.
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It is plausible to think that this report supports𝑊; both ways for𝑊 to be
true remain live, and a non‐𝑊 possibility has been eliminated. But it’s equally
plausible to think the report supports 𝐸 and undermines not‐𝐸: both ways
for 𝐸 to be true remain live, and one of the non‐𝐸 possibilities has been elim‐
inated. This example violates both the Consistency and Consequence Condi‐
tions. The report supports a hypothesis𝑊 and doesn’t support a consequence
of it, not‐𝐸. The report supports 𝐸 and𝑊, even though they are inconsistent
with one another.

The traditional wisdom concerning Hempel’s conditions of adequacy is
that Hempel himself is being pulled in two different directions by his prior
concept of support (Huber 2008; but see Carnap 1962 for a different proposal
regarding Hempel’s confusion). On the one hand, he is pulled towards an
absolute notion, on which evidence supports hypotheses that it makes abso‐
lutely plausible. On the other hand, his ideas about instance confirmation
pull him towards a relative or incremental notion, on which evidence sup‐
ports hypotheses that it makes more credible. His triviality result leads him
towards adequacy conditions for the former idea, but his theory of instance
confirmation still carries vestiges of the latter idea.

2.3 Formality and Evidential Support

These counterexamples to Hempel’s conditions reveal a more fundamental
problem. The most obvious response to them is not to reject, e.g., instance
confirmation or the Consequence Condition, etc., but to note that they hold
in some cases and not in others. The grasshopper counterexample to Nicod’s
condition from §2.1 is illustrative here. In that case, an instance of a gener‐
alisation undermines it, because of some particular features of the instance
together with our background knowledge. Likewise in Missing Bushwalker;
our background knowledge about the possible locations of the Bushwalker
allows information consistent with a hypothesis to undermine it, whereas in
a different example information with the same logical relation to the hypo‐
theses under consideration would not have been undermining. (For example,
if we initially had reason to think the bushwalker was south of the river, the
information might have simply confirmed our original view and left our reas‐
ons in favour the various hypotheses unchanged.
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This unavoidable role for background knowledge shows that inductive lo‐
gic cannot be exactly like a logic, for logic is formalwhile there is no possibility
of a fully formal theory of evidential support. Certainly some aspects of evid‐
ential support derive from logical features. Every theory I knowof respects the
Entailment Condition, that entailment is a limiting case of evidential support.
But examples in which the logical relations between evidence and hypothesis
are constant and yet the evidential support relations vary are multiple. Sup‐
pose we are drawing from an urn of known constitution, containing two red
and two black balls. Against a background containing information that the
draws are made with replacement, the evidence that the first two draws were
red followed by red provides no support for the hypothesis that the next draw
will be red. Against a background containing the information that the draws
weremade without replacement, that same evidence is conclusive support for
the hypothesis that the next draw is black.

A good account of evidential support will incorporate this explicitly:

Hempel’s account is concerned with a two‐place relation (‘𝐸 con‐
firms 𝐻’) rather than with a three‐place relation (‘𝐸 confirms 𝐻
relative to 𝐾’).… one of the morals … to draw is that background
knowledge can make a crucial difference to confirmation. (Ear‐
man 1992: 67)

Some have argued that the non‐formality of induction means there can
be no general theory of evidential support at all:

We have been misled, I believe, by the model of deductive logic
into seeking an account of induction based on universal schemas.
…. Instead inductive inferences will be seen as deriving their li‐
cense from facts. These facts are the material of the inductions…..
Particular facts in each domain license the inductive inferences
admissible in that domain—hence the slogan: “All induction is
local.” (Norton 2003: 648)

In the end Norton’s objection seems to boil down to a claim that inductive
inference ismaterial, so there can be no topic‐neutral theory of whatwemight
infer from a given piece of evidence – not even one that incorporates back‐
ground knowledge. This however is something that our synchronic concep‐
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tion of inductive logic has already conceded (§1.4). Norton’s more controver‐
sial point appears to be a kind of rational particularism: that there are no uni‐
versal principles governing rationally permissible states of belief (Norton 2011:
399–401). For example, he suggests that there cannot be a general theory of
how background knowledge mediates between evidence and hypothesis, be‐
cause the background knowledge itself dictates how background knowledge
bears on evidential support.2 The only response to this line of argument is to
propose a general model of evidential support, and to analyse the cases the
particularist appeals to in such a way as to show that in fact they are coherent
with the general model. That, in any case, is the approach I will adopt.

2.4 Hume’s Problem of Induction

Examples showing the ‘materiality’ of induction are also illustrations of a ven‐
erable challenge to the rationality of induction, originally due to Hume (1777).
Hume’s focus is inductive inference, and his principal concern is normative,
not descriptive. What, he asks, justifies our inductive inferences? Perhaps
more importantly, under what circumstances does an inductively generated
belief amount to knowledge? Hume expresses ‘curiosity’ about whether in‐
ductive knowledge is possible.

Here then is our natural state of ignorance with regard to the
powers and influence of all objects. How is this remedied by ex‐
perience? It only shews us a number of uniform effects, result‐
ing from certain objects, and teaches us, that those particular ob‐
jects, at that particular time, were endowed with such powers and
forces. When a new object, endowed with similar sensible qualit‐
ies, is produced, we expect similar powers and forces, and look
for a like effect. From a body of like colour and consistence with
bread, we expect like nourishment and support. But this surely
is a step or progress of the mind, which wants to be explained.
When a man says, I have found, in all past instances, such sensible

2 To foreshadow, he is arguing here against the Bayesian approach Section 3 where the
representation of belief makes use of probabilities, and where any rational state of belief
corresponds to a probability function; he thinks background knowledge can tell us not
to represent a given situation probabilistically.
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qualities conjoinedwith such secret powers: Andwhenhe says, sim‐
ilar sensible qualities will always be conjoined with similar secret
powers; he is not guilty of a tautology, nor are these propositions
in any respect the same. You say that the one proposition is an
inference from the other. But you must confess that the inference
is not intuitive; neither is it demonstrative: Of what nature is it
then? To say it is experimental, is begging the question. For all
inferences from experience suppose, as their foundation, that the
future will resemble the past, and that similar powers will be con‐
joined with similar sensible qualities. If there be any suspicion,
that the course of nature may change, and that the past may be
no rule for the future, all experience becomes useless, and can
give rise to no inference or conclusion. It is impossible, therefore,
that any arguments from experience can prove this resemblance
of the past to the future; since all these arguments are founded
on the supposition of that resemblance. Let the course of things
be allowed hitherto ever so regular; that alone, without some new
argument or inference, proves not, that, for the future, it will con‐
tinue so. … My practice, you say, refutes my doubts. But you mis‐
take the purport of my question. As an agent, I am quite satisfied
in the point; but as a philosopher, who has some share of curios‐
ity, I will not say scepticism, I want to learn the foundation of this
inference. (Hume 1777: ¶4.21)

Hume does not frame his objection as one concerning evidential support.
But it is not difficult to see that he is here raising a challenge to the found‐
ations of inductive logic. Our conception of inductive logic suggests that 𝐸’s
supporting 𝐻 is a necessary condition on 𝐻 coming to be known inductively
(i.e., via an inference prompted by the acquisition of knowledge that 𝐸). This
cannot plausibly be a sufficient condition: consider lottery cases, in which
some evidence concerning the workings of a large fair lottery can overwhelm‐
ingly support the hypothesis that a single ticket without, intuitively, amount‐
ing to knowledge (Hawthorne 2004). But if evidential support is to play any
role in inductive inference, it will surely be necessary that one can acquire
inductive knowledge only by inference from supporting evidence.

As Hume would immediately point out, however, such an inference rests
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on the supposition that 𝐸 supports 𝐻 – in his case of interest, on the suppos‐
ition that evidence about the past ‘is a rule’ for hypotheses about the future.
For the hypothesis to be known as a result of this inference, we need to know
that supposition to be true. But inmany cases,Hume argues, we do not.When
Hume emphasises the possibility ‘that the course of nature may change’, he is
not merely pointing out a difference between induction and deduction. He is
pointing out that our grasp on relations of evidential support is itself depend‐
ent on our evidential history. More concisely: any knowledge of relations of
evidential support presupposes prior knowledge of how past evidence sup‐
ports hypotheses about evidential support (Howson 2000: 10–15).

One response to this argument might be to challenge Hume’s assump‐
tion that knowledge of evidential support is contingent on one’s evidential
history. Perhaps relations of evidential support are after all ‘demonstrative’?
This seems not to be the case. Consider a slight modification of one of Good’s
cases showing the falsehood of Nicod’s Condition:

Suppose that we know we are in one or other of two worlds, and
the hypothesis, 𝐻, under consideration is that all the crows in our
world are black.We know in advance that in one world there are a
hundred black crows, no crows that are not black, and a [b]illion
other birds; and that in the other world there are a thousand black
crows, one white one, and a million other birds. A bird is selected
equiprobably at random from all the birds in our world. It turns
out to be a black crow. This is strong evidence … that we are in the
second world, wherein not all crows are black. Thus the observa‐
tion of a black crow, in the circumstances described, undermines
the hypothesis that all the crows in our world are black. (Good
1967: 322)

This case shows that the evidence – seeing a black crow – is variably sup‐
portive of the hypothesis that all crows are black, depending on the back‐
ground conditions. Whatever evidence we have that suggests we are in one
or the other of these two worlds, is thereby evidence for different hypotheses
about the evidential significance of the black crow. Seeing a decent number of
birds might be strong evidence that we are in the first world, rather than the
second. And so if our past history contains substantial bird experience, then
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we might come to accept that seeing a black crow supports the hypothesis
that all crows are black. On the other hand, a different course of experience,
less rich in avian content, might support the second hypothesis about which
world we are in, and a second hypothesis about what the observation of a
black crow supports.

Our modification of Good’s case illustrates two key features of inductive
inference. One we have encountered already in §2.3, that evidential support
cannot be understood as an internal relation between evidence and hypo‐
thesis, but is mediated by background conditions (whether we are in world
one or world two). The other is that our evidence for background conditions
might itself be unrepresentative (perhaps, by chance, we see a significant
number of birds, suggesting falsely we are in world one), and that ought to
call the reliability of our inductive inferences into question for us (Kelly 1996:
46ff).

Hume’s resolution of this problem is characteristically bold. He denies
that ‘inferences from experience’ are examples of reasoning at all (Hume 1777:
¶5.4).

All belief of matter of fact or real existence is derived merely from
some object, present to the memory or senses, and a customary
conjunction between that and some other object. … This belief is
the necessary result of placing the mind in such circumstances. It
is an operation of the soul, when we are so situated, as unavoid‐
able as to feel the passion of love, when we receive benefits; or
hatred, when we meet with injuries. All these operations are a
species of natural instincts, which no reasoning or process of the
thought and understanding is able, either to produce, or to pre‐
vent. (Hume 1777: ¶5.8)

Hume thinks we do have a fairly widely shared conception of the sup‐
port provided by specific pieces of evidence. But he thinks these depend on a
habit or custom we have acquired as an effect of experience, rather than be‐
ing the product of reasoning, and accordingly they are not subject to rational
evaluation (Hume 1777: ¶5.5). We have managed to form persistent beliefs
about evidential support, which contribute to inductive reasoning, providing
a ‘foundation’ for this type of inference without necessarily justifying it.
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What does Hume’s naturalistic explanation of our inductive habits tell us
about evidential support? In one way, it merely underscores the result from
§2.3 that evidential support must be understood as a three‐place relation,
but clarifies that the third relatum is not merely ‘background knowledge’, but
background knowledge that suffices to yield a standard of evidential support.
The fact that evidence bears on hypotheses differently in different circum‐
stances suggests that a full understanding of evidential support will involve
an explicit relativisation to some sort of background model of evidential sup‐
port. Hume’s suggestion that inductive inference in the narrow sense requires
the prior assumption ‘that the future will resemble the past, and that similar
powers will be conjoined with similar sensible qualities’ (1777: ¶4.21) is an ex‐
ample of what such a model might be. This principle tells you to treat past
evidence as a representative sample. A principle that told us to treat past evid‐
ence more cautiously, as a potentially unrepresentative sample, would license
quite different claims of evidential support.

We don’t need to follow Hume in his inductive scepticism, or his prefer‐
ence to explain rather than justify our inferential tendencies. It might well
be that we can, ultimately, find a justification for accepting a particular con‐
ception of evidential support. For example, perhaps some conception of how
evidence bears on hypotheses is justified by default, or we might have justi‐
fication for some inductive assumptions ‘without being in a position to cite
anything that could count as ampliative, non‐question‐begging evidence for
those beliefs’ (Pryor 2000: 520, though he is talking about perceptual beliefs
in this context). Or perhaps we acquire our inductive habits of thought by
testimony or immersion in a scientific community, and justification comes
subsequent to the fruits of our epistemic endeavours. Perhaps we are justified
simply because ‘the world is so constituted that inductive arguments lead on
the whole to true opinions’ (Ramsey 1926: 93).

However such justification might be acquired, it is fruitful to separate the
issue of how evidence bears on hypotheses from the question of the struc‐
ture of evidential support. The latter issue can be pursued to a significant
extent by characterising the connections between evidence, hypotheses, and
standards of evidential support, without taking a stand on what the actual
evidence is, what the actually live hypotheses are, or what the actual stand‐
ards of evidential support are. Because this investigation concerns the formal
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features of this three‐place relation ‘𝐸 supports 𝐻 relative to standards 𝑆’, it is
a deserving bearer of the label ‘inductive logic’. (Though to illustrate its signi‐
ficance, it will be helpful to give at least some examples of how the relata can
be concretely filled in.)

That is how we will pursue inductive logic in this book. In Section 3, 4 we
will look at Bayesianism, a particularly influential and fruitful approach to the
formal features of evidential support. Bayesians understand a conception of
evidential support probabilistically: to regard the total evidence as supporting
𝐻 is to adopt a probability model according to which 𝐻 is credible; given that
same model, to regard 𝐸 as confirming 𝐻 is to regard 𝐻 as more likely given 𝐸
than 𝐻 otherwise. In §4.7, we will return to this issue of justifying inductive
assumptions, accompanied by an extensive investigation into whether there
are significant prior constraints on what sorts of probability models we may
permissibly adopt Section 5; this will include a brief consideration of Good‐
man’s (1954) ‘new riddle’ of induction (§5.4).



Section 3

Probability and Evidential
Support

In this section, we discuss how probability can be used to understand evid‐
ential support. After considering the motivating metaphor of the weight of
evidence (§3.1), suggesting that the weight of evidence fixes the prospects
of a given proposition. Prospects, in turn, are relative to a perspective, what
comes in view from the vantage of a given body of evidence; epistemic per‐
spectives are described in §3.2, and their connection with the rationalization
of idealized bets is made clear in §3.3. Constraints on the proper evaluation
of bets then constrain legitimate measures of prospects (§3.4). Indeed, the
constraints ensure that every legitimate measure of prospects is an evidential
probability function §3.5; we spend some time characterising the principles
governing these probability functions. The argument from §3.4 is a version
of a Dutch Book Argument, and I delve into the differences between my ver‐
sion andmore standard versions in §3.6, and investigate accuracy‐based argu‐
ments for evidential probability in §3.7. In §3.8 we turn to conditional prob‐
ability, the prospects of hypotheses given other claims, which will be central
to our conception of evidential support and confirmation. Finally, in §3.9 I
turn to the epistemic question of how to choose or rationalize a choice of epi‐
stemic perspective, and touch on the topics of epistemic deference and the
debate over permissivism in epistemology.

27
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3.1 Weighing Evidence

A theory of evidential support aims to capture a number of widely shared be‐
liefs about what evidence does for us. For example: that unexpected or novel
predictions should favour a hypothesis more than banal or familiar predic‐
tions; or that simpler hypotheses, other things being equal, are favoured by
the evidence. Behind these beliefs seems to be a persistent metaphor: evid‐
ence as a mass stuff, something that can be gathered and, once collected,
weigh in favour of a hypothesis and against its rivals.

This metaphor of the ‘weight of evidence’ is presumably carried over from
the role given to evidence in the legal context, where evidence favouring and
disfavouring a hypothesis about guilt is weighed by the scales of justice. This
model in turn suggests a natural quantitative approach to evidential support
as a measure of the weight of evidence. And since the common standard ap‐
plied in criminal trials is that the evidencemust render the hypothesis of guilt
beyond reasonable doubt before a juror should vote to convict, evidencemust
therefore be weightier the more it eliminates doubt or uncertainty.

This metaphor applies even in advance of the evidence being gathered.
A striking new piece of evidence is often recognised as such because its po‐
tential was known prior to it coming in to evidence. A measure of evidential
support indicates the prospects of hypotheses, in that a hypothesis which is
strongly supported by some potential evidence has a greater prospect of turn‐
ing out to be true if that potential evidence is gathered.

The picture of evidential support asmeasuring how potential evidence for
a hypothesis would, hypothetically, reduce doubts about it, combined with
these widely held beliefs about the role of evidence, will jointly constrain the
project of inductive logic. Our core analysis will be motivated by the connec‐
tion with doubt and certainty; themerits of that analysis are revealed through
its success in explaining the truth (or apparent truth) of those commonplace
beliefs.

3.2 Prospects and Perspectives

Evidential support measures the extent to which some potential evidence im‐
proves the prospects of some hypothesis. The prospects for a hypothesis are
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– again metaphorically – what comes into view in light of some body of evid‐
ence. What is visually in prospect for you depends on where you are, on your
perspective. Likewise, what is epistemically in prospect depends on a par‐
ticular perspective on the space of possibilities. Camp (2019) characterizes
occupying an epistemic perspective as having ‘an open‐ended disposition to
characterize: to encounter, interpret, and respond to some parts of the world
in certain ways’ [p. 24]. That is what it is to occupy a perspective. A perspect‐
ive itself need not be embodied in anyone’s dispositions – an epistemic per‐
spective exists independently of any agent occupying it – but it must contain
sufficient information to characterize such dispositions. To fulfil its role, I
understand an ‘epistemic perspective’ to involve at least the following com‐
ponents:1

1. A representation of the space of possibilities;
2. A representation of the total evidence currently on hand, and
3. Some policy, or set of standards (Schoenfield 2012: 199), that capture,

numerically, the significance of potential evidence for various entertain‐
able hypotheses.

Let us expand on these components. ‘The space of possibilities’ captures
all the ways that things could turn out to be, according to a given epistemic
perspective. It is natural to take this space of possibilities to have the struc‐
ture of a field of propositions (Eagle 2011: 1–3; Hájek and Hitchcock 2017: 17).
That is, for each elementary outcome that could occur, according to that per‐
spective, there is a proposition in the field to the effect that the outcome
comes to pass; there is a trivial outcome, represented by a trivially true pro‐
position (e.g., that something or other comes to pass); and whenever the field
of propositions includes 𝑃 and 𝑄, it also includes ¬𝑃, (𝑃 ∨ 𝑄), and (𝑃 ∧ 𝑄). A
maximally specific possibility will be represented by a logically complex pro‐
position that fixes, for each possible outcome, whether or not it occurs. This
will play the role of a ‘possible world’ from that perspective. It must be ac‐
knowledged that a different perspective might discriminate outcomes that a
given perspective treats as indistinguishable, and thus different perspectives
needn’t agree on how to analyse any given proposition into more specific out‐

1 This is not how Camp pursues the idea.
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comes.2 So there is no guarantee that all perspectives will agree on what the
elementary possibilities are, or on which propositions are possible. We will
not in what follows focus on these possible differences between perspectives,
and will assume that all the perspectives we consider share the same space of
possibilities, and are capable of representing any hypotheses or piece of evid‐
ence we might need to consider. The question of how to understand cases
where an agent expands their conception of what is possible is philosophic‐
ally very rich and much discussed (sometimes under the label of ‘partition
sensitivity’), but lies beyond our scope (Paul 2014; Pettigrew 2020a).

We will also set aside for the most part interesting questions about
whether propositions are to be understood as only as fine‐grained as possible
worlds, in which case every metaphysically necessary truth will be true
throughout the space of possibilities (Stalnaker 1984: 2). The alternative is
to adopt any of a number of conceptions of propositions on which there
are epistemically possible propositions corresponding to ‘impossible worlds’
(King, Soames, and Speaks 2014, esp. pp. 33‐44). (For example, if we thought
there was some epistemic possibility of a unknownmathematical truth being
false, we’d need to be able to entertain an impossible world in which that
proposition were true.) I hope to avoid taking a stand on this question of the
grain of propositions, but as I will assume that the objects of any epistemic
perspective are propositions, our discussion is somewhat hostage to the
results of this ongoing discussion in the philosophy of language.

An epistemic perspective must also represent a body of total evidence.
Evidence constrains which possibilities in the space of possibilities are left
open and which excluded. Because evidence is propositional, evidence nar‐
rows down a location in the space of possibilities by excluding those possibil‐
ities in which propositions inconsistent with the evidence are true (Stalnaker
1984: 120). So an epistemic perspective can represent the current total evid‐
ence by indicating in some way a region of the space of possibilities which,
from that perspective, might be actual – those consistent with the evidence.

Finally, andmost importantly for inductive logic, an epistemic perspective
must represent in some way the bearing of the evidence on the remaining

2 For example, the propositions ‘Heads’ and ‘Tails’ might represent the elementary possib‐
ilities according to some very limited perspective that is unable to distinguish between
worlds in which a specific coin lands the same way. The field of propositions given these
outcomes will be the set ‘Heads’, ‘Tails’, ‘Heads or Tails’, ‘Neither Heads nor Tails’.
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live hypotheses. It must discriminate between those hypotheses consistent
with the evidence – those in the region of open possibilities. We will assume
that this discrimination is effected numerically; so an epistemic perspective
assigns numbers to hypotheses that somehow reflect their support by the
evidence. As Horwich puts it, ‘our inductive practice may be represented by
a function which specifies, for any evidential circumstance, the permissible
degrees of belief in any statement’ (1982: 79) – such a function will be an
epistemic perspective, noting that it is not to be identifiedwith one’s attitudes,
but circumscribes permissible attitudes.

In so doing, an epistemic perspective thus represents a possible way of
‘proportion[ing] belief to the evidence’ (Hume 1777: ¶10.4). A proportioning
will in general assign different numbers to hypotheses, even those it regards
as on balance supported by the evidence. That evidential support varies in
extent is fairly commonsensical. Suppose that my current evidence supports
the claim that I will be heading home from the office shortly, and that it also
supports the claim that the weather next weekend will be very hot. It would
be foolish to deny that it may support the former to a considerably greater
extent than it supports the latter. That this variability in evidential support
can be quantified numerically is a reasonable starting point.

Someone’s actual attitudesmay not correspond to any epistemic perspect‐
ive; for example, they might not have any coherent attitude to a hypothesis
that would enable a single number to be assigned as to which the evidence
supports it; perhaps at best an imprecise range of attitudes could be ascribed
to them (Jeffrey 1983: 139–40). And an epistemic perspective may or may not
correspond to anyone’s actual doxastic attitude. But an epistemic perspect‐
ive does appear to be something a rational agent could have as an ideal for
a coherent doxastic attitude. To put it in explicitly normative terms, an epi‐
stemic perspective comprises a structure that reasonable doxastic attitudes
must approximate (perhaps each reasonable indeterminate attitude can be
precisified into a determinate epistemic perspective), and provides a regulat‐
ive ideal for such attitudes (see §3.9). Sowewill be assuming in a sense that all
epistemic perspectives are rational, and trying then to establish the properties
that distinguish epistemic perspectives from other purported evaluations of
the prospects of hypotheses. Epistemic perspectives rationalize the doxastic
dispositions of the agents who occupy them.
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3.3 Prospects and Bets

If an epistemic perspective represents the prospects of hypotheses, it must be
subject to certain norms about the evaluation of prospects. One way to bring
out these norms is to consider the ideal evaluation of bets (Ramsey 1926; de
Finetti 1937; Pettigrew 2020b).

Real‐life gambling behaviour is psychologically complicated and morally
fraught. The declining marginal utility of money (Pettigrew 2020b: 17–19), the
difficulty of finding enough parties and counterparties to every possible bet,
the fact that some outcomes will be resolved only after the agent’s lifespan,
the fact of risk‐averse and risk‐seeking individuals (Kahneman and Tversky
1979; Buchak 2013), all make it difficult to draw direct conclusions about the
prospects of 𝑃 from an agent’s (un)willingness to bet on 𝑃. Nevertheless, be‐
hind any reasoned decision to bet lies an epistemic perspective: some evalu‐
ation of the prospects of the propositions one is betting on, given the evidence
one has. That the prospects of a proposition are decent can go some way to‐
wards justifying an agent’s a decision to bet, without constituting, or being
constituted by, that willingness to bet.3

If an agent’s epistemic perspective is to justify their dispositions to bet,
what conditions must that epistemic perspective satisfy? The evaluation of
a given bet as attractive or otherwise results from combing an epistemic
perspective with an exogenously given assignment of values to outcomes. If
there are constraints on the acceptability of evaluations, those constraints
may reveal structural constraints on any epistemic perspective that is
properly judging the prospects of outcomes.

A bet on a proposition 𝐻 is a right to receive 𝑠 units of value if 𝐻 turns
out to be true, and nothing otherwise. The price of the bet is the value 𝑥 that
is assigned to that right. For each bet, there is a counterbet, which is a bet
against 𝐻 that yields 𝑠 units if 𝐻 turns out to be false and which costs 𝑠 − 𝑥
units. The payout of 𝑠 utiles is the total staked, the sum of the units of value
contributed jointly by the bet and counterbet, 𝑠 = 𝑥 + (𝑠 − 𝑥). For simplicity,
let us restrict attention to bets where the total stake 𝑠 is 1 unit. We can treat a
counterbet against 𝐻 at 𝑠 − 𝑥 as equivalent to a bet on ¬𝐻 at that same price.

3 There are many epistemic perspectives, so whether an agent is justified in betting will
also depend on whether they were epistemically justified in adopting or deferring to a
given epistemic perspective.
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This is justified by this basic principle of equivalence: any bets which have the
same payoffs in the same circumstances must rationally be assigned the same
price. A bet against 𝐻 that costs 𝑠 − 𝑥 to yield 𝑠 pays off when 𝐻 is false; as
does a bet on ¬𝐻 with the same cost and yield.4

Real agents only enter into bets they regard as favourable. A bet on 𝐻
is favourable, intuitively, if the prospect of gaining the payout 𝑠 more than
compensates for the risk of losing what you have staked 𝑥. We have assumed
that an epistemic perspective represents prospects numerically. Suppose that
relative to a given perspective the prospect of 𝐻 is 𝑝. A bet is favourable if
the payout, weighted by the prospect of getting the payout, exceed the cost:
𝑝𝑠 > 𝑥. A bet is unfavourable if 𝑝𝑠 < 𝑥; a case where the prospect of gain is
outweighed by the risk of loss. An agent is epistemically justified in entering
into a bet only if the bet is favourable‐from‐their‐perspective. (This is a ne‐
cessary condition for all‐things‐considered justification for a bet, but is not
sufficient.)

What if the prospect of gain and the risk of loss are exactly balanced ac‐
cording to some perspective? Such a bet is neutrally priced.5 The potential
bettor is not justified in entering into a neutrally priced bet; the prospect of
gain is too little. But nor is the bet unfavourable; the prospect of loss isn’t
sufficiently great to motivate a favourable evaluation of the counterbet. So a
neutrally priced bet is one that, given the prospects of the bet, it would not
be reasonable to prefer to accept the bet or its counterbet over the status
quo.6 Thus a neutrally‐priced bet will represent an accurate evaluation of the
prospects of 𝐻 according to an epistemic perspective: it is a bet on 𝐻 that is
calibrated to the degree to which the evidence supports 𝐻.

To those tempted by some sort of instrumentalism, it might be appealing
to try and assign prospects to hypotheses, according to an epistemic perspect‐
ive, by trying to behaviourally elicit a neutral betting price. This is unlikely to

4 This assumes that the logic of negation, and structure of the space of propositions, is
classical; constructing probabilistic epistemic perspectives given a non‐classical logic in‐
volves several diverting challenges (Williams 2016).

5 A neutrally priced bet is often called a ‘fair’ bet, but this has an unhelpful contrast with
‘unfair’; not all non‐neutral bets are unfair to the bettor.

6 Of course, an agent who is risk‐seeking may wish to take on such a bet anyway, but such
a course of action isn’t epistemically justified by the prospects of the proposition bet on,
though it may all‐things‐considered benefit the agent if they sufficiently value the thrill
of gambling.
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succeed, given all the confounding factors in actual betting behaviour. (This
is despite Ramsey’s suggestion that a neutral price reflect those odds someone
would ‘just take’ (Ramsey 1926: 72), or Kyburg’s insistence that ‘how seriously
someone believes what he says he believes’ is elicited by inviting him ‘to put
his money where his mouth is’ (1983: 64).) Indeed it is complicated to deduce
even an agent’s ownmental state from the betting prices they offer, in general
(Bradley and Leitgeb 2006), let alone the epistemic perspective legitimising
their attitudes. Hence I will suppose that there are epistemic perspectives,
and that they serve in some complex way to justify dispositions to accept par‐
ticular bets (Howson and Urbach 1993: 76–77).

3.4 Evaluating Prospects

To assign a neutral price to a bet would involve fixing on some particular epi‐
stemic persepctive. The general structural principles on epistemic perspect‐
ives we are concerned with can be uncovered without making assumptions
about neutral prices except that they exist. We uncover them by noting that
unless certain constraints are placed on the numerical evaluation of prospects,
certain bets (and packages of bets) seem to yield an incoherent evaluation of
their value. Presented oneway, the bets have a certain neutral price; presented
another way, they are assigned another non‐neutral price. So a single neutral
price doesn’t exist unless we constrain the acceptable numerical representa‐
tion of evidential support in some way.

For example, suppose an epistemic perspective assigned a degree of sup‐
port −𝛿 to a proposition 𝐻, where 𝛿 > 0. Such an perspective entails that the
neutral price for a bet on𝐻 that pays 1 unit as−𝛿. But at that price, there is an
advantage to purchasing the bet – the price is negative, so, win or lose, rep‐
resents an advantage over the status quo. So the price is not after all neutral.
A perspective that assigns a negative number as the degree to which the evid‐
ence supports𝐻 leads to a situation where the agent cannot assign a coherent
neutral price, because their assessment of the prospects of 𝐻 leads them to
be indifferent to accepting this bet, but an assessment of the possible pay‐
off of the bet should lead them to be positively disposed to accept it. So this
epistemic perspective turns out to be unable to assign a single value to the
bet. To assign a neutral price to a bet, no perspective could assign a degree of
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support less than zero. That is, every epistemic perspective must satisfy:

Non‐negativity The degree of support provided by any body of evidence for
a hypothesis 𝐻 must be greater than or equal to zero.

This argument could be resisted if the neutral price of a bet depends on
how the bet is described. If bets are individuated very finely, it might be that
there is an advantage over the status quo to the bet described one way, and
not another. But in fact it is not possible to see how this would work. The ad‐
vantage or disadvantage of a bet is due to the conditional rights to valuable
goods they convey. If one bet conveys at least as much as another, no matter
what, one cannot rationally prefer the second to the first, regardless how it
is described. To do so would be ‘absurd’, as Ramsey says: any account of pro‐
spects ‘which broke [this principle] would be inconsistent in the sense that it
violated the laws of preference between options, such as that preferability is a
transitive asymmetrical relation, and that if 𝛼 is preferable to 𝛽, 𝛽 for certain
cannot be preferable to 𝛼 if 𝑝, 𝛽 if not‐𝑝’ (Ramsey 1926: 78). Since in this case
1 + 𝛿 is preferable to 𝛿, so the bet on 𝐻 that costs –𝛿 is preferable to 𝛿 for
sure; and 𝛿 for sure is preferable to the status quo, transitivity of preference
ensures that the bet cannot be neutrally priced at −𝛿.

As this case shows, an epistemic perspective violating Non‐negativity jus‐
tifies inconsistent evaluations of the very same option. That inconsistency is
what excludes it from being a genuine perspective on the prospects of 𝐻; the
betting setup is simply a way to make this inconsistency manifest. The same
sort of argument can be given for other constraints on epistemic perspectives.

Suppose that an epistemic perspective assigned a degree of support 𝛿 < 1
to a trivial hypothesis 𝐻 – one that was necessary, according to that perspect‐
ive (obtaining in every possibility considered by that perspective). Such an
epistemic perspective would regard as neutrally priced a bet on 𝐻 priced at
𝛿. Such a bet is certain to pay off; for such a perspective regards 𝐻 as already
true. So this bet cannot be neutrally priced at 𝛿; for there is a guaranteed
advantage to purchasing it, hence it is not to be regarded with indifference
from the status quo. So for the same reasons as above – namely, that coher‐
ent epistemic perspectives should assign a single neutral price to a bet – no
epistemic perspective could assign a degree of support to a certain outcome
that was less than 1:
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Normality The degree of support provided by any body of evidence for a
trivial hypothesis (necessary in light of that evidence) is 1.

Suppose that there are two hypotheses, 𝐻 and 𝐻′, such that the truth of
either one excludes the truth of the other, according to some epistemic per‐
spective. Suppose an epistemic perspective assigns a degree of support 𝛼 to 𝑄,
and degree of support 𝛽 to 𝑅, and a degree of support 𝛿 to their disjunction
𝐻∨𝐻′, but where 𝛿 ≠ 𝛼+𝛽. The neutral prices for bets on these propositions
𝐻, 𝐻′ and 𝐻 ∨ 𝐻′ are fixed by those degrees of support. Consider the book of
bets consisting of bets on𝐻 and𝐻′ that each pay 1 unit. This book of bets the
payoffs depicted in Table table 3.1. It is easy to see from the table that where
𝐻 ∨ 𝐻′ is true (the top two possibilities), the payoff is 1 − (𝛼 + 𝛽), and when
𝐻∨𝐻′ is false, the payoff is −(𝛼+𝛽). But the neutral price for a bet on 𝐻∨𝐻′

is 𝛿, leading to a different payoff of 1−𝛿 when true, and−𝛿 when false. So the
book of bets pays out the same amount, in the same circumstances, as the in‐
dividual bet on the disjunction – but has a different neutral price. Clearly this
either violates the equivalence requirement to assign the same neutral price
to bets that pay off in the same circumstances, or violates the requirement
on epistemic perspectives that we assign a single neutral price to a given bet.
Hence:

Table 3.1: Payoffs for the book of bets on 𝐻 and 𝐻′.

𝐻 𝐻′ Bet on 𝐻 Bet on 𝐻′ Total payoff 𝐻 ∨ 𝐻′

T F 1–𝛼 −𝛽 1 − (𝛼 + 𝛽) T
F T −𝛼 1 − 𝛽 1 − (𝛼 + 𝛽) T
F F −𝛼 −𝛽 −(𝛼 + 𝛽) F

Additivity The degree of support provided by any body of evidence for a
disjunction of mutually exclusive hypotheses is the sum of the degrees
of support provided to each hypothesis individually.

One further principle is implicated in establishing Additivity as a require‐
ment on epistemic perspectives: the package principle that the neutral price
for the book is the sum of the neutral prices for the bets, i.e., ‘that the value
I set on them together is the sum of the values I set on them singly’ (Schick
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1986: 113; Earman 1992: 42).7

3.5 Probabilities and Degrees of Support

The argument of the previous section reached the conclusion that coherent
epistemic perspectives, those justifying a single neutral price for a bet on
each proposition in their scope, must satisfy Non‐Negativity, Normality, and
Additivity.8 Recalling that an epistemic perspective is a numerical function
from a field of propositions (§3.2), this establishes that epistemic perspectives
must be—mathematically speaking—probabilities. For satisfying these con‐
straints is sufficient for a function to be a probability function (Kolmogorov
1933; Eagle 2011: 1–4; Hájek and Hitchcock 2017).9

In light of this, degree of support can be understood as the extent to which
a given body of evidencemakes a hypothesis likely to be true. Strongly suppor‐
ted propositions are probable in light of the evidence; weakly supported pro‐
positions are improbable in light of the evidence. Thus we may conclude that
each epistemic perspective also constitutes an evidential probability function,
assigning numbers to hypotheses, representing degrees of support, in light of
the total evidence that perspective is committed to. In line with §3.2, the total
evidence according to an evidential probability function comprises those pro‐
positions which are assigned probability 1. This usage might be slightly revi‐
sionary, in that it will include logical consequences of evidence as evidence,
and logical truths and other trivial propositions will also be evidence. No
harm comes from liberalising our conception of evidence from the usual idea
that it only includes propositions learned from experience, to the idea that it

7 This package principle is plausible when one evaluates a package of bets offered all at
once, especially given that we are considering the price that is justified, not the price
that someone’s wallet can withstand. (Add sufficiently many advantageously priced bets
together and there will come an advantageously priced bet that one would purchase
offered alone, but cannot afford.) Yet as Schick points out it is far less obvious when bets
are offered sequentially (1986: 116–18). The fact that one has accepted a given bet is new
information, and betting that would have been justified from one’s previous epistemic
perspective may not continue to be justified from an updated perspective.

8 In fact we need an additional premise here, that if you do obey these principles, you can
assign a single neutral price: that premise is true (Kemeny 1955; Lehman 1955).

9 I will not review the mathematics of probability in this brief volume, but I will try to be
explicit about any results proved below, and there are many accessible and brief present‐
ations of the key results on which I will rely (Hacking 2001: 23–78; Eagle 2011: 1–24; Hájek
and Hitchcock 2017).
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includes at a given point any proposition on which we rely in evaluating other
claims with which we are confronted. ‘Taking the evidence into consideration’
doesn’t mean only taking things you happen to have learned empirically into
consideration.

Our approach to evidential probability has precedent in the literature. As
we argued in §3.2, epistemic perspectives rationalize the dispositions of their
occupants to judge hypotheses. Thus we agree with Williamson (2000), who
suggests that evidential probability represents the degree to which ‘the evid‐
ence tells for or against the hypothesis’ (2000: 209), rather than reflecting
anyone’s actual credences.10 Climenhaga puts it well:

the distinctive claims of the degree‐of‐support interpret‐
ation [of evidential probability] are that probabilities are
mind‐independent relations between propositions and that
probabilities constrain rational degrees of belief. (Climenhaga
2023: 3)

The tradition of objective Bayesianism that Climenhaga and Williamson
represent goes back at least to Keynes (1921), Johnson (1932), and Carnap
(1962). It has however almost invariably been accompanied with an additional
and not necessarily welcome commitment to there being such a thing as ‘the
degree to which evidence supports a hypothesis’. While each epistemic per‐
spective on my view articulates a conception of how evidence bears on hypo‐
theses, there is no commitment to the existence of a ‘best’ perspective. Per‐
spectives – for all we’ve established so far – might disagree with one another
on the space of possibilities, on the background evidence they incorporate,
or on the significance they attach to it. We return to the question of whether
there is a unique best perspective in §3.9 below and in Section 5. For now,
I would wish to distance the view defended here both from the ‘subjective’
Bayesian, who identifies epistemic perspectives with the credences on indi‐
vidual agents, and from the objective Bayesian who accepts a unique best per‐
spective. The view I’m defending could be called non‐subjective Bayesianism.

10 Williamson himself has a more restrictive view, that evidential probability should reflect
‘something like the intrinsic plausibility of hypotheses prior to investigation’ (Williamson
2000: 211); we accept that among the epistemic perspectives are those one can come to
occupy after some investigation.
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It is clear that among the possible evidential perspectives are many that
assign a zero probability to contingent propositions. Indeed, any piece of con‐
tingent evidence that has already been taken into account, forming part of the
total evidence according to some epistemic perspective, will be assigned prob‐
ability one by that perspective. Accordingly, we do not require that every epi‐
stemic perspective Pr satisfy the principle of Regularity (or ‘strict coherence’),
that the only propositions 𝐻 for which Pr(𝐻) = 0 are those that are necessary
falsehoods, true at no possible world (Lewis 1986a: 88).

We do not even require the weaker principle that any epistemically pos‐
sible proposition should be supported to some positive extent by the evid‐
ence. For sometimes there are too many possibilities for them all to be as‐
signed some positive probability. Consider an infinite sequence of independ‐
ent tosses of a fair coin. (Suppose an epistemic perspective according towhich
such things are possible, and suppose moreover that the tosses happen in‐
creasingly swiftly so the whole infinite sequence is completed in a finite time.)
Let 𝑇 be the proposition that every toss lands ‘tails’, and let 𝑇𝑛 be the proposi‐
tion that the first 𝑛 tosses land tails. By fairness and independence, Pr(𝑇𝑛) =
1
2𝑛 .

11 If Pr(𝑇) > 0, then there will be some 𝑘 such that Pr(𝑇𝑘) =
1
2𝑘 < Pr(𝑇).

But clearly 𝑇 entails every 𝑇𝑛, and hence Pr(𝑇) ≤ Pr(𝑇𝑘).12 Contradiction;
so Pr(𝑇) = 0, despite being an epistemically possible outcome in the envis‐
aged scenario. Some respond here that we have too narrow a conception of
the available numbers. Had we appealed to ‘infinitesimal’ numbers, greater
than zero but less than any real number, we could allow the probability of 𝑇
to thread the gap between 0 and the probability of any initial subsequence
of 𝑇 (Lewis 1986a: 88). Infinitesimals might help in this case; Williamson
(2007: 175–76) argues that they don’t help in general. Consider a final sub‐
sequence of 𝑇, an infinite sequence 𝑇−𝑘 omitting finitely many (𝑘) initial ele‐
ments of 𝑇. Such a sequence 𝑇−𝑘 must have the same probability as 𝑇, be‐
cause it is structurally indistinguishable from 𝑇. But independence entails
that Pr(𝑇) = 1

2𝑘 Pr(𝑇−𝑘), which entails that Pr(𝑇) = 0. So it seems mathemat‐

11 This appeals to the multiplication theorem that for independent events 𝐴 and 𝐵, Pr(𝐴 ∧
𝐵) = Pr(𝐴)Pr(𝐵); independence is clarified below (§3.8).

12 This follows from the consequence theorem that the probability of a logical consequence
of 𝐻 is no less than the probability of 𝐻.
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ically unavoidable that we assign some contingent hypothesis a zero degree
of support.

Once that is recognised, there seems no grounds for insisting that open
possibility has to be assigned some positive degree of support. Epistemic per‐
spectives will be notably diverse in their opinions concerning the degree to
which various propositions are supported. There is no reason to insist that
nevertheless they should all agree that epistemic possibilities should be sup‐
ported to some extent. This means that we will permit pairs of epistemic pos‐
sibilities that are incommensurable: that do not agree antecedently in which
are the live hypotheses that might turn out to be true, that have some positive
prospect. We will return to this issue later when we consider ‘convergence of
opinion’ theorems briefly in Section 5.

I argued that every epistemic perspective respects Additivity. Many ap‐
proaches to mathematical probability adopt a stronger axiom:

Countable Additivity Where 𝐻1, 𝐻2, … is some denumerable collection of
mutually exclusive propositions, and ⋁𝑖 𝐻𝑖 is a proposition true iff ex‐
actly one 𝐻𝑖 is true, then Pr(⋁𝑖 𝐻𝑖) = ∑𝑖 Pr(𝐻𝑖).

Countable additivity also requires that there is always such a proposition
among those an epistemic perspective is defined over, which requires that the
set of propositions themselves be closed under denumerable disjunction.

There are certainly some epistemic perspectives which respect countable
additivity. A countably additive function is a fortiori also additive. But should
we impose it on every epistemic perspective? Many have found the following
consequence of Countable Additivity problematic:

No Uniform Support If 𝐻1, 𝐻2, … partition the space of possibilities (being
mutually exclusive and jointly exhaustive, so that ⋁𝑖 𝐻𝑖 is true in every
possibility), then there is no uniform assignment of degree of support
to each 𝐻𝑖.13

13 Because ⋁𝑖𝐻𝑖 is necessary, it is supported to degree 1, by Normality. By countable addit‐
ivity, ∑𝑖 Pr(𝐻𝑖) = 1. If there were some 𝜖 such that Pr(𝐻𝑖) = 𝜖 for each 𝐻𝑖, then 𝜖 > 0,
because adding zero countably many times results in zero. But if 𝜖 > 0, then there is
some 𝑗 such that Pr(𝐻1) + ⋯ + Pr(𝐻𝑗) > 1. By additivity, Pr(𝐻1 ∨ ⋯ ∨ 𝐻𝑗) > 1, and yet
⋁𝑖𝐻𝑖 is a consequence of (𝐻1 ∨ ⋯ ∨ 𝐻𝑗).
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This result shows evidence cannot equally support a denumerable collec‐
tion of hypotheses. Suppose we are told nothing more about some rational 𝑟
than that it is of the form 1/𝑛. You might think that evidence supports every
hypothesis about the identity of 𝑟 equally; but the above result excludes that.
There are ways of assigning degrees of support to a denumerable partition,
but they are non‐uniform.14 De Finetti objected that a formal axiom ought
not to require a non‐uniform distribution of support, but ought to be ‘only
imposing formal conditions of coherence’ (de Finetti 1974: 122; see alsoMcGee
1999; Bartha 2004).

De Finetti suggests that, to secure uniformity, we ought to assign zero de‐
gree of support to each element of a denumerable partition (see also Kadane
and O’Hagan 1995). In the absence of countable additivity, this does not de‐
termine the probability of their infinite disjunction. We are free to set the
degree of support of that disjunction independently; it clearly deserves max‐
imal degree of support since it is true in every possibility. This assignment
of degrees of support is incoherent in the presence of Countable Additivity.
So if it seems coherent on reflection that we could have uniform support for
each hypothesis about 𝑟, so much the worse for Countable Additivity .

There does exist a betting argument for Countable Additivity (William‐
son 1999; Pettigrew 2020b: §2.6), similar to those offered in [@ sec:prospects].
This betting argument requires a way to calculate a neutral price for a count‐
able collection of bets on hypotheses 𝐻𝑖, and a price for a bet on an infinitary
disjunction. Thus it requires a generalisation of the package principle which
states that the neutral price of a countable collection of bets is the sum of
their individual prices. But this generalized package principle appears sub‐
ject to counterexample. Consider this case:

Satan’s Apple ‘Satan has cut a delicious apple into infinitely many pieces,
labelled by the natural numbers. Eve may take whichever pieces she
chooses. If she takes merely finitely many of the pieces, then she suf‐
fers no penalty. But if she takes infinitely many of the pieces, then she
is expelled from the Garden for her greed. Either way, she gets to eat
whatever pieces she has taken.’ (Arntzenius, Elga, and Hawthorne 2004:
262–64)

14 One way is to assign Pr(𝐻𝑗) = 1/(2𝑗); this sequence of values sums to 1 as needed, but
is obviously extremely biased towards hypotheses earlier in the sequence.
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In this case, each piece of apple has some positive value to Eve; the neut‐
ral price she assigns to each of the ‘bets’ that pay a piece of apple for sure is
positive. But the neutral price to taking them all is negative. Quite what Eve
should do is unclear (she seems to be rationally required to leave some apple,
but how should she decide which pieces to leave?), but it is clear that the neut‐
ral price of the package isn’t fixed by the prices of the individual bets. That
undermines the betting argument for countable additivity as a requirement
on all epistemic perspectives (Pettigrew 2020b: 30). Of course that still per‐
mits many epistemic perspectives to satisfy countable additivity, so we will
make use of it where appropriate.

3.6 Probabilities and the Dutch Book Argument

Section §3.4 presented a version of what is known as the Dutch Book
Argument for the conclusion that degrees of support must be probabilities
(Howson and Urbach 1993: 75–81; Hájek 2008; Eagle 2011: 28–32; Pettigrew
2020b). Many different versions of this argument have been given since the
earliest versions due to Ramsey (1926) and de Finetti (1937).

The typical Dutch Book Argument (DBA) looks rather different from the
version I have presented, however. The typical version applies to credences
(degrees of belief), not to epistemic perspectives (degrees of support). More
importantly, rather than arguing that non‐probabilistic assignments to num‐
bers to hypotheses fails to reflect the prospects of those hypotheses, the stand‐
ardDBA argues that non‐probabilistic credences are practically unreasonable,
because they subject those who act on such credences to a sure loss: ‘Dutch
Book arguments evaluate the rationality of credences by looking at the qual‐
ity of the choices that they do or should lead us to make’ (Pettigrew 2020b:
1). Obviously there is some connection with choices in the argument in §3.4,
because an epistemic perspective is supposed to justify a neutral price for a
bet, whichmay partly rationalize choices to bet at non‐neutral prices. But the
standard DBA relies on a much stronger link with choice, namely, that non‐
probabilistic credences rationally require the agent to commit to a package
of bets that guarantees a sure loss.

These features of the DBA I’ve defended help defuse some challenges that
face more standard versions. The standard version is accused of being unreal‐
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istic (because real agents don’t have sufficiently many determinate betting
preferences for the argument to succeed), or because probabilism is descript‐
ively inaccurate of real agents (Kyburg 1978). Defenders of the standard DBA
have tried to fend off the accusation that it requires us to postulate a plethora
of bookies wandering around looking to exploit incoherent agents. But nev‐
ertheless it is better to sever credences, and the bets they may lead to, from
epistemic perspectives, and the credences they justify.

It is by no means obvious that one’s credences rationally require any spe‐
cific course of action. Two agents with the same credences, one risk averse,
one risk‐seeking, might rationally act quite differently because of their very
different attitudes to the frisson of excitement associated with a risky bet.
With no direct route from credence to action, a variant of the DBA which
doesn’t require the evaluation of actions is preferable. Nor is it obvious, once
we turn our attention to guaranteed losses and gains, that non‐probabilistic
credences are so bad. For probabilistic credences require one to avoid the sure
gain that one would be able to secure by taking the other side of each of the
neutrally‐priced bets in §3.4. E.g., you could secure a gain by having credences
that neutrally price a bet on a necessary truth ⊤ at 0.8; that bet will pay off
which a guaranteed profit of 0.2. This last result is what Hájek calls ‘the Good
Book Argument’ (2005: 142). The Good Book Argument can be avoided if one
reformulates the DBA in terms of dispositions to purchase bets regarded as
‘fair‐or‐favourable’ (Hájek 2005: 146).

Better still, however, to proceed without bringing in the apparatus of
practical action at all, and to focus on the evaluation of prospects that are a
mere part of the justification of action. In this I follow other presentations
of ‘de‐pragmatised’ DBAs (Skyrms 1984: 22; Earman 1992: 42; Armendt 1993;
Howson 2000: 124–34; though see Maher 1997 for a dissenting voice), all of
whom emphasise that non‐probabilistic credences involve an inconsistent
evaluation of the very same options. Nevertheless, even these authors err
in focussing on credences. It may well be that there are good reasons for
an agent to evaluate options in an inconsistent way, perhaps because of
their practical situation. A risk‐averse agent whose neutral price for a bet
on a fair coin landing heads is 0.49, and likewise for a bet on it landing
tails, inconsistently values the status quo, neutrally valuing the tautology
𝐻 ∨ ¬𝐻 at 0.98. If there is pragmatic encroachment on belief, such grounds
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for incoherent credence might be widespread (Kim 2017; though see Jackson
2019 for an argument that credence isn’t encroachable to the same extent as
belief). So I think it preferable to focus on the epistemic perspectives that
rationalize credence, rather than on realized credences themselves. (How do
epistemic perspectives bear on credences? I say a little about that in §3.9.)

3.7 Accuracy

The DBA is just one argument for the conclusion that epistemic perspect‐
ives ought to represents the prospects of hypotheses probabilistically. More
recently a flurry of arguments have been offered that aim to give purely epi‐
stemic grounds for requiring evaluations of prospects to be probabilistic. In
many ways these arguments might mesh closely with the orientation of our
discussion, precisely because they focus on how non‐probabilistic prospects
violate purely epistemic norms. (I argued that non‐neutral betting prices pose
the purely epistemic difficulty of failing to assign unique prospects to hypo‐
theses, but I concede it can be more difficult to see that clearly if betting has
been mentioned.)

Prominent here are accuracy based arguments for probabilism (Joyce
1998; Leitgeb and Pettigrew 2010a; b; Pettigrew 2016). The basic idea is
that the ultimate yardstick of an epistemic perspective is how accurate it
is, how successful it is at representing how things are. On this conception,
an ideal epistemic perspective is the one that gets everything right about
actuality: the only possibilities it regards as having any prospect of truth are
those which are in fact true. Almost all epistemic perspectives are non‐ideal,
and obviously there would be little use for a notion of evidential support
if they were: if all and only truths have positive probability, every truth
will have probability 1 and be treated as background evidence by the ideal
epistemic perspective; nothing is left unsettled. But an epistemic perspective
which is not ideal might nevertheless be more or less close to the ideal. The
approach shared by all accuracy‐based arguments for probabilism rests then
on a particular measure of how close an assessment of prospects is to the
ideal (typically, the Brier score of the function at each possibility), and a
mathematical result establishing that for any non‐probabilistic assessment
of prospects, there is always a probabilistic epistemic perspective which is
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more accurate come what may (it is never less close to the ideal at any world,
and closer at some world(s)). Given this result, it is then argued that given
the value of accuracy, it a non‐probabilistic assessment of prospects cannot
be a legitimate epistemic perspective, since no matter what there is always a
more successful representation of how things might be.15

The substantive tasks for a defender of the accuracy‐based argument for
probabilism involve (i) establishing that the Brier score is the right way to as‐
sess the accuracy of assessment of prospects; (ii) establishing that the accur‐
acy of an assessment of prospects is a good measure of its success; (iii) estab‐
lishing that the a priori existence of a more successful epistemic perspective
is grounds for thinking than a given assessment of prospects is unacceptable;
and (iv) proving various mathematical results linking these together. I have
nothing to say about item (iv), but some comment on the others:

i. Why one measure rather than another? Joyce (1998) tried to give ne‐
cessary conditions on measurements of accuracy which yield the Brier
score, but as Maher (2002) noted, these conditions exclude an altern‐
ative measure of accuracy (the ‘absolute value measure’) essentially by
fiat. The key contribution of Pettigrew (2016: ch. 4) is to lay down new
conditions that yield the Brier score; these nevertheless remain contest‐
able.

ii. Why accuracy alone? Epistemologists since Plato have drawn a
distinction between true belief and knowledge, and almost all re‐
gard knowledge as the more valuable state (Williamson 2000: ch. 1;
Pritchard, Turri, and Carter 2022). True belief is accurate; but if this
epistemological consensus is right, there are epistemic values that go
beyond accuracy. Maybe epistemic perspectives shouldn’t care about
justification, reasons‐responsiveness, open‐mindedness, or epistemic
virtue, etc. (or should only care about them insofar as they are analysed
as requiring accuracy). But if these potential features of an epistemic
state could be important, then it is not yet obvious why an assessment
of prospects that was very effective at meeting some of these other
epistemic goals might not be more successful, epistemically, than some

15 Here I follow the clear presentation of the dialectic of accuracy‐based arguments from
probabilism laid out in Pettigrew (2016), pp. 8–9.
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more accurate epistemic perspective. For a concrete example: suppose
the good knower is one who defers to experts when they are themselves
inexpert, and in so doing happen to defer to an expert whose attitudes
are non‐probabilistic in some inconsequential way. Perhaps the expert
is not doing exactly a they ought, but it seems open to us to say that
an assessment of prospects that defers to known reliable experts is
epistemically unobjectionable.

iii. Why dominance? The existence of an probabilistic epistemic perspect‐
ive that does no worse than a non‐probabilistic assessment, no mat‐
ter how things turn out, is an epistemic version of dominance reason‐
ing from decision theory. Indeed, there is a close connection between
accuracy‐based arguments from probabilism and so‐called ‘epistemic
decision theory’, where epistemic perspectives are the available options
and the measure of epistemic value is accuracy. Two comments. First,
the reliance on ‘epistemologized’ decision‐theoretic principles seems to
leave the accuracy‐based approach as implicated in pragmatic commit‐
ments as more traditional Dutch Book approaches. (Unless epistemic
value is a kind of value, why should decision‐theoretic principles hold
of it?) Second, dominance reasoning goes awry in cases where there
isn’t independence of acts fromoutcomes (Bar‐Hillel andMargalit 1972).
Are there epistemic decision problemswith the same structure (Greaves
2013; Pettigrew 2016: 226–29)? (Perhaps an example might be found in
the theory‐dependence of observation, starting with James’ idea that
to get evidence for some hypotheses, we need to ‘meet the hypotheses
half‐way’ [#james‐1910, §10]; crudely put, the more confident you are in
𝐻, the more likely you are to find 𝐻‐supporting evidence.) It’s not clear
that this ultimately poses any problem for accuracy‐based arguments
– because probabilism remains an important ingredient of epistemic
consequentialism – but some premise in place of dominance seems re‐
quired.

The upshot of this discussion is that considerations of accuracy provide
a compelling further line of argument for probabilism about epistemic per‐
spectives, but one that nevertheless faces challenges not wholly unlike those
faced by the argument from unique epistemic evaluation from §3.4. In all
likelihood, both arguments will be found compelling by those antecedently
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disposed to thinking probability is the logic of the assessment of prospects,
and found open to dispute by those who favour an alternative approach.

3.8 Conditional Degrees of Support

Frequently, one doesn’t want to know only the degree of support one’s cur‐
rent evidence provides. One wants also to know what bearing hypothetical
evidence has on hypotheses one is concerned with: what are the prospects
of 𝐻, given 𝐸, where 𝐸 is not (yet) in evidence. For instance we might be in‐
terested in the support for the hypothesis that some particular die that we
haven’t yet tossed is fair, given the further potential evidence that it lands 6
on 100 consecutive rolls. Presumably that number will be different from the
support provided by the current background evidence for its fairness, or from
the support provided by the potential evidence that it lands a random mix‐
ture of 1–6 in roughly equal proportions in 100 rolls. The conditional prospect
of 𝐻 given 𝐸 relative to some evidential probability Pr is written Pr(𝐻 ∣ 𝐸).

Conditional support is related to unconditional support.16 What is the
prospect that both 𝐻 and 𝐸 turn out true? Intuitively,17 it is the proportion
among cases of 𝐸 turning out true that are also cases where 𝐻 turns out true.
That is, the prospect of 𝐸 turning out true, weighted by the prospect of 𝐻
turning out true given 𝐸. This is captured in this rule:

Product Pr(𝐻 ∧ 𝐸) = Pr(𝐻 ∣ 𝐸)Pr(𝐸). (Jeffrey 2008: 12)

In line with the Product rule, the low prospect of my going to the beach
and getting sunburnt is the prospect that I get sunburnt given I go to the
beach (high), weighted by the prospect that I go to the beach (low). There is
a betting‐price justification of the product available, given a natural idea of
a conditional bet – one that is called off when 𝐸 is false (de Finetti 1937: 146;
Howson and Urbach 1993: 81–84). I will not rehearse it here for reasons of

16 Another hypothesis in this area is that conditional support is unconditional support of
a conditional, i.e., that the degree of support of 𝐻 given 𝐸 is 𝑃𝑟(𝐸 → 𝐻) for some con‐
ditional operator. This is surprisingly hard to defend. So long as the conditional obeys
Importation – that 𝑃 → (𝑄 → 𝑅) entails (𝑃 ∧𝑄) → 𝑅 – then conditional probabilities will
be trivial: if Pr(𝐻 ∣ 𝐸) = Pr(𝐸 → 𝐻), then Pr(𝐻 ∣ 𝐸) = Pr(𝐻) – 𝐸 has nothing to do with
it (Lewis 1976; Hájek 2011).)

17 Thinking in terms of proportions can be misleading when thinking about probability in
general (Hájek 1997, 2009), but seems safe here.
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space, but none of the issues involved go significantly beyond those canvassed
in §3.4.

The Product rule isn’t a definition, because the right hand side mixes con‐
ditional and unconditional probability. Nor can it readily be turned into a
definition, because we can only re‐arrange the equation to isolate the term
‘Pr(𝐻 ∣ 𝐸)’ under the assumption that Pr(𝐸) > 0. But an account of con‐
ditional probabilities as a ratio of unconditional probabilities is neverthe‐
less often assumed, namely, the ‘ratio analysis’ stating that Pr(𝐻 ∣ 𝐸) =
Pr(𝐻 ∧ 𝐸)/Pr(𝐸), provided Pr(𝐸) > 0.

Cases where the ratio analysis gives no guidance will arise commonly,
since we do not insist on Regularity (§3.5); hence there will be many epi‐
stemic perspectives which give no prospect to contingent propositions. Yet
in many cases of interest to us, the relevant unconditional probabilities are
well‐defined and non‐zero. Generally, it is only important to consider the con‐
ditional support provided by 𝐸 to 𝐻 when 𝐸 itself is genuinely in prospect.
There may be some academic interest in the degree to which the hypothesis
that a fair coin lands heads is supported by some independent proposition
that some quantity takes a specific real‐value that it has zero probability of
taking (i.e., in the quantity Pr(Heads ∣ 𝑋 = 𝑥), where 𝑋 is a continuous real‐
valued random variable) (Hájek 2003: 286). It is a virtue of the multiplicat‐
ive relation between conditional and unconditional probability that it allows
Pr(Heads ∣ 𝑋 = 𝑥) = 1/2, even while Pr(𝑋 = 𝑥) = 0 and Pr(Heads ∧𝑋 = 𝑥) =
0. But it is not especially interesting when thinking about degree of support
by prospective evidence, since if the evidence has no prospect the support
it may or may not provide is (relative to a given epistemic perspective) irrel‐
evant. Of course if one finds oneself frequently confronted by evidence one
regarded as having no prospect, that is probably a reason to reconsider the
epistemic perspective one is deferring too; the space of possibilities it depicts
is misaligned with the possibilities being actualized.18

18 That said, because we won’t be defining conditional prospects using the ratio analysis,
it is open to us to allow conditional prospects to be defined in many cases where tradi‐
tional probability theory says they are undefined. There may well be residual cases where
they remain undefined; so in what follows every occurrence of generic ‘Pr(⋅ ∣ ⋅)’ is to be
regarded as presupposing that the conditional prospect is defined.
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Suppose 𝐉 = {𝐽1, …, 𝐽𝑛} is a partition of the space of possibilities: a set ofmu‐
tually exclusive and jointly exhaustive hypotheses, relative to some epistemic
perspective. Given any 𝐻 is logically equivalent to (𝐻 ∧ 𝐽1) ∨ … ∨ (𝐻 ∧ 𝐽𝑛),
both express the same proposition and have the same probability. Those dis‐
juncts are mutually exclusive because the 𝐽𝑖s are, so additivity entails Pr(𝐻) =
Pr(𝐻∧𝐽1)+⋯+Pr(𝐻∧𝐽𝑛). Apply the product rule and we get this basic result:

Total probability Pr(𝐻) = Pr(𝐻 ∣ 𝐽1)Pr(𝐽1) + ⋯ + Pr(𝐻 ∣ 𝐽𝑛)Pr(𝐽𝑛).

Another elementary consequence of the Product rule is that Pr(𝐻 ∣
𝐸)Pr(𝐸) = Pr(𝐸 ∣ 𝐻)Pr(𝐻). When Pr(𝐸) > 0, this can be rearranged into
theorem that has a prominence belying its obvious proof:

Bayes Pr(𝐻 ∣ 𝐸) = Pr(𝐸 ∣ 𝐻)Pr(𝐻)
Pr(𝐸) .

Applying the theorem of total probability to ‘Pr(𝐸)’ given a partition in‐
cluding 𝐻 (e.g., {𝐻, 𝐽1, …, 𝐽𝑛}), we can reformulate Bayes’ theorem:

Pr(𝐻 ∣ 𝐸) = Pr(𝐸 ∣ 𝐻)Pr(𝐻)
Pr(𝐸 ∣ 𝐻)Pr(𝐻) + Pr(𝐸 ∣ 𝐽1)Pr(𝐽1) + ⋯Pr(𝐸 ∣ 𝐽𝑛)Pr(𝐽𝑛)

.

Bayes’ theorem is important because it shows how conditional probabilit‐
ies Pr(𝐻 ∣ 𝐸) are fixed by other quantities we often know the value of:

• The prior probability of the hypothesis 𝐻, Pr(𝐻);
• The likelihood of the the evidence given the hypothesis, Pr(𝐸 ∣ 𝐻);
• The probability of the evidence, Pr(𝐸), which can also be expressed as
the expected likelihood of the evidence, given hypotheses spanning the
space of possibilities.

The quantity Pr(𝐻 ∣ 𝐸) is often called the posterior probability of the
hypothesis.

Here ‘prior’ and ‘posterior’ do not refer to temporal priority; Pr(𝐻 ∣ 𝐸)
is evaluated at the same time, and using the same evidential probability Pr,
as Pr(𝐻). There is a very common idea that if one is using a probability
function to represent an agent’s state of mind at some time, and that agent
were to learn exactly 𝐸, then the agent’s new state of mind should be Pr𝐸.
The rule of Conditionalization says that the relation between this new men‐
tal state, taking 𝐸 into account, and the old mental state, is this: for any 𝐻,
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Pr𝐸(𝐻) = Pr(𝐻 ∣ 𝐸); i.e., that the new attitudes should be the old condi‐
tional attitudes. In light of this, the genuinely posterior state of mind Pr𝐸(𝐻)
is equal to a pre‐existing conditional attitude, which (by extension) gets to be
called the posterior. There is considerable controversy, not unrelated to our
earlier discussion of reasoning in §1.3, around whether Conditionalization is
required as a condition of rationality (van Fraassen 1989: 160–82; Talbott 1991;
Lewis 1999; Williamson 2000: 213–21; Hedden 2015: 29–44). Again, we will set
aside diachronic issues of how to update or change evidential probability func‐
tions in light of new evidence (though see §4.1). Our project, as before, is to
understand evidential support given a single epistemic perspective, a single
evidential probability function. Nevertheless the terms ‘prior’ and ‘posterior’
are so entrenched that it would risk intelligibility to wholly refrain from using
them.

This underscores a useful clarification. A conditional degree of support
need not be the degree of support you would assign to 𝐻 if you were to find
out that 𝐸. It is the degree of support 𝐻 has, in light of 𝐸 and your current
background evidence. It could be the case that if you were to find out that
𝐸, you would revise your background beliefs. Given an epistemic perspective
that represented a given die as fair, the conditional degree of support for the
die landing ‘6’ given it has landed ‘1’ repeatedly for the past 1000 rolls is still
1/6. But if you were to find out that regularity, you would be more than reas‐
onable in opting to consider a different epistemic perspective, one that did
not have the fairness of the die as part of its background evidence. Perhaps
this makes it clear that every evaluation of prospects is really conditional in
some sense, the background evidence no less important a factor in the evalu‐
ation of an ‘unconditional’ probability as the explicit proposition 𝐸 is in the
evaluation of conditional probability:

every evaluation of probability, is conditional; not only on the
mentality or psychology of the individual involved, at the time
in question, but also, and especially, on the state of information
in which he finds himself at that moment. (de Finetti 1974: 134)

With conditional degrees of support we have finally reached the third key
role of epistemic perspectives, namely, capturing the significance of potential
evidence for various hypotheses (§3.2). Given an epistemic perspective, an un‐
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conditional probability already discriminates between hypotheses in light of
the the background evidence held fixed. Conditional probabilities add a new
aspect to that evaluation: they give us some sense of the support various hy‐
potheses would have given propositions not yet in evidence, where keeping
the same underlying probability function is equivalent to retaining the same
standards of evidential significance. So conditional and unconditional prob‐
abilities together articulate an ‘epistemic standard’ that might be deployed in
the evaluation of hypotheses (Schoenfield 2012: 199). One simple but power‐
ful idea that emerges from this is to pay attention to the comparative facts
about the prior support 𝐻 receives from the background evidence versus the
posterior conditional support it receives once 𝐸 is added to that background
evidence, and use such comparisons to track confirmation or disconfirmation
of hypotheses by 𝐸, and use comparisons between posterior probabilities for
𝐻 and 𝐻′ in light of 𝐸 to see which is better supported by that prospective
evidence. This is the key idea of Bayesian confirmation theory – ‘Bayesian’ be‐
cause in comparing prior and posterior degrees of support, Bayes’ theorem is
often used. This is the principal focus of Section 4.

3.9 The Plurality of Epistemic Perspectives

Above we have only supposed that epistemic perspectives must satisfy the
probability axioms. Very many functions do this. So if epistemic perspect‐
ives are to justify actual credences (§3.3), we shall need some way of deciding
which epistemic perspective to adopt, and what exactly adopting a perspect‐
ive amounts to.

The second question is easier than the first. To adopt an epistemic per‐
spective is to take its verdicts on support as your own. If 𝐶 is your credence
function, representing your degrees of belief, then you adopt an epistemic
perspective Pr iff for any 𝑋, 𝐶(𝑋) = Pr(𝑋).19 This entails, as long as you assign
credence 1 to your evidence, that you can only adopt those perspectives that
have your evidence as background.

19 The question of whether you can adopt an epistemic perspective is another matter – per‐
haps epistemic perspectives are too cognitively demanding for us. In that case, adopting
an epistemic perspective is an ideal of rationality, rather than a prescriptive norm (Staffel
2020; Carr 2021).
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For any given body of (consistent) evidence, there are many perspectives
that assign its members probability 1. So this requirement doesn’t narrow
down the choice of perspective significantly. Perhaps some further require‐
ments on perspectives can narrow them down still further? Indeed, if we
could narrow it down to a single perspective, we could easily solve the prob‐
lem of which perspective to adopt: one is doxastically rational in adopting Pr
iff Pr is the unique epistemic perspective consistent with your total evidence.

Some suggest that it is incumbent on any rational attitude that it defer
to chance (Joyce 2007‐08; Ismael 2008‐06; Lewis 1986a). For any quantity 𝐐,
such that 𝐐𝑖 is a partition of hypotheses about the value of 𝐐, then your cre‐
dence 𝐶(𝐻)will be your expectation of the value of𝐐, in line with the theorem
of total probability:

𝐶(𝐻) = 𝐶(𝐻 ∣ 𝐐𝑖)𝐶(𝐐𝑖).

To defer to some quantity is for those conditional probabilities to equal the
value 𝐐 assigns to 𝐻, when you don’t have information that ‘trumps’ that
quantity. In the case of chance that gives rise to this principle:

Chance Deference A probability 𝑃 defers to chance iff for any proposition𝑋,
where ‘𝐶ℎ(𝑋) = 𝑥’ states that the chance of 𝑋 is 𝑥 then 𝑃(𝑋 ∣ ⌜𝐶ℎ(𝑋) =
𝑥⌝) = 𝑥.20

Whether a probability function defers to chance is a descriptive matter.
Whether it should is captured by the Principal Principle, so‐called because
Lewis in introducing it claimed it captures ‘all we know about chance’ (Lewis
1986a: 86). Lewis’ original formulation concerned rational credence; trans‐
ferred to our context, we get something like this (remembering that epistemic
perspectives are normative for credence, so if this is true, rational credences
will also defer to chance):

Principal Principle: Any epistemic perspective defers to chance, on the con‐
dition that the background evidence it incorporates is admissible – it

20 Here, ‘𝐶ℎ’ denotes different probability functions at different possibilities; thus proposi‐
tions of the form ‘𝐶ℎ(𝑋) = 𝑥’ are contingent.
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includes no evidence that is more informative about chancy outcomes
than chance itself.21

The Principal Principle plus the theorem of total probability will ensure
that any epistemic perspective will assign a degree of support to 𝐻 that is
equal to that perspective’s expectation of the chance. Adopting the Principal
Principle will thus constrain the possible epistemic perspectives relative to
a given body of evidence. Any probability function that takes the evidence
to support 𝐻 to a degree greater than the chance of 𝐻, but not because the
evidence includes inadmissible evidence, will not count as an epistemic per‐
spective. Nevertheless, we do not get a unique perspective even insisting on
deference to chance, for the degree to which 𝐻 is supported depends on the
degree to which hypotheses about its chance are supported, and they are not
themselves set exogenously to the perspective.22

One could circumvent this obstacle if it turned out that therewas a unique
degree to which any evidence supported hypotheses about the chance. But
the only plausible scenario in which that is true is one where acceptable epi‐
stemic perspectives are already uniquely narrowed down by the background
evidence, which would circumvent the appeal to the Principal Principle en‐
tirely. Again, that is the focus of Section 5.

21 Lewis’s version concerns rational initial credence; he assumes that non‐initial credence
is obtained by conditionalizing on evidence, and that initial credences are regular (and
hence are certain of nothing inadmissible). I make neither assumption about epistemic
perspectives. Nevertheless, I do make some reference to admissibility. Others who offer
versions of the PP without an admissibility clause assume tacitly that agents are certain
they won’t obtain inadmissible evidence (cf. Pettigrew 2020b: 6).

22 Norton (2011: 400–401) argues that some physical theories involve no chances, despite
being indeterministic. He sees this as an objection to the present Bayesian framework,
because he appears to take the Principal Principle as derivative from a more general
maxim: that ‘factual properties of the system under consideration’ fix the quasi‐logical
structure of rational attitudes. If the system has chances, our attitudes can have a prob‐
abilistic structure; if the system is chanceless, but still indeterministic, our attitudes can
only be expected to satisfy a weaker structure, perhaps comparative only rather than nu‐
merical. This objection can be resisted; epistemic rationality requires us to evaluate the
prospects of hypotheses. In the absence of chances that would constrain those prospects
more tightly, we must do what is nevertheless permitted, and adopt some epistemic per‐
spective. Compare: in unrestricted sections of the Bundesautobahn system, there is no
speed limit. That doesn’t mean cars should somehow travel without having some determ‐
inate speed; it just means that many speeds are permissible.
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Perhaps the problem of which perspective to adopt isn’t to be solved by
narrowing down perspectives, but by constructing a unique response to any
set of perspectives. Consider again Chance Deference above; this principle
has analogues for any ‘expert’ probability function that one is disposed to
defer to (Gaifman 1988; Hall 2004: 100–101; Elga 2007: 478–80). In place of
chance, one might consider an expert weather forecaster, to whom onemight
defer completely about a limited subject matter, or an omniscient being, to
whomone ought to defer completely about everything. If ‘𝑂’ is the omniscient
being’s credences, then substitute it for ‘𝐶ℎ’ in Chance Deference, and one
might endorse it and an appropriately modified analogue of Lewis’ original
Principal Principle, i.e., formulated as a constraint on credence. Again, one
might not be certain what your expert says, just as you might not be certain
of what the chances are; in that case, it follows by the same mathematics as
above that your credence will be your expectation of the expert’s opinion.

In this case it follows that you have a unique expert informed credence
even when you are open to many hypotheses about the possible attitudes
of the expert. The obvious move is thus open to us. If there is a single best
epistemic perspective that reflects the expert judgement of how evidence sup‐
ports hypotheses, then you ought to adopt as your current credence your (per‐
haps subjective) expectation of the extent to which your evidence supports
the various hypotheses open to you. That is, you ought to have a credence in
any𝐻 that equals your estimate of the degree towhich your evidence supports
𝐻. In this way, one can arrive at a unique recommendation of which attitude
to have, even if one has not come to a single conclusion on what the correct
epistemic perspective is. That will give us this principle:

Deference to Evidential Probability For any 𝐻, your credence 𝐶(𝐻)
should equal ∑𝑖 𝐶(⌜Pr𝑖(𝐻) = 𝑥𝑖⌝) ⋅ 𝑥𝑖, where ‘Pr𝑖 ’ ranges over those
epistemic perspectives which may, for all you know, be the actual
degree of support your evidence provides for 𝐻.

This rationale breaks down, however, if there are multiple epistemic
perspectives consistent with the evidence. Each embodies some standards
for evaluating how evidence supports hypotheses. There may be no sense
in which they are rival accounts of ‘the’ evidential support relation. Their
relation to one another may be more like the relation between the various
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epistemic perspectives that have different background bodies of evidence;
there is no one perspective that reflects the evidence one uniquely should
have, rather there are many that may reflect the various bodies of evidence
one might have. Likewise, maybe there are many perspectives that may
reflect the various standards of evidential support one might subscribe to. If
that is the case, it is harder to justify adopting as your credence the weighted
mean of these various epistemic perspectives. This is because we can only
rationalise expert deference if there is an expert, if there is a fact of the
matter about getting degree of support right that transcends each individual
evidential probability function.

Without a unique degree of support, theremay be noway to recommend a
unique attitude in view of the plurality of epistemic perspectives. That will be
bad news for a restrictive epistemology, which aims to tell us what wemust do.
But if epistemology is permissive – in the business of telling us what we may
do – then a natural idea suggests itself: adopt any epistemic perspective con‐
sistent with your evidence. As van Fraassen puts it: ‘rationality is only bridled
irrationality … what it is rational to believe includes anything that one is not
rationally compelled to disbelieve’ (van Fraassen 1989: 171–72). This suggests:

Permissive Rational Credence There are many epistemic perspectives Pr1,
Pr2, etc. An agent’s credence function at a time, 𝐶, is rational just in
case there exists a probability function Pr𝑖 such that for any 𝐻, 𝐶(𝐻) =
Pr𝑖(𝐻), where Pr𝑖 agrees with 𝐶 on the total evidence (cf. Climenhaga
2023: 6 for a related idea).23

Because each epistemic perspective embodies a conception of evidential
relevance,

Ultimately, then, the issue of rational credence boils down to the issue
of uniqueness of epistemic perspectives. That, as mentioned above, is the fo‐
cus of Section 5. So far we have found no reason to accept that there a single
perspective compatible with each body of total evidence; even if there are con‐
straints on perspectives beyond the probability axioms – such as the Principal
Principle – they appear to leave open many legitimate attitudes to evidential

23 There aremany varieties of permissivism, depending on just what is permitted (Meacham
2014: 1186–89). Our sympathetic discussion of the Principal Principle suggests amoderate
rather than extreme permissivism.
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support, as represented in the existence of many evidential probability func‐
tions that agree on the total evidence. Before returning to that issue, however,
I return in Section 4 to our central question: applying the epistemic perspect‐
ive framework to our motivating puzzle of inductive support.



Section 4

Bayesian Confirmation Theory

In Section 2 we reviewed various formal and syntactic approaches to the logic
of evidential support, and found themwanting. In Section 3we suggested that
a better approach to evidential support was through the idea of the prospects
of hypotheses in light of a body of background evidence and assumptions
about the bearing of evidence on hypotheses, jointly encapsulated in the no‐
tion of an epistemic perspective, normative for rational credence. We argued
that epistemic perspectives ultimately were to be identified with evidential
probability functions, and that those functions enable us to define a notion
of overall evidential support of a proposition.

In this section, we look at the incremental support provided by a piece of
evidence, the relation of confirmation, defined and applied to some represent‐
ative cases in §4.1. I turn immediately to a famous problem for the Bayesian
approach to confirmation, the problem of old evidence (§4.2), and argue that
it is not an insuperable objection to our approach. §4.3 introduces a related
probabilistic approach to confirmation, Likelihoodism, and illustrates a key
difference between it and the Bayesian approach on the issue of base rates
and their evidential role. Further illustrations of successes of the Bayesian ap‐
proach in capturing scientific heuristics are given in §4.4, andwe return to the
paradoxes of confirmation in §4.5. The fullest Bayesian treatment of the para‐
doxes requires a notion of degree of confirmation, and there are a number of
inequivalent attempts to measures that, with varying degrees of plausibility;
some are introduced and compared in §4.6. I conclude by returning to the
problem of induction (§4.7).

57
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The Bayesian approach, despite its flexibility and adaptability, has not
avoided criticism. I will touch on some significant objections as the view is
developed, and have hoped to forestall some by design. Some prominent cri‐
ticisms focus on aspects of some Bayesian views that are not representative
of the variant I have defended. Consider challenges based on the supposed
computational intractability of Bayesian statistics, or the failure of scientists
to assign or report probabilities in practice, or the descriptive inaccuracy of
the Bayesian picture (Kelly and Glymour 2004: 95–96). These may be telling
against personalist Bayesianisms, which take the probabilities involved in sup‐
port and confirmation as unprocessed credences. But it is hard to see how
they are to apply to the degree of support picture, which posits evidential
probability as a regulative ideal, perhaps not directly implemented in practice.
Other objections are more general; Norton (2011: 400–415) is keen to emphas‐
ise ways in which the Bayesian framework appears to require a richer struc‐
ture on our attitudes than is sometimes justified by the evidence (recall §3.9).
That could be a problem if the Bayesian is committed to uniqueness (for then
there must be a uniquely rational attitude ungrounded by evidence sufficient
to constrain the attitudes uniquely). It appears to be less of a problem for the
permissive Bayesian, who allows that there are many legitimate perspectives
that can be taken without being uniquely determined – what matter, then, if
we are permitted to believe beyond what the evidence demands in these cases
too? So this family of objections turns out to connect with what I regard as the
principal objection to Bayesianism, the ‘problem of the priors’. This objection
is the focus of Section 5.

4.1 Incremental Confirmation Defined

Each evidential probability/epistemic perspective carries with it some con‐
ception of background evidence. Concerning a proposition 𝐸 not yet in evid‐
ence, we can use the conditional evidential probability to indicate the de‐
gree of support that 𝐻 has in light of the background evidence supplemented
with 𝐸 (§3.8). We introduce the notion of qualitative incremental evidential
support, or confirmation, as a three‐place relation between some piece of po‐
tential evidence 𝐸, some hypothesis 𝐻, and a background probability model
which is assumed to represent an epistemic perspective and hence to capture
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both background knowledge and a specific conception of evidential relevance
(cf. Fitelson 2005: 391).

Confirmation 𝐸 confirms 𝐻 relative to Pr iff Pr(𝐻 ∣ 𝐸) > Pr(𝐻).
𝐸 disconfirms 𝐻 relative to Pr iff Pr(𝐻 ∣ 𝐸) < Pr(𝐻).
𝐸 is independent1 of 𝐻 relative to Pr iff Pr(𝐻 ∣ 𝐸) = Pr(𝐻).2

This definition is at the heart of Bayesian confirmation theory (Earman
1992; Howson and Urbach 1993; Strevens 2006). The term ‘Bayesian’ is apt be‐
cause, given this definition of confirmation and Bayes’ theorem, 𝐸 confirms
𝐻 iff Pr(𝐸∣𝐻)

Pr(𝐸) > 1. Given that Pr(𝐸), the degree to which the background evid‐
ence supports the evidence, is constant for any hypotheses we may consider,
this result tells us that the confirmation of 𝐻 by 𝐸 is driven by the likelihood
Pr(𝐸 ∣ 𝐻), and this is a quantity we are often in a good position to determ‐
ine, because it is often fixed by the content of 𝐻 itself. Suppose 𝐻 is a chancy
theory, for example; then the Principal Principle (§3.9) tells us that the like‐
lihood of the evidence on 𝐻 is its chance of coming about were 𝐻 the correct
theory of 𝐸’s chance (Strevens 2004: 372–74). Despite the explicit relativisa‐
tion of evidential support to a probability model, whether a hypothesis 𝐻 is
confirmed turns out to depend on the likelihoods alone, which are in many
scientific cases of interest fixed by 𝐻 itself, and thus common to many epi‐
stemic perspectives. What still varies from perspective to perspective is the
absolute degree of support for a given hypothesis, whether that hypotheses
for example reaches some minimal level of credibility in light of the evidence.

Let’s consider a toy example.

Biased Die Suppose we have background information that leaves open the
hypotheses that a die is biased towards ‘6’ (the chance of ‘6’ being 1/3),
or that it is fair, and regards these hypotheses as equally supported and
exhaustive, so Pr(fair) = Pr(6‐biased). No outcomes are yet in evidence.

1 There are some complications here (Fitelson andHájek 2014); note too that this notion of
probabilistic independence neither implies nor is implied by other sorts of independence
such as causal isolation.

2 This account of confirmation goes back at least to Carnap (1962: xvi), where Carnap dis‐
tinguishes ‘increase in firmness’, or confirmation in our sense, from ‘firmness’, which is
the degree to which some evidence supports a hypothesis. In light of our earlier discus‐
sion in §3.8, the degree of support is just the conditional probability Pr(𝐻 ∣ 𝐸), which
involve no relation to any other degree of support.
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Against this background, consider the proposition that the die lands ‘6’
5 times consecutively. That proposition confirms the hypothesis that
the die is biased, disconfirms the hypothesis that the die is fair.

Can Bayesian confirmation theory capture this basic observation about
confirmation? Eventually, we might use a theory of confirmation to decide
complex cases about which our judgements are unclear, but as usual with
a philosophical explication, we need reassurance that it gets the basics right,
typically by checking that it reproduces obvious facts about the target relation.
In this case, we begin with an appeal to the theorem of total probability to
calculate the prior of 𝐸:

Pr(𝐸) = Pr(𝐸 ∣ fair)Pr(fair) + Pr(𝐸 ∣ 6‐biased)Pr(6‐biased)

= 1
65 ⋅

1
2 +

1
35 ⋅

1
2

= 1
15, 552 +

1
486 ≈ 0.002122.

Plug this into Bayes’ theorem (§3.8), and we obtain

Pr(fair ∣ 𝐸) ≈ 0.0606Cr(fair) < Cr(fair);
Pr(6‐biased ∣ 𝐸) ≈ 1.9394Cr(6‐biased) > Cr(6‐biased).

So here this proposition confirms the hypothesis of bias, and disconfirms the
hypothesis of fairness.

The same sort of reasoning can be applied in less idealized examples. Con‐
sider Howson and Urbach’s account of Babbage’s investigation into the ori‐
gins of tables of logarithms:

Logarithms ‘Babbage … was interested in whether they derived from the
same source or had been worked out independently. Babbage (1827)
found the same six errors in all but two and drew the “irresistible” con‐
clusion that, apart from these two, all the tables originated in a common
source.’ (Howson and Urbach (1993), p. 124)

Howson and Urbach offer this Bayesian reconstruction (following Jevons
(1874), pp. 278–9):
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The theory Copy, which says of some pair of logarithmic tables
that they shared a common origin, is moderately likely in view
of the immense amount of labour needed to compile such tables
ab initio, and for a number of other reasons. The alternative, in‐
dependence theory might take a variety of forms, each attribut‐
ing different probabilities to the occurrence of errors in various
positions in the table. The only one of these which seems at all
likely would assign each place an equal probability of exhibiting
an error and would, moreover, regard those errors as more‐or‐less
independent. Call this theory Ind and let 𝐸𝑖 be the evidence of 𝑖
common errors in the tables. The posterior probability of Copy is
inversely proportional to Pr(𝐸𝑖), which, under the assumption of
only two rival hypotheses, can be expressed as Pr(𝐸𝑖) = Pr(𝐸𝑖 ∣
Copy)Pr(Copy) + Pr(𝐸𝑖 ∣ Ind)Pr(Ind). … Since Copy entails 𝐸𝑖,
Pr(𝐸𝑖) = Pr(Copy) + Pr(𝐸𝑖 ∣ Ind)Pr(Ind). The quantity Pr(𝐸𝑖 ∣
Ind) clearly decreases with increasing 𝑖. Hence Pr(𝐸𝑖) diminishes
and approaches Pr(Copy), as 𝑖 increases; and so 𝐸𝑖 becomes in‐
creasingly powerful evidence for Copy, a result which agrees with
scientific intuition. (Howson and Urbach 1993: 124–25, notation
adjusted)

This reasoning contains two interesting observations. First, the observa‐
tion that when a hypothesis entails some evidence, Pr(𝐸 ∣ 𝐻) = 1 (by the
probability calculus). Then Pr(𝐻 ∣ 𝐸) = Pr(𝐻) 1

Pr(𝐸) ; unless the probabil‐
ity of the evidence is 1, therefore, evidence entailed by a theory supports it.
Second, in this case it is argued that Pr(𝐸𝑖) approaches Pr(𝐻) as the number
of common errors goes up (because of the decreasing chance of such a coin‐
cidence). So not only does 𝐸𝑖 confirm 𝐻; the degree of support 𝐸𝑖 provides
for 𝐻 approaches 1. We see here not only an invocation of comparative re‐
lations of confirmation, but ‘absolute’ degree of support in light of the evid‐
ence. An epistemic perspective with this kind of conception of the available
hypotheses, and these ideas about likelihoods informed by background as‐
sumptions about chances, supports the proposition that the common errors
arise from plagiarism, not luck; hence any rational attitude adopting such a
perspective must inevitably reach the same conclusion.
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It is tempting to many Bayesians to import their views on diachronic ra‐
tionality into confirmation theory. From this perspective, ‘confirmation’ is
a thing that happens to a theory when new evidence arrives; the theory is
confirmed or disconfirmed as its probability shifts around over time. Most
Bayesians accept updating upon receipt of new evidence 𝐸 goes by condition‐
alization, adopting one’s old conditional credences given 𝐸 as one’s new ‘un‐
conditional’ credences. In this case, Pr(𝐻 ∣ 𝐸) represents the new posterior
probability of 𝐻; 𝐻 is confirmed by 𝐸 if it has come to be more probable once
news of 𝐸 is in. So one sometimes sees Bayesians present confirmation as
essentially diachronic:

an experience provides evidence that confirms a hypothesis, for
that scientist, if … this evidence ‘boosts’ the scientist’s credence
in the hypothesis. (Eagle 2011: 210)

At the core of modern Bayesianism is a rule for changing the sub‐
jective probabilities assigned to hypotheses in the light of new
evidence. … where 𝐶(⋅) is your subjective probability distribution
before observing 𝐸 and 𝐶+(⋅) is your subjective probability distri‐
bution after observing 𝐸, …

𝐶+(𝐻) = 𝐶(𝐸 ∣ 𝐻)
𝐶(𝐸) 𝐶(𝐻).

More or less anyone who counts themselves a proponent of BCT
thinks that this rule is the rule that governs theway that scientists’
opinions should change in the light of new evidence. (Strevens
2004: 369; see also Strevens 2006: §5.1)

But this really runs together two completely separate issues: whether con‐
ditionalization is the right updating rule, and under what synchronic circum‐
stances does one proposition support another. (Recall here §§1.3, 3.8.) It is
perfectly possible to endorse the Bayesian account of evidential support while
rejecting conditionalization. Better, then, to interpret the confirmation in‐
equality Pr(𝐻 ∣ 𝐸) > Pr(𝐻) as telling us the current bearing of 𝐸 on 𝐻 from
the single perspective of Pr, a stance that may or may not be reflected in a
relation between successive perspectives, pre‐ and post‐acquisition of 𝐸.
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4.2 Old Evidence

This bears on a problem which has been seen by many as a serious challenge
to the Bayesian account of confirmation, Glymour’s problem of old evidence

Scientists commonly argue for their theories from evidence
known long before the theories were introduced. Copernicus
argued or his theory using observations made over the course
of millennia, not on the basis of any startling new predictions
derived from the theory, and presumably it was on the basis of
such arguments that he won the adherence of his early disciples.
Newton argued for universal gravitation using Kepler’s second
and third laws, established before the Principia was published.
The argument that Einstein gave in 1915 for his gravitational field
equations was that they explained the anomalous advance of
the perihelion of Mercury, established more than half a century
earlier. … Old evidence can in fact confirm new theory, but
according to Bayesian kinematics it cannot. For let us suppose
that evidence 𝐸 is known before theory 𝑇 is introduced at time 𝑡.
Because 𝐸 is known at 𝑡, Pr𝑡(𝐸) = 1 [so] the likelihood of 𝐸 given
𝑇, Pr𝑡(𝐸 ∣ 𝑇), is also 1. We then have

Pr
𝑡
(𝑇 ∣ 𝐸) = Pr𝑡(𝑇) × Pr𝑡(𝐸 ∣ 𝑇)

Pr𝑡(𝐸)
= Pr

𝑡
(𝑇).

The conditional probability of 𝑇 on 𝐸 is therefore the same as the
prior probability of 𝑇: 𝐸 cannot constitute evidence for 𝑇 in virtue
of the positive relevance condition nor in virtue of the likelihood
of 𝐸 on 𝑇. None of the Bayesian mechanisms apply, and if we are
strictly limited to them, we have the absurdity that old evidence
cannot confirm new theory. (Glymour 1981: 85–86)

As many have noted, the problem is not so much the antiquity of the evid‐
ence, as the fact that evidence and hypothesis seem to come in the wrong tem‐
poral order. If the age of the evidence were the only problem, we could solve
the problem by ‘rolling back’ to an earlier state of knowledge in which the cru‐
cial evidence isn’t included – this seems to be what Howson and Urbach have
in mind when they say ‘Pr(𝐻)measures your belief in a hypothesis when you
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do not know the evidence’ (1993: 117, my emphasis). But Climenhaga (2023:
§3) sets up a simple example in which a piece of evidence is acquired, then
some crucial information about the probability distribution over hypotheses
is acquired, and then a posterior probability over hypotheses is calculated.
Roll back the credence to before the acquisition of the evidence, and one also
loses the distributional information. There was never, in his case, a state of
belief that represented the background against which this evidence is con‐
firmatory in the way it appears to be.

Introduced like that, old evidence is not a problem for the Bayesian view
I have presented, which involves no ‘kinematic’/diachronic element. Though
I follow the Bayesian literature in talking of confirmation of hypotheses by
evidence, and use the suggestive variable ‘𝐸’, I explicitly reject the idea that
confirmation occurs when evidence is newly acquired.3 There is no sense in
which the evidence considered with respect to confirmation has to be collec‐
ted at all. Recall our discussion in §3.2; an epistemic perspective is associated
with some body of total evidence, some body of propositions (it turned out)
that are assigned probability 1 by the perspective. Nothing temporal is in‐
volved in this characterisation. Utilize an epistemic perspective including𝐸 as
evidence, and it won’t confirm anything; utilize an epistemic perspective not
including 𝐸, and it may well have confirmatory power. This is independent
of when 𝐸 is gathered, or even if it is gathered. The incremental confirmation
relation informs us of the evidential bearing of one proposition on another,
relative to an epistemic perspective; neither needs to be ‘evidence’ in a folk
or philosophical sense for this evidential bearing to obtain. Rather, 𝐸 is some
claim that might bear on 𝐻 – perhaps 𝐻 predicts it, or some rival of 𝐻 pre‐
dicts it – and we wish to evaluate its significance, relative to some perspective
embodying some appropriate principles of evidential bearing.

To do this, of course, one must make use of an epistemic perspective ac‐
cording to which there is some bearing of 𝐸 on 𝐻. Glymour’s argument cer‐
tainly emphasises that a perspective that assigns probability 1 to 𝐸 is not ap‐
propriate for this purpose. Nor for that matter is one that assigns probability

3 Here I claim illustrious precedent (Hempel 1945a: §6; Carnap 1962: 468).
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1 to 𝐻, which would then be incapable of being confirmed. Nothing in the
framework I’ve present requires us to make such inappropriate choices; but
nothing tells us which choices to make, either. So the synchronic problem of
old evidence is to give defensible guidance about which epistemic perspective
should we consider when we evaluate confirmation of hypotheses by claims
which are already in evidence for us.

One obvious candidate is clearly excluded, because it will simply rein‐
scribe the problem of old evidence. This is the proposal that we ought to
evaluate claims confirmation relative to an epistemic perspective we’ve adop‐
ted. Our theory of adoption in §3.9 guaranteed that anything in evidence for
us is assigned probability 1 by any adoptable perspective. Hence the problem
of old evidence shows that even at a fixed point in time there is no single
body of background evidence: the background evidence relevant to the ad‐
option of an epistemic perspective is the evidence possessed by the adopting
agent, which may be different than the body of evidence against which that
very same agent assessed claims of confirmation. A theory of confirmation is
quite distinct from a theory of individual belief, as Glymour (1981: 74) pointed
out; this unworkable proposal would collapse them.4

Some suggest simply removing 𝐸 from the background evidence, and eval‐
uating all confirmation claims relative to an epistemic perspective that treats
that background (mutilated, from our perspective) as its total evidence:

One answer‐and I think the correct one‐to Glymour’s nasty prob‐
lem … is to deny that when assessing support according to the
difference between Pr(𝐻 ∣ 𝐸) and Pr(𝐻), the probabilities should
be relativized to 𝐾; rather they should always be relativized to
𝐾 ⧵ {𝐸} … And why? The answer is straightforward. When you ask
yourself how much support 𝐸 gives 𝐻, you are plausibly asking
how much a knowledge of 𝐸 would increase the credibility of 𝐻,
which is the same thing as asking how much 𝐻 boosts the credib‐
ility of 𝐻 relative to what else you currently know. The ‘what else’
is just 𝐾 ⧵ {𝐸}. (Howson 1991: 548)

4 Glymour assumes that the Bayesian can only be giving a theory of individual belief, but
our theory is obviously not that, given that it needs bridge principles of some degree of
controversy to link actual credence to epistemic perspectives.



66 BAYESIAN CONFIRMATION THEORY

The proposal is an example of a more general class of counterfactual the‐
ories, those that evaluate the confirmatoriness of 𝐸 with respect to howmuch
𝐸 ‘would increase’ the credibility of 𝐻 against a counterfactual background,
what we would have known had we not known 𝐸. Howson’s approach is, in ef‐
fect, that we would have known everything but 𝐸. Howson’s suggestion seems
to give incorrect predictions about confirmation, of two sorts.

Sometimes a generalisation is confirmed by its instances (§4.5), and,
in the Baconian fashion (Bacon 1620), may only be proposed after diligent
apian collection of facts. We know that there is a point at which confirm‐
atory returns to repeated experiments must diminish to zero (Howson and
Urbach 1993: 120). In such a case, subtracting any particular instance from
background knowledge leaves many similar instances, and no confirmation
by that instance. The same is true, clearly, for every instance – so no instance
confirms. Howson seems blazé about this (1991: 550). Yet intuitively each
instance may be highly confirmatory were none of the similar instances
present, and our instincts in particular cases go with this latter observation.
In this case the counterfactual about what the Baconian would have believed
had they not believed 𝐸 seems to give us 𝐾 ⧵ {𝐸}, as Howson claims, but that
seems to be the wrong body of background evidence to use in evaluating
confirmation.

In this case, the counterfactual yields the ‘wrong’ body of background
evidence to assess confirmation. In other cases, the counterfactual yields the
right background, but the wrong epistemic perspective: it not only subtracts
𝐸 from the background knowledge, it also shifts us to an epistemic perspect‐
ive in which evaluations of the bearing of 𝐸 on 𝐻 are different. Maher gives
this example:

Mr. Schreiber is the author of novels that are popular (𝑃) though
it is important to him that he is making important contributions
to literature (𝐼). Schreiber basks in his success, taking his popular‐
ity to be evidence of the importance of his work; that is, he takes
𝑃 to confirm 𝐼. … many aspiring serious novelists whose work is
unpopular tend to rationalize their failure by supposing that the
public taste is so depraved that nothing of true value can be pop‐
ular. … if Schreiber did not know of his own work’s popularity, he
toowould share this opinion… [That is,] were he not to know𝑃, he
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would have a probability function Pr such that Pr(𝐼 ∣ 𝑃) ≤ Pr(𝐼).
(Maher 1996: 156)

What we want is something like this: a surgical modification of our cur‐
rent adopted epistemic perspective that preserves our dispositions to evaluate
the bearing of𝐸 on𝐻,5 while removing𝐸 and evidence substantially similar to
𝐸 to predict the right judgments about confirmation. That suggests the follow‐
ing proposal (Eells and Fitelson 2000: 667–69; Jeffrey 2008: 44–47; Meacham
2016: 461–62):

Ur‐Probability In an assessment of confirmation, the probability function
Pr must be such that

1. There is some ur‐probability Pr0 that does not assign unconditional
probability 1 to any proposition that confirms or disconfirms 𝐻, such
that, where 𝑉 is one’s current total evidence, Pr0(⋅ ∣ 𝑉) is an adoptable
epistemic perspective;6

2. There exists some ‘contextually determined background evidence’ 𝐵
(Meacham 2016: 462), such that 𝐵 ⊆ 𝑉 and Pr(⋅) = Pr0(⋅ ∣ 𝐵).

This proposal, unlike Howson’s, doesn’t require the determinacy of any
counterfactual claim about what attitudes we might have had supposing we
had different evidence. The relativity to background evidence ismade explicit
in a way that permits us to remove more than 𝐸 if needed; but we preserve
judgements of evidential bearing, by requiring that the ur‐probability be one
that could end up with an adoptable evidential probability.

The role of background is vital, because of another flaw in Howson’s ap‐
proach we haven’t yet noted: namely, very often, old news is no news. The
example of perihelion of Mercury is rather unusual; many pieces of evidence
have no confirmatory value at all, being so thoroughly absorbed into our per‐
spectives on the world that no context renders them as foreground. It is per‐
fectly reasonable to think that the fact that something exists, for example, is

5 Though of course those dispositions are currently not well represented by our current
conditional credences, which are trivialised because of the old evidence on which we
condition.

6 This also solves the problem of old theories; theories of which we are almost certain
cannot have their degree of support increased much even by strong evidence; but we
can still analyse this notion of ‘strong evidence’ relative to a perspective in which the
hypothesis is not highly probable.
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part of my total evidence, and forms part of the base of support for various
hypotheses I entertain. It would be very strange to think of this fact as con‐
firming any hypotheses, since no live hypothesis is incompatible with it.7 So
it is important to note that our proposal above does not require that 𝐸 ∉ 𝐵,
though obviously in many cases it will be included.

This proposal tells us that whether, and to what extent, 𝐸 confirms 𝐻 is
relative to background assumptions in twoways. First, it is relative to some as‐
sumption about evidential bearing, encoded in the prior conditional probab‐
ilities. Second, it is relative to some selection of background evidence. Neither
of these relativities collapse into one another. If the thesis of Uniqueness
is true (§3.9, Section ??), then there is only one legitimate perspective on
evidential bearing, and yet there remain many possible selections of back‐
ground evidence. On the other hand, one could accept permissivism about
what bears onwhat, and think that epistemology propermust always consider
the current total evidence in evaluating the justification of belief. The prob‐
lem of old evidence brings the second sort of relativity to background into
clear view: even at a given point in time, there is no single body of evidence
that it is pertinent to confirmation.

Can we be more specific about how context selects background evidence?
General Gricean principles governing conversation are more helpful here
than special‐purpose considerations about theory testing (Grice 1989).
Rather than multiply theoretical posits beyond necessity, I will simply
identify the background evidence with a conversational context: for example,
that of a discussion between scientists about the merits of a theory, in person,
or in the pages of the journals. (It could even be a private conversation the
individual has with themselves.) A context, for Stalnaker, comprises ‘the
body of information that is presumed, at that point, to be common to the
participants in the discourse’ (Stalnaker 1998: 98). There are a couple of ways
to think about old evidence given this. One is to note the diversity of the

7 Proponents of the so‐called ‘Fine‐Tuning Argument’ for Theism dispute this, favouring
the use of epistemic perspectives that are not certain that the universe permits life to
exist (Barnes 2020: 1225), though no such perspective is adoptable. Such perspectives
certainly exist, but their practical relevance to theory confirmation is more dubious than
proponents of FTA appear to acknowledge.
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scientific community; perhaps the scholarly community isn’t all of a uniform
opinion about the perihelion of Mercury, for example.8 In that case this old
evidence, though known to some, cannot be common ground, and hence
will not be included in the background evidence.

More interesting is a second approach. Suppose you and I are talking
about a brand new hire at our company, Jack, with whom I’ve just had an
unpleasant interaction. I ask ‘why is Jack so irritable?’, and you say, ‘He’s just
stopped smoking’. I don’t know Jack at all; it is not common ground to us that
Jack was previously a smoker. The sentence however presupposes that Jack
used to smoke – saying it is only legitimate on that assumption, so perhaps it
ought to misfire if that assumption isn’t common ground. That is does not is,
Lewis suggests, due to accommodation:

If at time 𝑡 something is said that requires presupposition 𝑃 to be
acceptable, and if 𝑃 is not presupposed just before 𝑡, then – ceteris
paribus and within certain limits – presupposition 𝑃 comes into
existence at 𝑡. (Lewis 1979: 340)

That we accommodate the conversational moves of other speakers, I con‐
tend, also makes sense of conversational contributions that force the retrac‐
tion of items in the common ground. Because the common ground is a set of
assumed propositions, any conversational contribution that expands the pos‐
sibilities under consideration can remove propositions from common ground.
This, Lewis thinks, is how the sceptical argument works. What we know is
what holds in all possibilities consistent with our evidence. If some new pos‐
sibility is raised to salience, then our evidence is revised – weakened – so
as not to exclude the new possibility. This is Lewis’ ‘Rule of Attention’ (Lewis
1996: 559): when you attend to some new possibility, you do not ignore it, and
hence do not know it not to obtain, and hence it can no longer be common
ground. This also looks like a kind of accommodation: ‘possibly, 𝑃’ presup‐
poses that ¬𝑃 is not in the common ground; if a speaker says it, we accom‐
modate their utterance by ensuring that¬𝑃 isn’t in the common ground. (The

8 Or perhaps (more likely) they aren’t all uniform in their grasp on how that piece of evid‐
ence is predicted by the theory (Garber 1983) – the derivation will be an auxiliary piece
of old evidence, though this may run up against the questions concerning omniscience
about necessities that we’ve tried to set aside in our treatment of epistemic perspectives
in §3.2.
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same is true if a speaker says 𝑃 which we had been assuming was common
ground. Stalnaker (1973: 454) says ‘it is in general required that the proposi‐
tion which is expressed by the use of a sentence in a context not be presup‐
posed in that context’; if this general requirement is imposed, to say 𝑃 de‐
mands – and automatically receives – accommodation if your conversational
partners were assuming ¬𝑃.)

These sorts of examples, I contend, might play a role in confirmation by
old evidence. Ask questions about confirmation, such as ‘is the theory of re‐
lativity supported by the evidence?’, ‘does the geological record confirm Uni‐
formitarianism?’, etc., and we trigger an accommodatory shift to a context
in which the common ground includes neither evidence nor hypothesis. If
it did, those questions would generally be trivially answerable by the ques‐
tioner already. A broadly Gricean account then says: the questioner must not
be presupposing what they are asking about, on the assumption that they are
being cooperative. And then the context shifts to accommodate the speaker’s
not presupposing 𝐸 by ensuring that ¬𝐸 becomes (again) a live possibility,
against which conversational background we can then evaluate Pr(𝐻 ∣ 𝐸) so
that it is a non‐trivial question whether it exceeds Pr(𝐻).

There is doubtless more to say about how background context selects a
relevant body of evidence against which confirmation is evaluated. But saying
it is not specifically the job of a logic of confirmation. And what has been said
suffices, I think, to fend off the challenge of old evidence.

4.3 Likelihoods and Contrastive Confirmation

Some students of the scientific method analyse the cases from §4.1 slightly
differently. They are sympathetic to the idea that probability is central to evid‐
ential support. But they are suspicious of the apparent arbitrariness that goes
into selecting a particular epistemic perspective to assign prior probabilities
to evidence and hypothesis (Royall 1997: xiii),9 and unconvinced by any of the
proposals wewill discuss later (Section 5) to allow the background evidence to
constrain that selection uniquely. However, these philosophers are impressed
with the apparent objectivity of the likelihoods that play such an important

9 The evidential probability framework ameliorates to a certain extent this charge of ‘sub‐
jectivity’: there is nothing subjective about confirmation relative to a probability model.
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role in confirmation. They want to rest their whole account of confirmation
on likelihoods, and set aside prior probabilities of evidence and hypothesis
as much as they can. Let us take a closer look at these Likelihoodists (Sober
1994; Milne 1996; Royall 1997).

A proposition 𝐸 supports𝐻 when Pr(𝐻∣𝐸)
Pr(𝐻) > 1. This might lead us to define

a contrastive notion of when some single piece of evidence favours one hypo‐
thesis over another:

Contrastive Favouring (Ratio) 𝐸 favours 𝐻 over 𝐻′ iff

Pr(𝐻 ∣ 𝐸)
Pr(𝐻) > Pr(𝐻′ ∣ 𝐸)

Pr(𝐻′) .

This definition gets the suffix ‘Ratio’ because it invokes a particular meas‐
ure of howmuch evidence supports a hypothesis that grounds the contrastive
claim; in this case, the ‘Ratio measure’ (Fitelson 2007: 478). We will return to
measures of confirmation below in §4.6.

This contrastive notion can hold even when 𝐸 doesn’t confirm 𝐻; the ra‐
tio of posterior given 𝐸 to prior for 𝐻 doesn’t exceed 1, but exceeds that for
𝐻′. For instance, tossing a die ten times and landing all ‘6’s disconfirms the
hypothesis that the die is fair, and disconfirms the hypothesis that the die
is biased towards ’1’. But in disconfirming both hypotheses, nevertheless it fa‐
vours the ‘fair’ hypothesis over the biased‐to‐’1’s hypothesis, because it doesn’t
disconfirm the former as much as it does the latter.

By Bayes’ theorem,

Pr(𝐻 ∣ 𝐸)
Pr(𝐻) = Pr(𝐸 ∣ 𝐻)

Pr(𝐸) .

So it follows from Contrastive Favouring (Ratio) that 𝐸 favours 𝐻 over 𝐻′ iff
Pr(𝐸 ∣ 𝐻) > Pr(𝐸 ∣ 𝐻′). This contrastive notion reduces to a pure comparison
of likelihoods; this is therefore a Bayesian derivation of the

Law of Likelihood Evidence 𝐸 favours hypothesis 𝐻 over hypothesis 𝐻′ iff
Pr(𝐸 ∣ 𝐻) > Pr(𝐸 ∣ 𝐻′) (Hacking 1965: 106–9; Royall 1997: 3; Gandenber‐
ger 2016: 4–5).
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Likelihoodists make this Law the central plank of their theory of confirm‐
ation. They want to set aside absolute confirmation, and indeed absolute de‐
gree of support, and corresponding questions about belief and action (Royall
1997: 4). As Milne puts it,

Confirmation concerns the support given to hypotheses by evid‐
ence. Let us suppose that two theories both entail evidence state‐
ment 𝐸 and 𝐸 is found to be true. The fact that 𝐸 is the case
is then powerless to discriminate between the two hypotheses:
both entail it so there is nothing in the nature of the evidence it‐
self that yields grounds on which to differentiate between them.
There may be any number of other reasons, such as simplicity, ex‐
planatory power, and parsimony of ontological commitments, for
preferring one to the other but 𝐸’s truth in and of itself provides
none. (Milne 1996: 22)

Our notion of the conditional degree of support𝐸 provides to𝐻, Pr(𝐻 ∣ 𝐸),
runs directly against this Likelihoodist stricture. For differences the uncondi‐
tional degree to which background evidence supports 𝐻 as against 𝐻′ can
make a difference between the support 𝐸 gives to 𝐻 and 𝐻′, even when both
entail 𝐸.

The Likelihoodist approach is only plausible if there is a firm division
between the ‘public’ and ‘better known’ likelihoods (Hawthorne 2005: 278)
and the ‘private’ unconditional degrees of support used by Bayesians. If the
priors are objectively given, the Likelihoodist ought to use them (as Likeli‐
hoodists accept: Sober (2008), p. 32). If the likelihoods are not objectively
given, then Likelihoodism doesn’t apply (or runs the risk of hypocrisy). This
second horn is a real threat. In some cases the hypothesis of interest is an
‘umbrella hypothesis’, a statistically complex mixture of hypotheses each of
which supports a precise probability distribution, but where there is no ob‐
jective weighting to determine the contribution each distribution makes to
the overall likelihood function (Gandenberger 2016: 5–6). For example, sup‐
pose our die example involved the hypotheses ‘fair’ and ‘biased’, where the
latter is the umbrella hypothesis including many types of bias. The likelihood
the hypothesis of bias assigns to a given sequence of rolls will heavily depend
on the relative contribution to that likelihood of the different likelihoods fixed
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by different biases. A sequence of all ‘1’s may be likely or unlikely on the hy‐
pothesis of bias, subject to the prior probability of the hypotheses ’biased
towards 1s’. The principled Likelihoodist should concede: talk of evidential
favouring should be avoided in such cases, regardless of how common such
cases are in scientific practice.

Focusing on statistically simple hypotheses, let’s consider how this might
work in practice.

Mammogram Mary, a woman aged 47, attends her annual mammogram.
Mary has no other symptoms, but while she is waiting for the initial
results, she worries: what if there is something abnormal on the scan?
Won’t that be evidence of cancer?

Mary has some reason to worry, but perhaps not as much as we might
antecedently think. Suppose we consider an epistemic perspective that in‐
corporates information about the error rates for mammograms for women
in Mary’s situation.10 Table table 4.1 shows some relevant aggregate statistics
about mammogram results.

Table 4.1: Aggegate test results for 1,682,504 mammograms 2007–2013 (Leh‐
man, Arao, et al. 2017: 53, table 2).

Normal
mammogram

Abnormal
mammogram Total

No cancer 1,486,553 (TN) 186,139 (FP) 1,672,692 (¬𝐶)
Cancer 1,283 (FN) 8,529 (TP) 9,812 (𝐶)
Total 1,487,836 (¬𝐴) 194,668 (𝐴) 1,682,504

The true positive rate, otherwise known as the sensitivity of a test, is the
likelihood of an abnormal mammogram given cancer. Given these statistics,

Pr(𝐴 ∣ 𝐶) = TP
TP+ FN

= 8529
9812 = 0.869.

10 The actual data is complex: there are many different screening regimes, with different er‐
ror rates, and different ways of categorising the relevant population. The following prob‐
abilities are broadly indicative.
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The true negative rate, or specificity is the likelihood of a normal mammo‐
gram given that the test subject doesn’t have cancer:

Pr(¬𝐴 ∣ ¬𝐶) = TN
TN+ FP

= 1, 486, 553
1, 672, 692 = 0.889.

Accordingly, the likelihood of an abnormal mammogram given no cancer is
Pr(𝐴 ∣ ¬𝐶) = 1–Pr(¬𝐴 ∣ ¬𝐶) = 0.111 (cf. Hendrick and Helvie 2011: W113).
These likelihoods, given the Law of Likelihood, tell us (unsurprisingly) that
an abnormalmammogram is evidence favouring cancer over no cancer (at the
time of screening). This is also in accordance with the Bayesian framework.11

Having noted that the positive test is evidence for cancer, the Likelihood‐
ist regards the job of the biostatistician as complete:

our objective as statisticians is to understand how the data should
be presented and interpreted as evidence about the risks … The
published paper presents the data, along with analyses that make
clear its evidential meaning. The readers will then use the evid‐
ence to adjust their beliefs and to help them in making decisions.
(Royall 1997: 4)

But it would be a poor idea in Mary’s case to ‘adjust her beliefs’: she ought
not adjust her beliefs about cancer – not even comparative beliefs – on receipt
of evidence about favouring. On this data, the cancer rate among all screen‐
ings is Pr(𝐶) = 9812/1, 682, 504 ≈ 0.006. This is the base rate. Bayes’ theorem
tells us that the predictive value of a positive test result is not the sensitivity
of the test, but rather the probability of cancer given an abnormal result:

Pr(𝐶 ∣ 𝐴) = Pr(𝐴 ∣ 𝐶)Pr(𝐶)
Pr(𝐴 ∣ 𝐶)Pr(𝐶) + Pr(¬𝐴 ∣ 𝐶)Pr(¬𝐶) =

0.869 ⋅ 0.006
0.869 ⋅ 0.006 + 0.111 ⋅ 0.994 ≈ 0.045.

So while we see incremental confirmation of cancer from the abnormal result,
we see that the degree to which the total evidence supports a cancer diagnosis
is very low.

11 If the partition of hypotheses is {𝐻,¬𝐻}, and 𝐸 confirms 𝐻, then 𝐸 disconfirms ¬𝐻; so in
this sort of case, 𝐸 favours𝐻 over¬𝐻 iff 𝐸 confirms𝐻 and disconfirms¬𝐻. We’ve already
seen this isn’t generally true for pairwise comparisons of hypotheses that are not jointly
exhaustive.
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This may be a problem. The Likelihoodist wants to separate questions of
what is evidence for what, from questions about individuals might respond
to the evidence. Having separated them, however, it turns out that questions
about which hypotheses are to be accepted or relied on fall on the individual
side, and aren’t the kind of thing science is in the business of evaluating.12 This
seems, tomany, tantamount to giving up on science – a science that isn’t about
recommending hypotheses for acceptance is not worth doing (Gandenberger
2016: §3):13

if confirmation doesn’t have a close connectionwith learning, that
only undermines its importance – for the main aim of scientific
inference isn’t to see what confirms what for its own sake, but to
discover what we should believe. (Eagle 2011: 215; see also Brössel
and Huber 2015: 740)

This sort of stance is clearly tempting to some Likelihoodists too; for ex‐
ample, Barnes (2020: 1225) offers a Likelihoodist version of the Fine‐Tuning
Argument for theism that concludes ‘the existence of a life‐permitting uni‐
verse strongly favours theism over naturalism’; but of course, on Likelihood‐
ist precepts, this cannot be an argument for the existence of God, but only
a claim about the comparative probabilities of the data. The posterior prob‐
ability of God’s existence could still be arbitrarily low and this Likelihoodist
conclusion be true; but in presenting this as an argument for theism, Barnes
has been tempted into an illegitimate (given Likelihoodism) claim about pos‐
terior probabilities.

Despite the gung‐ho attitude ofmy earlier self, the lack of connectionwith
belief and action cannot be decisive, given our approach to confirmation. For
if confirmation is understood as a three‐place relation, requiring the specific‐
ation of a probability model, then any connection with belief or action must

12 The Likelihoodist may not include the base rate in their account of evidential support,
but it is wholly consistent with Likelihoodism to make consideration of the base rate
mandatory in the management of belief. This contrasts with the situation in frequentist
statistical hypothesis testing (significance testing), where it has been argued that neglect
of the base rate is encouraged by the frequentist denial that probabilities can be mean‐
ingfully assigned to hypotheses, with problematic consequences (Howson 2000: 54).

13 This is also the basis for a certain kind of response to the problem of old evidence: namely,
if scientists really have already priced in the impact of 𝐸 in their present probabilities for
𝐻, then the question of confirmation is irrelevant.
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be mediated by principles about the choice of which probability model to
adopt, principles which are conspicuous by their absence, or by a plausible
but admittedly imprecise appeal to context, as in §4.2. In general, as the dis‐
cussion of the old evidence problem underscored, our framework separates
questions of overall degree of support from incremental confirmation. Both
have their place, so it is best if we needn’t choose. It is admittedly puzzling
that the Likelihoodist doesn’t mandate consideration of the base rate, even
when robust statistics are available; it may be needlessly complex to regard
that aspect of statistical analysis, treated in a uniform way by the Bayesian, as
requiring a non‐probabilistic individual epistemology to regulate belief given
likelihoods. On the other hand, whether base rate neglect is seen as a problem
will return us to the motivations for Likelihoodism, namely, the arbitrariness
of priors. That will have to await further discussion Section 5.

The mammogram example gave us another intuitive success for Bayesian
confirmation theory, and a crisp illustration of differences between it and
Likelihoodism. But more decisive objections to Likelihoodism come from
counterexamples to their predictions about evidential favouring. The Like‐
lihoodist cares about likelihoods, probabilities of evidence given theories;
they do not consider probabilities of theory given evidence. But in some
cases such probabilities appear to be independently well‐defined, without
appeal to ungrounded priors; and they seem to be able to make a difference
confirmationally.

Supposewewill draw a card fromawell‐shuffled standard deck, and adopt
a standard probability model for card draws (the example is due to Fitelson
(2007), p. 476–477). Let 𝐸 = ‘the card is a spade’, 𝐻1 = ‘the card is the ace of
spades’, and 𝐻2 = ‘the card is black’. Here the likelihood of 𝐸 on𝐻1 is maximal;
while on the other hand,𝐻2 leaves open a real possibility that 𝐸 is false: Pr(𝐸 ∣
𝐻2) = 0.5. The Law of Likelihood tells us that 𝐸 favours𝐻1 over𝐻2. But notice
that𝐸 tells us, conclusively, that𝐻2 is correct, and this probability is, given this
background probability model, as robust and determinate as the likelihoods.
Likewise, the model yields Pr(𝐻1 ∣ 𝐸) = 1/13. This is a counterexample to
Likelihoodism; 𝐸 cannot plausibly support a hypothesis it says might be false
over one it guarantees is true. (We’ll discuss this example further in §4.6.)
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The problem here isn’t distinctively Likelihoodist, since it also arises for
the Bayesian who offers an account of ‘favouring’ involving comparisons of
ratios of likelihoods:

Pr(𝐻1 ∣ 𝐸)/Pr(𝐻1) = 4 > Pr(𝐻2 ∣ 𝐸)/Pr(𝐻2) = 2.

But the Likelihoodist, unlike the Bayesian (§4.6), is locked into likelihood
comparisons as fundamental to their theory of evidence. So the existence
of cases like this, when judgments of evidential favouring provide counter‐
examples to Likelihoodist predictions, are excellent reason for moving bey‐
ond the strictures of Likelihoodism.

4.4 The Scientific Method

That Bayesian confirmation theory can reproduce judgments about eviden‐
tial support in particular cases is promising. But we also have an existing
body of principles and heuristics that together form a proto‐theory of evid‐
ential support, embedded in the practice of science. The success of science
indicates some value to these truisms comprising the ‘scientific method’, so
Bayesian accounts of evidential support are vindicated when they are able to
reconstruct and systematise ideal scientific practice. As Earman notes, ‘an ad‐
equate account of confirmation is not under obligation to give an unqualified
endorsement to all such truisms’ (Earman 1992: 77), but ideally it should ex‐
plain the success of those we should endorse. For reasons of space, our discus‐
sion here will be partial. The topic of Bayesian philosophy of science is treated
extensively elsewhere (Horwich 1982: 100–130; Earman 1992: 63–86; Howson
and Urbach 1993: 117–64; Bovens and Hartmann 2003; Schupbach 2022).14

Consider the role of refutation in scientific inference. When a theory
makes a determinate prediction (relative as always to background assump‐
tions) which is not borne out in experiment, that is often taken to decisively
undermine the prospects of that theory. For example, the simplest aether
theory of the propagation of light was decisively undermined by the outcome
of the Michelson‐Morley experiment, which did not observe the predicted

14 It is no longer correct to claim, as Glymour did in ‐Glymour (1981), that ‘There is very
little Bayesian literature about the hodgepodge of claims and notions that are usually
canonized as scientific method’.
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difference in the speed of light in perpendicular directions, while background
assumptions excluded rival aether‐preserving explanations.15 This sort of
case is central enough to scientific practice that Popper (1959) was able to
make it the centrepiece of his ‘falsificationist’ approach to theory choice
(without too much resistance from working scientists, despite falsification‐
ism as a whole looking like a mischaracterization of the aims of science).
The correctness of this judgement is supported by a Bayesian model. When
𝐻 determinately predicts 𝐸, relative to background assumptions, that is
reflected in the likelihood Pr(¬𝐸 ∣ 𝐻) = 0 (there is no prospect of 𝐸’s falsity).
In that case,

Pr(𝐻 ∣ ¬𝐸) = Pr(¬𝐸 ∣ 𝐻) Pr(𝐻)
Pr(¬𝐸) = 0.

So falsifying evidence conclusively undermines a hypothesis. The displayed
equation shows that, in general, the degree of support of a hypothesis by evid‐
ence is proportional to increasing likelihood, the limit case being where 𝐻
entails 𝐸.

There is an asymmetry here, which Popper’s viewsmaymesh with, in that
evidence a theory predicts we will not see yields conclusive disconfirmation,
while evidence a theory predicts wewill see does not yield conclusive confirm‐
ation. (𝐻 is conclusively confirmed by 𝐸 only when 𝐸 excludes ¬𝐻, relative to
background knowledge.) But in those cases where a hypothesis predicts some
proposition, so that Pr(𝐸 ∣ 𝐻) = 1, we see a degree of support of 𝐻 by 𝐸 that
is equal to Pr(𝐻)

Pr(𝐸) . Firstly, note that if we hold the prior probability of 𝐻 fixed,
the more improbable 𝐸 is, the more support it provides 𝐻. This gives us the
value of surprising evidence: other things being equal, antecedently unexpec‐
ted evidence has greater evidential impact for the hypotheses that predict it
than evidence we’d expect anyway.16

15 The role of background assumptions is vital; one can always, as the Quine‐Duhem thesis
would have it, save a theory by rejecting a background hypothesis. Relative to a fixed back‐
ground of total evidence against which a theory makes a determinate prediction, it is the
theory which is undermined. But very often the evidential background leaves open both
hypothesis and needed auxiliary assumptions. In that case the relative confirmation and
disconfirmation of theory and auxiliary will depend on the relative impact of the refuting
evidence on the posterior probability of each; it is possible to model, in a fairly robust
way, historically plausible choices of epistemic perspective that reproduce widely accep‐
ted judgments about when theories are refuted and when auxiliaries are to be rejected
(Dorling 1979; Strevens 2001), though

16 An example discussed by Jeffrey (2008: §2.3): In 1846 the French astronomer Leverrier, on
the basis of various irregularities in Uranus’ motion and Newtonian mechanics (call this
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Secondly, note that Pr(𝐻 ∣ 𝐸) = Pr(𝐻)
Pr(𝐸) entails Pr(𝐻 ∣ 𝐸) > Pr(𝐻): en‐

tailed evidence invariably confirms, just as the Entailment condition would
have it (§2.1). This prompts us to revisit Hempel’s theory, through the lens
of the Missing Bushwalker case from §2.2. Intuitions about support in that
case posed problems for Hempel’s principles of confirmation. Recall in that
case the missing bushwalker could be, with equal prospect, in any of six sec‐
tors (nw,nc,ne, sw, sc, se). Our hypotheses were that the bushwalker is in the
west, i.e., nw ∨ sw, and that he’s in the east (i.e., ne ∨ se); our evidence is that
¬nc. First note that the likelihoods Pr(¬nc ∣ w) = 1 = Pr(¬nc ∣ e), so the
evidence confirms bothw and e, as antecedent judgement suggests. But since
e is confirmed, ¬e is not confirmed:

Pr(¬e ∣ ¬nc) = Pr(¬nc ∣ ¬e)Pr(¬e)
Pr(¬nc) = 3/4 ⋅ 2/3

5/6 = 0.6.

So the Bayesian approach rejects the Consequence and Consistency Condi‐
tions. We’ll come back to Hempel’s Raven’s paradox below (§4.5).

It appears to be a methodological rule that, other things being equal, the
more diverse the sources of evidence for one’s theory, the more strongly con‐
firmed that theory is. This can be captured in this maxim: A theory which
makes predictions in a number of disparate and seemingly unconnected areas
is more confirmed by that evidence than is a theory which is confirmed by pre‐
dictions only about a narrow and circumscribed range. This maxim is also
part of the grounds for recommending random sampling in population in‐
ference. The Bayesian insight is that diverse evidence is not internally cor‐
related (Howson and Urbach 1993: 160; Steel 1996: 667–68). If, for example,
the hypothesis is that all swans are white, then swans collected from differ‐
ent countries would, if white, provide better evidence for the hypothesis than
swans collected from the same pond, as we know that if one swan on a pond is

𝐻), predicted the existence, and orbit, of a large, extra‐Uranian planet. This planet was
was subsequently found (call this 𝐸) and named ‘Neptune’. The prior credence in 𝐸 is 1

180
– the probability of choosing a point on a circle to within 1 degree (since all the planets are
found in the ecliptic, and that was the accuracy of Leverrier’s prediction). Pr(𝐸 ∣ 𝐻) ≈ 1;
so Pr(𝐻 ∣ 𝐸) ≈ 𝑃𝑟(𝐻)

𝑃𝑟(𝐸) ≈ 180⋅Pr(𝐻): a strong confirmatory boost for Newtonianmechanics.
This kind of pattern is seen also in the Babbage example from §4.1.
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white, it ismuchmore likely to be related to other swans in its pond, and those
are more likely therefore to be white. If the hypothesis is false, correlations
between diverse evidence are more coincidental than correlations between
similar evidence. (From a falsificationist perspective, diverse predictions pose
a more severe test to the proposal that our hypothesis is false.)

Again focussing on the case where hypothesis predicts evidence with
(near) certainty, if the evidence is diverse, it consists of at least two proposi‐
tions, 𝐸1 and 𝐸2, such that truth of one is not positively relevant to the truth
of the other, if the hypothesis in question is false. (If it is true, then the
evidence is all true, so correlated.) So 𝐸1 and 𝐸2 are diverse relative to 𝐻 iff
the likelihood Pr(𝐸1 ∧ 𝐸2 ∣ ¬𝐻) is low, or at least if it is not greater than the
product of the individual likelihoods Pr(𝐸1 ∣ ¬𝐻)Pr(𝐸2 ∣ ¬𝐻).

The likelihood ratio Pr(𝐸1∧𝐸2∣¬𝐻)
Pr(𝐸1∧𝐸2∣𝐻)

features in this formulation of Bayes’ the‐
orem:

Pr(𝐻 ∣ 𝐸) = Pr(𝐻)
Pr(𝐻) + Pr(𝐸1∧𝐸2∣¬𝐻)

Pr(𝐸1∧𝐸2∣𝐻)
Pr(¬𝐻)

.

If the hypothesis𝐻 predicts both 𝐸1 and 𝐸2, then the likelihood Pr(𝐸1∧𝐸2 ∣ 𝐻)
is close to one. The likelihood ratio is therefore close to Pr(𝐸1 ∧ 𝐸2 ∣ ¬𝐻).
Substitute this in:

Pr(𝐻 ∣ 𝐸1 ∧ 𝐸2) ≈
Pr(𝐻)

Pr(𝐻) + Pr(𝐸1 ∧ 𝐸2 ∣ ¬𝐻)Pr(¬𝐻)
.

But if 𝐸1 and 𝐸2 are diverse (uncorrelated) evidence, then so long as neither
is certain given ¬𝐻, this guarantees that the term Pr(𝐸1 ∧ 𝐸2 ∣ ¬𝐻) < 1, and
hence that Pr(𝐻 ∣ 𝐸1 ∧ 𝐸2) > Pr(𝐻).

Moreover, the more surprising each piece of independent evidence is, and
the more we have, the more confirmatory diverse evidence is. As we consider
additional pieces of diverse evidence,

lim
𝑖→∞

Pr(𝐸1 ∧ 𝐸2 ∧ …𝐸𝑖 ∣ ¬𝐻) = 0,

hence Pr(𝐻 ∣ 𝐸1 ∧ 𝐸2 ∧ …𝐸𝑖) tends to 1. This result requires independent
evidence; correlated evidence doesn’t have increasing confirmatory impact
the more of it one collects.

We must bear in mind as always that judgments of diversity are relative
to theoretical background:
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… the notion of variety of evidence has to be relativized to the
background assumptions 𝐾, but there is no more than good
scientific common sense here, since, for example, before the
scientific revolution the motions of the celestial bodies seemed
to belong to a different variety than the motions of terrestrial
projectiles, whereas after Newton they seem like peas in a pod.
(Earman 1992: 79)

Here is another methodological rule: other things being equal, science
prefers naturally arising theories to ad hoc ones designed to predict the same
evidence. Suppose a hypothesis, springing unbidden to the scientific mind,
entails a certain piece of evidence; and another hypothesis is then designed
tomimic the success of the first theory, entailing the evidence by construction.
An example is provided by van Fraassen:

It is part of [Newton’s] theory that there is such a thing as Ab‐
solute Space, that absolute motion is motion relative to Absolute
Space, …. He offered in addition the hypotheses (his term) that the
centre of gravity of the solar system is at rest in Absolute Space.
But as he himself noted, the appearances would be no different
if that centre were in any other state of constant relative motion.
This is the case for two reasons: differences between true motions
are not changed if we add a constant factor to all velocities; and
force is related to changes in motion (accelerations) and to mo‐
tion directly. (van Fraassen 1980: 46)

Consider Newton’s theory 𝑁, and the constructed alternative 𝑁 + �⃗�, that
the centre of gravity of the solar system has constant absolute velocity �⃗�.
These theories will make the same empirical predictions, so from the point
of view of evidence they are indistinguishable. Yet one might think, Newton’s
theory is clearly to be preferred to each of the arbitrary variants.17

17 One might think an even better theory is a neo‐Newtonian theory that does away with
absolute space altogether and yet makes the same predictions. Maybe so, but that doesn’t
alter the fact that Newton’s original theory is more supported by the evidence than its
rivals.
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This sort of case has been raised as an objection to Likelihoodism (cf.
Norton 2011: 420–22). Considering only the likelihoods of hypotheses, what
resources does the Likelihoodist have to explain our distaste for ad hoc hy‐
potheses? 𝑁 and 𝑁 + �⃗� both entail the evidence, so the likelihoods are the
same, and there the Likelihoodist account stops. To explain this methodo‐
logical preference, we cannot appeal to the likelihoods alone, but must also
appeal to the disparity in prior probability between the antecedently plaus‐
ible Newtonian theory 𝑁 and the antecedently implausible 𝑁+ �⃗�. One might
cite all sorts of explanations for why this prior disparity exists – perhaps New‐
ton’s theory is simpler, more natural, less arbitrary – but that it exists and
drives judgments of confirmation is undeniable. The Bayesian view of ad hoc
theories then is that they may have some credibility, and may be supported
by evidence, but that generally the fact that they are cooked up to preserve
the empirical predictions prompts people to assign them low probability:

people often respond immediately with incredulity, even derision,
on first hearing certain ad hoc hypotheses. … it is … likely that
they are reacting to what they see as the utter implausibility of
the hypothesis. (Howson and Urbach 1993: 158)

There is one kind of case that may trouble the Bayesian: when the ad hoc
hypothesis is cooked up to be entailed by the original hypothesis. Suppose
𝑁† is stipulated to be the theory, ‘𝑁 or the empirical appearances are just as
if 𝑁’. Any evidence 𝐸 entailed by 𝑁 is also entailed by 𝑁†; since 𝑁 entails 𝑁†,
Pr(𝑁†) ≥ Pr(𝑁). So we can’t appeal to the implausibility of ad hoc rivals to
explain our decided preference for 𝑁; if 𝑁 is probable enough to be believed,
so is 𝑁†. In this case, we might need to appeal to another broadly Gricean
principle: that our conversational contributions be as informative as they can
be, subject to other conversational norms. 𝑁 is more informative than 𝑁†.
Perhaps our preference for 𝑁 is about what we should say we believe, more
than about what is credible.

4.5 The Ravens Paradox Revisited

The role of background assumptions is also vital for the Bayesian treatment
of Hempel’s paradox of the ravens (§2.1). The paradox arises for hypothetical‐
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deductive confirmation due to its commitment to the Equivalence Condition,
Nicod’s Condition, and the judgment that a non‐𝐹, non‐𝐺 doesn’t incre‐
mentally confirm the hypothesis that all 𝐹s are 𝐺s. Clearly the Bayesian will
accept the Equivalence Condition; evidential support relates propositions,
given an epistemic perspective, and logically equivalent propositions are
identical. Existing counterexamples, such as the Yorkshire grasshopper, show
that Nicod’s Condition isn’t invariably correct. But we cannot conclude that
instances never confirm generalisations; that would be overkill as a response
to the paradox. The Bayesian has an account here; indeed, they have two. For
there is an account of the circumstances under which Nicod’s Condition fails;
and there is an account of how to dissolve the paradox, even when Nicod’s
Condition applies.

How does the Bayesian account for the failures of Nicod’s Condition? By
appeal to background knowledge. Recall Good’s (1967: 322) example from§2.4
of the two worlds, one with relatively few crows, all of which are black, versus
the other with many crows, one of which is white. Suppose our background
evidence is symmetrical between the two possible worlds, so we adopt an epi‐
stemic perspective in which Pr(𝐻) = 0.5. The evidence 𝐸 is that a black crow
is selected at random: Pr(𝐸 ∣ 𝐻) = 100

1,000,100 ≈ 0.0001, while Pr(𝐸 ∣ ¬𝐻) =
1000

1,001,001 ≈ 0.001.18 Hence Pr(𝐸) ≈ 0.5 ⋅ 0.0001 + 0.5 ⋅ 0.001 ≈ 0.00055, and
Pr(𝐻 ∣ 𝐸) ≈ 0.009 < Pr(𝐻). So we see evidence that disconfirms the hypo‐
thesis evenwhile being an instance of it. This example is rather confected, but
more realistic examples with the same structure are available. Suppose a epi‐
demiologist is thinking about a virulent illness, endemic overseas, which they
are worrying may have begun to take root in their community. The scenarios
they are considering are two: there is no reservoir of disease in their com‐
munity, and there is a significant hitherto‐undiagnosed population of posit‐
ive cases. They get word of a positive case recently diagnosed, an instance of
the generalisation ‘all cases of the disease have been identified’. But of course
this positive case is conclusive evidence that the disease is in the community,
and hence conclusive evidence against the truth of the generalization.

The counterexamples to Nicod’s condition have the distinctive feature

18 Here notice we must use the total evidence acquired; the evidence is not merely that
there is a black raven, but that a black raven was the result of a random selection – it is
clearly that latter aspect of the evidence that renders it so unlikely in the world where
the generalization is true.
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that encountering certain instances of the generalization indicates its fals‐
ity, relative to background knowledge. In many cases, however, whether we
encounter an 𝐹 is independent of any generalization about the qualities of
𝐹s. Consider such a case (Howson and Urbach 1993: 127; see also Hosiasson‐
Lindenbaum 1940; Earman 1992: 72). Let the proposition that an entity 𝑎 is
encountered be part of the background knowledge, and then let 𝑅 be the
proposition ‘𝑎 is a raven’, and 𝐵 the proposition ‘𝑎 is black’. That a black
raven is encountered is then 𝑅∧𝐵, a non‐black, non‐raven encountered being
¬𝐵 ∧ ¬𝑅. Let 𝐴 be the hypothesis ‘all ravens are black’. 𝑅 ∧ 𝐵 confirms 𝐴 iff
Pr(𝐴 ∣ 𝑅 ∧ 𝐵)/Pr(𝐴) > 1.

Rearranging an instance of Bayes’ theorem gives us

Pr(𝐴 ∣ 𝑅 ∧ 𝐵)
Pr(𝐴) = Pr(𝑅 ∧ 𝐵 ∣ 𝐴)

Pr(𝑅 ∧ 𝐵) .

If all ravens are black, then 𝑎’s being a raven guarantees it to be black: so
Pr(𝐵 ∣ 𝐴 ∧ 𝑅) = 1. Hence Pr(𝑅 ∧ 𝐵 ∣ 𝐴) = Pr(𝑅 ∣ 𝐴); and the independence of
encountering a raven from the hypotheses about the characteristics of ravens
entails that Pr(𝑅 ∣ 𝐴) = Pr(𝑅). So

Pr(𝐴 ∣ 𝑅 ∧ 𝐵)
Pr(𝐴) = Pr(𝑅)

Pr(𝑅 ∧ 𝐵) .

Similar reasoning will show that

Pr(𝐴 ∣ ¬𝐵 ∧ ¬𝑅)
Pr(𝐴) = Pr(¬𝐵)

Pr(¬𝐵 ∧ ¬𝑅) .

Turning our attention to the probability of the evidence, suppose we have
various hypotheses about the proportion of ravens that are black. Let 𝐹𝑖 state
that the frequency of black things among the ravens is 100𝑖%; thus 𝐴 = 𝐹1.
The probability, given one has encountered something, that it is a black raven
is the probability of encountering a raven, multiplied by the probability that
the raven is a black one: Pr(𝑅)Pr(𝐵 ∣ 𝑅). Given we don’t know the frequency
of black ravens among ravens, we use our background distribution over 𝐹𝑖
to calculate Pr(𝐵 ∣ 𝑅) = ∑𝑖 Pr(𝐵 ∣ 𝐹𝑖 ∧ 𝑅)Pr(𝐹𝑖 ∣ 𝑅). In normal cases, 𝑅 is
admissible evidence for the frequency hypothesis 𝐹𝑖. So Pr(𝐹𝑖 ∣ 𝑅) = Pr(𝐹𝑖).
And Pr(𝐵 ∣ 𝐹𝑖 ∧ 𝑅) = 𝑖; this is an instance of the Principal Principle (§3.9).
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Putting that all together:

Pr(𝐴 ∣ 𝑅 ∧ 𝐵)
Pr(𝐴) = Pr(𝑅)

Pr(𝑅)Pr(𝐵 ∣ 𝑅) =
1

Pr(𝐵 ∣ 𝑅) =
1

∑𝑖 𝑖 Pr(𝐹𝑖)
.

Similar reasoning gets us to this:

Pr(𝐴 ∣ ¬𝐵 ∧ ¬𝑅)
Pr(𝐴) = Pr(¬𝐵)

Pr(¬𝐵)Pr(¬𝑅 ∣ ¬𝐵) =
1

Pr(¬𝑅 ∣ ¬𝐵) .

But in this case we don’t need to consider chance hypotheses about the fre‐
quency of non‐ravens among the non‐black things, because our background
evidence includes that the number of non‐black things is vastly more than
the number of ravens, so almost all non‐black things aren’t ravens: Pr(¬𝑅 ∣
¬𝐵) = 1− 𝜖, hence Pr(𝐴 ∣ ¬𝐵 ∧¬𝑅) ⪆ Pr(𝐴). So we might get a tiny improve‐
ment in the degree of support for 𝐴 given a non‐black, non‐raven over the
unaugmented background information.

The same is not true for the observation of a black raven. There the im‐
provement of the prospects of 𝐴 depends on the distribution over the chance
hypotheses 𝐹𝑖. Suppose we have a roughmodel, assigning equal probability of
0.25 to each of 𝐹0, 𝐹1/3, 𝐹2/3, 𝐹1. Then ∑𝑖 𝑖 Pr(𝐹𝑖) = 0.5, and hence Pr(𝐴 ∣ 𝑅∧𝐵)
is significantly greater than Pr(𝐴). (This is representative for any epistemic
perspective that assigns a uniform prior to each of the hypotheses about fre‐
quency.) That is because we antecedently gave significant credence to hypo‐
theses stating the proportion of black ravens among the ravens is low, and
an encounter with a black raven was significantly in tension with those hypo‐
theses. On the other hand, had background knowledge already indicated the
proportion of black ravens was high, the confirmatory impact of the evidence
would have been less.

4.6 Measuring Confirmation

Howson and Urbach (1993) summarise as follows:

the fact that𝑅∧𝐵 and¬𝐵∧¬𝑅 both confirm a hypothesis does not
imply that they do so with equal force. Once it is recognised that
confirmation is a matter of degree, the conclusion [of Hempel’s
paradox] is no longer so counterintuitive, because it is compatible
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with ¬𝐵 ∧ ¬𝑅 confirming ‘All 𝑅s are 𝐵s’, but to a minuscule and
negligible degree. (Howson and Urbach 1993: 127)

Here they suggest that part of the explanation for the judgments in the
ravens paradox is a confusion between no confirmation and negligible con‐
firmation. But that explanation invokes a notion of degree of confirmation
that is as yet unanalysed. Degree of support of a hypothesis, relative to back‐
ground evidence, we have an analysis of – that is just Pr(𝐻) – but degree of
confirmation is a distinct notion, a measure of how much incremental con‐
firmation 𝐸 provides to 𝐻 over the background evidence.19

Howson and Urbach note that when Pr(𝐻 ∣ 𝐸) ≈ Pr(𝐻) there is little
confirmation of 𝐻 by 𝐸, while when Pr(𝐻 ∣ 𝐸) ≫ Pr(𝐻) there is significant
confirmation. This is most naturally understood by appeal to the Ratio ac‐
count of degree of confirmation (§4.3). On that view, 𝐸 confirms 𝐻 to the
degree to which the ratio of posterior to prior exceeds 1. Often the logarithm
of this ratio is taken, giving us:

Log‐Ratio The log‐ratio measure is defined as 𝑟(𝐻, 𝐸) ≝ log Pr(𝐻∣𝐸)
Pr(𝐻) .20

The Log‐Ratio analysis says that, where 𝔠(𝐻, 𝐸)measures the degree of
confirmation, 𝔠(𝐻, 𝐸) = 𝑟(𝐻, 𝐸) (Horwich 1982: 57;Milne 1996; Eells and
Fitelson 2002: 131).

The Log‐Ratio analysis of evidential favouring entails Contrastive Favour‐
ing (Ratio), encountered in §4.3, and hence entails the Law of likelihood.
Accordingly, in Fitelson’s (2007: 476–77) ‘ace of spades’ example (§4.3), the
log‐ratio measure entails that 𝔠(ace of spades, spade) > 𝔠(black, spade), yet it
would not be plausible to say that the proposition that a card is a spade is
both more conclusive evidence that the card is black than that it is the ace of
spades, while also being more negligible in its support. In general, the follow‐

19 This is why direct comparison of degrees of support – e.g., the proposal that 𝐸 favours 𝐻
over 𝐻′ if and only if Pr(𝐻 ∣ 𝐸) > 𝑃𝑟(𝐻′ ∣ 𝐸) – is not a good measure of confirmation.
That comparison is also about background evidence and may not be represent the incre‐
mental confirmation contributed by 𝐸. Again the difference between degree of support
and degree of confirmation is pertinent. We can accept this principle however: that if
Pr(𝐻 ∣ 𝐸) > Pr(𝐻′ ∣ 𝐸) then the total evidence, including 𝐸, favours 𝐻 over 𝐻′.

20 If Pr(𝐻 ∣ 𝐸) > Pr(𝐻), i.e., 𝐸 confirms𝐻, 𝑟(𝐻, 𝐸) is positive; if Pr(𝐻 ∣ 𝐸) < Pr(𝐻), 𝑟(𝐻, 𝐸) is
negative; and 𝑟(𝐻, 𝐸) = 0when𝐻 and 𝐸 are independent. Since 𝑥 > 𝑦 iff log(𝑥) > log(𝑦),
this won’t change any rankings of comparative confirmation.
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ing result holds (Eells and Fitelson 2002: 139):

𝑟(𝐻, 𝐸) = log
Pr(𝐻 ∣ 𝐸)
Pr(𝐻)

= log log
Pr(𝐸 ∣ 𝐻)
Pr(𝐸)

= 𝑟(𝐸, 𝐻).

But, as the cards example shows, the degree to which 𝐸 supports 𝐻 is not al‐
ways the degree to which 𝐻 to supports 𝐸 – that a card is a spade appears to
supports its being black conclusively, while it’s being black doesn’t conclus‐
ively support its being a spade. The Log‐Ratio measure is symmetric; it ought
not be, i.e., in general, 𝔠(𝐻, 𝐸) ≠ 𝔠(𝐸, 𝐻).

If other measures of confirmation gave equally poor verdicts, in this case
or others, then perhaps we could learn to live with this counterexample. But
we do not need to. There are a number of other measures that have been pro‐
posed.We will consider the twomost prominent after the Log‐Ratio measure.

Difference The differencemeasure is defined as 𝑑(𝐻, 𝐸) ≝ Pr(𝐻 ∣ 𝐸)−Pr(𝐻).
The Difference analysis says that 𝔠(𝐻, 𝐸) = 𝑑(𝐻, 𝐸). (Earman 1992: 64;
Jeffrey 1992: 72; Eells and Fitelson 2002: 131)

Log‐Likelihood The log‐likelihood measure is defined as 𝑙(𝐻, 𝐸) ≝
log Pr(𝐸∣𝐻)

Pr(𝐸∣¬𝐻) .
The Log‐Likelihood analysis says that 𝔠(𝐻, 𝐸) = 𝑙(𝐻, 𝐸). (Fitelson 1999,
2007; Eells and Fitelson 2002: 131).

These measures both are, like 𝑟, positive when 𝐸 confirms 𝐻, zero in
cases of independence, and negative in cases of 𝐸 disconfirming 𝐻. Note that
neither of these measures is symmetric (Eells and Fitelson 2002: 138, 140);
they have some prospect, unlike 𝑟, of being an analysis of 𝔠.

Similar examples to those which spelled trouble for the ratiomeasure also
trouble the difference measure, however. Suppose the evidence is that a heart
is drawn from a well‐shuffled deck, and we are considering the hypotheses
that the card drawn is not a club, and that it is a heart but not a face card.
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Here are the relevant probabilities:

Pr(not‐club) = 3/4 Pr(non‐face‐heart) = 10/52
Pr(not‐club ∣ heart) = 1 Pr(non‐face‐heart ∣ heart) = 10/13
𝑑(not‐club,heart) = 1/4 𝑑(non‐face‐heart,heart) = 30/52

Here it is clear that while the evidence of a heart card conclusively entails the
hypothesis that it is not a club, the high prior probability limits the degree
of confirmation. That same evidence also supports the hypothesis that it is a
numbered heart, though not conclusively. Here, though, the low prior prob‐
ability allows a much greater boost in absolute support, which is reflected in
the difference measure. Intuitively, this is the wrong result: how can an in‐
conclusive piece of evidence support a hypothesis to a greater degree than a
conclusive piece of evidence?

The Log‐Likelihood involves these probabilities:

Pr(heart ∣ not‐club) = 1/3 Pr(heart ∣ non‐face‐heart) = 1
Pr(heart ∣ club) < 𝜖 Pr(heart ∣ ¬non‐face‐heart) = 3/42

𝑙(not‐club,heart) > log( 13𝜖 ) 𝑑(non‐face‐heart,heart) = log(42/3) ≈ 2.64

Here we fudge slightly to avoid division by zero; we cannot assign a single
degree of confirmation to the case of conclusive evidence for a hypothesis,
but we do know that as 𝜖 tends to zero, the degree of confirmation tends
to infinity, i.e., maximal degree of confirmation.21 So 𝑙 accords better with
antecedent judgment here than 𝑑.

The debate, as over any ‘conceptual analysis’, rumbles on (Crupi 2021). In
this case, with no unique best satisfier of ‘intuitive’ desiderata, a pluralist atti‐
tudemight suggest itself. All measures agree on the qualitative fact ofwhether
𝐸 confirms 𝐻, differing only on the question how much?. But what turns on
this question? What ultimately matters for belief and action is how much
the total evidence from some epistemic perspective we have adopted sup‐
ports a hypothesis. Incremental confirmation matters because a confirmed
theory will be more overall supported by the evidence, and the successes

21 For this reason another measure due to Kemeny and Oppenheim (1952) is sometimes
suggested that delivers the same ranking as 𝑙 but is well‐defined in such cases.



MEASURING CONFIRMATION 89

of the Bayesian in accounting for scientific maxims depend on that notion.
But it is harder to identify scientific maxims that require a very precisely spe‐
cified measure of confirmation. In most concrete cases, the existence of some
plausible measure that delivers an acceptable verdict is taken as sufficient to
vindicate a Bayesian approach. The plurality of measures would then reflect
the plurality of our interests in quantifying confirmation; e.g., sometimes we
care about the absolute size of increases, in which case 𝑑 is a useful measure;
sometimes about relative size, in which case 𝑙might do better.22 This isn’t like
the Church‐Turing thesis, where radically different attempts to characterise
a pre‐theoretical notion of computability ended up converging on the same
class of computable functions. That example is highly unrepresentative of
the process of explication. Most philosophically interesting notions turn out
upon precisification to splinter into finely distinguished but broadly overlap‐
ping notions,23 and it is hardly to be suspected that measures of incremental
confirmation will be different.

In any case, ourmotivationwas to try andmodel the suggestion that while
a white shoe might confirm the hypothesis that all ravens are black to some
extent, it won’t be as much as a black raven would. Our discussion in §4.5
gave us that Pr(𝐴 ∣ ¬𝐵 ∧ ¬𝑅) ⪆ Pr(𝐴), so on the Difference measure we
get immediately that 𝑑(𝐴, (¬𝐵 ∧ ¬𝑅)) ⪆ 0. Our toy example in that same
discussion gave us that Pr(𝐴 ∣ 𝑅 ∧ 𝐵) = 2Pr(𝐴), so that 𝑑(𝐴, 𝑅 ∧ 𝐵) > Pr(𝐴).
Given some non‐negligible prior probability for 𝐴, this will entail that 𝑑(𝐴, 𝑅∧
𝐵) > 𝑑(𝐴, (¬𝐵 ∧ ¬𝑅)).

A similar exercise for the Log‐Likelihood measure gives the same verdict.
The probability calculus gives us:

Pr(¬𝐵 ∧ ¬𝑅 ∣ 𝐴) = Pr(¬𝑅|¬𝐵 ∧ 𝐴)Pr(¬𝐵 ∣ 𝐴) = Pr(¬𝐵 ∣ 𝐴) ≈ Pr(¬𝐵).

22 Some have argued against 𝑑 on these grounds, because a large increase in relative risk;
e.g., a thousand‐fold increase in cancer risk after radiation exposure) might be associated
with a very low value of 𝑑(cancer, radiation) (Schlesinger 1995; Zalabardo 2009). It is
actually by no means clear that the pre‐theoretical judgments about confirmation we are
attempting to systematize are at variance with this result.

23 Access consciousness and phenomenal consciousness; control versus ultimate/proximate
sourcehood notions of free will; etc.
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But if 𝐴 is false, there is a tiny chance of encountering a raven given one en‐
countered a non‐black thing, so Pr(¬𝑅 ∣ ¬𝐵 ∧ ¬𝐴) > 0. Hence Pr(¬𝐵 ∧ ¬𝑅 ∣
¬𝐴) < Pr(¬𝐵 ∣ ¬𝐴) ≈ Pr(¬𝐵). Hence 𝑙(𝐴, (¬𝐵 ∧ ¬𝑅)) ⪆ 0.

Repeating the exercise for the evidence of a black raven gives:

Pr(𝑅 ∧ 𝐵 ∣ 𝐴) = Pr(𝐵|𝑅 ∧ 𝐴)Pr(𝑅 ∣ 𝐴) = Pr(𝑅 ∣ 𝐴) ≈ Pr(𝑅).

But nowPr(𝐵 ∣ 𝑅∧¬𝐴) isn’t necessarily close to 1; it might be quite significant,
depending on what hypotheses about the proportion of ravens that are black
remain live and what their priors are. So given Pr(𝑅 ∣ ¬𝐴) ≈ Pr(𝑅),

Pr(𝑅 ∧ 𝐵 ∣ ¬𝐴) = Pr(𝐵|𝑅 ∧ ¬𝐴)Pr(𝑅 ∣ ¬𝐴) ≪ Pr(𝑅).

Hence 𝑙(𝐴, 𝑅 ∧ 𝐵) can be significantly different from zero (again, depending
on how antecedently supported the hypothesis that all ravens are black was),
and so 𝑙(𝐴, 𝑅 ∧ 𝐵) > 𝑙(𝐴, (¬𝐵 ∧ ¬𝑅)).24

4.7 Inductive Logic and Inductive Framework

The best place to finish our positive Bayesian story is where we began: with
induction. Inductive inference was understood as covering all species of in‐
ference to the best explanation, including inverse inference from a sample to
a population, or to a subsequent sample (§1.2). The synchronic aspect of this,
the part that could be the subject of inductive logic, is to articulate constraints
that explanation places on rational epistemic perspectives. (We emphasise
the ‘best explanation’ part of ‘inference to the best explanation’.) Induction
is vindicated to the extent that a body of evidence supports the best explana‐
tion of that evidence. In Bayesian terms, broadly speaking, we accommodate
induction by showing that when 𝐻 explains 𝐸, that 𝐸 confirms 𝐻; and that
when 𝐻 is the best explanation of 𝐸, 𝐻 is probable in light of a body of total
evidence including 𝐸.

One standard view of explanation is that an explanation shows how an
otherwise puzzling event is to be accommodated and made comprehensible
within a broader framework. Van Fraassen (1980: ch. 6) suggests that explan‐

24 A full Bayesian treatment of this paradox, exploring just how weak the needed assump‐
tions can be, is given by Fitelson and Hawthorne (2010).
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ations are proffered as answers to ‘why’‐questions; to explain an event is to
provide relevant information about the origins of or participants in event, rel‐
ative to the background presuppositions of the questioner. Very often, though
perhaps not invariably, this will take the form of ‘information about its causal
history’ (Lewis 1986b: 217). So to explain why the vase broke could involve cit‐
ing a cause of the vase breaking, such as its being dropped. Yet a question
coming from a different background might demand a different answer. Sup‐
pose our request for explanation takes this form: ‘Yes, I know it was dropped,
but why did it break?’); in that case the request for explanation might be sat‐
isfied by providing information about the fragility of the vase. This is still
information about the causal history.

Very often, causal relations are manifest in relations of statistical depend‐
ence. When 𝐶 is a body of information about causes, and 𝐸 some effect of
those causes, very often Pr(𝐸 ∣ 𝐶) > Pr(𝐸).25 The broken vase is more prob‐
able given it was dropped than otherwise. The background is involved in
selecting a pertinent probability function: it is more probable that the vase
breaks given it was fragile and dropped, than that it is dropped alone, given
a background that does not build in the fragility of the vase. Putting this to‐
gether: very often, to explain an event is to offer information, relative to a
background body of evidence, such that the likelihood of the event given the
information is greater than its prior probability:

where the hypotheses are specific, a hypothesis, 𝐻, explains the
data better than 𝐻′, if true, just when 𝐻 would make the data
more expected than 𝐻′. In judging which hypothesis renders the
data most understandable, we consider nothing more than which
hypothesis renders it most expected. (Henderson 2014: 700)

A theory is explanatory to the extent that it encapsulates such informa‐
tion, so that – very often – 𝐻 explains 𝐸 just when it renders 𝐸 more likely
than otherwise, Pr(𝐸 ∣ 𝐻) > Pr(𝐸). An elementary application of Bayes’ the‐
orem then entails:

Bayesian Explanation When 𝐻 explains 𝐸 by making it more likely than
otherwise, relative to some background evidence and conception of

25 Causation is not quite perfectly manifest in statistical dependence, since there may be
causes that do not raise the probability of their effects (Rosen 1978; Glynn 2010: 349–53).
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evidential relevance, then 𝐸 confirms 𝐻: if Pr(𝐸 ∣ 𝐻) > Pr(𝐸), then
Pr(𝐻 ∣ 𝐸) > Pr(𝐻).

Recall an example from §1.2. The Channeled Scablands of western Wash‐
ington state is a complex landscape of braided channels, exhibiting the char‐
acteristics seen in microcosm in dry gorges incised into harder rock, such
as potholes, gravel bars, and scoured deep grooves. Bretz hypothesised that
this landscape was indeed the effect of a cataclysmic flood, in which debris‐
laden water was discharged on such a vast scale that an existing dissected
plateau was filled beyond the capacity of its existing drainage, so that water
spilled over the top of the plateau, erased the existing topsoil, and carved
branching and reuniting channels into the bedrock (Baker 2009: 402–3). The
hypothesis certainlymakes the evidencemore probable than otherwise: given
attested geological mechanisms as the background assumptions, a gigantic
flood would produce just what is seen at landscape scale.

Nevertheless, Bretz’ hypothesis took many years to gain acceptance,
despite its explanatory merits, because the source of such an extraordinary
volume of water was unknown. Subsequent evidence of an ice sheet intrud‐
ing into Idaho suggested the existence of a lake formed behind an ice dam,
containing 2100 km3 of water and covering much of western Montana – it is
the collapse of the ice dam and the subsequent evacuation of the whole of
this dam in an estimated 48 hours, carving out more than 210 km3 of soil and
leaving behind the Channeled Scablands. It was only after the background
evidence provided a remotely plausible source for the required water that
Bretz’ hypothesis was adopted. So part of what made it ultimately the best
explanation was not only its explanation of the data, but its prior plausibility.
As before, likelihoods alone do not suffice. To generalize

Bayesian IBE 𝐻 is the best explanation of the data 𝐸 when (i) 𝐻 explains
𝐸, Pr(𝐻 ∣ 𝐸) > Pr(𝐸), and (ii) 𝐻 is most probable among competing
explanations.

Bayesian inference to the best explanation also shows the limits of IBE.
For it is quite possible for 𝐻 to be the best explanation of 𝐸 and for some rival
to be far more credible, antecedently. A theory may exhibit many explanatory
virtues, such as simplicity, elegance, deployment of familiar mechanisms that
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enable it to generate understanding, etc.26, and yet not be probable: ‘explan‐
atory goodness, whatever it is, looks to be at least somewhat independent
of prior conditional [probability]’ (Weisberg 2009: 130). Moreover, it may be
quite rational to have attitudes that mirror this perspective. In the absence of
information favouring the enormous glacial lake, most geologists were sure
that (i) Bretz’ catastrophic flood hypothesis was an excellent explanation of
the data, and (ii) that less unified, ragged, and unfamiliar hypotheses were to
be preferred.27

What we want, of course, is a story that explains the rationality of both
parties. Bretz was open to the existence of a gigantic flood, compelled by the
field evidence that seemed to demand it. For him, we may suppose, what was
vivid is just how low Pr(𝐸 ∣ ¬𝐻) was, which ensured that relative to his back‐
ground evidence, Pr(𝐻 ∣ 𝐸) was sufficiently high for overall credibility. The
rival view involved a different perspective, Pr′, such that Pr′(𝐻) was so low
that Pr′(𝐻 ∣ 𝐸) could still not suffice for credibility. This difference in back‐
ground perspective might accommodate the joint rationality of everyone in‐
volved at the earlier stages, though perhaps even Pr′(𝐻 ∣ 𝐸∧𝐿) should be high,
where 𝐿 is the evidence favouring the glacial lake. If ‘inference to the best
explanation’ is understood to involve inference based on explanatory consid‐
erations divorced from prior credibility and background knowledge, then it
is lucky that Bayesian cannot reconstruct IBE in that sense.28 But very often,
explanatory factors are correlated with the likelihoods of evidence given hy‐
potheses (Henderson 2014: 709), and thus the Bayesian offers an explication
of the merits of IBE, when it has merit.

The Bayesian reconstruction of inference to the best explanation is a key
part of the Bayesian account of induction, alongside the more particular max‐

26 All those features contributing to what Lipton (2004: 59) calls ‘loveliness’.
27 Largely because these alternatives were taken to be consistent with Uniformitarianism

while a catastrophic flood was exactly the kind of diluvial hypotheses Uniformitarianism
was taken to exclude – though, of course, nothing Bretz posited was unattested, except
in scale.

28 Van Fraassen offers another Bayesian argument against IBE (1989: 166), construed as an
inference that boosts the posterior credibility of explanatory hypotheses over and above
the extent to which the evidence favours them; so‐construed, what we’ve been discuss‐
ing is not IBE, and luckily so, since the rule van Fraassen is discussing seems manifestly
irrational if truth is what is sought.
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ims of inductive methodology discussed earlier (§§4.1, 4.3, 4.4, 4.5). The role
of background assumptions has been a constant refrain. And this is just as it
should be. The upshot of our earlier discussion of Hume’s problem of induc‐
tion in §2.4 was that we needed to give a theory of the relation ‘𝐸 supports 𝐻
relative to standards 𝑆’, of which we’ve given a Bayesian account.

We can sharpen this point. Let’s consider a highly abstracted but quite
general representation of ‘classic’ inductive inferences. A possible world is
an infinite binary sequence of outcomes (like the results of successive coin
tosses); the correct theory of a given world is simply identified with the the‐
ory that predicts each outcome (it needn’t have more ‘abstract’ theoretical
structure); hence the space of possibilities is given by the set of all such se‐
quences. A broadly Bayesian theory of inductive evidential support assigns
probabilities to hypotheses based on initial subsequences; it is a classic case
of inverse inference from a sample to a population. Some Bayesian results can
be established that seem to vindicate induction. Suppose 𝐻𝑖 is the sequence
that𝐻 predicts for the initial 𝑖 outcomes. Thus𝐻 = 𝐻∞, and for each 𝑖,𝐻 ⊨ 𝐻𝑖.
It can be shown that, so long as Pr(𝐻) > 0,

lim
𝑖→∞

Pr(𝐻𝑖+1 ∣ 𝐻𝑖) = 1.

That is, the probability of the correct hypothesis tends to 1 as more outcomes
conformable with it accumulate (Howson 2000: 72). This looks like a sub‐
stantive vindication of ampliative inference.

The first limitation to note is that the requirement that Pr(𝐻) > 0, which
may look innocuous, is extremely substantive. This space of hypotheses is the
Cantor space, the set of all infinite binary sequences; that space is uncount‐
able. If each hypothesis were given equal probability, as under the standard
Lebesgue measure, each hypothesis would have prior probability zero, and
the result would apply to none of them. If some hypothesis is eventually to
be maximally supported by the total evidence, it must be assigned some ini‐
tial positive probability – indeed, there must be an at most countably many
hypotheses assigned positive probability.29 So almost all possible hypotheses
about the sequence of outcomes need to be excluded ab initio. Of course one

29 While one can assign positive (real‐valued) probability to each member of a countable
set of mutually exclusive hypotheses, one cannot do so for an uncountable set.
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might unlucky enough to assign probability 0 to the true hypothesis, in which
case after finitely many data points all the live hypotheses will have been re‐
futed. At that point onemust simply restart with a new hypotheses space, the
set of all infinite binary sequences which begin with the previously observed
data. That is still an uncountable space (it simply involves pre‐pending the ob‐
served data to each element of the Cantor space), and subject to the samewor‐
ries. So the choice of epistemic perspective already has to make substantive
assumptions about which possible hypotheses to consider ‘live’; assumptions
which are required before confirmation can occur, and even in the presence
of observed data, are not fixed by that data.

Secondly, the result tells us nothing about the speed of convergence. Even‐
tually, every rival hypotheses is eliminated by some data point. But after any
finite time, the data points eliminating incorrect hypotheses may be arbitrar‐
ily far away. So to ensure robust inductive support of the correct hypothesis,
we shall have to make the further substantive assumption that the data we
have so far are a representative sample of the whole population. That assump‐
tion seems a priori quite strong; an infinite population in which after a certain
point no𝐹s are𝐺 can nevertheless beginwith arbitrarilymany initial𝐹s which
are 𝐺s; hypotheses of that sort simply have to be excluded by fiat.30 Indeed,
whatever we do, we shall need to make some assumptions about what sort of
overall hypotheses are supported by an given initial sequence of the data. For
example, how quickly should we ‘learn from experience’? How many 1s in a
row in the initial data should it take us to become more confident than not
that all the outcomeswill be 1s?How inclinedwe are to judge that the tempor‐
ally initial conditions might well be unrepresentative of the whole sequence
of outcomes – noting for example that in the actual world, the early universe
is very unlike the universe over most of time, we might be hesitant to draw
any conclusions from the early data — that of course requires some judg‐
ment about when the data stops being early.31 These kinds of assumptions

30 For Hume (1777: ¶4.19), the principle of the uniformity of nature is supported by ‘prob‐
able arguments’, which themselves rest on some sort of representativeness‐of‐the‐past
assumption; otherwise it would be quite possible for premises to have been accompan‐
ied by conclusions with high frequency and to cease to be associated at all henceforth.

31 Compare also hypotheses about pandemic spread: we should expect those who get the
disease early to be systematically different from more cautious individuals who delay
infection, in a way that cannot be judged without assumptions about the relative propor‐
tions of these individuals in the population.
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are most readily understood as constraints on conditional probabilities: what
distribution over hypotheses does a given piece of evidence license? These ex‐
amples show that the Bayesian not only invokes prior probabilities, but may
well invoke conditional probabilities too that need not not by uniquely con‐
strained.32

Any actionable inductive practice must unavoidably involve some prior
assumptions; a third relatum of the evidential support relation, an epistemic
perspective encoding both antecedent judgments of hypothesis plausibility
and prior conditional judgments of evidential relevance. A virtue of the
Bayesian account I’ve developed is that it makes these assumptions explicit
in the evidential probability model of epistemic perspectives.

A challenge sometimes posed is that this explicit invocation of a probabil‐
ity model shows that we don’t really have a theory of evidential support after
all – that we have only an ‘inductive framework’, rather than an ‘inductive
logic’ that guides scientific argument:

particular inferences can almost always be brought into accord
with the Bayesian scheme by assigning degrees of belief more or
less ad hoc, but we learn nothing from this agreement. What we
want is an explanation of scientific argument; what the Bayesians
give us is a theory of learning, indeed a theory of personal learning.
But arguments are more or Jess impersonal; I make an argument
to persuade anyone informed of the premisses, and in doing so I
am not reporting any bit of autobiography. … Alternatively, and
more hopefully, Bayesians may suggest that we give arguments ex‐
actly because there are general principles restricting belief, prin‐
ciples that are widely subscribed to, and in giving arguments we
are attempting to show that, supposing our audience has certain
beliefs, they must in view of these principles have other beliefs,

32 Of course Bayes theorem shows these are not independent of one another; especially
in this case where all the likelihoods are trivial, the conditional probabilities are fixed
by the prior probabilities. But all that shows is that, even given a prior distribution over
hypotheses, the dispositions to respond to evidence in certain ways will fix the prior prob‐
abilities of evidence, rather than taking the latter to somehow be given antecedently.
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those we are trying to establish. There is nothing controversial
about this suggestion, and I endorse it. What is controversial is
that the general principles required for argument can best be un‐
derstood as conditions restricting prior probabilities in a Bayesian
framework. Sometimes they can, perhaps, but I think that when
arguments turn on relating evidence to theory, it is very difficult
to explicate them in a plausible way within the Bayesian frame‐
work. (Glymour 1981: 74–75; see also Strevens 2004)

The first point to make in response is that this objection seems to require
too much of logic, regardless of induction (§1.1). The second is that only some
Bayesians offer theories of personal learning; not this one. The final point is to
note that the proof of Bayesian principles is in the pudding; the review of cases
we have undertaken, in which Bayesian precepts rationalise and systematize
scientific conceptions of good evidence, provide defeasible grounds favouring
the Bayesian model.



Section 5

Uniqueness and the Problem
of the Priors

In this section, we begin in §5.1 by outlining various issues around the justi‐
fication of prior probabilities, and frame responses as permissivist or imper‐
missivist. In §5.2 I describe some permissivist attempts to explain away the
demand for unique rational priors. In §5.3 I look at the Principle of Indiffer‐
ence and its role in attempts at constructing a unique prior, and describe the
charge of inconsistency levelled at it. I turn to formal approaches to construct‐
ing prior probabilities at the end of the section; to Carnap’s inductive logic
in §5.4, and Solomonoff’s algorithmic probability approach in the concluding
§5.5. Neither ultimately fares well.

5.1 The Problem of the Priors

The ‘problem of the priors’ is not one problem, but rather a cluster of issues
that circle around the plurality of coherent evidential probability functions.

1. One issue concerns belief and action: if there are many epistemic per‐
spectives, but we need to plump for a particular credence function to
feed into our deliberations, how ought we choose an epistemic perspect‐
ive to adopt? This issue was introduced in §3.9, but any solution will
depend on what we say in this section.

2. A second issue concerns the rationality of epistemic perspectives. We
might want to say that conspiracy theorists, cranks, and those who per‐

98
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sist in salvaging a preferred hypotheses by denial of auxiliaries assump‐
tions are being unreasonable, even if, technically, they seem to accur‐
ately deploy scientific standards. The source of such recalcitrance, on
the Bayesian view, lies in the prior distribution over hypotheses. If epi‐
stemic perspectives provide ideals for rational belief, the space of epi‐
stemic perspectives must be more tightly constrained than hitherto.

3. A related issue concerns procedural rationality. The vindication in Sec‐
tion 4 of induction, or of the canons of scientificmethodology, required
assumptions about the priors. Other priors would vindicate different
methodological maxims: counter‐induction, preferences for unrepres‐
entative samples and biased evidence. But it would be unreasonable to
use these alternative maxims; a reasonable person wouldn’t respond to
evidence in the ways these perspectives appear to license. The Bayesian
picture accommodates rational responses to evidence, but seems un‐
duly tolerant of other responses, to the extent where scientists ‘may
disagree on sufficiently many important questions that the consensus
required for scientific progress is undermined’ (Strevens 2006: 82).

4. A further issue concerns the objectivity of science. Science is a self‐
regulating community, with broad intersubjective agreement on
procedures and on the space of legitimate theorizing. ‘One’s expecta‐
tion, or hope if you will, is that the explanation of the intersubjective
agreement on such matters is not merely historical or sociological
but has a justificatory character’ (Earman 1992: 137–38). Without
robust internal constraints on the allowable epistemic perspectives,
scientific consensus looks more like the product of exclusion than the
ineluctable workings of the scientific method.

5. The Bayesian picture seems to put the cart before the horse. It puts atti‐
tudes, whether actual or idealized, in the position that should rightly be
occupied by the evidential connections that justify those attitudes: ‘our
judgment of the relevance of evidence to theory depends on the percep‐
tion of a structural connection between the two … degree of belief is, at
best, epiphenomenal’ (Glymour 1981: 92–93).

6. Evidential probabilities must represent ignorance, to be sufficiently
amenable to updating in light of new evidence: ‘our initial beliefs
should not unfairly favor one empirical hypothesis over another. … an
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adequate account of how to respond to evidence should be neutral and
“let the data speak for itself” ’ (Meacham 2014: 1193–94). But Bayesian
priors ‘exercise a controlling influence’ over subsequent attitudes, and
are insufficiently neutral (Norton 2011: 428–29).

There are many idea swirling around here, and they are not all pulling in
the same direction. A central tension is whether the priors should be neut‐
ral, guided by evidence, or instead impose rigid confines on the acceptable
responses to evidence. To ensure the rationality and objectivity of inductive
practice, we want to require epistemic perspectives to exhibit a uniformity of
response to a given piece of information, at least if they share their other back‐
ground information. That desired uniformity of response across perspectives
mandates a non‐uniform response to hypotheses by those perspectives, be‐
cause some hypotheses will gain significant support from the evidence they
predict only if ‘unreasonable’ responses to evidence are deployed. There is
nothing incoherent about the theory Hume entertains, that while bread so
far has given us nourishment and support, from now on it will not. But in
a scenario where it is true, belief in it on the basis of the evidence can only
come from a quite different theory of evidential support than they one we
actually utilise. This is perhaps another manifestation of the phenomenon of
the underdetermination of theory by evidence.

The problem of the priors, as I see it, it is to resolve this tension between
treating theories fairly, not letting prejudice scupper their chances at confirm‐
ation, and responding to evidence in a productive way that eventually leads
to reasonable scientific consensus. Two approaches suggest themselves. The
permissive response acknowledges that there are many acceptable responses
to a given body of total evidence, and no guarantee that the true hypotheses
will be eventually favoured by the evidence regardless of which possible epi‐
stemic standards are considered (§3.9). Each standard favours some theories
over others, but no one standard is singled out prior to experience, hence
no theories are disqualified ab initio. To secure scientific progress, the per‐
missivist allows (i) it is rational to opt for one epistemic perspective over an‐
other, even holding fixed total evidence, and even without its approach being
favoured by some decisive epistemic reason; and (ii) shared situational and
sociological factors encourage different scientists to opt for more or less sim‐
ilar perspectives. These two factors explain both the widespread agreement
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on evidential standards, and the rationality of those standards; the drawback
many see is that the convergence on common standards isn’t explained by
their rationality, which seems to leave the approach open to a charge of arbit‐
rariness.

The impermissive response is different. Impermissivists deny that there
are alternative equally good ways of responding to evidence. We will focus
on the variety of impermissivist who asserts that there is a unique acceptable
epistemic perspective for any given body of total evidence. Such an imper‐
missivist accepts:

Uniqueness ‘There is a unique rational response to any particular body of
evidence’ (Kopec and Titelbaum 2016: 189); for any ‘evidential situation
… there is a uniquely rational state to be in right then’ (Greco and Hed‐
den 2016: 392).

Given Uniqueness and our previous discussions (§4.7), it will turn out
that many hypotheses are guaranteed not to be supported by the evidence,
having been excluded from the start by the unique epistemic perspective com‐
patible with null evidence (Meacham 2014: 1213). So not every hypothesis is
treated fairly, and (depending on the interaction of Uniqueness with modal‐
ity) it could turn out that in some scenarios the truth cannot be rationally
supported by the evidence. The defenders of Uniqueness are sensitive to this
concern, and the concrete implementations of Uniqueness that have been put
forward, and that we will discuss, all attempt to build in neutrality between
possible hypotheses as a desideratum. The objectivity and rationality of sci‐
ence is secured, as a more than sociological matter, so long as the scientific
method follows the dictates of the uniquely rational epistemic perspective
– but again, defenders of Uniqueness have used conformity with standard
scientific maxims as constraints on the construction of the unique function.
Uniqueness may hold out the promise of resolving the problems of the priors.

The principal problems for Uniqueness are two:1 the manifest implaus‐
ibility of denying that there can ever be reasonable disagreements about

1 Permissivism and impermissivism, in my usage, are theses about epistemic perspectives,
not individual attitudes. Kopec and Titelbaum (2016: 190–92) note that ‘Uniqueness’ has
been used to label many different claims. This creates an opportunity to deflect certain
challenges. For example, perhaps the uniqueness of ideal rationality is compatible with
permissivism about individual credence –maybe you can be rational if your credence suit‐
ably approximates the ideal, subject to your cognitive limitations. Perhaps permissiveness
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the significance of a piece of evidence (Rosen 2001: 71); and the challenge of
constructing or defining the uniquely rational epistemic perspective. Some
defenders of uniqueness have wanted to dodge the second challenge, suggest‐
ing that while there is a uniquely rational perspective to take given any body
of evidence, it is not in general available to us (White 2009: §3).Whether that
is viable or not, everyone can agree that the actual provision of a uniquely
rational prior would show permissivism to be false, so I will concentrate on
constructive proposals in what follows. Proponents of particular constructive
projects are known as objective Bayesians, and so I will focus on the rivalry
between Bayesian permissivists and extant objective Bayesians in what
follows. I wish to resist the appropriation of the terminology of ‘objective
Bayesianism’ by proponents of uniqueness however; the permissivist theory
of epistemic perspectives defended in Section 3 is not a subjectivist account,
but it is compatible with permissivism. I make no secret below of the fact
that I have a great deal of sympathy for the project of permissivist objective
Bayesianism.

5.2 Permissivism and Priors

One popular early broadly permissivist approach was to try and argue that
while permissivism was true of ‘informationless’ priors, all such priors end up
converging to a Unique shared conditional probability when given the same
evidence – the priors wash out, as it is sometimes put: ‘empirical evidence
will bring together any two points of view provided they are not dogmatic
with respect to each other’ (Gaifman and Snir 1982: 498). The mathematical
elegance of these convergence‐of‐opinion theorems is undeniable, but they
have strong assumptions and rather weak conclusions (Earman 1992: 141–54).
The requirement that the perspectives to be merged not be dogmatic with
respect to each other requires that they assign probability zero to the same
hypotheses. In the absence of Regularity, and in the presence of very rich
spaces of possible hypotheses, very many pairs of acceptable perspectives will
therefore notmeet the preconditions to be reconcilable with one another. The
convergence results also give no indication of the time frame for the priors to

about evidential standards is practically inert, because individual rationality requires de‐
ference to peers in a way that secures credal agreement.
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wash out, rendering them ineffective as an explanation of current scientific
consensus on evidential support.

Recalling that evidential support and confirmation have been defined rel‐
ative to an epistemic perspective (evidential probability model), the permiss‐
ivist can argue that rationality and objectivity have been secured. It is an ob‐
jective fact that Pr(𝐻 ∣ 𝐸) > Pr′(𝐻 ∣ 𝐸), for suitable Pr and Pr′; that is the
kind of fact that inductive logic yields. The choice as to whether Pr and Pr′

ought to feature in scientific inference is a matter that goes beyond inductive
logic.

One might respond at this point by asking, Where do the prob‐
ability models 𝑀 come from? and how does one choose an ‘ap‐
propriate’ probability model in a given inductive logical context?
These are good questions. However, it is not clear that they must
be answered by the inductive logician qua logician.… It is not the
business of the inductive logician to tell people which probability
models they should use (presumably, that is an epistemic or prag‐
matic question), but once a probability model is specified, the
inductive logical relations in that model … are determined object‐
ively and non‐contingently. In the present approach, the duty of
the inductive logician is (simply) to explicate the [confirmation]‐
function—not to decide which probabilitymodels should be used
in which contexts. (Fitelson 2005: 391–92; cf. Earman 1992: 159)

One might follow the discussion of §4.2 and appeal to context as sup‐
plying evidential standards, just as it supplies other parameters to complete
overtly unsaturated expressions. It has been argued that natural language
quantifiers like ‘every’ and ‘some’ must involve reference to domains of quan‐
tification, supplied automatically by context when no overt domain is spe‐
cified (Stanley 2000; Stanley and Szabó 2000). While epistemic contextual‐
ism about ‘knows’ is fiercely contested, that ‘is confirmed’ or ‘is supported’
are gradable adjectives is quite plausible. On the present view natural lan‐
guage uses of ‘supports’ or ‘confirms’ will pick up some contextually supplied
probability model in order to have a semantic content at all; it is unsurprising
that in the course of a single conversation the same model will be supplied
for all occurrences of ‘𝐸 confirms 𝐻’ where no epistemic perspective is expli‐
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citly mentioned. The contextualist approach needn’t require that any explicit
calculation take place to generate an appropriate probability model; it will
be one that ‘fits’ the general background beliefs of speakers and makes the
claims they make about confirmation and evidence broadly true. (Again ac‐
commodation will play a role here: say ‘𝐸 supports 𝐻’ and you thereby make
your context one in which the relevant standardsmake that true, other things
being equal.)

Invoking context may seem to have all the advantages of theft over hon‐
est toil. So the permissivist may wish to be more specific about why some
epistemic perspective might be a candidate for contextual selection. Permiss‐
ivists have a story to tell about this. It will be one that, like Hume’s own
account of induction, aims to explain where it cannot justify. There is no
pre‐given ideal to which we must conform; the explanation of our shared epi‐
stemic standards then must appeal to factors which might plausibly produce
the phenomenon.

Hume appealed to both ‘custom or habit’(1777: ¶5.5) and ‘instinct’ (1777:
¶9.6), and doubtless both, in updated forms, may play a role in explaining our
inductive practice. (Nowadays wemight well explain instinct in its turn as the
product of natural selection.) The inclination towards having certain priors
that produce relatively swift ‘learning from experience’ (or perhaps, ‘jump‐
ing to inductive conclusions’) is certainly evident in practice. The rational
critique of such priors will generally proceed not from selecting some other
prior a priori, but selecting some rival prior, more cautious or responsible,
that resembles the hasty prior inmany ways. (Perhaps it will be one that takes
the same evidence to be confirmatory of the same hypotheses, but where the
degree of confirmation is lower, and hence to approach to inductively‐based
confidence in a generalisation will be slower.) The point is that the scientific
method might involve a refinement of our habits, not the heroic creation of
a theory of evidential support out of whole cloth.

Another factor must be sociological – Hume’s ‘custom’. Scientists are
trained, not born. They are enculturated into the scientific mindset, learning
through exposure to their mentors and the literature which hypotheses are
seen as viable, what sort of evidence is taken to provide a compelling test, etc.
If the scientific method can be captured by some constraints on epistemic
perspectives, and those constraints are widely endorsed, and there is con‐
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siderable benefit to being in line with community opinion on confirmation
(as there is in actual scientific communities), that is a prudential reason for
budding scientists to respect those constraints in the evaluation of evidence.

The permissivist who appeals to sociological or instinctual factors does
open themselves up to a charge of arbitrariness (White 2005: 451–52; Feld‐
man 2007: 204–5). Had the background factors been different – had you been
differently trained – different epistemic perspective would have been open to
you to adopt. While your current standards suggest that 𝐸 is evidence for 𝐻,
other standards you could easily have had (had you gone to graduate school
elsewhere and had a different mentor) would suggest that 𝐸 undermines 𝐻.
Suppose you chose your graduate school for epistemically irrelevant reasons.2

Can you really think your current attitudes about evidential support are de‐
fensible given their fragility?

But the counterfactual about evidential support in no way suggests that
you have to dissociate yourself from your current standards once you acknow‐
ledge permissivism. What it is to adopt some standards as your own is to
regard them as conducing to rational belief. If your response to cases is to
be open to thinking those standards might not be reliable, then one hasn’t
fully adopted those standards. Once one has adopted them, however, one is
committed ex cathedra to judging that other standards are defective. After all,
while 𝐻 is likely to be true given 𝐸, those other standards say it is likely to be
false! So those standards will probably get things wrong. One might, as a per‐
missivist, think that one is lucky to have been trained in such a way as to have
reliable standards, unlike one’s peers elsewhere, who are rational but unlucky.
But one cannot take their rationality to be a reason to abandon reliable stand‐
ards, either by suspending judgment on the verdicts of one’s own standards,
or plumping for rival standards. There is no standpoint‐independent ‘meta‐
perspective’ that gives one neutral standards for evaluating epistemic stand‐
ards (Schoenfield 2012: 202; cf. Horowitz 2014: 42–45); there is only where you
are.3

Whatever the merits of this response to the worry about arbitrariness, it

2 Perhaps, like me, you wanted to be close to New York.
3 Similar things might be said about other standards – perhaps the right thing to say about

aesthetic standards is broadly permissivist, but acknowledging that others can be rational
in deploying different aesthetic standards doesn’t require you to change your evaluation
of artwork.
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remains unsettling to think that scientific rationality could involve any ele‐
ment of luck or convention. And a compelling answer to any sort of permissiv‐
ism would be the provision of a rational prior that supported our inductive
practice while meeting the desiderata of neutrality and non‐arbitrariness im‐
plicit in the problem of the priors. In the remainder of this section, I will
consider a number of attempts to carry out this task.

5.3 Constructing Priors: the Principle of Indiffer‐
ence

All prominent attempts to construct neutral priors take as their starting point
the Leibnizian idea that probability is graded possibility. The uniquely best
measure of the degree of possibility – the best probability function – is the
one that reflects the natural structure of the space of possibilities. Various
proposals have been offered that claim to discern this natural structure. The
classical theory of probability is a good place to start.

The theory of chance consists in reducing all the events of the
same kind to a certain number of cases equally possible, that is
to say, to such as we may be equally undecided about in regard to
their existence, and in determining the number of cases favorable
to the event whose probability is sought. The ratio of this number
to that of all the cases possible is the measure of this probability,
which is thus simply a fraction whose numerator is the number of
favorable cases and whose denominator is the number of all the
cases possible. (Laplace 1825: 6–7)

The classical theory says that ‘equal possibilities’ should be assigned equal
probabilities, and that every probability is reducible to some combination of
equal probabilities. The theory was presented as an account of physical prob‐
ability. It was inadequate to that task, as it could not handle infinite outcome
spaces, and excluded the possibility of basic cases with unequal probabilities,
such as a biased die.4 But it is more promising as an account of prior probab‐
ility. Laplace talks of cases about which ‘we may be equally undecided about

4 Or, if 1, 2, etc., are not basic cases in the case of a weighted die, then what are the basic
cases that allow, e.g., a 1/5 chance of getting a 6?
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in regard to their existence’ (my emphasis), and this can be read as suggesting
a lack of evidence either way. In that case, Laplace is offering an early version
of:

Principle of Indifference (POI) ‘if there is no known reason for predicating
of our subject one rather than another of several alternatives, then re‐
latively to such knowledge the assertions of each of these alternatives
have an equal probability’ (Keynes 1921: 42; cf. White 2009: §§1–2).

The POI is more modest than the classical theory, because it doesn’t pur‐
port to assign probabilities to all outcomes. It is also a principle that takes an
explicitly epistemic attitude, of indifference between possibilities, and yields
a determinate probability distribution. The POI, as constructed, is designed
to ensure the neutrality of initial probabilities over hypotheses. It works well
in many toy examples. What is the rational probability that a goat is behind
a given door of the three before you, if two of them have a goat? You have
no reason to suppose a goat is behind any particular door; you shouldn’t be
more confident for no reason, so you should be as neutral as possible, assign‐
ing 2/3 probability to each proposition of the form ‘a goat is behind door
𝑛’. This is an implementation of Uniqueness, because POI says the uniquely
rational perspective in a situation of equipollence is the indifferent one.

From the perspective of inductive logic, this enforcement of neutrality
makes other problems of the priors worse. For the indifferent prior distribu‐
tion seems to make very poor predictions about inductive support. A binary
A/B process of unknown bias will occur 9 times (Weisberg 2011: 507). You have
no reason to think it fair; nor to think it biased; nor, if biased, that the bias is
in any specific direction. The POI mandates, it seems,5 a uniform distribution
over each hypothesis, i.e., over all 29 possible outcome sequences. What is
the conditional probability that all outcomes are Bs, given the first 8 are Bs?

Pr(9 Bs ∣ 8 Bs) = Pr(BBBBBBBBB)
Pr(BBBBBBBBB ∨ BBBBBBBBA) =

1/29
2/29 =

1
2.

5 Keynes (1921: ch. 4) suggests that in a case of unknown bias like this, ideal rationality for‐
bids any numerical assignment of probability; that saves the POI at the cost of drastically
reducing its concrete role in fixing the priors.
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The POI has generated not just uniformity over hypotheses about outcomes
prior to experience, but also posterior to experience. Given a process of pre‐
viously unknown bias, inductive plausibility strongly suggests that 8 (or 88,
or 888, …) consecutive Bs is strong support for a particular hypothesis about
bias. We should at least be able to adopt priors that permit us to ignore anti‐
inductive hypotheses, such as regarding BBBBBBBBA as less plausible than
BBBBBBBBB. But indifference mandates that we give undue regard to such
hypotheses. Neutrality trumps inductive plausibility.

Some might challenge this. In a process of unknown bias, we ought to
be indifferent not over individual sequences, but over the frequencies those
sequences exhibit. Thenwe should be indifferent over the space of hypotheses
‘9 As’, ‘8 As, 1 B’, …, ‘9 Bs’.Wewill return to themerits of this particular proposal
below (§5.4), but there is a worry before we even work out the details: what
mandates our representing the problem this way, rather than the first way?
This brings out the fact that every application of the POI – just as the classical
theory does – a classification of the space of all possibilities into ‘basic cases’ or
‘alternatives’ between which we are indifferent. We have to do this; there are
somany possible worlds that the only indifferencemeasure over them assigns
every possibility no probability at all. So we have to partition the space of
possible worlds into basic alternatives in order to get a non‐trivial indifference
measure. But there are different ways of carving up the very same possibilities
(Meacham 2014: 1193–98). Consider this example.

Mystery Cube (van Fraassen 1989: 303) A tool factory produces metal
cubes with edge length 𝑥, where 1 < 𝑥 ≤ 3$. What is the probability
that a cube has edge length ≥ 2 cm, given that it was produced by that
factory?

The issue is that there are logically equivalent ways of dividing up the
same possibilities which seem to give different answers. For we could also
represent the possible outputs of the cube factory in terms of their face area,
or their volume. Let 𝐿 be the proposition ‘a cube has side length ≥ 1’. The
possible cases, and favourable‐to‐𝐿 cases, are detailed in table 5.1.
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Table 5.1: Applying the POI to different partitions of Mystery Cube.

Possible cases Favourable‐to‐𝐿 Pr(𝐿)

edge length ∈ [1, 3] length ∈ [2, 3] 1/2
face area ∈ [1, 9] area ∈ [4, 9] 5/8
cube volume ∈ [1, 27] volume ∈ [8, 27] 19/26

Apply the POI naively, and we get inconsistent probability assignments.
Hesitate to apply it, on the grounds that different partitions give rise to dif‐
ferent judgments of epistemic symmetry (White 2009: §3), and we get no
probability assignment at all, even though the POI ‘is supposed to fill the gap
left by missing information’ (van Fraassen 1989: 304).

Onemight have the sense that the POI has been applied incorrectly. In the
mystery cube case, we have a problem with multiple representations. Given
a representation, e.g., that areas were between 1 and 9 cm2, POI was applied
to the [1, 9] interval to generate the probabilities. But this is manifestly im‐
plausible, since it applies indifference to features of the representation, rather
than features of the problem represented. A bettermodel would be to identify
which representations aremerely ‘modes of presentation’ of the original prob‐
lem, using those to define a class of transformations that preserve the struc‐
ture of the original problem. As Rosenkrantz puts it:

The needed invariances, however, are not obtained by looking at
parameter transformations per se, but at transformations of the
problem itself into equivalent form. Given the statement of the
problem, it may for example, be indifferent in what scale units
the data are expressed. Such ‘indifference between problems’ de‐
termines what parameter transformations are admissible – not
the other way around. (Rosenkrantz 1977: 63; see also Jaynes 1968:
128)

Then POImust be applied in a way that is invariant under those transform‐
ations; in practice, to some measure over (0, 2] cm that is equivalent to (0, 4]
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cm2. In the mystery cube case, the allowable transformations are dilations, so
the right measure 𝜇 on the intervals is 𝜇[𝑥, 𝑦] = log𝑦− log 𝑥. Then we get the
‘right’ answer (van Fraassen 1989: 310):6

Pr(𝐿) = 𝜇[2, 3]
𝜇[1, 3]

log3 − log2
log3 − log1 = 2 log3 − 2 log2

2 log3 − 2 log1 = log9 − log4
log9 − log1 = 𝜇[4, 9]

𝜇[1, 9] .

This kind of move requires some substantive knowledge about which
formal transformations of descriptions of the space of possibilities are those
that preserve the ‘essential’ symmetries of the problem. So this cannot be a
purely neutral ignorance prior. Once we have recognised that most circum‐
stances in which we’d wish to apply POI actually involve some background
knowledge, the POI turns out to be inapplicable. But there is a generalization
of the POI that might apply:

Uniqueness (Maximum Entropy) Given a set 𝐶 of probability functions
meeting certain constraints imposed by the evidence, the uniquely de‐
termined evidential probability in light of that evidence is the Pr ∈ 𝐶
such that 𝐻(Pr) = −∑𝜔 Pr(𝜔) log Pr(𝜔) is maximised, assuming there
is exactly one (Jaynes 1957).

The rationale for the Maximum Entropy principle is that entropy is a
measure of uninformativeness; so maximum entropy subject to constraints
is a way of maximising neutrality given those constraints [Williamson (2011),
§8; seidenfeld‐1986]. The Maximum Entropy approach does hold out the pro‐
spect, unlike the original POI, of both satisfying our desire for neutrality and
our desire to have probability functions that are responsive to potential ex‐
perience (Williamson 2011: §9).

Unfortunately, it would be too hasty to think this gives us a case for
Uniqueness. Whenever the uniform distribution is consistent with the
background evidence, it always has maximum entropy. But there is no
guarantee, if the constraints rule out the uniform distribution, that there is
a unique entropy maximising distribution (Shackel and Rowbottom 2020);
maximum entropy may turn out to be a moderate permissivist view. This
non‐uniqueness, as in the original problem cases for the POI, turns out to

6 Even this fails for some cases where there is no neat class of allowable transformations,
e.g., those involving both translation and dilation (Milne 1983).
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depend on how the problem scenario is represented. (In Williamson’s (2011:
§10) approach, this is manifest in an explicit language‐relativity – see also
Weisberg (2011: 508).)

Ultimately, the POI and Maximum Entropy proposals are plausible be‐
cause they answer, if we are lucky, the twin demands of Uniqueness and
neutrality. But once permissivism is brought into view, a view that generates
unique probability distributions doesn’t look neutral. For example, the ori‐
ginal POImandated a policy of taking any new evidence to be irrelevant to con‐
firmation; while this may be a permissible attitude, it hardly looks mandatory.
Themost natural maximum entropy distribution that permits responsiveness
to experience is one that determines a very specific rule about how respons‐
ive to be (Weisberg 2011: 508) – yet, intuitively, there is room for variation
in appetites for epistemic risk, from Jamesian boldness to Cliffordian timid‐
ity. Enforced neutrality between hypotheses leads to overly determinate pre‐
scriptions about responsiveness to evidence. (In the Bayesian framework, the
fact that unconditional probabilities of hypotheses are expectations of con‐
ditional probabilities given possible evidence – i.e., policies for responding
to evidence – yokes these two quantities together.) If instead we are not pre‐
scriptive about Pr(𝐻 ∣ 𝐸), remaining neutral to the extent we can over its
value, then we won’t be as interested in prescriptivism about Pr(𝐻), and we
can secure indifference, where appropriate, by substantive assumptions about
the problem scenario at hand. These observations apply also to the remaining
attempts to construct explicit unique priors we will consider.

5.4 Constructing Priors: Carnap’s Inductive Logic

Treating Carnap at this point is anachronistic; his contributions to inductive
logic really kicked off the field, and everyone working on the topics since is
indebted to his framing. But he did offer a particular recipe for constructing
unique priors, one that really would – if successful – vindicate the idea of an
inductive logic. For just as deductive logic gives us relations on sentences in
virtue of logical form, so Carnap proposed to give a purely formal account of
evidential support:

While a statement of statistical probability asserts amatter of fact,
a statement of inductive probability is of a purely logical nature. If
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hypothesis and evidence are given, the probability can be determ‐
ined by logical analysis and mathematical calculation. (Carnap
1955: 3)

Given our preceding discussion it seems the prospects for such a proposal
are fairly dim, but it is nevertheless worth going through the details, for com‐
pleteness sake and because it allows us to bolster some of our earlier con‐
clusions against purely formal treatments of epistemic support (§2.3). It also
feeds nicely into our subsequent discussion of algorithmic probability (§5.5)
and allows us to touch on some issues, like ‘gruesome’ predicates, that have
been implicit so far.

Suppose we have a predicate language, with the connectives of senten‐
tial logic, constant terms, and predicates (leaving quantifiers aside). A very
simple language might have a single monadic predicate 𝐹, and constants de‐
note successive observations in which 𝐹might be observed. Evidence consists
in a finite binary sequence indicating the presence or absence of 𝐹, and our
problem is to figure out what evidence sequences provide support for hypo‐
theses about subsequent observations. An ‘inductive method’ (Carnap 1955:
10) is a procedure for assigning probabilities to hypotheses about the total
sequence of outcomes – what Carnap calls a ‘state description’. (Every propos‐
ition expressible in this language is a Boolean combination of state descrip‐
tions.) We’ve already seen an example of this sort in the previous section,
where we noted that a probability assignment that assigns each finite bin‐
ary A/B sequence of a given length equal probability fails to be inductively
rational.

Carnap – and before him, Johnson (1932) – proposed another inductive
method than that of the naive POI. A structure description is a class of state
descriptions which share the same frequencies; i.e., they share that structural
aspect which is preserved under permutation of outcome order. Carnap opts
for this account of structure as particularly appropriate for statistical infer‐
ence, because such structures preserve frequencies, which are vital for prob‐
abilistic theories. In our previous case, as noted above (§5.3), there are 10 pos‐
sible structures of the 29 possible state descriptions. Carnap’s ‘method II’ says:
we ought to be indifferent between structures first, then states (Carnap 1955:
8–14; Zabell 2011: 271–71). Assign equal probability to each structure, then di‐
vide that probability equally over each state compatible with a given structure.
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That gives us the probability distribution in table 5.2.

Table 5.2: Carnap’s ‘Method II’ for determining inductive probability.

Structure
Structure
Probability

Open State
Descriptions

State Probability
𝑚∗

9 As, 0 Bs 1/10 1 1/10
8 As, 1 B 1/10 9 1/90
7 As, 2 Bs 1/10 36 1/360
6 As, 3 Bs 1/10 84 1/840
5 As, 4 Bs 1/10 126 1/1260
4 As, 5 Bs 1/10 126 1/1260
3 As, 6 Bs 1/10 84 1/840
2 As, 7 Bs 1/10 36 1/360
1 A, 8 Bs 1/10 9 1/90
0 As, 9 Bs 1/10 1 1/10

Carnap’s 𝑚∗ can be extended to a full probability function on the space
of possibilities 𝑐∗. This enables us to evaluate the prior probabilities of hypo‐
theses, as well as conditional probabilities of hypotheses given evidence. The
prior probability assigned to 9 Bs is 1/10; the prior probability assigned to
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐴 is 1/90. So the probability that the last outcome is a B, given
that the 8 preceding outcomes have been Bs, is 1/10

1/10+1/90 = 9/10. Half of all
states terminate in a B, so the prior probability is 1/2; so the observation of
8 Bs strongly supports the hypothesis that the last item will be a B, and con‐
firms it over its initial probability. This method does allow for responsiveness
to potential evidence. And it does give uniqueness: given a language, purely
formal syntactic features of state and structure descriptions yield a probabil‐
ity assignment to all hypotheses.

It’s bound to be too good to be true. How could syntactic considerations
determine a probability assignment over propositions, when the very same
proposition can be expressed by sentences with differing syntactic structure?
Inconsistency seems unavoidable.
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Suppose some speakers have introduced a word, ‘grue’, the usage of which
turns out to best systematised by the following: something is grue iff it is
green and examined before December 31, 2030, or blue and not examined
before that date (Goodman 1954: ch. 3).7 At the time of writing, and prob‐
ably of your reading, everything is green iff it is grue. Suppose we’ve seen a
green/grue regularity in the data so far. If we are to learn from experience
in line with Carnap’s 𝑐∗, we should be confident that green things are grue,
and vice versa, going forward. But the first green thing observed on January
1, 2031 will not be grue. So this inductively supported expectation will not be
fulfilled.

Carnap’s theory cannot accommodate this fact, because the syntactic
form of the ‘grue’ hypotheses and observations is exactly the same as that
of the parallel hypotheses and observations including ‘green’. ‘Grue’ was
introduced on the basis of a false inductive hypothesis, but having been in‐
troduced, it is a fit predicate for use in the construction of state descriptions
and structure descriptions, and for the construction of a rational prior. The
problem with ‘grue’ arises once we look at the consequences of applying this
syntactic procedure, together with our grasp on the meaning of ‘grue’.

To avoid this consequence, we shall have to appeal to some syntactically
available feature to exclude ‘grue’ from our inductive practice. It will be very
hard to do so, at least without making unwarranted presumptions about the
range of permissible hypotheses (Godfrey‐Smith 2003: 578–83). Many things
behave differently when observed: people and other social entities, certainly.
So there cannot be a general ban of mentioning ‘observation’ in the hypo‐
theses we consider. Likewise, some data series exhibit discontinuities due to
a change in measurement procedure on a certain date; hypotheses that ac‐
count for the data need to explicitly recognise that date in explaining the
slightly different characteristics of the data before and after it. So there can‐
not be a general ban on mentioning specific dates in hypotheses. ‘Grue’ is
distinctive in including both of these non‐forbidden expressions, but we can

7 Imagine perhaps a religious cult, convinced of some puzzling views about the corrupting
power of the human gaze, and the idiosyncratic preferences of their deity for blue and
uncorrupted things, or green and corrupted things. An anthropologist, sick of writing
‘green and corrupted by the human gaze, or blue and not corrupted by the human gaze’
might introduce the convenient term ‘grue’ in describing the cultist’s practice; that usage
doesn’t depend on accepting their dogma, or thinking it any way plausible.
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perhaps see a use case for a similar predicate – e.g., when a social science data
series changes from using an overt to covert measurement technique, chan‐
ging the impact of observation on the experimental subjects from a particular
date.

The problem with ‘grue’ isn’t intrinsic to the word. The problem is what it
means. Our background knowledge suggests to us that ‘grue’ is not a goodway
of describing reality ‐ it is not a property that captures the structure of how
things are. For example, unlike a genuine property, satisfying ‘grue’ needn’t
make for genuine resemblance between things which do so (Lewis 1983: 345).
But this distinction in ‘naturalness’ between ‘green’ and ‘grue’ isn’t – cannot
be – present in the syntax. The flipside is that any robust theory of confirma‐
tion and evidential support will have to make initial presumptions that treat
structurally identical claims differently:

A favoring relation that fails to treat [structurally indistinguish‐
able] identically plays favorites among properties. That is, it re‐
sponds differently to a hypothesis involving one property than it
does to a hypothesis that is identical except that it involves a dif‐
ferent property. For instance, suppose we have a piece of evidence
that mentions greenness and grueness in exactly the same ways,
but that evidence favors a hypothesis involving the property of
being green over a hypothesis that involves the property of being
grue in structurally identical ways. If the evidential favoring rela‐
tion behaves in this way, it fails to treat predicate permutations
identically. And notice that this property favoritism precedes the
influence of the evidence. It’s not that the difference occurs be‐
cause the evidence indicates that greenness is a property worthy
of special consideration; we stipulated that the evidence says ex‐
actly the same things about (or using) greenness that it says about
(/using) grueness. If we could behold the [evidential favouring]
relation itself before any evidence had been plugged in, we could
already see that plugging in evidence and hypotheses involving
certain properties would cause it to react differently than plug‐
ging in evidence and hypotheses that differed only in the proper‐
ties that appeared. (Titelbaum 2011: 482–83)
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5.5 Constructing Priors: Algorithmic Randomness

Carnap’s theory is historically important. But it is also of interest because
of the rise of digital computation, where many problems thought to be the
exclusive province of human intelligence have shown themselves to be amen‐
able to being handled by systems applying syntactic rules of computation.
Carnap does not seem himself to have been particularly interested in for‐
mulating an inductive algorithm, but the principal intellectual inheritors of
his project in computer science have been. Their story is not as well known
among philosophers, so I choose it as my final attempt at explicit construc‐
tion of a unique prior. It will not be immune to the problems besetting earlier
accounts (§§5.3, 5.4). I will simplify some of the mathematical detail in the
interest of accessibility (Li and Vitanyi 2008: ch. 2; Eagle 2016b).

Supposewe had some string of sample data about a population and amon‐
adic property F: that the first three items sampled had F, the fourth and fith
lacked it, the sixth has it, etc:𝐹, 𝐹, 𝐹, ¬𝐹,¬𝐹, 𝐹, ¬𝐹,¬𝐹,¬𝐹,¬𝐹,¬𝐹, 𝐹, ¬𝐹,¬𝐹, 𝐹, ….
Or, as a binary sequence: 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, …. The question we
face is one of sequence prediction (Solomonoff 1964: 2): what should we say
about the next element in this sequence, given the sample so far? Carnap’s
preferred method took the frequency of Fs into consideration, the balance of
F as against ¬F. But it paid no overt attention to the internal structure of the
sequence of outcomes.

Laplace observed that, when tossing a coin,

if heads comes up a hundred times in a row, then this appears
to us extraordinary, because the almost infinite number of com‐
binations that can arise in a hundred throws are divided in reg‐
ular sequences, or those in which we observe a rule that is easy
to grasp, and in irregular sequences, that are incomparably more
numerous. (Laplace 1825: 16–17)

Laplace notes that an orderly sequence is extraordinary if thought to have
come about by chance, less extraordinary if it is explicable. As it happens,
Carnap’s approach respects Laplace’s intuition, because it allows orderly data
to strongly support orderly hypotheses. The structure descriptions are equi‐
probable, but there are lots of ways of satisfying the structure ‘about half 1s’
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and only one way of satisfying the structure ‘all 1s’, so the latter highly orderly
sequence gets relatively high probability compared to any one of the many
sequences satisfying the former, most of which are random and disorderly.

Carnap has stumbled upon something here: simplicity. Orderly se‐
quences obey simple rules; disorderly sequences do not. And since orderly
sequences are strongly confirmed by data in agreement with them, we
get a preference for simplicity built in to Carnap’s inductive methods. But
Carnap hasn’t latched onto the right mathematical approach. There are
still some orderly sequences in the ‘about half ’ structure: 1, 0, 1, 0, 1, 0, …,
for example. This has the frequencies of a disorderly sequence, but isn’t
disorderly. Carnap’s conception is that order is uniformity. But in fact, order
is exhibited whenever a sequence has a pattern. Carnap’s framework favours
the orderly sequence ‘all 1s’ over the equally orderly sequence ‘alternate 1
and 0’; intuitively, however, that latter pattern is just as indicative of some
non‐chance theory of the outcomes. This gives the wrong verdict about some
straightforward cases. Suppose we’d seen the sequence 0, 1, 0, 1, 0, 1, 0, 1, 0,
and we wonder what comes next. There are slightly more 0s than 1s in the
sample data; so 𝑐∗ slightly favours a prediction of 0 for the next outcome. But
the pattern is clear: we ought to predict 1.

A better approach would not overlook regular patterns, including but not
limited to uniform outcomes. Solomonoff (1964: 3) made a bold proposal: to
get a prior that learns from data, assign prior probabilities to sequences that
are inversely proportional to howmuch internal complexity they have. A com‐
plex sequence doesn’t have readily theorized regularities; a simpler sequence
is amenable to a theoretical explanation. Solomonoff argues that the best pre‐
diction of the next in a sequence of outcomes is that outcome which would
make the resulting sequence simpler.8

Solomonoff implements his proposal by linking complexity to compressib‐
ility (Kolmogorov 1963; Li and Vitanyi 2008: 339–70). Fix on a general purpose
computable function 𝑓 that maps certain binary input sequences to binary
output sequences. When 𝑓(𝛿) = 𝜎, say that 𝛿 is an 𝑓‐description of 𝜎, or
that 𝑓 decodes 𝛿 into its unencoded form 𝜎. A sequence is compressible to

8 This is a mirror image of the ‘best systems’ analysis of laws of nature, which proposes
that laws are those regularities that most simply and powerfully systematise the pattern
of events (Lewis 1994: 480).
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the extent that the length of its shortest 𝑓‐description is considerably shorter
than it. This can be used to construct a probability function that favours com‐
pressible hypotheses, which is to say, it favours hypotheses that posit orderly
structure over those that posit randomness. Where ‘|𝑥|’ is the length of 𝑥, the
𝑓‐probability of 𝜎 is defined (Solomonoff 1997: 2; Rathmanner and Hutter
2011: 1119–21):

Pr
𝑓
(𝜎) ≝

𝛿𝑖∈{𝛿∶𝑓(𝛿)=𝜎}
2−|𝛿𝑖| ≈ 2−min{|𝛿|∶𝑓(𝛿)=𝜎}.

The 𝑓‐probability of a sequence is determined by the overall brevity of
sequences encoding it, which is dominated by the shortest encoding. The
Kolmogorov complexity 𝐶𝑓(𝜎) is the length of the shortest input to 𝑓 encoding
𝜎, so the 𝑓‐probability of 𝜎 is approximately 2−𝐶𝑓(𝜎). Because the probability
that a binary sequence of length 𝑙 is produced by an binary random process is
2−𝑙, we can say that while disorderly sequences, which cannot be compressed,
have an algorithmic probability roughly equal to the probability they were
produced by chance, orderly sequences have a probability very much greater
than the probability they were produced by chance; they are, under this
measure over the space of all outcomes, substantially favoured by the prior.
But this is still a probability function, summing to 1 over all hypotheses; this
shows the orderly sequences must be very scarce.

There is a potentially troubling dependence on 𝑓 here, but Kolmogorov
(and Solomonoff) show that there is a universal or ‘asymptotically optimal’
function 𝜇 such that

∀𝑓∃𝑘𝑓∀𝜎𝐶𝜇(𝜎) ⩽ 𝐶𝑓(𝜎) + 𝑘𝑓 .

Given that 𝑘𝑓 is chosen independently of the sequences, for all sequences bey‐
ond a certain length, most decoding functions broadly agree: 𝐶𝜇(𝜎) ≈ 𝐶𝑓(𝜎).

Algorithmic probability has many desirable qualities. From the perspect‐
ive of induction, prediction using it can be shown to converge to the ‘real’
probabilities generating a sequence, in the sense that the distance between
the algorithmic posterior probability given the evidence and the real hypo‐
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theses converges to zero, so long as the true hypothesis has a non‐zero prior
(Solomonoff 1997: 11; Ortner and Leitgeb 2011: 736; Rathmanner and Hutter
2011: 1124–25). If there is a rule generating the outcomes, the prior bias of al‐
gorithmic probability towards hypotheses that invoke a rule to explain a given
sequence of outcomes leads the observation of rule‐governed outcomes to
quickly favour the hypothesis that computably generates those outcomes.

Early attempts to justify [algorithmic probability] were based on
heuristic arguments involving Occam’s razor, as well as many ex‐
amples in which it gave reasonable answers. At the present time,
however, we have a much stronger justification than any heuristic
argument. [Algorithmic probability] is the only induction tech‐
nique known to be complete. By this we mean that if there is any
describable regularity in a body of data, [algorithmic probability]
will discover it using a relatively small sample of the data. (So‐
lomonoff 1997: 2)

This result might seem striking. However, Sterkenburg argues that assum‐
ing the true hypothesis has a non‐zero prior is a very strong assumption, for
it requires the true hypothesis to mirror the inductive assumptions that go
into constructing the prior. The conditions on the convergence theorem as‐
sume, in fact, that the true hypothesis is equivalent to a particular strategy of
making predictions on the basis of data, and that the inductive presupposi‐
tions about which hypotheses to favour are just the ones it also adopts. Then
convergence isn’t so surprising: if nature produces outcomes by deploying a
function it has induced from the data in the way we would, then our ‘discov‐
ering’ that function by induction is hardly surprising. ‘We got out what we
put in, after all’ (Sterkenburg 2016: 476). Moreover, the convergence result
might seem in danger of showing too much. For finite data there is always
a regularity, even if the mechanism is completely random. The hypotheses
that a sequence lacks inductive regularity is antecedently disfavoured; but
surely neutrality between hypotheses requires that we are open to learning a
sequence is incompressible?

Even if its justification on the basis of convergence results was too good to
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be true, perhaps we can still adopt algorithmic probability as a prior because
we think the assumption that nature will obey a computable rule is a reason‐
able one. The theory then promises to turn an inductive assumption about
computability into a prior we could deploy.

The first piece of bad news about this idea is that algorithmic probabil‐
ity isn’t itself computable; we can’t determine how complex a description of
the total data is, so we cannot determine what the prior probability of the
hypothesis which predicts it with certainty is.9

The second piece of bad news is that the robustness of the compressibil‐
ity results, designed to reassure us that dependence on a particular decoding
algorithm was inessential, is practically a major difficulty. The constant 𝑘𝑓 by
which each decoder differs from the universal decoder is arbitrarily large – in
effect, it may be thought of as instructions telling the universal machine how
to pretend to be 𝑓. While these instructions may be small in the limit as se‐
quences to be decoded grow arbitrarily, it may completely swamp sequences
on the scale we normally treat, so that choice of decoding function will mat‐
ter a great deal for particular applications. Sterkenburg (2016: 472–74) argues
that the choice here is like the choice of prior for the permissive Bayesian –
the existence of the universal machine is like the convergence of opinion the‐
orems (§5.2), and like them gives no guarantee that the convergence is quick
enough for practical use.

while Solomonoff’s framework … may offer a theoretical solution
to the problem of induction, it cannot be directly applied to prac‐
tical problems. (Ortner and Leitgeb 2011: 736)

The framework is also subject to more general worries that are at some
distance from the technical details. Most obviously, a sequential prediction
framework cares only about patterns in the observed data that permit useful

9 Suppose you could compute 𝐶𝜇(𝜎): maybe you enumerate all the sequences of length
shorter than 𝜎, feed them sequentially into 𝜇, and see if 𝜎 pops out. But sometimes
𝜇 won’t halt on a given input, so this isn’t an effective procedure; for all you know you
have input a short description of 𝜎 and you are just waiting for an unboundedly long
decoding process to conclude. There are computable approximations that converge to
Kolmogorov complexity; but the error at each stage of convergence is unknown, so they
are not approximate in the normal sense of ‘close’ (Rissanen 1997; Solomonoff 1997: 2).
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compression. The sequence of successive green emeralds is no more or less
compressible than the sequence of successive grue emeralds, because only
the form of the data matters. So if we want to avoid inconsistent predictions,
we will have to impose some ‘green’‐favouring constraint before applying So‐
lomonoff’s recipe. Solomonoff induction, no less than Carnpian inductive
methods, satisfy the pre‐conditions for generalised language‐relativity results
(Titelbaum 2011: 482–84). This should temper some of the bolder claimsmade
about the approach, e.g., ‘through Solomonoff, … the problem of formalizing
optimal inductive inference is solved’ (Rathmanner and Hutter 2011: 1078).

Solomonoff himself seems to have come to appreciate this sort of obser‐
vation, about grue and about the prior choice of hypotheses to be considered,
and connected it to the practical differences between different universal hy‐
potheses:

choosing a reference machine we are given the opportunity to
insert into the a priori probability distribution any information
about the data that we know before we see the data. (Solomonoff
1997: 4)

There is another difficulty: how dowe turn events distributed across space
and time into a sequence of data that can be input to Solomonoff induction?

Suppose that I am tossing a coin on a train that is moving back
and forth on tracks that point in a generally easterly direction. …
Moving from left to right (west to east), we see the pattern: HTH‐
THTHTH…. Moving upwards (earlier to later), we see the pattern:
HHTHHTHHT…. Imagine, as we can, that these patterns persist
forever. What is the limiting relative frequency of Heads? Taking
the results in their temporal order, the answer is 2/3…. But taking
them in their west‐east spatial order, the answer is 1/2. Now, why
should one answer have priority over the other? In other words,
we have more than one limiting relative frequency, depending on
which spatio‐temporal dimension we privilege. (Hájek 2009: 218–
19)

If the events are spread out sufficiently over spacetime, there may be no
determinate frame‐invariant fact about temporal order of outcomes (Maudlin
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2012: ch. 5), even if induction is understood as essentially temporal in awaywe
have no presumed here. Carnap’s maligned 𝐶∗ does a little better here, at least
for for finite sequences, because the statistical properties on which he relies
are invariant under data permutations. Assumptions about the structure of
data must clearly come before one can formulate a space of hypotheses about
sequences of data, and is substantively dependent in this example on non‐
formal views about space and time.

The upshot, as I see it, of §§5.3, 5.4, 5.5 is that substantive philosophical
assumptions about prior probabilities are unavoidable. The hope that there is
only one rationalway to think about evidential support, even though it cannot
be articulated in any generally compelling way, starts to look more like an art‐
icle of faith than a reasonable guess. Technical advances may help us formu‐
late prior assumptions, and distributions derived from maximum entropy or
Kolmogorov complexity may well have appealing properties as explications of
our preference for neutrality or simplicity. But they cannot function without
prior assumptions, and do not let us avoid making them. When the math‐
ematical complexity goes up, and the results start looking more like magic,
assumptions are no less present than in the case of permissivism, just slightly
better disguised. This lesson generalizes well beyond this area of philosophy.
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