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Random outcomes, in ordinary parlance, are those that occur haphazardly, 
unpredictably, or by chance. Even without further clarification, these glosses suggest 
an interesting connection between randomness and probability, in some of its guises. 
But we need to be more precise, about both probability and randomness, to 
understand the relationship between the two subjects of our title. 

It is a commonplace that there are many sorts of probability; and of each, we may ask 
after its connection with randomness. There is little systematic to say about 
randomness and credence; even rational degrees of belief may be certain about a 
random outcome, and uncertain about a non-random one. More of substance can be 
said about connections between randomness and evidential probability – particularly 
according to Solomonoff’s version of objective Bayesianism, which uses Kolmogorov 
complexity (§2.2) to define a privileged prior algorithmic probability (Solomonoff, 
1964; see also Li and Vitanyi, 2008; Rathmanner and Hutter, 2011).  

For reasons both of concision and focus, in the present chapter I set those issues 
aside, to concentrate on randomness and physical probability, or chance: 
probability as a physical feature of certain worldly processes.1 A number of 
philosophers have proposed an intimate connection between randomness and 
chance, perhaps even amounting to a reduction of one to the other. I explore, with 
mostly negative results, the prospects for such views; and discuss some weaker but 
still interesting ways in which randomness bears on chance. I begin by clarifying and 
distinguishing a number of kinds of randomness. 

                                                

1 For more on the nature of chance, see the entries by Frigg, Gillies, La Caze, and Schwarz in 
the present volume. 
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1. Different kinds of randomness: product and process 

The paradigm sort of case that might involve randomness is a series of tosses of a fair 
coin, or similar chance device. A typical example of such a series will be a disorderly 
and patternless sequence of outcomes (Heads and Tails, or 0s and 1s), because it will 
have been produced by a genuinely chancy process.  

However, it is at least conceivable that a chancy process could produce an orderly 
series of outcomes – a lucky series of coin tosses may land all heads. It is similarly 
conceivable that a disorderly series of outcomes could have been produced by a non-
chancy process. It seems arbitrary to believe that, in the more typical case, it is really 
just one of these features that is responsible for the presence of randomness. Hence 
we might find it useful to regiment our terminology, distinguishing different sorts of 
randomness in virtue of the different features that can prompt ascriptions of 
randomness. 

A sequence of 100 consecutive Heads is prima facie not random, even if produced by 
fair tosses of a fair coin. Yet a sequence of 100 mixed Heads and Tails from the same 
fair coin with no discernable pattern is prima facie random. The difference here in the 
prima facie appearances cannot be grounded in the underlying chances, which are the 
same in both cases (each has chance 1/2!""). The appearance is grounded rather in 
the intrinsic disorderliness (or otherwise) of the outcome sequences themselves. Let’s 
say that a random product is a series of outcomes of some repeated process that is 
disorderly and irregular, regardless of how it was produced. Moreover, let’s say that a 
random process is one involving genuine chance, in which some of the possible 
outcomes of the process have non-trivial objective chances of coming to pass. There 
is precedent for this regimentation, assuming that ‘probabilistic laws’ support 
objective chances: 

I group random with stochastic or chancy, taking a random process to be 
one which does not operate wholly capriciously or haphazardly but in 
accord with stochastic or probabilistic laws. (Earman, 1986: 137; my 
italics) 

This proposed regimentation diverges to a certain extent from intuition, in some cases 
where the chances are nearly 1 or nearly 0. An exercise of a quite reliable skill, like 
catching a ball, can be a random process, if there is some genuine chance of failing to 
catch the ball. It is awkward to characterize the occurrence of the – entirely expected 
– outcome of such a process as random. In the case of human action, perhaps our 
judgments are being confounded by the fact that, while my catching a ball is partly a 
matter of chance, it is not solely due to chance. So instead we should say: a process 
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is random if at least some of its outcomes are purely a matter of chance – they 
happen not just ‘in accord with’ probabilistic laws, but are adequately explained by 
citing probabilistic laws.  

Even refined in this way, the regimentation classifies some highly probable outcomes 
as random – any event which is best explained by citing a chancy law of nature. 
Suppose we consider the outcomes of this repeated chance process: roll two fair 
dice, record ‘1’ if double six comes up, and ‘0’ otherwise. In the long run, the 
frequency of 1s in the outcome sequence will be (close to) 1/36. Because of this, the 
outcome sequence will be quite orderly: it will be almost all 0s, with a few 1s scattered 
here and there. Yet this process is purely chancy (assuming that dice rolls are), and so 
is random. Ordinary intuition appears to be split on such cases. On the one hand, the 
outcomes are quite regular, and even predictable (if you always bet on ‘0’, you’d be 
almost always right). On the other, the best opinion to have about a given outcome is 
simply to set your credence in line with the chances, and the best explanation of why 
some outcome came up in a particular case just cites the chances. Once we make the 
distinction between product and process randomness, we can vindicate both these 
intuitive judgments: this scenario involves a random process, but produces something 
non-random. Those who would refuse to call biased chance processes ‘random’ are – 
I venture – letting views about the randomness of the product drive their opinion of 
randomness of the process. We have a more useful taxonomy if we keep these two 
categories apart. 

On my suggested regimentation, there is a definitional link between process 
randomness and physical probability. The relationship between product randomness 
and physical probability is less clear. The typical outcome of a repeated random 
process will be a random product; but it is conceivable both that some random 
products are not produced by chance, and, that some repeated trials of random 
processes don’t yield random products. Having regimented our vocabulary so as to 
be able to make such distinctions, it is clear that we can neither define randomness of 
a product in terms of randomness of the process generating it, nor vice versa.  

But for all that, it may be that we can reduce one to the other, finding some 
metaphysical account which either grounds the randomness of a sequence in the 
randomness of some process, or conversely. This converse reduction of process 
randomness to product randomness is the characteristic idea behind the frequentist 
account of chance (von Mises, 1957; La Caze, this volume). Von Mises claims, in 
effect, that a process is chancy iff it would produce a random sequence of outcomes 
which exhibit stable frequencies; those frequencies are to be identified with the 
chances of those outcomes. Frequentists often proposed a definitional link between 
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chance and frequencies. They needn’t have; they need only claim that frequencies in 
random sequences actually realize the chances.  

I begin the rest of this chapter by exploring proposals in the vicinity of frequentism in 
this respect: proposals that attempt to ground process randomness – at least in part – 
in facts about product randomness. That task involves giving a theory of product 
randomness that makes no reference to chance or probability, a theory that 
characterises disorderliness of a sequence directly. In §2, I discuss first von Mises’ 
attempt to provide such a theory, then related theories due to Martin-Löf and 
Kolmogorov. In §3, I examine whether there is any viable prospect of using 
randomness of sequences to ground facts about chance. My conclusions are largely 
negative. At the end of §3, I discuss the weaker claim that product random sequences 
can be good evidence for chances. Above, I noted our ability to distinguish orderly 
and disorderly sequences, independently of the randomness or otherwise of the 
underlying process. If we can come up with a sensible account of product 
randomness, we may be able to use the existence of a product random sequence as 
evidence for the existence of a random process. It seems that if the outcome 
sequence is product random, it will be unpredictable; and accordingly it will be 
epistemically irrational to seek certainty in advance concerning future outcomes. In 
such a situation, probabilistic theories look particularly attractive, providing reliable 
information about the future when certainty cannot be had. Given familiar difficulties 
concerning the epistemology of chance, the possibility that product randomness is 
evidentially significant for chance is a good reason to explore product randomness 
more deeply.  

* * * 

The distinction between process and product randomness doesn’t exhaust the 
theoretically useful categories in this vicinity. Typically, random processes yield 
unpredictable outcomes, in the sense that gathering additional information 
concerning already observed outcomes doesn’t generally improve predictive accuracy 
compared to estimates based solely on the underlying chances. Likewise, a random 
product involves unpredictable outcomes, in that information about earlier outcomes 
in the sequence doesn’t provide information about later outcomes in the sequence – 
for if it did, that would be a pattern (perhaps somewhat subtle) in what is supposed to 
be a disorderly sequence. (We might be mystified by the process involved, but a 
sequence of coin tosses which reliably came up heads every prime-numbered toss 
would be at least partially predictable.) So both product and process randomness 
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tend to lead to unpredictability. 2 But the converse isn’t true. A process may be 
unpredictable because we can’t figure out how to model it, even though it is perfectly 
deterministic and non-chancy. (Some examples like this are discussed in §3.2 below.) 
Likewise, a product may be unpredictable, even though there is an underlying pattern 
or order, because that pattern is too difficult to discern.  

Elsewhere, I’ve argued that it would be theoretically elegant to identify randomness 
with unpredictability, on the grounds that only such a liberal identification would 
capture all cases of randomness (Eagle, 2005). My basic argument was that product 
and process randomness are each too narrow to apply to everything characterised as 
random by the various special sciences. The notion of unpredictability I offered was, 
however, explicated just in terms of credence, and didn’t say much about how these 
‘random’ phenomena justify our subjective probability assignments. In focussing on 
the connections between randomness and physical probability in this chapter, I will 
discuss some outcomes that are unpredictable because they are process and/or 
product random. But I will neglect the class of unpredictable outcomes more 
generally, because there is little both systematic and true that can be said about the 
relationship between unpredictability and physical probability. 

I also largely set aside another interesting notion in the vicinity: pseudorandomness. 
Like product randomness, pseudorandomness is a property of sequences. Informally, 
a sequence is pseudorandom if it looks disorderly. More precisely, a sequence will be 
pseudorandom if it passes sufficiently good tests for randomness, in that ‘no efficient 
algorithm can distinguish [pseudorandom] output from a truly random sequence’ 
(Vadhan 2012: §1.1). So a pseudorandom sequence is not product random, because 
there exists some pattern underlying the sequence. But that pattern is not able to be 
efficiently exploited – so for all practical purposes, the sequence is as good as 
random. The interest of pseudorandomness lies in the question as to whether the use 
                                                

2 The same sorts of worries about the randomness of outcomes of very high and very low 
chance arise again here. It is very plausible to think that if your best estimate of whether an 
outcome will happen is no better than chance, then you are not able to predict that outcome. 
But nearly-extreme-chance outcomes certainly appear predictable; and indeed, it is often 
possible to know propositions that have high but not extreme chance (Hawthorne and 
Lasonen-Aarnio, 2009). So it can turn out (i) that the best credence to have in a high chance 
outcome is just equal to its chance, which makes that outcome unpredictable; but (ii) that for 
all practical purposes simply assuming that it will occur is the best strategy; and (iii) it may 
even be that, though unpredictable, one can know the outcome will occur. This is one more 
nice illustration of the sometimes uncomfortable fit between traditional and Bayesian 
epistemology. 
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of pseudorandom sequences might replace the use of random sequences in many 
applications, for example in cryptography. But since pseudorandom sequences are, 
by construction, neither produced by chance nor genuinely patternless, they are not 
random in the core sense that concerns us here.  

2. Algorithmic Randomness 

Laplace observed that, when tossing a coin, 

if heads comes up a hundred times in a row, then this appears to us 
extraordinary, because the almost infinite number of combinations that 
can arise in a hundred throws are divided in regular sequences, or those 
in which we observe a rule that is easy to grasp, and in irregular 
sequences, that are incomparably more numerous. (Laplace, 1951: 16–7) 

Modern theories of product randomness take up two themes from Laplace – first, that 
random sequences are not governed by a rule (whether or not ‘easy to grasp’); 
second, that random sequences are more numerous than non-random ones. 
Following the literature on algorithmic randomness, we will restrict our attention to 
binary sequences of outcomes, like sequences of outcomes of tosses of a fair coin. 
The mathematical literature on random sequences is extensive; for further details, see 
Eagle 2013; Dasgupta 2011; Li and Vitanyi 2008; Nies 2009; and references therein. 

As mentioned above, von Mises’ version of frequentism required, to avoid circularity, a 
characterisation of product randomness that did not involve an antecedently given 
probability function. The characterisation he offered applies only to infinite sequences, 
and it is convenient to begin by considering these. In fact, we will confine our attention 
to infinite binary sequences (sequences of 0s and 1s), the sort that might model an 
infinite series of coin tosses. The set of all infinite binary sequences we call the Cantor 
space. 

2.1 Infinite Random Sequences: Von Mises’ Approach 

Von Mises’ approach illustrates one of the Laplacean themes: the unruliness of 
random sequences. Considering his example of regular milestones spaced along a 
road, of which a probabilistic account would be inappropriate, he claims that  

the essential difference between the sequence of the results obtained by 
casting dice and the regular sequence of large and small milestones 
consists in the possibility of devising a method of selecting the elements 
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so as to produce a fundamental change in the relative frequencies. (von 
Mises, 1957: 24) 

The rule governing a non-random sequence can be exploited to construct a method to 
select a biased partial sequence from the original sequence: for example, the rule 
select every element which occurs after nine small stones can be used to select a 
partial sequence of the milestones in which the limit relative frequency of large stones 
is 1, even though we never use that attribute directly in selecting outcomes for the 
subsequence. However, in a random sequence, claims von Mises, we are unable to 
use such a method – the only way to obtain a biased partial sequence of outcomes is 
to chose outcomes based on their attributes directly. 

Accordingly, he offers a characterisation of random sequences as those in which the 
limiting frequencies are invariant in partial sequences: 

these limiting values must remain the same in all partial sequences which 
may be selected from the original one in an arbitrary way. Of course, only 
such partial sequences can be taken into consideration as can be 
extended indefinitely, in the same way as the original sequence itself. 
Examples of this kind are, for instance, the partial sequences formed by 
all odd members of the original sequence, or by all members for which 
the place number in the sequence is the square of an integer, or a prime 
number, or a number selected according to some other rule, whatever it 
may be. The only essential condition is that the question whether or not a 
certain member of the original sequence belongs to the selected partial 
sequence should be settled independently of the result of the 
corresponding observation, i.e., before anything is known about this 
result. We shall call a selection of this kind a place selection. The limiting 
values of the relative frequencies in a collective must be independent of 
all possible place selections. By place selection we mean the selection of 
a partial sequence in such a way that we decide whether an element 
should or should not be included without making use of the attribute of 
the element, i.e., the result of our game of chance. (von Mises, 1957: 24–
5) 

It is trivial to observe that – without further restrictions on what kind of place 
selections are admissible – there will be no random sequences, because no limit 
frequencies are invariant under arbitrary place selections. For if a place selection is 
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just any function 𝑓 from natural numbers into {0,1},3 then there will be a place 
selection that selects a biased subsequence, since 

any increasing sequence of natural numbers 𝑛! < 𝑛! < ⋯ defines a 
corresponding selection rule, … given an arbitrary sequence of 0s and 1s 
… there is among the selection rules the one which selects the 1s of the 
given sequence, so the limit frequency is changed (Martin-Löf, 1969a: 27) 

Von Mises does implicitly place restrictions on appropriate place selections. The 
empirical basis for von Mises’ claim that there exist sequences which are appropriate 
for probabilistic treatment lies in the principle of the impossibility of a gambling 
system (von Mises, 1957: 25): in some systems, there is no recipe for deciding when 
to bet on outcomes that ensures more successes than chance alone. (The ‘gambler’s 
fallacy’ is an unusually simple gambling system, but its lack of success is entirely 
representative.) The ‘recipe’ bet only on 1s does exist, in some abstract mathematical 
sense, but it is not one that can be followed by anyone. So von Mises’ implicit 
restriction is to those place selections that can be genuinely implemented by a 
prospective gambler, making use only of information in the gambler’s possession 
(information about previous outcomes). Von Mises made his original proposal before 
Turing and others made the notion of an algorithm precise, but it was very natural to 
retrospectively read into his work a restriction to computable place selections: 

To a player who would beat the wheel at roulette a system is unusable 
which corresponds to a mathematical function known to exist but not 
given by explicit definition; and even the explicit definition is of no use 
unless it provides a means of calculating the particular values of the 
function. … Thus a [place selection] should be represented 
mathematically, not as a function, or even as a definition of a function, 
but as an effective algorithm for the calculation of the values of a 
function. (Church, 1940: 133) 

Where x is some infinite sequence, let ‘𝑥⨡𝑖’ denote the initial segment of 𝑥 of length 𝑖. 
Church proposes that an implementable place selection is an effectively computable 
function φ ∶ 𝑥⨡ 𝑖 − 1 , 𝑖 ↦    0,1  that takes the value 1 infinitely many times (so 
always selects an infinite partial sequence from an infinite sequence). Let 𝑥[𝜑] be the 
infinite partial sequence consisting of any 𝑥! such that 𝜑(𝑥⨡(𝑗 − 1), 𝑗)   =   1. According 
to Church’s reconstruction of von Mises, a sequence is random iff for every effectively 
computable place selection 𝜑, the limiting frequency of every outcome in 𝑥[𝜑] equals 

                                                

3 I.e., if 𝑓 𝑛 = 1, then and only then select the nth member of the original sequence to belong 
to the partial sequence. 
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the limiting frequency of that outcome in 𝑥. More informally: there exists no effective 
method for choosing a subsequence of a random sequence that is biased with 
respect to the original frequencies. The random sequences in this sense are immune 
to gambling systems: there are no followable rules that enable even fallible and 
unreliable prediction of patterns of outcomes in a random sequence, or any partial 
sequence derived from it, except strictly in accordance with the statistical predictions 
of its probabilistic laws. 

The question of whether there are any random sequences in this revised sense still 
needs to be addressed. As there are many fewer effectively computable functions 
than functions, it is easier to satisfy the requirement of invariance of limit frequencies 
under all computable place selections. In fact, there do exist infinite random 
sequences in this refined von Mises/Church sense. Indeed almost all infinite binary 
sequences have the feature of being frequency-invariant under computable place 
selections. More precisely, the set of von Mises/Church random sequences forms a 
measure one subset of the Cantor space. This follows quickly from a result due to 
Wald (1938), that any countable set of arbitrary place selections (whether computable 
or not) defines a set of von Mises random sequences which is measure one, given that 
there are only countably many computable place selections. Pursuing the unruly 
behaviour of random sequences has now led us to the other aspect of random 
sequences Laplace noted: the von Mises/Church random sequences are much more 
numerous than the even partially rule-governed sequences. 

2.2 Infinite Random Sequences: The Typicality Approach 

What if we had started instead from Laplace’s other claim: that irregular sequences 
are more numerous than regular sequences? Suppose we know that a fair coin is to 
be tossed repeatedly; what sort of outcome sequence should we expect? Well, we 
ought to expect that heads should occur about as often as tails; that strings of heads 
and tails of equal length should occur about as frequently as each other; and so on. 
These are features that are typical of sequences generated by this sort of chance 
setup. Even if we have very little confidence in any specific sequence of outcomes 
occurring, we should be confident that some typical sequence will occur. This 
confidence derives ultimately from the fact that typical sequences are much more 
common than atypical ones.  

This last claim needs to be handled with some care. Given an uncountably infinite set, 
like the Cantor space, there are many ways of measuring the size of its subsets. We 
want the typical sequences to form a measure one set of sequences, but under which 
measure? This is particularly important when we consider biased binary processes. 
The typical outcome of a series of flips of a coin biased to heads will be a decidedly 
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atypical product of a series of fair coin flips. The standard way of approaching this 
issue is to let the probability function associated with the underlying binary process 
determine a measure over the Cantor set; thus typicality of a sequence is relative to a 
probability function (Martin-Löf, 1966; Gaifman and Snir, 1982). 

Obviously, and in contrast to the von Mises/Church account, such approaches to 
randomness rely on antecedent probabilities, and thus are generally unsuited to the 
reductive project we’re considering. But there is a special case, where we define a 
measure not from an underlying chance, but from symmetries in the Cantor space 
itself. The measure thus produced is a very natural one over the Cantor space: the 
Lebesgue measure 𝜆. The key idea is that the set of all sequences which begin with a 
given initial subsequence 𝑥! of length 𝑛 has Lebesgue measure 1/2!. (So the set of 
sequences beginning with a 1 has measure 1/2, the set of sequences beginning 010 
has measure 1/8, etc.) Every particular infinite sequence 𝑥 ∈ 𝑋 has Lebesgue measure 
zero (it must have measure smaller than any set of sequences sharing an initial 
subsequence with it, and lim!→!

!
!!
= 0). So indeed does any countable set of infinite 

binary sequences. The set of von Mises/Church random sequences has Lebesgue 
measure one, because its complement – the set of effectively computable binary 
sequences – is countable, connected as it is with the countable set of effectively 
computable functions, and thus has Lebesgue measure zero. The von Mises/Church 
random sequences are typical with respect to the Lebesgue measure over the Cantor 
space. (Henceforth, I will simply say they are typical.) 

A typical sequence has some measure one property: one that is shared by almost all 
the sequences. But there are lots of distinct measure one properties. For example, the 
property of having 0 and 1 occur equally frequently is a property of almost all 
sequences. It is also, intuitively, a property that a random sequence should have. 
Intuitively, a random sequence should have the stronger property of Borel normality 
(Borel, 1909): every string of 1s and 0s of length 𝑛 occurs equally often in 𝑥. (So 010 
occurs as often as 101 and 111, etc.) Borel normality is also a measure one property. 
Indeed, every measure one property that has been explicitly considered is one that, 
intuitively, random sequences have. Generalising from this, Ville (1939) proposed that 
a random sequence should be a member of all measure one sets of sequences – the 
random sequences are typical in every respect.  

The typicality approach, in this crude form, cannot work. For each individual sequence 
has measure zero, so its complement with respect to the Cantor space has measure 
one and excludes it; so the intersection of all sets of measure one is the empty set. No 
sequence is typical in every respect.  
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This is reminiscent of the way in which consideration of arbitrary functions trivialised 
von Mises’ original theory of place selections. Martin-Löf (1966) proposed a analogous 
solution: rather than considering arbitrary measure one sets, he suggests that the 
random sequences should satisfy all effective measure one properties. A set has 
Lebesgue measure zero if there is a sequence of sets which converge to it, such that 
the measures of the sets converge to zero. If that sequence of sets is effectively 
computable (so that there is a computable function which computes what each 
member of the sequence is), then the set has effective measure zero. A sequence is 
Martin-Löf random iff it is not a member of any effective measure zero set – i.e., has 
all effective measure one properties. The Martin-Löf random sequences are typical in 
every effectively determinable respect. (More precisely: they are not effectively 
determinable to be atypical.) All the properties we have considered so far – Borel 
normality, non-computability, and the property of symmetric oscillation considered at 
the end of this section – are effective measure one. 

Martin-Löf was led to this idea by considering significance tests in statistics. An 
experimental outcome prompts a hypothesis to be rejected at a significance level α if 
the outcome falls into a previously specified critical region. A sequence which falls into 
an effective measure zero set is one that would effectively yield a statistically 
significant result at arbitrarily high levels of significance. That is, it would prompt us to 
reject the null hypothesis that the sequence is random with arbitrarily high 
significance, and so must really be non-random. In this reformulation, Martin-Löf’s 
proposal is that a sequence is random iff it passes all recursive statistical tests for 
randomness. 

To show that there are Martin-Löf random sequences, Martin-Löf proves first that 
there is a universal significance test: there exists an effectively specifiable sequence 
of sets 𝑈 = 𝑈!,…, such that for any other significance test 𝐺 = 𝐺!,…, there exists a 
constant 𝑐 such that for all 𝑖, 𝐺!!! ⊆ 𝑈!. If a sequence is rejected by some test at some 
significance level, it will also be rejected by 𝑈 at some related significance level. Since 
the non-random sequences are those which, for any significance level, are rejected by 
some test, they will all be rejected by the universal test too. This universal test thus 
directly establishes that the set of Martin-Löf non-random sequences has effective 
measure zero; so Martin-Löf random sequences exist and collectively have effective 
measure one. 

* * * 

What is the relationship between von Mises’ approach and the typicality approach? 
Let’s begin by considering another way to think about random sequences. Each 
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random sequence x corresponds to a random walk on a line, in which the walker 
begins at some starting point, and moves one unit left at stage i if the i-th element of x 
is 0, and moves to the right otherwise. The behaviour of this trajectory can be used to 
illustrate properties of random sequences. For example, the typical random walk ends 
up back at the starting point, since it will have moved left exactly as often as right. 
This corresponds to an infinite binary sequence having a limit relative frequency of 1/2  
for 0 and 1.  

Intuitively, a genuinely random walk should also cross the starting point often enough 
so that it spends as much time, in the long run, on the left of its starting point as the 
right.4 A walk that never spent any time to the left of the starting point has too much 
structure to be truly random. Happily for Martin-Löf’s theory, this property of 
symmetric oscillation does have effective measure one (Dasgupta, 2011: §3.4). 

But Ville showed there exist infinite binary sequences which are von Mises/Church 
random, and yet have biased initial segments: while the limit frequency of 1s in the 
sequence and all infinite subsequences is 1/2, the limit is approached ‘from above’, 
and the frequency of 1s in every finite initial subsequence is ≥ 1/2 (Ville, 1939; see 
also Lieb et al., 2006; van Lambalgen, 1987). Such sequences have the same limit as 
the genuinely random sequences, but are not random in how they approach that limit. 
So there is a property that, intuitively, random sequences have (and that Martin-Löf 
random sequences have, in agreement with intuition), that some von Mises/Church 
random sequences lack. So while von Mises/Church randomness is necessary for 
Martin-Löf randomness, it is not sufficient (see also van Lambalgen, 1987: §4).  

2.3 Finite Random Sequences 

A major difficulty facing Martin-Löf’s proposal is that it cannot accommodate random 
finite sequences, or strings. Every string can be effectively produced by some Turing 
machine (even if not particularly efficiently), so no string can be even von 
Mises/Church random. 

But while the contrast between sequences exhibiting effectively exploitable patterns 
and ‘completely lawless’ random sequences does not apply to finite sequences, a 
related contrast does apply: between those strings which can be efficiently described, 
                                                

4 Not only should a random sequence have a limit relative frequency of 1s equal to 1/2; it 
should approach this limit by having equally as many finite initial subsequences in which the 
relative frequency is below 1/2 as those in which the relative frequency is above 1/2. The idea 
that random processes should spend equal time in all equally sized outcome states (the states 
here are being on the left of the origin and being on the right) is related to ergodicity and its 
relatives, discussed in §3.2 below. 
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and those cannot. This leads us to the idea that finite random sequences, like their 
infinite cousins, are patternless, or disorderly, and cannot be predicted (or exploited) 
by a simple rule. 

Kolmogorov was the first to connect this idea of disorder with incompressibility 
(Kolmogorov, 1963; Kolmogorov and Uspensky, 1988). The informal idea is that a 
pattern in a string can lead to a short description of its contents, while disorderly 
strings cannot be described more effectively than by stating their contents. So while 
the string consisting of 1000 alternating 1s and 0s can be simply specified (I just 
specified it in nine words), some string consisting of 1000 1s and 0s with no pattern is 
most effectively presented by just listing the 1000 digits comprising it. This can be 
made more precise by thinking about compressibility. 

If f is a computable encoding function from strings to strings, we say that a string δ 
is an f-description of a string σ iff 𝑓(𝜎) = 𝛿. A string σ is compressed by f if there is 
an f-description δ of σ such that |𝛿| < |𝜎|, where ‘|𝜑|’ denotes the length of the string 
φ.  We may define the f-complexity of a string σ, 𝐶!(𝜎), as the length of the shortest 
string δ that f-describes σ. A string σ is random relative to f iff it is f-incompressible, 
that is, if the f-complexity of σ is roughly equal to |𝜎|. 

This gives us randomness relative to a fixed algorithm 𝑓. It is in the spirit of the 
Laplacean ideas with which we began; since strings random relative to 𝑓 are 
incompressible, they obey no rule – at least, no rule that 𝑓 can exploit to describe 
them compactly. The random strings are also more numerous. Assuming that a useful 
encoding 𝑓 will produce an 𝑓-description of a string σ that is a least 𝑗 ≥ 1 shorter than 
σ, very few strings usefully compress: a proportion of at most 2!! strings of a given 
length. Even with the most pitiful amount of compression, 𝑗   =   1, we see that at most 
half the strings of a given length can be compressed by any algorithm 𝑓; and the 
compressible (non-random) strings are sparser the more compression we demand.  

An encoding f is at least as good as g iff there is some constant 𝑘! such that for any 
string σ, 𝐶!(𝜎) ≤ 𝐶!(𝜎) + 𝑘!, so that the f-complexity of any string is within 𝑘! of the g-
complexity (where 𝑘! is independent of σ). Kolmorogorov showed that there is an 
encoding algorithm f which is at least as good, in this sense, as any other algorithm 
(Kolmogorov, 1965; Chaitin, 1966; Martin-Löf, 1969b). Kolmogorov called such an 
algorithm asymptotically optimal, because, since 𝑘! is fixed independently of σ, it 
becomes asymptotically negligible as |𝜎| increases.  

Fixing on an asymptotically optimal function u, we define complexity simpliciter: 
𝐶 𝜎 = 𝐶! 𝜎 . Since u is optimal, it is at least as good as the identity function; it 



 14 

follows that there exists a constant k such that 𝐶 𝜎 ≤ 𝜎 + 𝑘. On the other hand, we 
also know that the proportion of strings of a given length for which 𝐶 𝜎 ≤ 𝜎 − 𝑘 is at 
most 2!!. As the length of the strings increases, k remains constant; so there is a 
length such that for all strings of at least that length, 𝐶(𝜎) ≈ |𝜎| ± 𝑘. Even if k is quite 
large, it is fixed, and for any fixed k, almost all strings are longer than k. So almost all 
strings are not noticeably compressible when compared to their initial length, and 
almost all strings have complexity of approximately their length. The typical finite 
string is incompressible. Implicitly following Laplace, Kolmogorov proposes that 
incompressible strings, being both unruly and typical, are the random ones: a string σ 
is C-random iff 𝐶(𝜎) ≈ |𝜎|. 

As we have placed no constraints on which descriptions are permissible descriptions, 
a carefully designed compression algorithm could encode more information than is in 
the content of the description itself: an efficient decoding 

might begin its operation by scanning all of δ to determine its length, only 
then to read the contents of δ bit for bit. In this way, the information δ is 
really worth 𝛿 + log |𝛿| bits, so it is clear that we have been cheating in 
calling |𝛿| the complexity of σ. (van Lambalgen, 1987: 736, notation 
altered) 

To exclude this possibility, we follow Chaitin and Levin and restrict the permissible 
descriptions to those which are prefix-free with respect to u (Chaitin, 1966; Levin, 
1976). An algorithm f is prefix-free iff no two f-descriptions are such that one is an 
initial segment of the other. (Think telephone numbers:5 no well-formed phone number 
is such that appending further digits to it yields another well-formed phone number.) 
With a prefix-free encoding, a decompression algorithm can begin processing the 
description while reading it, and recognise the end of the description without having to 
be explicitly told that it has ended. Accordingly, such algorithms only make use of |𝛿| 
bits in decoding a string. We can define the prefix-free f-complexity of a string as the 
length of the shortest prefix-free f-description that generates the string, and then 
define the prefix-free complexity of a sequence 𝐾 𝜎 = 𝐾!∗(𝜎) for some fixed prefix-
free asymptotically optimal 𝑢∗ (which do exist: see Downey and Hirschfeldt, 2010: ch. 
3). 

The requirement that descriptions be prefix-free reduces the number of permissible 
descriptions, and thus in general increases the complexity of sequences: 𝐶 𝜎 ≤ 𝐾 𝜎  
(the relation between C and K is discussed in Downey and Hirschfeldt, 2010: ch. 4). 

                                                

5 Or sentences of properly bracketed formal logic (Shapiro 2013: §2, Theorem 5). 
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But then the prefix-free incompressible sequences are even more numerous than the 
C-random sequences, and so play the functional role of random sequences even 
better. Accordingly, call a string Kolmogorov random iff 𝐾(𝜎) ⪆ |𝜎|.  

* * * 

This inefficiency in K is actually of benefit, for it allows us to extend the definition of 
Kolmogorov randomness to infinite sequences. We can define an infinite sequence x 
as prefix-free Kolmogorov random iff every finite initial subsequence 𝑥⨡𝑖 is prefix-
free Kolmogorov random. (This definition fails for the original measure of complexity 
C, as C is subject to the phenomenon of complexity oscillation, where any 
sufficiently long string has non-C-random initial segments: Li and Vitanyi, 2008: §2.5.) 

So defined, the class of infinite Kolmogorov random sequences can be shown to be 
non-empty. In fact, a striking result due to Schnorr shows that it is a familiar class: the 
set of infinite Kolmogorov random sequences is precisely the set of Martin-Löf 
random sequences (Schnorr, 1971). 

This result shows a happy convergence between our two discussions of randomness. 
It is some evidence that we have captured the intuitive notion of randomness in a 
precise formal notion. Some claim Schnorr’s result is good evidence for a ‘Martin-Löf-
Chaitin thesis’ (Delahaye, 1993) that identifies the intuitive notion of randomness (for 
infinite sequences at least) with the precise notion of Kolmogorov/Martin-Löf (KML) 
randomness – analogous to Church’s thesis identifying the intuitive notion of effective 
procedure with Turing machine/recursive function.  

In the case of Church’s thesis, every precise account that is even close to intuitively 
plausible turns out to be equivalent (Turing machines, recursive functions, abacus 
machines, …). This is not true of randomness, where there are many distinct 
extensionally inequivalent yet precise accounts of randomness that more or less agree 
with intuition: from those relatively closely associated with KML randomness (like 
Schnorr randomness and von Mises randomness), to other proposals of more distant 
pedigree, such as epistemic accounts (Eagle, 2005) or accounts based on 
indeterminism (Hellman, 1978). The dispute over whether there is a single precise 
notion of randomness that answers perfectly to our intuitions about random 
sequences can be largely sidestepped for present purposes (but see Porter 2012). 
KML randomness is a reasonable and representative exemplar of the algorithmic 
approach to randomness, and it is adopted here as a useful working definition of 
randomness for sequences. None of the difficulties we’re about to discuss concerning 
the connection between randomness and chance turn on the details of which 
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particular sequences get counted as random – most arise from the mismatch between 
intuitions about chance, and features common to all accounts of product randomness. 

3. Chance and Randomness 

The question before us now is this: what role can product randomness play in the 
theory of chance? Does chance require the existence – or potential existence – of 
random sequences, as orthodox frequentism supposes? Does the existence of a 
random sequence entail the existence of chance? I address both questions below. 

3.1 Chance without randomness 

Random sequences are, if the foregoing is correct, the kinds of outputs that are 
typical of a certain sort of chance process: independent, identically distributed 
(i.i.d.) trials of a process with two outcomes (a so-called Bernoulli process). But many 
chance processes don’t have these features, and their characteristic outputs are not 
product random. 

Frequentism gives a central role to randomness. Probabilities only exist in those mass 
phenomena that can be idealised to a random sequence of outcomes, namely 
collectives: ‘we shall not speak of probability until a collective has been defined’ (von 
Mises 1957: 18). But this approach prioritises the overall sequence over the individual 
outcomes; and interesting chance phenomena that arise at the level of individual trials 
of the repeated processes –single case chances – are overlooked (Hájek, 2009; 
Jeffrey, 1992). The thrust of the literature surrounding frequentism has been that 
single-case chance must be part of any satisfactory account of physical probability. 
The upshot for randomness is that, unless the single case chances satisfy some 
significant constraints, the resulting outcome sequences need not be, and typically 
will not be, random. 

Consider physically realistic chance processes in which the outcomes are not 
independent. One might consider the sequence of states of weather on successive 
days: the chance of a sunny day, given a sunny day yesterday, is higher than the 
unconditional chance of a sunny day. Sequences of non-independent outcomes are 
susceptible to gambling systems (e.g., bet on a sunny day tomorrow when it’s been 
sunny today), and are thus non-random. Such a sequence cannot be idealised to a 
random collective, and so is not a suitable example of the mass phenomena that von 
Mises’ takes as the proper subject matter of the theory of probability. If we are to 
understand the chances involved in weather patterns, they cannot be extracted from 
sequences of weather outcomes. One might reasonably ask, whence do these 
chances derive? For there is no necessity that, whenever there is a sequence of 
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dependent trials, there must also be some sequence of independent trials; but that is 
exactly what von Mises’ approach demands.6  

This illustrates a major problem facing any theory of chance which, like frequentism, 
makes the existence of random sequences partly constitutive of chance: namely, that 
many chance processes don’t give rise to random sequences in the sense developed 
in §2. For another example, consider biased processes. These were not a problem for 
von Mises’ original theory of randomness, because invariance of frequencies under 
place selections is independent of what the frequency is. But if we accept the 
conclusions of §2, that von Mises’ theory is intuitively inadequate, and that a typicality 
approach is more successful, then we face the problem that such approaches need a 
probability measure with respect to which sequences are typical. Perhaps it is 
acceptable to appeal to the Lebesgue measure in a purely mathematical account of 
randomness, as it is an a priori symmetry of the space of sequences. But biased 
chances are not a priori features of the space of outcomes, but contingent and a 
posteriori features of a particular chance device. If randomness is partly constitutive of 
chance, most chance devices – any other than fair coins – don’t usually produce 
random outcomes, because they usually produce outcomes that are atypical with 
respect to the Lebesgue measure. Given that, it is extremely hard to see how such 
chance devices end up involving chances at all, except by offering some reduction of 
unequal apparent chances to some combination of basic outcomes which are equally 
likely. Ultimately, then, such views will end up being a version of the classical theory 
of probability,7 because such views require that a priori symmetries in the outcome 
space underlie all random sequences, and thus all genuine chances.  

Because frequentism gives randomness such a significant role in the foundations of 
chance, many cases with which frequentism has difficulty are also cases in which 
there is chance without randomness. Consider Hájek’s problem of ordering: ‘Limiting 
relative frequency depends on the order of trials, whereas probability does not’ (Hájek 
2009: 219; see also Hellman 1978). The same is true of randomness: whether a 
                                                

6 Actual weather supervenes on some underlying mosaic of more localized outcomes, and 
perhaps in the actual case the frequentist can find some sequence which can be idealized to a 
random collective. But it is surely possible that there be a situation in which there is a pattern 
in the underlying mosaic that suggests probabilistic dependence between those outcomes. 
The frequentist, shackled with attempting to fit all probabilistic phenomena into the 
Procrustean bed of collectives, cannot handle such a case, while more liberal theories may 
accommodate it – even other Humean theories which ground probability ultimately in patterns 
of outcomes (Lewis 1994; Loewer 2004). 
7 ‘The theory of chance consists in reducing all the outcomes of the same kind to a certain 
number of cases equally possible, that is to say, to such as we may be equally undecided 
about in regard to their existence, and in determining the number of cases favorable to the 
outcome whose probability is sought.’ (Laplace, 1951: 6–7). See also Zabell, this volume. 
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sequence is random depends on the order of the outcomes, and randomness is not 
necessarily preserved under permutation of outcome order. However, whether the 
outcomes are the product of a chancy or random process is invariant under 
permutation; so here we have cases in which there is process randomness without 
product randomness.  

The preceding examples show a systematic disconnection between certain sorts of 
chance process and the existence of random outcome sequences. But, given the 
existence of single-case chances, cases of chance without randomness arise even in 
the most favourable circumstances for the idea that chance requires randomness. For 
any particular chance process could yield an unrepresentative outcome sequence, 
which doesn’t reflect the underlying chances, and in which frequencies are not good 
evidence for the values of the chances. Those sequences will not be typical with 
respect to the underlying chances, and hence non-random. Such cases show don’t 
show any systematic failure – they are, by construction, atypical of their underlying 
chances. But everyone except the frequentist accepts that atypical outcomes can 
happen. 

3.2 Randomness without chance 

Consider short sequences: they are not compressible, since in general a prefix-free 
encoding of a short sequence will be about as long as the sequence itself. 
Accordingly, all short sequences are (KML) random. But not all short sequences 
involve a random process. Since some short sequences are essentially short, 
consisting of unrepeatable or seldom repeatable outcomes, there are some random 
sequences that are essentially random despite not being chancy. So it cannot be a 
necessary condition on randomness that it require chance. Perhaps we might respond 
by denying that all short sequences are random, treating them as a degenerate case 
of incompressibility and restricting randomness to non-degenerately incompressible 
sequences. But then all short sequences turn out to be non-random; and if there is an 
unrepeatable chance event, there will be chance without randomness. If we consider 
the outcomes alone, either all short sequences are random or none of them are. But 
as some unrepeatable outcomes are chancy, and some are not, whichever way we 
opt to go with respect to randomness of the singleton sequences of such outcomes 
we will discover cases in which we have random processes without random products, 
or vice versa. 

Other cases of randomness without chance arise from some of the more exotic 
possibilities of classical physics. One sort of possibility arises from classical 
indeterminism. It is well known that classical Newtonian particle mechanics is 
indeterministic: that specifying the positions and momenta of all particles at a time, 



 19 

together with the laws, does not suffice to determine the future evolution of the 
system (Earman, 1986; Norton, 2008). But this classical indeterminism does not 
involve chance; nothing in the physics requires a probability distribution over these 
undetermined outcomes, rather than simply holding that such outcomes are 
nomologically possible. We could revise classical mechanics by adding a measure 
over outcomes (though which one?). But ordinary unrevised classical mechanics isn’t 
incomplete just because it does not provide chances for our credences to reflect. 

This phenomenon may yield cases of product randomness without chance. By 
preparing a system repeatedly in a given state that does not determine its future state, 
and classifying the possible outcomes into two classes, ‘0’ and ‘1’, it is physically 
possible that we obtain a random binary sequence as the system evolves over time. 
But we then have randomness without a chance distribution over the outcomes. The 
possibility of randomness requires only two distinguishable possible outcomes and 
the ability to produce arbitrary sequences of such outcomes. Chance requires in 
addition that some measure be ascribable to each outcome. Chance is a sort of 
quantitative physical possibility; since a physical theory can be indeterministic without 
having a probability distribution over the different possible outcomes, we can produce 
a random sequence by an indeterministic but non-chancy process. These sorts of 
cases may induce us to query our initial regimentation in §1, which identified process 
randomness with chanciness.8 But splitting chance and process randomness further 
undermines any putative connection between product randomness and chance. 

Another interesting possibility permitted by classical physics is chaotic dynamics. A 
(discrete) dynamical system can be characterised by four parameters: a set of basic 
states 𝑋, a σ-algebra Σ on 𝑋 (intuitively, the possible outcomes in the system, 
corresponding to regions of the basic space 𝑋), some measure 𝜇 such that 𝜇 𝑋 =   1, 
and a deterministic evolution map 𝑇 from 𝑋 onto 𝑋, which captures the lawlike 
evolution of states over one time step (Berkovitz and Frigg, 2006). Following Werndl 
(2009), a dynamical system is chaotic iff it is mixing: for all 𝐴,𝐵 ∈ Σ (where ‘𝑇!’ 
denotes applying 𝑇 𝑛 times): 

lim
!  →  !!

𝜇 𝑇! 𝐵 ∩ 𝐴 = 𝜇 𝐵 𝜇 𝐴 . 

Suppose B is the region in which our system was found 𝑛 time steps ago; a system is 
mixing if, in the limit as n increases, the system’s having been in B becomes 
independent of its now being in A (Berkovitz and Frigg, 2006: 676). In the limit, such 

                                                

8 That is, we may consider these sorts of case as involving process randomness because of 
the presence of indeterminism, even if they do not involve chance. 
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systems are maximally unpredictable (in the sense of Eagle, 2005: 775), because 
states of the distant past are increasingly credentially irrelevant for future states, 
assuming one sets prior credences in accordance with the 𝜇-measure of the system 
(though that is consistent with the system being quite predictable in the short run). A 
system is Bernoulli when the states of the system are independent of all past (and 
future) states:  

𝜇 𝑇!! 𝐵 ∩ 𝐴 =   𝜇 𝐴 𝜇 𝐵 . 

 The trajectory through the state space of a Bernoulli system is just like a sequence of 
fair coin tosses: the past states of the system are independent of future states, and 
credence in them is equal to their 𝜇-measure. Obviously all Bernoulli systems are 
mixing. 

What’s of interest for us is that chaotic systems do not require indeterminism: the 
evolution map 𝑇 is a one-one function, and so the time evolution is deterministic. 
Given the additional but widely believed premise that chance requires indeterminism 
(Lewis, 1986; Schaffer, 2007: 120), this entails that chaos does not require chance or 
random processes. The motivation for saying that these systems are not process 
random is that the underlying classical non-probabilistic dynamics provides a 
physically complete account of the behaviour of any particular system – i.e., sufficient 
to predict, and causally explain, the behaviour of the system without need of 
additional supplementation. 

But a Bernoulli system can generate a random sequence of outcomes, because the 
macroscopically-described trajectory of a chaotic system through the state space (its 
macroscopic history) provides resources too meagre to predict its future macroscopic 
behaviour. These sequences can be random: they are certainly at least Borel normal, 
since any complex pattern of successive states 𝐴 will be an element of Σ, the limit 
frequency with which such patterns occur will be equal to  𝜇(𝐴), and the frequency 
with which one pattern follows any other will also be 𝜇(𝐴). 

Sampled infrequently, even mixing systems can give rise to random sequences of 
outcomes. Some non-Bernoulli systems of great physical interest, such as the Lorenz 
model of atmospheric convection (Smith, 1998: §1.4), display rapid mixing (Luzzatto et 
al., 2005). Sampled at ordinary enough intervals, therefore, such systems can provide 
physical plausible examples of deterministic, and arguably non-chancy, random 
outcomes. 
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In such cases, admittedly, measures that look rather like chances are involved. The 
measure 𝜇 is formally like a probability measure, and moreover seems to be used to 
regulate credences about which macrostates the system will be in – reminiscent of the 
way chance regulates credence (Lewis, 1986). This has prompted some to deny the 
additional premise that chance requires indeterminism, and argue that measures over 
the state space in statistical mechanics, and other dynamical theories, should be 
understood as chances (Clark, 1987; Loewer, 2001; Meacham, 2005). There are also 
general arguments aiming to show that chance and determinism are compatible 
(Eagle, 2011; Glynn 2010). If these arguments are successful, these random 
sequences will after all be associated with a chance distribution. However, it is fair to 
say that not everyone is convinced that deterministic chance is possible – the received 
view remains that the measures involved in deterministic dynamical systems are 
ignorance measures over ensembles of macroscopically indiscriminable microstates, 
and so not objective chances after all. (And if there is deterministic chance, we open 
up the prospect of yet further examples of chance without randomness: cases where 
the deterministic laws coexist with chances, but in which sequences of outcomes 
generated in accordance with those laws is predictable and exploitable by a gambling 
system). 

An example of randomness in a deterministic setting (though not that of classical 
physics) which does not make any appeal to a measure is given by Humphreys. 
Adapting the theorem of Ville’s mentioned in §2, he proves that there exists ‘a theory 
which is deterministic in the sense of Montague and which has as a model a sequence 
which is random in the sense of von Mises/Church’ (Humphreys, 1978: appendix). 
This isn’t quite KML randomness, but it is a suggestive result. The theorem exploits 
the fact that the standard Montague-Earman definition of determinism requires that 
the evolution map of a dynamical system be a function (Earman, 1986; Montague, 
1974); but it does not require that it be computable. Here, given the explicit 
construction of the evolution function, it is difficult to accept that the limit frequency in 
the resulting sequence can play the chance role; so we have a case, albeit rather 
artificial, of randomness without chance. 

3.3 Randomness as evidence for chance 

We’ve seen plausible examples in which chancy processes do not produce random 
sequences – either by chance, in the case of Bernoulli processes, or because the 
family of chancy processes includes many whose typical outcomes do not show the 
hallmarks of random sequences. 

We’ve also seen examples of randomness without chance. Some of these examples, 
such as the statistical mechanical cases, may fail to persuade, because we needed to 
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use objective probability measures that behave in many ways like chances; and these, 
it may be argued, play the chance role well enough to deserve the name. Even so, 
some examples of randomness without chance remain, and support the claim that 
chancy processes are unnecessary for random products. 

Together, the examples in §§3.1–3.2 make the case that the distinctions drawn in §1 
between product and process randomness mark genuine metaphysical distinctions, 
and neither is plausibly reducible to the other. 

Nothing in my discussion undermines the sensible position that randomness of some 
sequences of outcomes is good evidence for the involvement of a chancy process. 
The appearance of a series of outcomes typical of a sequence of independent and 
identically distributed trials is generally good evidence that there was such a sequence 
of trials. Conversely, seeing a sequence of outcomes governed by a recognisable law 
will disconfirm any probabilistic hypothesis – not conclusively, but substantially. Since 
the typical outcomes of repeated equiprobable i.i.d. trials are random sequences, we 
ought sensibly expect such processes to produce a random sequence of outcomes. 
Accordingly, Hellman says: 

The link, then, between mathematical and physical randomness is 
epistemic and only that. Observations of mathematically non-random 
sequences can be used to decide when further explanation in terms of as 
yet undiscovered causal factors is wanting. But, in no sense is any notion 
of mathematical randomness serving as an explication for ‘ultimate 
physical randomness’, whatever that might be. (Hellman, 1978: 86) 

Taking ‘mathematical’ and ‘physical’ to mean product and process randomness 
respectively, this conclusion seems inescapable.  

Predictably, this epistemic connection between randomness and chance resembles 
that between frequencies and chance. Relative frequencies are good evidence for the 
chances; known chances should lead us to expect certain frequencies; and extreme 
frequencies might prompt us to look for non-chance hypotheses. But though 
frequency evidence is good evidence for chance hypotheses – and though successful 
accounts of chance must explain why it’s such good evidence – frequentism is 
implausible as a reductive account of chance, and any proposed reduction of chance 
to randomness is equally implausible.  

By definition, the Kolmogorov complexity function K cannot be a recursive function. 
Hence there is no effective positive conclusive test for randomness even of finite 
sequences. Even if our evidence is in fact a random sequence of outcomes, the 



 23 

proposition that the sequence is random will not generally be in our evidence, as (for 
all we know) there may be a short description of the sequence that we are unaware of. 
That an evidence sequence is random is no less a theoretical hypotheses about it than 
the hypothesis that it was produced by a chance process. In that light, it seems 
sensible to neglect randomness, and focus directly on how likely a chance process is 
to have been involved in the production of a given sequence, conditional on the 
contents of that evidence sequence.9 

* * * 

That said, more sophisticated descendants of frequentism, such as Lewis’ best 
systems analysis of chance (Lewis 1994; Schwartz, this volume), might enable us to 
make more precise claims about the bearing of randomness on chance. One 
application of randomness in a Humean metaphysics of chance might be in analysing 
Lewis’ notion of fit: namely, the proposal that a probability function fits some 
outcomes just when those outcomes are random with respect to that function (§2.2; 
see also Elga 2004). Another application might be in understanding when to invoke 
chances, given an austere fundamental ontology of only the ‘spatiotemporal 
arrangement of local qualities throughout all of history, past and present and future’ 
(Lewis, 1994: 474). One attractive suggestion might be that we ought to adopt a 
probabilistic description as best balancing strength and simplicity when that 
underlying arrangement of local qualities is complex, in the precise sense of being 
Kolmogorov incompressible (§2.3). For complex sequences of outcomes preclude 
there being simple non-probabilistic descriptions that are strong enough to carry 
useful content about the outcome sequence. Yet even if randomness can play these 
important roles in a Humean metaphysics of chance, that falls short of the kind of 
reduction originally envisaged by von Mises. 
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