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Abstract

Reverse mathematics studies which subsystems of second order arithmetic
are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The
main philosophical application of reverse mathematics proposed thus far is foun-
dational analysis, which explores the limits of different foundations for mathe-
matics in a formally precise manner. This paper gives a detailed account of the
motivations and methodology of foundational analysis, which have heretofore
been largely left implicit in the practice. It then shows how this account can be
fruitfully applied in the evaluation of major foundational approaches by a care-
ful examination of two case studies: a partial realization of Hilbert’s program
due to Simpson [1988], and predicativism in the extended form due to Feferman
and Schütte.

Shore [2010, 2013] proposes that equivalences in reverse mathematics be
proved in the same way as inequivalences, namely by considering only ω-models
of the systems in question. Shore refers to this approach as computational reverse
mathematics. This paper shows that despite some attractive features, compu-
tational reverse mathematics is inappropriate for foundational analysis, for two
major reasons. Firstly, the computable entailment relation employed in compu-
tational reverse mathematics does not preserve justification for the foundational
programs above. Secondly, computable entailment is a Π1

1 complete relation, and
hence employing it commits one to theoretical resources which outstrip those
available within any foundational approach that is proof-theoretically weaker
than Π1

1-CA0.

1 Introduction

In ordinary mathematical practice, mathematicians prove theorems, reasoning from a
fixed set of axioms to a logically derivable conclusion. The axioms in play are usually
implicit: mathematicians rarely assert at the beginning of their papers that they work
in, for example, PA or ZFC. Given a particular proof we might ask which axioms
were employed and thus make explicit the author’s assumptions. Now that we have a
set of axioms Γ which are sufficient to prove some theorem ϕ, we could further inquire
whether they are necessary to prove the theorem, or whether a strictly weaker set of
axioms would suffice. To a first approximation, reverse mathematics is the program
of discovering precisely which axioms are both necessary and sufficient to prove any
given theorem of ordinary mathematics.
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Reverse mathematics was initiated by Harvey Friedman [1975, 1976], and exten-
sively developed in the work of Stephen Simpson and his students. It determines the
proof-theoretic strength of theorems of ordinary mathematics, by proving equivalences
between formalised versions of those theorems and axiom systems in a hierarchy of
known strength. Roughly speaking, the term “ordinary mathematics” means non-
set-theoretic mathematics, i.e. those parts of mathematics which do not depend on
abstract set-theoretical concepts. Typical examples of ordinary mathematics include
real and complex analysis, countable algebra, and the topology of complete separable
metric spaces.

The axiom systems used in reverse mathematics are subsystems of second order
arithmetic or Z2. This is an extension of familiar first order systems of arithmetic such
as Peano arithmetic. In the intended interpretation, variables in first order arithmetic
range over the natural numbers N. Second order arithmetic also has number variables
ranging over the natural numbers, but in addition to these it has set variables which
range over sets of numbers X ⊆ N. For the full technical background on second order
arithmetic the reader should consult Simpson [2009], the primary reference work on
reverse mathematics. Here we restrict ourselves to sketching the basic features of the
framework and explaining some salient details.

The language of second order arithmetic, L2, is a two-sorted first order language
with the following nonlogical symbols: constant symbols 0 and 1, binary function
symbols + and ·, and the binary relation symbols < and ∈. L2-structures have two
domains: a first order domain |M | over which the number variables x0, x1, . . . range,
and a second order domain S ⊆ P(|M |) over which the set variables X0, X1, . . . range.
An L2-structure M is thus a tuple of the form

(1) M = 〈|M |,SM ,+M , ·M , 0M , 1M , <M 〉,

where 0M and 1M are elements of |M |, +M and ·M are functions from |M | × |M | to
|M |, and <M is a binary relation on |M |.

The formal system Z2 of second order arithmetic has a long history in work on
foundations of mathematics, which we can trace back to Dedekind. The most sub-
stantive classical developments are those of Hilbert and Bernays [1968, 1970]. The
axioms of Z2 fall into three groups: the basic axioms; a comprehension scheme; and
an induction axiom. The basic axioms are those of Peano arithmetic, minus the
induction scheme. To these is added the comprehension scheme

(CA) ∃X∀n(n ∈ X ↔ ϕ(n))

for all L2-formulae ϕ (with parameters). Many subsystems of second order arithmetic
are obtained by restricting this comprehension scheme to particular syntactically-
defined subclasses. Finally there is the induction axiom

(I0) ∀X((0 ∈ X ∧ ∀n(n ∈ X → n+ 1 ∈ X))→ ∀n(n ∈ X)).

This is a single axiom rather than an axiom scheme. As such its strength is tied
directly to the associated comprehension scheme: we have induction only for those
sets which we can prove to exist by comprehension. Because Z2 includes the compre-
hension scheme for all L2-formulae ϕ, every instance of the second order induction
scheme

(I) (ϕ(0) ∧ ∀n(ϕ(n)→ ϕ(n+ 1)))→ ∀n ϕ(n)
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is a theorem of Z2. By restricting ϕ to formulae in the language of first-order arith-
metic L1 we obtain the induction scheme of first-order Peano arithmetic (PA). A
stronger restriction, limiting ϕ to Σ0

1 formulae, gives us the Σ0
1 induction scheme.

A subsystem T of Z2 is a formal system in the language L2 such that each axiom
ϕ of T is a theorem of Z2. The central subsystems are colloquially known as the Big
Five. Each of them includes the basic axioms, the induction axiom and some other set
existence axioms. The weakest is RCA0, the usual base theory for reverse mathematics.
Its axioms consist of the basic axioms, ∆0

1 (that is, recursive) comprehension and Σ0
1

induction. Induction in RCA0 thus outstrips comprehension, although it is still quite
limited compared to PA or Z2. The other members of the Big Five are: WKL0,
obtained by adding to RCA0 the assertion that every infinite subtree of 2<N has an
infinite path through it; ACA0, which is given by the comprehension scheme for all
arithmetically definable sets; ATR0, which extends ACA0 with an axiom allowing the
iteration of the arithmetical operations along any wellordering; and finally Π1

1-CA0,
whose defining axiom is the Π1

1 comprehension scheme.
At first glance, second order arithmetic may seem somewhat limited, and unsuit-

able for the development of large portions of mathematics, even when we restrict
our attention to ordinary, non-set-theoretic mathematics. Formally, second order
arithmetic includes only two kinds of entities: natural numbers and sets of natural
numbers. While clever coding schemes allow objects from many branches of mathe-
matics to be represented within this formally austere framework, limitations abound,
generally to do with cardinality: one cannot quantify over uncountable sets of real
numbers, prove theorems about topological spaces of arbitrary cardinality, and so on.
Most obviously, the set R of all real numbers cannot be directly represented.

Mathematics within second order arithmetic is thus limited to countable or count-
ably representable structures such as complete separable metric spaces and countable
abelian groups. Nevertheless, this turns out to include a wide variety of mathemati-
cal objects including real numbers, continuous functions on the real line and complex
plane, and Borel and analytic sets. Constructing representations of these objects and
proving that they are well-behaved usually requires a certain minimum of theoretical
strength. Definitions in reverse mathematics are therefore often given relative to a
particular system, usually the weak base system RCA0.

While we can do enough in RCA0 to get mathematics off the ground, many key
theorems require stronger axioms. A typical example is that RCA0 does not prove
the Bolzano–Weierstraß theorem, a fundamental theorem in analysis which states
that every bounded sequence of real numbers has a convergent subsequence. The
Bolzano–Weierstraß theorem can be formalised as a sentence BW in the language
of second order arithmetic. In two papers which inaugurated the study of reverse
mathematics, Friedman [1975, 1976] showed that BW is equivalent over RCA0 to
the arithmetical comprehension scheme—the defining axiom of the system ACA0. To
prove the equivalence between BW and ACA0, one first shows that ACA0 implies BW,
by formalising the usual proof of the theorem within that system. The reversal is then
accomplished by adding BW to the axioms of RCA0 and showing that any instance
of arithmetical comprehension is provable from RCA0 + BW.

One way to think about the epistemic value of reverse mathematics is that it
uncovers the resources required in ordinary mathematical reasoning: for example, if
a proof uses a compactness argument, then weak König’s lemma must be amongst
the stock of axioms which the mathematician draws upon, whether explicitly or im-
plicitly. That nonconstructive methods, in the form of compactness, are required
to prove the completeness theorem for first-order logic tells us something important
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about that theorem and its epistemic standing. This has many ramifications for philo-
sophical issues. Feferman [1992] points out the application of reverse mathematical
methods to indispensability arguments. Such arguments are intended to show that
certain mathematical entities, being indispensable to science, must be accorded the
same ontological rights as those whose existence is empirically confirmed. This leaves
two critical questions unanswered: which mathematical entities does this argument
show us to be committed to the existence of, and what principles concerning those
entities must we endorse in order to carry out the mathematics that is indispensable
to science? Real analysis is a natural starting point, since our current best physical
theories model spacetime in terms of a geometrical continuum, as a type of differen-
tiable manifold. By formalising our best physical theories in second order arithmetic,
we could obtain far sharper answers, by showing that theorems of analysis required
for physics are equivalent to particular systems studied in reverse mathematics.

This paper, however, is not concerned with applications of reverse mathematics
to the indispensability argument. Instead, it addresses the relationship of reverse
mathematics to the foundational views espoused by Hilbert and Weyl, and the fini-
tist and predicativist programs developed in their work and that of their successors.
More generally, it explores and defends the usefulness of reverse mathematics for de-
termining the limits of what can be proved within foundational schemes that can be
formalised in the setting of second order arithmetic, and for demonstrating to adher-
ents of particular foundational approaches that they are unable to recover a given
part of mathematics within their chosen foundation. It then turns to the task of de-
termining whether one component of standard reverse mathematical practice, namely
a proof-theoretically weak base theory over which equivalences between mathematical
theorems and subsystems of second order arithmetic are proved, is essential.
§2 gives a detailed account of the motivations and methodology that underpin

the reverse mathematical analysis of foundations. §3 and §4 are then devoted to
case studies of particular foundational programs: a partial realization of Hilbert’s
program due to Simpson [1988], and predicativism as initially developed by Weyl and
then extended through the work of Kreisel, Feferman, Schütte, and others. The paper
then examines a proposal of Shore [2010, 2013] to abandon the standard practice of
proving reverse mathematical equivalences over the base theory RCA0, and instead
concern ourselves only with whether the principles involved are true in the same
Turing ideals, that is to say, L2-structures whose first order parts consist of the
standard natural numbers ω and whose second order parts are classes of sets C ⊆ P (ω)
closed under Turing reducibility and recursive joins. In §5 we introduce and motivate
Shore’s proposal, and then in §6 we argue that in failing to respect the justificatory
structure of the foundational programs mentioned above, Shore’s equivalence relation
shows itself to be inappropriate for analysing foundations for mathematics in the
way described above. Finally, in §7 we show that this equivalence relation is highly
complex, and thus brings with it attendant theoretical commitments that exceed those
acceptable to proponents of the type of foundational programs being analysed.

2 Reverse mathematical analysis of foundations

One of the main philosophical roles attributed to reverse mathematics in the cur-
rent literature is what we shall call foundational analysis. This application has been
strongly promoted by Stephen Simpson, born out of his view (stated amongst other
places in Simpson [2009] and Simpson [2010]) that there is a correspondence between
subsystems of second order arithmetic and foundational programs such as Weyl’s
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predicativism and Hilbert’s finitistic reductionism. By providing a hierarchy of com-
parable systems, and proving the equivalence of theorems of ordinary mathematics to
these systems, reverse mathematics demonstrates what resources a particular theo-
rem requires, and what theorems a given system cannot prove. In other words, when
committing to a foundational system, reverse mathematics lets us know precisely
what we are giving up. Crucially, it also tells us when a proponent of such a system
employs mathematical resources that she is not entitled to, as they go beyond what
her preferred foundation can prove.

The following example should clarify the notion of foundational analysis. Suppose
Sarah is a predicativist in the tradition of Weyl [1918]. She believes that the natu-
ral numbers form a completed, infinite totality, and that sets which can be defined
arithmetically—i.e. with quantifiers ranging over the natural numbers, but not over
sets of them—also exist. This would lead her to accept the arithmetical comprehen-
sion scheme, and thus the subsystem of second order arithmetic ACA0. She might
even accept a somewhat stronger system; this possibility is explored in §4. But given
Sarah’s predicativist outlook she would resist the thoroughly impredicative axiom
scheme of Π1

1 comprehension, and its associated subsystem of second order arithmetic
Π1

1-CA0.
Now suppose that her colleague Rebecca disagrees with Sarah’s predicativism and

wants to persuade her that it is an inappropriate foundation for mathematics. She
might argue as follows: Since Sarah wants her predicativist outlook to provide a
foundation for all of mathematics, it would be strange if she failed to account for
important theorems of ordinary mathematics—say, in abelian group theory. Consider
the statement

(?) Every countable abelian group can be expressed as a direct sum of a divisible
group and a reduced group.

The group theorist in the street, Rebecca argues, believes this to be true. Sarah
might tentatively agree, whereupon Rebecca would point out the following theorem
from reverse mathematics: assuming that (?) holds, one can prove (in RCA0, which
Sarah clearly accepts) the Π1

1 comprehension scheme [Friedman, Simpson, and Smith
1983, theorem 6.3, p. 178].

It appears that Sarah has some explaining to do. Either she must abandon her
predicativism, or she must push back against the naturalistic line Rebecca is urging
upon her. Neither course appears terribly palatable, while the fact that this theorem
is drawn not from set theory or some other area of mathematics whose ontological
commitments might be thought extravagant could be taken as evidence that the
problem here is a pressing one. The contentious statement is an ordinary theorem
from a core area of mathematics, which reverse mathematical analysis shows us to
have substantial proof-theoretic strength.

The broadly naturalistic argument that Rebecca makes to Sarah can be generalised
in a straightforward way. Let F be a foundation for mathematics which accepts
classical logic as leading to correct conclusions, and let SF be a subsystem of second
order arithmetic containing RCA0 such that the F-theorist accepts that SF is a faithful
formalisation of the principles of F . Then any participant in the foundational dialectic
may (as Rebecca does in the example above) fill in the following schematic argument
with her favourite examples, and make it to the F-theorist:

Consider the ordinary mathematical theorem P , which may be faithfully
formalised in the language of second order arithmetic as the sentence ϕ.
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ϕ is equivalent over RCA0 to the subsystem of second order arithmetic
S(ϕ). But SF cannot prove the axioms of S(ϕ), and thus cannot prove ϕ.
So F cannot recover the ordinary mathematical theorem P , and is thus
inadequate as a foundation for mathematics.

It is not necessary to suppose that all instances of this argument scheme will be
persuasive to all F-theorists: foundational analysis does not provide a knockdown
argument against predicativism, or indeed any foundational view with limited math-
ematical resources. Rather, it makes arguments like the dispute between Rebecca
and Sarah precise: we can see, within a common framework (namely the base theory
RCA0, and the coding required to represent ordinary mathematical concepts in it),
just where the boundaries of these foundational systems lie. As a rational agent,
Sarah surely formed her foundational views in the full understanding that they re-
quire her to give up on any mathematics that her view deems to be unfounded. The
decision to give up on or stick with her foundation is not one to be taken lightly, and
it is one that should be made by considering the relevant facts. These facts can, in
large part, be supplied by foundational analysis, which allows Sarah and the rest of
us to see precisely what is at stake.

For foundational analysis to play a useful philosophical role in mediating between
disputants with different foundational stances, it must be possible to carry out this
analysis on ground which is common between the disputants.1 So while a predicativist
like Sarah and a platonist like Rebecca might disagree about whether Π1

1 comprehen-
sion is a valid axiom, they both accept the laws of classical logic and at least the
axioms of RCA0, as well as the faithfulness of the representation of the theorem (?) in
second order arithmetic, and thus both will agree that (?) above is not predicatively
provable. In other words, foundational analysis makes it clear where the fault lines lie,
and the existence of common ground makes the conclusion available not just to those
who accept stronger axioms or rules of inference, but those who are committed to a
more limited foundational framework and will only accept mathematical conclusions
derived within that framework.

Notice that Sarah already accepted that Π1
1 comprehension was not a predicative

principle, otherwise she would not have been able to deduce that theorem (?) about
abelian groups was not predicatively provable. In accepting this Sarah goes beyond
what her foundation can formally prove. If she accepts ACA0 and no more, then it is
difficult to see how she can separate Π1

1-CA0 from ACA0. Π1
1-CA0 implies all instances

of arithmetical comprehension, so ACA0 is a subsystem of Π1
1-CA0, but in order to

show that it is a proper subsystem, one typically construct a model of ACA0 that is
not a model of Π1

1-CA0. In doing so, however, one thereby proves the consistency of
ACA0, which is (assuming that ACA0 really is consistent) not something that ACA0 can
prove. Any proof that Π1

1-CA0 properly extends ACA0 therefore relies on theoretical
resources not available within ACA0 itself. Needless to say, we cannot eliminate the
assumption of the consistency of ACA0, since if ACA0 is inconsistent, then it proves
everything that Π1

1-CA0 does, which is to say every sentence in the language of second
order arithmetic.

The upshot of this is that Sarah cannot prove that Π1
1 comprehension is not a

predicative principle merely on the basis of her acceptance of any fixed predicative
formal theory, no matter how strong it is, since we can re-run the above argument
for any system S such that ACA0 ⊆ S ( Π1

1-CA0. For Sarah or any predicativist, the

1For a closely related discussion, albeit one which treats much stronger logics and axiomatic
principles than those which are the subject of this article, see Koellner [2010].
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judgement of the impredicativity of Π1
1 comprehension must therefore be justified by

some other means. One candidate justification might be Sarah’s acceptance of the
soundness of the predicative formal theory ACA0, or a predicative extension thereof.
Alternatively, the impredicativity of Π1

1-CA0 might itself be taken as a basic (albeit
defeasible) belief. The Π1

1 comprehension scheme quantifies over all sets of natural
numbers, and appears to do so in an essential way. In the absence of evidence to the
contrary, Sarah should assume that Π1

1-CA0 is an impredicative axiom system, and
thus unacceptable on the basis of her predicativist stance. A third option is quietism
about the impredicativity of Π1

1-CA0: Sarah could suspend judgement about whether
or not Π1

1 comprehension is justifiable on a predicative basis. Sarah’s predicativity
would thus be an entirely positive view, as Sarah would accept any statement that
can be shown to be predicatively provable (in the Feferman–Schütte sense), but not
deny that a statement is predicative (save those which are predicatively refutable).
While this is a coherent position, and one which can be applied quite generally to
many foundational views, at least prima facie it fails to do justice to the predicativist
outlook. Predicativism was historically motivated by the apparent vicious circularity
of impredicative definitions, and the positive epistemic view that those objects exist
which can be defined by quantifying over only objects already shown to exist is linked
to the negative view that objects that cannot be so defined do not exist. Without
such a negative view in the background, the positive program seems to lose some of
its bite: while predicative mathematics is well and good, there is little to recommend
it as a stopping point when the mathematical fruits of impredicativity are just over
the horizon.

In order to make the kind of naturalistic argument sketched above, it is not suffi-
cient to formalise a foundational system F as a subsystem of second order arithmetic
SF in a way which is acceptable to the F-theorist. One must also ensure that the
mathematical theorems whose proof-theoretic strength is appealed to in the argument
are formalised in a faithful way. For example, there are theorems of topology which
are provably equivalent to Π1

2 comprehension [Mummert and Simpson 2005]. Since the
formal language of second order arithmetic only allows one to quantify over countable
objects, any representation of uncountable objects must be indirect and relies on the
availability of suitable countable codes for those objects. This availability, and thus
the faithfulness of formalisations of ordinary mathematical notions in second order
arithmetic, must be proved in some suitable metatheory which can quantify directly
over the uncountable objects in question, and prove the existence of the countable
codes of those objects.2

If Rebecca wanted to invoke these theorems in her attempt to persuade Sarah
that predicativism is inadequate to mathematical practice, and thus mathematical
truth, then her argument would appear to rely on a suppressed premise, namely
the faithfulness of the representation in second order arithmetic of these topological
spaces. Sarah could therefore respond that the statements in the language of second
order arithmetic which Rebecca takes to be formalisations of theorems of topology are
not, from her predicative perspective, anything of the sort. Instead they are simply
L2-sentences that are not predicatively provable. For them to be formalisations of
particular theorems of topology requires that they are faithful translations of those
theorems, and the proof of that faithfulness requires theoretical resources that, being
strongly impredicative, she is not willing to commit to.

2In some cases the metatheoretic axioms required are strong: the existence of an uncountable
topological space with a countable basis was shown by Hunter [2008] to imply the axioms of Z2, the
full system of second order arithmetic.

7



Foundational analysis in the form sketched above thus seems to impose a natural
criterion on formalisations, namely that the faithfulness of the codings used must
be provable in a conservative extension S of a theory accepted by proponents of the
foundation being analysed. S would be a formal version of the metatheory discussed
above, with higher type variables ranging over uncountable sets, allowing the direct
formalisation of higher type objects such as uncountable topological spaces. This
would ensure reverse mathematical results could be read as intended, i.e. as demon-
strating the mathematical resources necessary to prove given theorems of ordinary
mathematics. It would then allow the kind of naturalistic argument given by Rebecca
to be evaluated by proponents of a given foundation, within the theoretical frame-
work they already accept. In the ideal case, the faithfulness of the codings involved
would be provable in a conservative extension of the base theory, thus allowing reverse
mathematical results to be evaluated by anyone who accepts the axioms of that base
theory.

In the next two sections we will study more closely two historical, philosophically-
motivated foundational programs, and their connections to reverse mathematics and
subsystems of second order arithmetic: finitism in the sense descending from Hilbert’s
program in §3, and predicativism in the spirit of Weyl in §4. Before doing so, it
is worth remarking that the role played by foundational analysis in the historical
development of reverse mathematics is somewhat ambiguous. While reverse mathe-
matics has a broadly foundational aim, namely determining the axioms necessary to
prove theorems of ordinary mathematics, it is unclear how much research in reverse
mathematics itself has been directly motivated by foundational analysis in the sense
discussed here.3

lines of research in the related field of reductive proof theory that are more explic-
itly motivated

In contrast, work in the related field of reductive proof theory is more explic-
itly motivated by goals related to foundational analysis, namely determining what
fragment of ordinary mathematics can be recovered in subsystems of second order
arithmetic that are proof-theoretically reducible to finitistic or constructive systems.
This line of research is known as the relativized Hilbert program. Its inception is
usually traced back to Bernays [1967], and its goals, methods and results have been
articulated by, amongst others, Sieg [1988] and Feferman [1988b].

3 Finitistic reductionism

Hilbert’s program was to reduce infinitary mathematics to finitary mathematics. He
viewed finitism as a secure foundation for mathematics, free of the paradoxes which
arose from seemingly natural assumptions and normal mathematical reasoning about
infinite collections. This reduction was to be accomplished by giving a finitary consis-
tency proof for infinitary mathematics, which for present purposes can be identified
with ZFC. Hilbert thought that employing infinitary methods in mathematics, such
as assuming the existence of infinite collections, could be viewed simply as a way to
supplement our finitistic theories with ideal statements, analogous to ideal elements
in algebra. Ideal statements are thus intended to be eliminable, at least in princi-
ple: the purpose of Hilbert’s desired consistency proof was to show that we can use

3 Indeed, much of the current research in reverse mathematics is focused on other concerns, espe-
cially the use of tools from computability theory to explore the growing constellation of intermediate
and incomparable subsystems between RCA0 and ACA0 known as the Reverse Mathematics Zoo
[Dzhafarov 2015]. A summary of current research frontiers can be found in Montalbán [2011].
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infinitary mathematics to get finitary results, and that those results are finitistically
acceptable.

Gödel’s second incompleteness theorem shows that there can be no such consis-
tency proof, and thus that Hilbert’s program cannot be carried out in its entirety.
Many even consider Gödel’s theorems to have shown that Hilbert’s program is entirely
bankrupt.4 While it certainly seems to block the full realization of the enterprise,
Simpson [1988] argues that the possibility of partial realizations remains. But since
the consistency proof Hilbert sought is out of reach, the latter-day finitistic reduc-
tionist must find other ways to demonstrate that their uses of ideal statements are in
principle eliminable. Instead of trying to prove the consistency of infinitary systems
directly, finitistic reductions of infinitary systems can be carried out in a relativised
way, following the template laid down by Kreisel [1968]. We now sketch how such
reductions work.5

Suppose we have two theories T1 (in a language L1) and T2 (in L2), both of which
contain primitive recursive arithmetic. Suppose also that we have a primitive recursive
set of formulae Φ ⊆ FmlL1

∩ FmlL2
containing every closed equation t1 = t2. A

proof-theoretic reduction of T1 to T2 which conserves Φ is a partial recursive function
f which, given any proof from the axioms of T1 of a sentence ϕ ∈ Φ, produces a
proof of ϕ from the axioms of T2. If the existence of f can be proved in T2, it then
follows that T2 proves (a formalisation of) the following conditional statement: “If T2

is consistent then T1 is consistent.” For if T1 proves that 0 = 1, then f will transform
any proof of 0 = 1 in T1 into a proof of 0 = 1 in T2.

If the existence of a proof-theoretic reduction of this sort can be proved in a
finitary system, then we call it a finitary reduction. In order for a proof-theoretic
reduction f from an infinitary system to a finitary one to provide a partial realization
of Hilbert’s program, f must be a finitary reduction. Otherwise the result has a
circular character unacceptable within a reductionist program: it would amount to
using ideal methods to show that ideal methods are acceptable. Similarly, an infinitary
proof of a conservativity theorem is insufficient to demonstrate the reducibility of an
infinitary system to a finitary one.

If Hilbert had succeeded in providing a finitary consistency proof for infinitary
mathematics then there would have been no need to mark out the boundary between
finitary and infinitary methods with any precision, as the proof would have made use
of methods which were clearly finitary in nature. In order to obtain the conservation
results that demonstrate that certain infinitary systems are finitistically reducible, and
thereby partially realize Hilbert’s program, Simpson’s route to a partial realization
of Hilbert’s program requires that we formalise our conception of a finitary system.
The formal system which Simpson selects is primitive recursive arithmetic (PRA),
following the thesis proposed by Tait [1981]. The rest of Simpson’s argument rests
squarely on this identification of finitist provability with provability in PRA: he does
not offer any new considerations in support of Tait’s thesis, instead simply accepting
it and proceeding accordingly.

Fixing PRA as the finitary system to which infinitary systems must be reduced to,
the next question is which infinitary systems are finitistically reducible to PRA. One
such system is WKL0, the system obtained by adding weak König’s lemma (“Every
infinite subtree of 2<N has an infinite path”) to RCA0. Friedman [1976, unpublished]
used model-theoretic techniques to show that WKL0 is Π0

2 conservative over PRA,

4For a contrary view, see Detlefsen [1979].
5An excellent survey of this topic which also details the foundational picture behind such rela-

tivised versions of Hilbert’s program is Feferman [1988b].
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and thus consistent relative to PRA; the proof can be found in Simpson [2009, §IX.3].
Subsequently Sieg [1985] gave a primitive recursive proof transformation which, given
a proof of a Π0

2 theorem ϕ in WKL0, generates a proof of ϕ in PRA. Unlike Friedman’s
result, this proof-theoretic derivation of the conservativity theorem is itself a piece
of finitistic mathematics: it is provable within a finitary system, thus making the
reduction finitary. As the complexity of consistency statements is Π0

1, if WKL0 proves
the consistency of PRA then so does PRA itself. From this Simpson concludes that
WKL0 is finitistically reducible to PRA, and so the fragment of mathematical reason-
ing which one can carry out in WKL0 is finitistically acceptable, in the following sense.
Any Π0

1 sentence provable in WKL0 is finitistically meaningful, in virtue of its form,
but it is also provable in PRA (by the conservativity theorem), and thus finitistically
provable (by Tait’s thesis). Any theorem of WKL0, such as the Heine–Borel covering
theorem or the Hahn–Banach theorem for separable spaces, is thus legitimised as a
lemma that can be invoked in order to prove a finitistic theorem.

By referring to the reductionist project he proposes as a partial realization of
Hilbert’s program, Simpson opens himself up to the criticism that his interpreta-
tion of Hilbert is a misreading, as alleged by Sieg [1990, p. 874], who suggests that
Simpson’s project might be better understood as a partial realization of Kronecker’s
views on foundations of mathematics. While questions of historical interpretation are
important, our present purpose is not Hilbert scholarship, but determining whether
there is a defensible core to Simpson’s position, and thus whether the reverse math-
ematics of WKL0 make a contribution to foundational analysis. Starting from Tait’s
thesis that finitist provability is provability in PRA, together with the Hilbertian con-
tention that only Π0

1 sentences are finitistically meaningful, the finitistically provable
conservativity theorem gives us strong prima facie reason to take Simpson’s finitis-
tic reductionism seriously. Since the foundational analysis of finitistic reductionism
can be carried out in a base theory that is itself finitistically reducible, its results
are available to the finitist, who can thereby see that (for example) the Heine–Borel
theorem is finitistically reducible, but the Bolzano–Weierstraß theorem is not.

With the positive case in hand, we turn to potential criticisms of Simpson’s view.
The first is his reliance on Tait’s thesis, which has taken fire from many quarters.
Broadly speaking, such complaints fall into two camps: that PRA is too weak to en-
compass all of finitistic reasoning, and that it is too strong. Those in the former camp
include Kreisel [1958], who concluded that finitist provability coincides with provabil-
ity in PA. Detlefsen [1979] argued that adding instances of a restricted version of the
ω-rule is also finitistically acceptable, although Detlefsen’s position has in turn been
criticised, for example by Ignjatović [1994]. Two proposals that fall into the latter
camp are made by Ganea [2010]. From the broad spread of conclusions reached it
is clear that what finitistic reasoning consists in is, to say the least, disputed. How-
ever, Tait’s arguments provide a robust defence of the thesis that primitive recursive
arithmetic demarcates the limits of finitistic reasoning, and moreover, one that has
gained wide acceptance. We therefore conclude that on the one hand, extant argu-
ments against Tait’s thesis entail that we should not consider Simpson’s identification
of finitistic reducibility with proof-theoretic reducibility to PRA to be established;
but on the other, since a strong case can be made in favour of the thesis, Simpson’s
finitistic reductionism should be taken seriously as a foundation of mathematics.

Burgess [2010] criticises the finitistic reducibility of WKL0 from another direction,
arguing that the analysis leading to the identification of finitistic provability with
provability in the formal system PRA cannot be carried out from a finitistic point
of view. This means that the conservativity theorem does not, by itself, justify the
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finitist in believing any Π0
1 sentence provable in WKL0. At best, it provides a recipe

for producing PRA proofs from WKL0 proofs, which the finitist must then verify by
assuring themselves that each of the axioms of PRA used in the proof is in fact finitis-
tically acceptable. Burgess offers the following way out for the finitistic reductionist
(p. 139): by limiting the induction principle in RCA0 and WKL0 we can define sub-
theories RCA∗ and WKL∗, in which Σ0

1 induction is replaced by Σ0
0 induction plus a

sentence asserting that the exponential function is total.6 WKL∗ is conservative over
a proper subtheory of PRA, known as I∆0 + exp, and since provability in this system
does not press up against the bounds of finitist provability, the finitist can recognise
that all proofs in this system are finitistically acceptable [Simpson and Smith 1986].
Many, albeit not all, of the theorems of ordinary mathematics that are provable in
WKL0 are also provable in WKL∗. For Π0

1 sentences provable in WKL∗ the finitist can
therefore work in the infinitary system without needing to check that the resulting
proof in PRA uses only finitistically acceptable principles, since this is already guar-
anteed by the conservativity theorem—which, by a result of Sieg [1991], is finitistically
provable.

A further objection is that Simpson’s argument does not in any way pick out
WKL0 as the unique formal counterpart of the program of finitistic reductionism.
Brown and Simpson [1993] present a system they call WKL+

0 , which extends WKL0

with a strong formal version BCT of the Baire Category Theorem. They prove, us-
ing a forcing argument, that WKL+

0 is Π1
1 conservative over RCA0. It follows from a

result of Parsons [1970] that WKL+
0 is Π0

2 conservative over PRA, and that this con-
servativity theorem can be proved in PRA itself.7 So while WKL0 is, modulo Tait’s
thesis, a finitistically reducible system, it is but one partial realization of Hilbert’s
program. WKL+

0 is demonstrably another, and indeed a stronger one, since it satis-
fies the same criteria of finitistic reducibility whilst properly extending WKL0. One
might think that this undermines Simpson’s claim that the Big Five subsystems of
second order arithmetic correspond to existing foundational programs, but this is
not a fair reading of Simpson’s position: he does not claim that these systems are
the unique formal correlates of these foundational approaches. It is consistent with
his position that there are a variety of infinitary yet finitistically reducible systems.
Nevertheless, it is weak König’s lemma that has been found equivalent to many the-
orems of ordinary mathematics, not BCT. This is evidence for the (defeasible) claim
that WKL0 is a mathematically natural stopping point in a way that WKL+

0 is not.
WKL+

0 is finitistically reducible just as WKL0 is, while being a proper extension of
it, so mathematically natural stopping points do not appear to always align cleanly
with justificatory stopping points—or if they do, then we have not yet identified the
sources of justification of these axiom systems in a sufficiently fine-grained way.

Patey and Yokoyama [2016] have shown that the statement known as Ramsey’s
theorem for pairs and two colours, RT2

2, is finitistically reducible. Moreover, by prov-

6The theories RCA∗ and WKL∗ are often referred to in the reverse mathematics literature as RCA∗
0

and WKL∗0, for example by Simpson and Smith [1986], who first isolated these systems. However,
this notation is confusing because in most other cases in reverse mathematics, the superscript is used
to refer to additional set existence axioms adjoined to the theory, as in the case of WKL+

0 , ACA+
0 ,

and so on, while the subscript is used to indicate a restricted induction axiom (ACA versus ACA0,
for example). We therefore use Montalbán [2011]’s convention and refer to the system defined by the
basic axioms, the recursive comprehension scheme, and induction for Σ0

0 formulas plus the totality
of exponentiation, as RCA∗, and the system obtained by adding weak König’s lemma to RCA∗ as
WKL∗.

7Avigad [1996] showed how the forcing arguments of Brown and Simpson [1993] and Harrington
could be formalised in the base theory RCA0, thus giving a new effective proof of the Π1

1 conservativity

of WKL+
0 over RCA0, with only a polynomial increase in the length of proofs.
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ing an amalgamation theorem, they also show that WKL0 + RT2
2 is finitistically re-

ducible. Since RT2
2 is incomparable with WKL0 [Jockusch 1972, Liu 2012], this is a

substantial extension of the principles of proof known to be finitistically reducible,
which now includes a large class of combinatorial and model-theoretic principles that
have been the focus of much of recent research in reverse mathematics (for a survey of
these principles, see §4–5 of Shore [2010]; a more comprehensive introduction to the
study of combinatorial principles related to Ramsey’s theorem is Hirschfeldt [2014]).

Having considered the extent to which the reverse mathematics of systems such as
WKL0 provides a foundational analysis of the program of finitistic reductionism, and
the relationship of this reductive program to Hilbert’s, we now turn to the study of
predicativism in the spirit of Weyl and its connections to subsystems of second order
arithmetic such as ACA0 and ATR0.

4 Predicativism and predicative reductionism

Predicativism is the view that only those sets that can be defined without reference
to themselves are legitimate, existing objects. Predicativism given the natural num-
bers is the view that the natural numbers N form a completed, infinite totality and
thus quantification over the natural numbers is a legitimate way to define sets. For
the rest of this article, whenever ‘predicativism’ and its cognates are invoked, it is
predicativism given the natural numbers that is meant. Predicativism can be seen as
a middle ground between finitism, in which only finite entities are accorded real exis-
tence, and forms of set-theoretic platonism, where defining objects by impredicative
quantification is acceptable because the objects being quantified over are considered
to have an existence independent of their definition. Although the predicativist only
accepts definitions that quantify over objects that are not themselves the subjects
of the definition, collections introduced by previous predicative definitions are legit-
imate objects that one may quantify over when defining new objects. Predicative
definability is thus an iterable notion. Given the natural numbers N we may define
the collection R1 of sets definable using only the language of arithmetic and quan-
tifiers ranging over the natural numbers (in other words, the arithmetical sets). We
may then take the collection of sets definable by formulas in the second-order lan-
guage of arithmetic, but where the second order quantifiers are relativized to range
over R1. Since the second order quantifiers do not range over the objects being de-
fined (as they are restricted to ranging over objects we have previously guaranteed
the existence of), this gives us an expanded collection of predicatively definable sets
of natural numbers R2. The natural next step is to form a ramified hierarchy of sets
of natural numbers. Given a domain D ⊆ P (ω), let D∗ be the collection of sets of
natural numbers defined by formulas in the language L2 of second order arithmetic,
ϕD, where the second order quantifiers in ϕ are relativized to range over D. We then
define the ramified analytical hierarchy by transfinite recursion on ordinals as

R0 = ∅
Rα+1 = (Rα)∗

Rλ =
⋃
β<λ

Rβ for limit λ.

The ramified theory of types, developed by Russell and Whitehead in Principia
Mathematica [Whitehead and Russell 1925], proved too cumbersome for real use in

12



mathematics. Hermann Weyl’s predicative development of analysis in Das Kontin-
uum [Weyl 1918] showed that a theory of the arithmetical sets R1 is already sufficient
to develop a substantial portion of classical analysis, including a sequential form of the
least upper bound principle. A modern formal reconstruction of arithmetical analysis
in the mode of Weyl is given by the system ACA0, defined as RCA0 plus the arith-
metical comprehension axiom: every set definable by an arithmetical formula exists.8

Weyl showed that the amount of mathematics one could develop in his predicative
framework was extensive, and allowed one to recover much of classical analysis. The
reverse mathematics of ACA0 can be viewed as a continuation of this project, showing
us not only what mathematics can be predicatively proved, but also which theorems
cannot be proved in RCA0 or WKL0, and actually require arithmetical comprehension.
This includes theorems in analysis such as the Cauchy convergence theorem and the
Ascoli lemma, but also theorems from algebra and combinatorics: that every count-
able vector space over Q has a basis, and Ramsey’s theorem that for every k ∈ N,
every colouring of [N]k has a homogeneous set.

Unlike WKL0, which is only reducible to a finitistic system, and not a finitistic
system in and of itself, ACA0 is a formal system whose axioms can all be directly
justified on predicative grounds. No general, limitative account of what principles
are predicatively acceptable is required in order to show that ACA0 is a predicative
system. As indicated above, however, predicative definability is an iterable notion,
and consequently Weyl accepted a Principle of Iteration that, as Feferman [1988a]’s
analysis demonstrates, goes beyond what his restriction to the arithmetically definable
sets allows.9 The strength of Weyl’s system with the Principle of Iteration therefore
exceeds that of ACA0, as sketched in §8 of Feferman [1988a], although Feferman and
Jäger [1993, 1996] proved that it is still a predicative system, in a sense we will now
explore.

The iterability of predicative definability suggests that there should be a corre-
spondingly iterable notion of predicative provability, and it is this notion that is the
subject of Feferman and Schütte’s influential analysis of the limits of predicativity.
The ramified analytical hierarchy provides a standard model on which to base the
development of predicative theories, starting with the language. Supplementing the
usual first order language of arithmetic, the language of ramified analysis includes a
stock of set variables Xβ , Y β , Zβ , . . . for each recursive ordinal β. Iterated predica-
tive definability is formalised by a transfinite progression of formal systems of ramified
analysis RAα. Each such system has the ramified comprehension scheme

∃Xβ∀n(n ∈ Xβ ↔ ϕ(n))

for all β ≤ α and all formulas ϕ(n) in the language of ramified analysis such that the
bound and free set variables in the formula all have ordinal indices smaller than β.
It also has the following limit rule, where for all (codes for) limit ordinals λ ≤ α, and
each formula of ramified analysis ψ(Xλ) with just Xλ free, if ψ(X0), . . . , ψ(Xβ), . . .
for all β < λ, then ψ(Xλ) also holds.

This definition just leaves open how far the iteration process can go and still
be considered predicative. Suspicion naturally attaches to the ordinals indexing the
theories RAα, for two reasons. Firstly, the question of whether a recursive linear order

8Here we brush over the details of the connection between Weyl’s system and subsystems of second
order arithmetic, for which Feferman [1988a] is the authoritative source. An accessible summary of
Weyl’s development of arithmetical analysis can be found in Feferman [2005].

9See §7 of Weyl [1918] for a definition of the Principle of Iteration, and the discussion in Feferman
[1988a], especially that on pp. 264–5 of the revised version in Feferman [1998].
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≺ is a wellordering is, in general, impredicative: the statement that ≺ is wellordered
quantifies over all sets of natural numbers. Secondly, in the language of ramified
analysis there is no single formula that expresses that ≺ is wellordered. As far as
this second issue is concerned, let WOβ(≺) be the statement that no set Xβ codes an
infinite descending sequence in the linear order ≺. Then, by the limit rule, any proof
in a system of ramified analysis that WO0(≺) can be lifted to a proof that WOβ(≺)
for each new β introduced. The first issue can then be resolved by the introduction
of the notion of a predicative ordinal. The predicative ordinals are those recursive
ordinals which can be predicatively proved to be wellordered, and the predicatively
acceptable systems of ramified analysis are those indexed by predicative ordinals. This
might seem circular, since we are using the notion of a predicative ordinal in order to
characterise predicative provability, and predicative provability in order to determine
which are the predicative ordinals. But as the following autonomy condition should
make clear, this is not the case. 0 is a predicative ordinal. Suppose ≺ is a recursive
linear order and α is a predicative ordinal. If RAα ` WO0(≺), then the ordinal
β = ot(≺) is predicative. This allows us to define predicative provability in terms
of autonomous transfinite progressions of systems of ramified analysis, as follows: a
sentence ϕ of ramified analysis is predicatively provable if there is a predicative ordinal
δ such that RAδ ` ϕ. On the basis of these definitions, Feferman [1964] and Schütte
[1964, 1965] determined the limit of predicativity, namely the least ordinal that cannot
be proved to be wellordered within an autonomous progression of systems of ramified
analysis. This is the ordinal Γ0, also known as the Feferman–Schütte ordinal, or the
ordinal of predicativity.10

With the limits of predicativity characterised in this manner,11 we might now
ask how much of second order arithmetic can be justified on predicative grounds.
Reducing subsystems of second order arithmetic to predicative systems has practical
benefits for the predicativist, since ramified systems are so intractable in terms of
the actual pursuit of mathematics. It is also valuable from the point of view of
foundational analysis, since it allows one to determine the amount of mathematics
recoverable in a predicative framework.

A formal system T is predicatively reducible if there is an α < Γ0 such that T is
proof-theoretically reducible to RAα, and locally predicatively reducible if it is proof-
theoretically reducible to RAΓ0

=
⋃
α<Γ0

RAα, where proof-theoretic reducibility is

defined as in §3.12 Predicative reductionism thus offers a reductionist program similar
in spirit to the finitistic reductionism discussed in §3.13 By a theorem of Friedman,
McAloon, and Simpson [1982], the subsystem of second order arithmetic known as
ATR0 is locally predicatively reducible, with proof-theoretic ordinal Γ0. Moreover, it
is conservative over RAΓ0

for arithmetical sentences, and even for Π1
1 sentences.14

10For a more detailed summary and historical background on predicativism, predicative provability,
and predicative reductionism, we refer the reader to Feferman [2005]. Complete proofs of Feferman
and Schütte’s key results can be found in Schütte [1977, ch. VIII] or Pohlers [2009, ch. 8].

11Notwithstanding Weaver [2009]’s claim that Γ0, as well as larger recursive ordinals such as the
small Veblen ordinal, can be proved to be wellfounded using only predicative means.

12In his survey of predicativity, Feferman [2005] prefers the terms predicatively justifiable and
locally predicatively justifiable to predicatively reducible and locally predicatively reducible. This
paper sticks to the older terminology.

13The comparison between finitistic reductionism and predicative reductionism has been considered
explicitly in these terms by Simpson [1985, §5].

14 Strictly speaking there is no common notion of a Π1
1 statement shared between the language of

second order arithmetic and the language of ramified analysis. However, given a Π1
1 sentence ϕ in

the language of second order arithmetic with bound set variables X1, . . . , Xn, such that ϕ is provable
in ATR0, there exists α < Γ0 such that the translation ϕ∗ of ϕ into the language of ramified analysis

14



So not only does ATR0 agree with the predicative part of ramified analysis about
arithmetical truth, it also proves the same theorems about the arithmetical properties
of all real numbers.

The formal system ATR0 consists of ACA0 plus a scheme of arithmetical transfinite
recursion. This states that the arithmetical operations can be iterated, starting from
any set X ⊆ N, along any countable wellordering; a full formal definition can be
found in Simpson [2009, §V.2]. ATR0 is a significant strengthening of ACA0, taking
us from classical analysis to parts of descriptive set theory: arithmetical transfinite
recursion is equivalent over RCA0 to the perfect set theorem (every uncountable closed
set has a perfect subset), Lusin’s separation theorem (any two disjoint analytic sets
can be separated by a Borel set), and a number of statements concerning ordinals,
for example that any two countable wellorderings are comparable.

Burgess [2010, p. 140]’s caution about conservativity applies to the case of ATR0

and predicative provability just as it does to the case of WKL0 and finitist prov-
ability. The conservativity theorem in this case will, for a proof p in ATR0 of a Π1

1

statement ϕ, provide a primitive recursive function f that transforms ATR0 proofs of
Π1

1 sentences into proofs in RAΓ0
, so that f(p) is a proof in RAα of ϕ∗, for some

α < Γ0. Nevertheless, the predicative mathematician cannot immediately conclude
that ϕ∗ is predicatively provable, because the Feferman–Schütte analysis of the limits
of predicativity is external to the predicativist standpoint, and thus not something
the predicativist has access to: they cannot, from a predicative standpoint, prove that
all ordinals below Γ0 are wellfounded, but can only verify of particular presentations
of ordinals below Γ0 that they do indeed code ordinals. To recognise that ϕ∗ is in-
deed predicatively provable, the predicativist must first verify that α is a predicative
ordinal, by carrying out the bootstrapped process of proving linear orderings to be
wellfounded within predicative systems of ramified analysis described by the analysis
of predicativity.15

Paralleling the response Burgess sketches on behalf of the proponent of finitistic
reductionism (discussed in §3), one might think that (globally, not merely locally)
predicatively reducible subsystems of second order arithmetic offer a way to gain
the benefits of predicative reductionism without running into the problems faced by
locally predicatively reducible systems such as ATR0. Unfortunately the advantages
that working within predicatively reducible subsystems of second order arithmetic
offer over working with the predicative system ACA0 are minimal: as Simpson [1985,
§5] stresses, there are few theorems of ordinary mathematics that are known to be true
in the hyperarithmetic sets HYP (when viewed as an ω-model) that are not already
true in the arithmetical sets ARITH. This is salient for predicative provability because
HYP = Rωck

1
, the sets definable by iterating the ramified analytical hierarchy up to

ωck1 . HYP is therefore an extension of the standard model RΓ0
of ramified analysis

up to Γ0, so if an L2-sentence ϕ is false in HYP, then it is not predicatively provable.
Simpson argues that the many theorems which provable in ATR0 but which do not

is provable in RAα, where ϕ∗ is obtained by replacing each Xk for 1 ≤ k ≤ n with X0
k .

15Burgess [2010, p. 140] writes that “If we move up to the level of predicativism, the result on the
conservativeness of the system called ATR0 over the system called IR has the same character as the
result on the conservativeness of WKL0 over PRA.” In a similar vein, Simpson [1985, p. 154] writes
that “Feferman [1964] has argued successfully that his formal system IR and others like it constitute
a precise explication of predicative provability.” The system IR was introduced by Feferman [1964],
and is characterised by the ∆1

1 comprehension rule and the Bar Rule. Strictly speaking, the quoted
remarks are incorrect, since IR is a not a predicative system, but instead a locally predicatively
reducible one, just as ATR0 is. Burgess’s point about conservativity, properly reformulated in terms
of conservativity over RAΓ0 , thus applies to IR just as it applies to ATR0.
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hold in the ω-model HYP demonstrate the benefits of predicative reductionism, but
not being predicatively provable, these theorems have only instrumental value to the
predicativist: statements such as the perfect set theorem, or the theorem that any two
countable wellorderings are comparable can be used to prove predicative theorems,
but are not themselves predicative. All this goes to show that the mathematics
that can be recovered by reductionist programs such as finitistic reductionism and
predicative reductionism cannot be simply read off from reverse mathematical results,
based on identifications (such as that of WKL0 for finitistic reductionism, or ATR0 for
predicative reductionism) of subsystems of second order arithmetic associated with
that foundational framework.

5 Shore’s program

However much it may borrow from other areas of mathematical logic, reverse mathe-
matics is ultimately a proof-theoretic endeavour. Given a theorem of ordinary math-
ematics, the reverse mathematician seeks to find a subsystem of Z2 that is equivalent
over a weak base theory to the theorem concerned. She thereby finds the proof-theor-
etic strength of the theorem. Rooted in niceties of formal systems such as axiom
schemes and complexity hierarchies of formulae, this approach may seem awkward
and even unnatural to mathematicians in more mainstream fields. As number theo-
rist Barry Mazur says [Mazur 2008, p. 224, emphasis in original],

when it comes to a crisis of rigorous argument, the open secret is that,
for the most part, mathematicians who are not focussed on the architec-
ture of formal systems per se, mathematicians who are consumers rather
than providers, somehow achieve a sense of utterly firm conviction in their
mathematical doings, without actually going through the exercise of trans-
lating their particular argumentation into a brand-name formal system.

Turning to the specific case of the strength of mathematical theorems, Shore [2010,
p. 381] contends that most mathematicians do not approach this task from the view-
point of reverse mathematics:

While they may concern themselves with (or attempt to avoid) the axiom
of choice or transfinite recursion, they certainly do not think about (nor
care), for example, how much induction is used in any particular proof.

Shore goes on to argue that adopting a computational approach to reverse mathemat-
ics would solve this exegetical problem, providing a natural way for mathematicians
to understand the motivations and results of reverse mathematics.

A computational account of reverse mathematics can be considered plausible only
if mathematical principles have computational content. At least in the case of arith-
metic it is clear that this is true, as demonstrated by the pioneering results of Gödel,
Church, Turing, Post, Kleene and Rosser in the 1930s. Computability theory holds
an important status in reverse mathematics, both in virtue of its relationship to sub-
systems of reverse mathematics and because it provides a battery of tools for proving
reverse mathematical results. It is these principles and techniques which Shore ap-
peals to when constructing his account of computational reverse mathematics.

In particular, the major subsystems of second order arithmetic correspond to
principles from computability theory. As well as shedding light on the model theory
of these systems, these connections give us the basis for Shore’s computational reverse
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mathematics. The foundation of these correspondences lies in the notion of an ω-
model. These are L2-structures whose first order parts consists of the standard natural
numbers ω = { 0, 1, 2, . . . }, and whose arithmetical vocabulary is interpreted in the
standard way, with a second order part S ⊆ P(ω). ω-models are thus uniquely
distinguished by their second order parts, and which sentences of L2 a given ω-model
M satisfies is determined entirely by the sets in its second order part. In the rest of
the paper we shall therefore allow ourselves some sloppiness and identify ω-models
with their second order parts whenever no ambiguity is possible.

Since ω-models of RCA0 satisfy recursive comprehension, they are closed under
Turing reducibility: given an ω-model S of RCA0, if X ∈ S and Y ≤T X, then
X ∈ S. They are also closed under recursive joins: if X,Y ∈ S, then X ⊕ Y ∈ S,
where the recursive join operation is defined as

(2) X ⊕ Y = { 2x | x ∈ X } ∪ { 2y + 1 | y ∈ Y } .

Subsets of P (ω) which are closed under Turing reducibility and recursive joins are
known as Turing ideals, and the ω-models of RCA0 are precisely the Turing ideals.

Similar closure conditions apply to the ω-models of the other main subsystems of
second order arithmetic. ω-models of ACA0 are Turing ideals, since RCA0 is a sub-
theory of ACA0, but these models are also closed under the Turing jump operator,
while those of Π1

1-CA0 are closed under the hyperjump. Computability-theoretic clo-
sure conditions also characterise the ω-models of the intermediate systems WKL0 and
ATR0. The ω-models of WKL0 are related to the Jockush–Soare low basis theorem
[Jockusch and Soare 1972]. The ω-models of ATR0 are closed under hyperarithmetic
reducibility, although there are some subtleties here; see §VIII.4 and §VIII.6 of Simp-
son [2009]. The Big Five thus correspond closely to a hierarchy of computational
principles of increasing power.

Shore proposes a new approach to reverse mathematics based on taking these com-
putability-theoretic characterisations of the ω-models of subsystems of Z2 at face value
as measuring the complexity of the theorems equivalent to those systems. In place of
the usual relations employed in reverse mathematics, namely provability and logical
equivalence over a weak base theory, he offers the notions of computable entailment
and computable equivalence.

Definition 5.1. Let C be a Turing ideal, and let ϕ be a sentence of second order
arithmetic. C computably satisfies ϕ if ϕ is true in the ω-model whose second order
part consists of C. A sentence ψ computably entails ϕ, ψ |=c ϕ, if every Turing ideal
C computably satisfying ψ also computably satisfies ϕ. Two sentences ψ and ϕ are
computably equivalent, ψ ≡c ϕ, if each computably entails the other. These definitions
extend to theories in the standard way.

Computable entailment removes any need for an explicit base theory: this role is
instead played by the restriction of the class of models under consideration to ω-models
whose second order parts are Turing ideals. The ω-models of RCA0 are precisely
those models, so the base theory has not disappeared entirely, but manifested itself
in a different way, by being baked into the definition of the computable entailment
relation. Since not all L2-structures are ω-models, failures of computable entailment
are stronger than failures of logical implication over RCA0, since the former entails the
latter, but not vice versa. Conversely, computable entailment is weaker than logical
implication over RCA0. By the Henkin–Orey completeness theorem for ω-logic [Henkin
1954, Orey 1956], the computable entailment relation is extensionally equivalent to
allowing unrestricted use of the ω-rule in RCA0. The ω-rule is an infinitary rule
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of inference that, from the infinite set of premises ϕ(0), ϕ(1), . . . , ϕ(n), . . . for all
numerals n, one may infer the universal statement ∀nϕ(n). Proofs using the ω-
rule can be represented by wellfounded, countably branching trees. Second order
arithmetic with the ω-rule is complete for Π1

1 sentences, but not for Σ1
1 sentences

[Rosser 1937].
Shore puts forward a number of considerations in support of his proposal.

(1) Computational reverse mathematics unites proofs of implications (and hence
equivalences) with proofs of nonimplications (and hence inequivalences).

(2) Computational reverse mathematics offers a more direct route to the complexity
measures we take to underpin the identification of the strength of theorems of
ordinary mathematics.

(3) Computational mathematics is a more natural framework for ordinary mathe-
maticians.

(4) Computational reverse mathematics provides a way to deal directly with un-
countable structures and extend reverse mathematics to the study of theorems
concerning essentially uncountable structures.

These considerations can be understood as arguments for two quite different con-
clusions. The first is that computable entailment is an important reducibility no-
tion with intrinsic mathematical interest, one which merits and will reward further
study.16 The second is that it should be the primary tool we use to carry out the
general task of reverse mathematics, namely to show what mathematical resources are
needed to prove ordinary mathematical theorems. Shore does not explicitly endorse
either of these options; neither does he propose computational reverse mathematics
as a framework in which to carry out foundational analysis. However, by reviewing
the reasons underlying his proposal, it becomes clear that arguments based on these
considerations make adopting computational reverse mathematics as a first-class re-
placement for classical reverse mathematics a serious option. This being the case, it
seems reasonable to wonder whether his framework can contribute to the analysis of
foundational programs just as classical reverse mathematics does. Before attempting
to answer this question, we first analyse in detail Shore’s considerations in favour of
computational reverse mathematics.

5.1 Unity of reverse mathematics

The first consideration in favour of computational reverse mathematics is that (1)
computable entailment unites proofs of implications with the existing practice of
using computability-theoretic tools to construct Turing ideals witnessing the failures
of implications, bringing a unity to the methods of proof in reverse mathematics.
The procedure is particularly straightforward when the sentences in question are Π1

2,
where the following template applies. Given Π1

2 statements Φ ≡ ∀X∃Y ϕ(X,Y ) and
Ψ ≡ ∀X∃Y ψ(X,Y ), one constructs a Turing ideal C where for every X ∈ C, there
exists an Y ∈ C such that ϕ(X,Y ), but there is no Y ∈ C such that ψ(X,Y ). C is
therefore the second-order part of an ω-model that satisfies RCA0 and Φ, but not Ψ,

16A comparable notion that provides a finer-grained degree structure is Weihrauch reducibility,
recently taken up in the reverse mathematics context by Dorais, Dzhafarov, Hirst, Mileti, and Shafer
[2016], but a comparison of Weihrauch reducibility to computational reverse mathematics is beyond
the scope of this paper.
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and so RCA0 does not prove that Φ implies Ψ. Since many important mathematical
theorems are Π1

2, the technique is widely applicable. For instance, to show that weak
König’s lemma does not imply arithmetical comprehension, we use the Jockush–Soare
low basis theorem to prove the existence of an ω-model M of WKL0 in which all sets
are low. Such a model will not contain 0′, and thus M 6|= ACA0, since ACA0 proves
the existence of the Turing jump.

It is clear how Shore’s observation leads to his definition of the computable en-
tailment relation, but to use it to support the adoption of computational reverse
mathematics as the preferred general methodology in reverse mathematics, we must
formulate a more explicit argument. The following reconstruction seems reasonable:
that (1a) unity in methods of proof in reverse mathematics is a theoretical virtue, and
that (1b) computational reverse mathematics possesses this unity in greater degree
than classical reverse mathematics. Granting (1a) is compatible with there being other
theoretical virtues, such as tractability, not requiring strong background assumptions,
and so on. We stipulate for the sake of argument that (1c) the other theoretical virtues
of computational reverse mathematics are at least as great as those of classical reverse
mathematics. From (1a–c), it follows that computational reverse mathematics is a
more theoretically virtuous framework than classical reverse mathematics in which to
carry out reverse mathematics.

In the next two sections we shall discover that we have reason to doubt (1c), but
for now let us grant it and concentrate on the more immediately problematic premise
(1b). By the soundness theorem for first order logic, from exhibiting a model of RCA0+
Φ +¬Ψ we can infer that there is no proof in RCA0 of Φ→ Ψ. This shows that there
is a unity in the methods of proof of classical reverse mathematics: to demonstrate
an implication we prove that the formal system RCA0 proves it, and to demonstrate
a nonimplication we prove that the formal system RCA0 does not prove the relevant
implication. The soundness and completeness theorems for first order logic unite
proof-theoretic and model-theoretic methods. If computational reverse mathematics
has a greater unity of methods of proof, it can only be in a methodological sense,
since as Shore points out, in practice the vast majority of proofs of nonimplications
are carried out by constructing Turing ideals. But if the unity of methods of proof we
are concerned with is merely methodological, concerning how practitioners happen to
prove nonimplications in classical reverse mathematics, then premise (1a) starts to
look shaky, since it seems entirely reasonable to take the unity of methods of proof
(in this methodological sense) to be a purely instrumental virtue of a framework for
reverse mathematics, and not a theoretical one. Even if we grant that computational
reverse mathematics is better, from an instrumental point of view, than classical
reverse mathematics as a framework for reverse mathematics, this seems like a minor
reason to adopt it when weightier theoretical considerations are on the table.

5.2 Complexity and difficulty of proof

A more substantial motivation can be found in Shore’s suggestive remarks about the
relationship between degrees of computability and methods of proof. The essential
point is as follows. Proving a theorem that can be stated in the form “For all X
such that . . . , there exists a Y such that . . . ”—that is to say, as a Π1

n sentence—can
be understood as providing, given as input a countably representable mathematical
structure A, a function or relation F on A. As we have seen, given some A, a
corresponding F can be more or less complex, depending on the theorem. In classical
reverse mathematics, the proof-theoretic strength of the theorem depends on where
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such F can be found in the hierarchy of Turing degrees relativized to A. Shore
proposes that we give a direct formulation of this complexity measure—the difficulty of
computing a solution (the function or relation F) given a problem (the structure A)—
rather than mediating it through first order logical theories. Doing so “formalizes the
intuition that ‘being harder to prove’ means ‘harder to compute”’ [Shore 2013, p, 153].
Taking this underlying intuition into account, the appeal of Shore’s approach becomes
more clear: since computation across nonstandard models of arithmetic is highly non-
absolute, restricting the interpretation of arithmetical vocabulary to the standard
natural numbers ω allows us to fix an single underlying notion of computation, and
thus the Turing reducibility relation ≤T that allows us to compare the complexity
of solutions provided by theorems directly. This is not available within the classical
reverse mathematics framework where the base theory RCA0 provides at best a weak
constraint on the models of the arithmetical part of the theory.

We can regiment this argument as follows. (2a) The difficulty of proving a Π1
n

sentence ∀X∃Y ϕ(X,Y ) is just the difficulty of, given a problem X ⊆ ω, computing a
solution Y ⊆ ω such that ϕ(X,Y ). (2b) Computable entailment captures the difficulty
of—given a problem X ⊆ ω—computing a solution Y ⊆ ω such that ϕ(X,Y ) better
than RCA0-provability does. Therefore, computable entailment captures the difficulty
of proving Π1

n sentences better than RCA0-provability.
The content of the intuition (2a) that Shore takes his view to be formalising is,

at least on a näıve reading, somewhat problematic. Firstly, the mathematician’s
standard understanding of difficulty of proof does not square with Shore’s account:
theorems in number theory are not thought less difficult to prove just because the
solutions are not highly uncomputable. Secondly, while the notion of degrees of un-
computability is clear, it is arguable whether this measures difficulty of computation.
Since the Turing jump and True Arithmetic are both uncomputable sets, and thus
both intractable problems for finite computers, even idealised ones with unbounded
time and space such as Turing machines, there is good reason to consider both of
these sets equally difficult to compute, viz., impossible. We shall have more to say on
this point in §7, but for now let us try to sidestep these issues by reformulating the
argument above.

To do so, we must reject the näıve reading of the two notions that figure in Shore’s
equivalence between difficulty of proof and difficulty of computation. Instead of the
mathematician’s standard understanding of difficulty of proof, let us take “being
harder to prove” to mean “requiring stronger axioms to prove”, since this is the
standard of difficulty salient to reverse mathematics. To resolve the second difficulty,
we replace the vague statement “harder to compute” with an explicit reference to the
notion of relative computability. The reformulated argument then runs as follows.
(2a*) The strength of axioms which entail a Π1

n sentence ∀X∃Y ϕ(X,Y ) is precisely
captured by—given a problem X ⊆ ω—the degrees of uncomputability of solutions
Y ⊆ ω such that ϕ(X,Y ). (2b*) Computable entailment captures the degrees of
uncomputability—given a problem X ⊆ ω—of solutions Y ⊆ ω such that ϕ(X,Y )
better than RCA0-provability does. Therefore, computable entailment captures the
strength of assumptions which entail Π1

n sentences better than RCA0-provability.
Premise (2b*) is well supported, given the non-absoluteness of Turing computabil-

ity across nonstandard models (modulo the usual questions about the existence of the
unique standard natural number structure ω, and the background theory needed to
establish it). We therefore focus on (2a*), which is distinctly more plausible than (2a),
since we already know that the Big Five subsystems of second order arithmetic are
based on computability-theoretic principles, and that the hierarchy of proof-theoretic

20



strength of these systems correlates with the Turing degree of solutions whose exis-
tence is asserted in theorems equivalent to these systems.

A contentious point in assessing (2a*) is the status of induction axioms. Neeman
[2011] proves that Σ1

1 induction is required to prove that Jullien’s indecomposability
theorem implies weak Σ1

1 choice: neither the Σ0
1 induction axiom of RCA0, nor even

∆1
1 induction, suffices. If we take the classical reverse mathematics framework to priv-

ilege RCA0 as a base theory then this is prima facie problematic. Since computational
reverse mathematics fixes the first order part of the model as the standard natural
numbers ω, it does not have this difficulty. One problem with this view is that induc-
tion axioms are also a form set of existence principle, namely bounded comprehension
schemes for finite sets. The Σ0

1 induction scheme is equivalent over RCA∗ to bounded
Σ0

1 comprehension: the scheme that for every n ∈ N the set X = { k < n | ϕ(k) }
exists, where ϕ(x) is any Σ0

1 formula. Stronger induction schemes are likewise equiv-
alent to stronger bounded comprehension schemes. Simpson and Smith [1986] show
that a number of theorems from algebra are equivalent over RCA∗ to Σ0

1 induction.
This undermines the idea that classical reverse mathematics should be identified with
reverse mathematics in RCA0, but perhaps this is no bad thing. Computational
reverse mathematics, on the other hand, appears to trivialise bounded comprehen-
sion schemes, since they are all computably entailed. Π1

n theorems, central to all
of reverse mathematics, thus become almost the only subject countenanced (further
reverse mathematical equivalences trivialised by the computable entailment relation
are considered in §6).

5.3 Accessibility of reverse mathematics

Another of Shore’s motivations in introducing computational reverse mathematics is
expository: making the tools and results of reverse mathematics more accessible to
ordinary mathematicians who do not think, as logicians do, in terms of formal theo-
ries and proof systems. Although it still involves formalisation, computational reverse
mathematics does allow us to sidestep some formal aspects of reverse mathematics.
Instead of proving equivalences to syntactically defined subsystems of second order
arithmetic, we can work directly with computability-theoretic and combinatorial clo-
sure conditions. Moreover, it allows us to use induction in the standard way, for any
property, not just those definable in the language of arithmetic with a single first
order quantifier.

Making reverse mathematics more accessible to ordinary mathematicians is clearly
a valuable goal, but since computable entailment is not extensionally equivalent to
provability in the standard base theory RCA0, this is not by itself sufficient to motivate
our adoption of computational reverse mathematics over classical reverse mathemat-
ics. In order to provide the relevant motivation, we could think of this as an instance
of naturalistic deferral to mathematical practice, that is, (3) computable entailment is
the right way to measure the strength of theorems because it better captures the way
ordinary mathematicians work with the objects these theorems concern. In particular,
ordinary mathematicians “do not think about (nor care) [. . . ] how much induction
is used in any particular proof” [Shore 2010, p. 381]. Moreover, definitions and in-
ferences in informal mathematical practice are not carried out within a fixed formal
framework. Working only with ω-models thus reflects ordinary mathematical practice
as, in practice, mathematicians consider the natural numbers to be categorical and
to satisfy induction for all predicates.
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5.4 Uncountable reverse mathematics

Since second order arithmetic does not allow quantification over uncountable sets,
classical reverse mathematics is necessarily limited to treating theorems concerning
objects that are either countable, or can be represented by countable codes. Com-
putational reverse mathematics offers a way to overcome this barrier and allow for
the development of a reverse mathematics of uncountable mathematics, by using one
of the existing definitions of computation on uncountable mathematical structures.17

This is done by altering the definition of computable entailment to quantify not over
Turing ideals, but over over classes of sets that are closed under a different notion of
relative computability appropriate to the particular uncountable setting. Shore [2013]
takes some initial steps in this direction by developing a variation of computable en-
tailment that uses α-recursion theory, along with analogues of ACA and WKL in this
setting, and proving some reverse mathematics-style results for them.

This suggests the following argument. (4a) A framework for reverse mathematics
that allows us to analyse the strength of theorems throughout ordinary mathemat-
ics (i.e. not just countable and countably-representable mathematics) is superior to
one that does not. (4b) Computational reverse mathematics allows us to carry out
such an analysis. (4c) Classical reverse mathematics does not. Therefore, compu-
tational reverse mathematics is a superior framework in which to carry out reverse
mathematics.

Little work has been done in this setting beyond Shore’s initial papers, so its full
promise remains as yet unfulfilled. Nevertheless, the adaptability of Shore’s approach
to different settings, with the underlying notion of computation allowed to vary so as
to provide an appropriate measure of the computational strength of theorems in those
settings, suggests a highly promising route to a reverse mathematics of the uncount-
able. That being said, if a computational reverse mathematics of the uncountable
turns out to be a fruitful approach, there is no obvious barrier to developing an ax-
iomatic counterpart that stands in a similar relation to, for example, α-recursion on
uncountable ordinals as RCA0 does to Turing reducibility. So even accepting (4a), the
status of (4b) and (4c) remains unclear. It is therefore difficult to evaluate the extent
to which its extensability to uncountable structures weighs in favour of computational
reverse mathematics.

Intriguingly, Shore [2010] suggests that computational reverse mathematics of the
uncountable will also provide a testing ground for notions of computability on un-
countable sets, and that (p. 387) “if a theory of computability for uncountable do-
mains provides a satisfying analysis of mathematical theorems and constructions in
the reverse mathematical sense based on the approach of [definition 5.1], then it has a
strong claim to being a good notion of computation in the uncountable.” This would
result in a virtuous circle of justification. On the one hand, the success of a notion
of computation on uncountable sets in providing a reverse mathematics of the un-
countable would vindicate it as the correct notion of computation in the uncountable
setting. On the other, its status as the correct notion of computation in the un-
countable setting would support its use as the notion of computation underlying the
reverse mathematics of the uncountable. Alternatively, it may turn out that “there
is no single ‘right’ [notion of computation on uncountable sets] but that certain ones
may be better than others for different branches of mathematics” [Shore 2010, p. 387].
If pursuing computational reverse mathematics could help answer these questions it

17Others have also proposed ways to extend reverse mathematics to the uncountable, most notably
Kohlenbach [2002, 2005] who has developed an approach in higher-order arithmetic.
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would certainly strengthen the case for doing so, but that it might do so does not
provide a prima facie reason for preferring it over classical reverse mathematics as our
general framework for reverse mathematics.

5.5 Closure conditions and the standard view of reverse math-
ematics

The standard view in reverse mathematics holds that the significance of reversals lies
in the set existence principles they show to be necessary to prove ordinary mathemat-
ical theorems.18 However, the relevant concept of a set existence principle, as used in
reverse mathematics, has not been explicated in any detail. Dean and Walsh [2017]
have argued that such a concept cannot be exhausted by the notion of a comprehension
principle, since this would leave out weak König’s lemma and arithmetical transfinite
recursion. In [Eastaugh 2018] I argue that even if one includes both comprehension
principles and separation principles in the concept of a set existence principle, thereby
incorporating all of the Big Five, there are other mathematically natural set existence
principles that are left out, such as weak weak König’s lemma.19

Shore [2010]’s emphasis on the characterisation of the Big Five in terms of comput-
ability-theoretic closure conditions suggests that we could understand the concept of
a set existence principle in terms of that of a closure condition on the powerset of the
natural numbers. I advance a view along these lines in [Eastaugh 2018], where I take
closure conditions as being axiomatized by those Π1

n sentences (n ≥ 2) that are not
equivalent to any less complex sentence.20 This account of set existence principles
as closure conditions has a number of advantages, including its generality, since it
not only includes all of the Big Five and weak weak König’s lemma, but also other
statements such as choice principles and Ramsey-like combinatorial statements. It
also has an intuitive appeal, as attested by a number of authors who have identified
set existence principles with closure conditions, albeit without providing a precise
account of which sentences of second order arithmetic axiomatize closure conditions.21

Despite these appealing characteristics, the details of the account demonstrate an
oddity, namely the status of induction axioms. Instances of the arithmetical induc-
tion scheme Π0

∞-IND are at most of Π1
1 complexity, and thus on this account are not

considered to be set existence principles.22 More complex fragments of the full in-
duction scheme, however, such as Σ1

1 induction, will be axiomatized by Π1
n sentences,

n ≥ 2, and will not be equivalent to less complex sentences except by a base theory
that proves them outright. They should thus, according to the view put forward in
[Eastaugh 2018], be considered closure conditions, and thus set existence principles.
This is counterintuitive, since instances of induction are typically taken to concern
the structure of the natural numbers, not the structure of its powerset.

This entanglement between the first and second order parts of the theory arises
because of the existence of non-standard models of arithmetic: the standard natural

18The locus classicus of this view is Simpson [2009, p. 2].
19The restriction of weak König’s lemma to trees of positive measure.
20Here “equivalent” is to be understood as meaning provably equivalent in any suitable base theory

B that does not prove the sentence in question, but which can otherwise be as strong as possible.
Sentences of this sort are referred to in [Eastaugh 2018] as essentially Π1

n≥2 sentences; see §5 of that

paper for a detailed account of these notions.
21For instance Feferman [1964, p. 8], Feferman [1992, p. 451], Dorais, Dzhafarov, Hirst, Mileti,

and Shafer [2016, p. 2], and Chong, Slaman, and Yang [2014, p. 864].
22Cf. Simpson [2009, pp. 71–2], who argues that “despite appearances, the Σ0

1 induction axiom
of RCA0 can be considered to be a set existence axiom”, due to its equivalence to the scheme of
bounded Σ0

1 comprehension.
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numbers ω satisfy not just the full induction scheme Π1
∞-IND, but the induction

scheme formulated in any language, no matter how expressively powerful. Moreover,
all finite sets are already present in any model satisfying recursive comprehension,
since finite sets are by definition recursive. It is only when we consider non-standard
models that bounded comprehension schemes are required to ensure the existence of
“finite” sets of size k, where k is a non-standard number.

Shore’s view offers us a natural response to this problem. Since in computational
reverse mathematics we take the first order part of the model to be fixed as the
standard natural numbers ω, we can rule out instances of induction as axiomatizing
closure conditions, for they will already be satisfied by any base theory B, as the first
order variables of sentences of B will always range over standard natural numbers.
The view that set existence principles are exactly the closure conditions axioma-
tized by essentially Π1

n≥2 sentences works smoothly in Shore’s framework, without
counterintuitive instances of induction masquerading as closure conditions on P(N).
Computational reverse mathematics thereby seems to offer us a better account of the
concept of a set existence principle than classical reverse mathematics, and thus a
more satisfactory way of vindicating the standard view that reversals are significant
because they demonstrate the set existence principles necessary to prove theorems of
ordinary mathematics.

6 Preservation of justification under computable entailment

Computable entailment collapses many distinctions present under the usual classical
entailment relation, and thus the equivalence classes obtained under the computable
equivalence relation are significantly different from those given by provable equivalence
over RCA0. For instance, the standard natural numbers satisfy the induction scheme
for all predicates in the language of second order arithmetic. As a result, systems
with only restricted induction and their counterparts with the full induction scheme
are computably equivalent. The presence of full induction is indicated by the absence
of the ‘0’ subscript in the system’s name: RCA is RCA0 but with full induction, WKL
is WKL0 with full induction, and so on. In all cases, the system with full induction
has precisely the same ω-models as its counterpart with restricted induction, and thus
they are computably equivalent.

This presents a problem given the connections between the Big Five and existing
philosophically-motivated programs in the foundations of mathematics. At least in
some cases these subsystems are formalisations in second order arithmetic of those
foundational programs, but it is by no means obvious that the same is true for other
axiom systems which are computably equivalent to them. ACA0 is a predicative
system, but the mere fact that ACA is computably equivalent to it should not compel
us to believe that ACA is similarly predicatively acceptable.

Another way to understand this point is by considering that a key property of any
entailment relation is preserving justification: if we are justified in accepting the an-
tecedent then we are justified in accepting the consequent. For computational reverse
mathematics to be capable of the foundational analysis outlined earlier, computable
entailment must preserve justification, just as deductive entailment does. Given any
foundational program that we wish to analyse by proving reverse mathematical re-
sults, those results must be justified on the conception of justification internal to the
foundational program itself. If computable entailment fails to satisfy this requirement
then proponents of such foundational programs will be unmoved by any arguments
drawn from computational reverse mathematics, as they will reject the underlying

24



assumption necessary to proving the results involved. In other words, the crux of the
issue is not whether computable entailment preserves justification on some particular
account of the epistemology of mathematics, but whether it respects the justificatory
structure of the foundational programs being analysed.

In §3 we examined Simpson [1988]’s claim that the proof-theoretic reducibility
of WKL0 to PRA constitutes a partial realization of Hilbert’s program. There are
reasons to question whether Simpson’s interpretation of Hilbert is correct, and plenty
of debate to be had over whether this is in fact a good foundation for mathemat-
ics. Nevertheless, the finitistic reductionism that Simpson proposes is nonetheless
a foundational enterprise worthy of consideration. One part of such an assessment
consists of the use of reverse mathematical methods to determine the parts of ordi-
nary mathematics that can be developed within this foundational framework, that
is, foundational analysis as studied in the preceding sections. In order to apply it
in this way, our system of reverse mathematics should therefore be able to analyse
Simpson’s finitistic reductionism, and as argued above, that analysis should respect
the justificatory structure of finitistic reductionism. With this concern in mind, the
crucial question is whether or not finitistic reductionism can be extended from WKL0

to include all systems T that are computably equivalent to WKL0. Only if this is
the case can we conclude that Shore’s computational reverse mathematics respects
its justificatory structure.

One system that is computably equivalent to WKL0 is the system WKL. As men-
tioned earlier, this system augments WKL0 with the full induction scheme. If com-
putable entailment is to preserve justification for the Tait-style finitist, then WKL
must also be finitistically reducible. But the presence of the full induction scheme
means that, as we shall see below, WKL proves the consistency of PRA. Therefore, it
is not finitistically reducible to PRA, since the canonical formal consistency statement
Con(PRA) is a Π0

1 statement that PRA does not (if it is, in fact, consistent) prove. In
other words, it rules out the possibility of a finitistic reduction of the sort delivered by
Sieg for WKL0, and thus rules out the possibility that WKL is a finitistically reducible
system.

Recall that IΣn is the fragment of Peano arithmetic obtained by restricting the
induction scheme to Σ0

n formulae. The following is a standard result in the literature
on first-order arithmetic. A full proof can be found in Hájek and Pudlák [1993, §I.4].

Fact 6.1. IΣn+1 proves the consistency of IΣn.

Corollary 6.2.

1. PRA, IΣ1, RCA0 and WKL0 are equiconsistent.

2. WKL proves the consistency of the systems given in (1).

3. WKL is not Π0
1 conservative over the systems given in (1).

Proof. IΣ1 is Π0
2 conservative over PRA [Parsons 1970]; the first order part of RCA0

is IΣ1 (that is, they prove the same sentences in the language L1 of first order arith-
metic); and WKL0 is Π1

1 conservative over RCA0 (this is a result of Leo Harrington;
a proof appears in Simpson [2009, §IX.2]). Consequently any Π0

2 statement provable
in WKL0 (or RCA0 or IΣ1) is also provable in PRA. Since the canonical consistency
statements for PRA, IΣ1 and WKL0 are Π0

1, any system proving the consistency of
one of these systems proves the consistency of all the others.

By fact 6.1, IΣ2 proves the consistency of IΣ1 and hence the consistency of all
the systems listed in (1). WKL extends IΣ2 and thus proves all the theorems it does.
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Finally, by the complexity of consistency statements, WKL cannot be Π0
1 conservative

over any of the systems listed in (1).

The methods of infinitary mathematics are justified, according to Simpson’s fini-
tistic reductionism, only to the extent that they are reducible to finitary ones. This
seems to rule out WKL as a partial realization of Hilbert’s program quite straightfor-
wardly. But if computable entailment preserves justification, then we are justified in
accepting WKL if and only if we accept WKL0, as they are computably equivalent. If
this is not the case then computable equivalence seems to have failed as a way to anal-
yse the mathematical resources required to derive theorems of ordinary mathematics,
since it leads to underdetermination: we are no longer certain, given some theorem ϕ,
whether it is acceptable to the finitistic reductionist if we know only that it is com-
putably entailed by WKL0. To resolve this underdetermination one could prove that ϕ
follows from WKL0 using only resources acceptable to the finitistic reductionist—but
since these resources are simply the axioms of a finitistically reducible system and the
laws of classical logic, this amounts to simply proving the result in WKL0, and we
are no longer working in Shore’s framework, where all that is necessary to show that
one principle follows from another is to demonstrate that the former is true in every
ω-model of the latter.

This being the case, we have at least one situation in which computational reverse
mathematics is not sufficient to carry out a task in reverse mathematics of significant
philosophical interest and importance. The computable entailment relation does not
always preserve the justificatory structure of foundational theories, and hence Shore’s
framework thus cannot be used to conduct the kind of foundational analysis articu-
lated in the previous chapter—at least for one important example, namely Simpson’s
finitistic reductionism.23

In fact, we can show more than this: that computable entailment does not pre-
serve justification for the two other foundational programs we examined above: Weyl’s
predicativism and the program of predicative reductionism that follows from the
Feferman–Schütte analysis of predicative provability. Here we rely on a fact that
will be demonstrated in lemma 7.5: if ϕ is a Π1

1 sentence in the language of second
order arithmetic, then ϕ is true if and only if |=c ϕ. We therefore have that for any
code X for a recursive linear order <X , <X is wellordered (i.e. X codes a recur-
sive ordinal α) if and only if |=c <X is wellordered. Consider the ordinals ε0 and
Γ0, which are respectively the proof-theoretic ordinals of ACA0 and ATR0. From an
external point of view validating that the recursive codes for these ordinals really
do code wellorderings, we have that WO(ε0) and WO(Γ0). But then by the above
fact, |=c WO(ε0) and |=c WO(Γ0). This means that ACA0 ≡c ACA0 + WO(ε0) and
ATR0 ≡c ATR0 + WO(Γ0).

ACA0 does not prove that ε0 is wellordered, but one might reasonably consider
WO(ε0) to be a predicative principle nonetheless, since stronger predicative theories,
justified on the Feferman–Schütte analysis of predicativity, do prove it. However,
on that understanding of predicativity, it is not predicatively provable that Γ0 is
wellordered. There are therefore theories which are computably equivalent to pred-
icative and predicative reducible ones but which are not themselves either predicative

23This argument also shows that any modification of reverse mathematics to strengthen the in-
duction principle of the base theory to include even Σ0

2 induction renders it inappropriate for the
foundational analysis of finitistic reductionism. Friedman’s switch from subsystems of Z2 with full
induction in [Friedman 1975] to systems with restricted induction in [Friedman 1976] is therefore a
crucial one for the foundational analysis of finitistic reductionism.

26



or predicatively reducible. As we have argued above for the case of finitistic reduc-
tionism, this shows that computational reverse mathematics is not an appropriate
setting in which to carry out the foundational analysis of predicativism and predica-
tive reductionism.

One might reasonably wonder whether these latter examples are somehow artificial
and do not constitute substantial counterexamples to the preservation of justification
by the computable entailment relation. Since all true Π1

1 statements are computably
entailed, this question reduces to the question of whether there are ordinary math-
ematical theorems that are Π1

1 and not justifiable on the basis of the foundational
programs we are considering. The answer to this is positive, and indeed there are or-
dinary mathematical theorems equivalent to statements of the form we have just been
considering, namely WO(α) for α < ωck1 . Simpson [1988] showed that Hilbert’s basis
theorem is equivalent over RCA0 to the wellordering of ωω. This is the proof-theoretic
ordinal of WKL0, so WO(ωω) is computably entailed by WKL0 but not finitistically
reducible, since over a weak base theory it implies the consistency of WKL0 and thus
that of PRA. A much stronger example is Kruskal’s theorem, a famous result in graph
theory that is equivalent over ACA0 to the wellordering of the small Veblen ordinal
ϑΩω [Rathjen and Weiermann 1993, p. 62]. This is a recursive ordinal greater than
Γ0, and thus WO(ϑΩω) is computably entailed by all predicative and predicatively
reducible subsystems of second order arithmetic, but not predicatively provable.

7 The complexity of computable entailment

We now turn to a different but related issue with the computable entailment relation:
its completes-theoretic complexity. As we know from Church and Turing’s nega-
tive answer to the Entscheidungsproblem, the classical provability relation is uncom-
putable. Indeed, the set of provable consequences of a theory like Peano arithmetic is
a quintessential example of a recursively enumerable set that is not recursive. Conse-
quently, while there is no general method for determining whether or not a sentence
ϕ in the language of arithmetic is provable in RCA0, there is a Turing machine which
enumerates the provable consequences of RCA0, amongst which are the equivalences
of classical reverse mathematics.

Semantic relations such as truth tend to be far more complex than syntactic
relations such as provability, since they are—usually ineliminably—infinitary in na-
ture. The completeness theorem for classical first order logic gives us an important
counterexample: since T |= ϕ ⇔ T ` ϕ for theories T and sentences ϕ, we can
enumerate the model-theoretic consequences of a theory by enumerating its prov-
able consequences, reducing a complex semantic relation to a finitary one. The same
does not hold for computable entailment. Not only is it not recursive, but it is not
even arithmetical. As a prelude to demonstrating this, we give a revised definition of
computable entailment, generalised to accommodate parameters. For the rest of this
paper we use the symbol N to refer to the internal natural numbers of subsystems of
second order arithmetic, and reserve the symbol ω for the external natural numbers
of the metatheory.

Definition 7.1. For any set X ⊆ ω, and sentence ϕ in the language L2 expanded
with a constant symbol for X, we say that ϕ is X-computably entailed, in symbols
|=X
c ϕ, iff for all Turing ideals M such that X ∈M , M |= ϕ.

At first glance this may appear less general than the earlier definition, but by
the definition of the satisfaction relation, (ϕ |=X

c ψ) iff |=X
c (ϕ → ψ), and the new
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definition is simpler to work with in the current context. Fixing a recursive, bijective
Gödel coding of sentences of second order arithmetic, we represent the computable
entailment relation by the set of Gödel codes for sentences which are computably
entailed. For any X ⊆ ω, let

(3) C(X) =
{
pϕq

∣∣ |=X
c ϕ

}
where ϕ is an L2-sentence which may contain a constantX denotingX. The parameter-
free version of C(X) we denote simply C. Observing that the definition of computable
entailment quantifies over ω-models, we can see that C contains all the sentences of
True Arithmetic, the first order theory of the natural numbers. True Arithmetic is not
arithmetically definable, as this would contradict Tarski’s theorem. So computable
entailment cannot be arithmetical either.

A stronger lower bound for the complexity of computable entailment can be found
by noting that arithmetical properties of reals are absolute to all ω-models, and thus
that all Π1

1 sets of natural numbers are 1-reducible to C. We can thus precisely char-
acterise its complexity as Π1

1 complete, by showing that C can be captured by a Π1
1

definition. This theorem is essentially a classical one due to Grzegorczyk, Mostowski,
and Ryll-Nardzewski [1958, §3.4, pp. 386–7]. Their result was proved for the second
order functional calculus with the ω-rule, which they refer to as Aω. We can under-
stand this in the terminology of the present work as the following result: the set of
Gödel numbers of L2-sentences true in every ω-model of second order arithmetic Z2 is
a Π1

1 complete set. The proof presented below is due to Mummert [2012], who proves
it for ω-models of RCA0 rather than full Z2. Relativizing computable entailment to a
set parameter X ⊆ ω we have the following.

Theorem 7.2. For any set parameter X ⊆ ω, the X-computable entailment relation
C(X) is Π1

1(X) complete.

We shall need some standard definitions from computability theory. For more
background the reader should consult a reference work such as Rogers [1967] or Soare
[1987].

Definition 7.3. For sets X,Y ⊆ ω, X is many-one reducible to Y , X ≤m Y , just in
case there is a total recursive function f such that for all m ∈ ω,

(4) m ∈ X ⇔ f(m) ∈ Y.

If f is injective then X is 1-reducible to Y , X ≤1 Y , and if f is a bijection then X
and Y are 1-equivalent.

Definition 7.4. Let X ⊆ P (ω). A set X ⊆ ω is complete for X iff X ∈ X and
Y ≤1 X for every Y ∈ X .

Lemma 7.5. For any set parameter X ⊆ ω, every Π1
1(X) set A is 1-reducible to

C(X).

Proof. Let ϕ(m1, X1) be a Π1
1 formula. We refer to (ω,P (ω)) as the full model.

Claim: For any n ∈ ω and X ⊆ ω, ϕ(n,X) is true in the full model iff it is true
in all Turing ideals containing X.

(⇐) The full model is a Turing ideal containing X, so if ϕ(n,X) is false in the full
model then it is false in that ideal.

(⇒) Assume without loss of generality that ϕ(n,X) ≡ ∀Y ψ(n,X, Y ) where ψ is
arithmetical. Suppose there is a Turing ideal C containing X such that C 6|= ϕ(X).
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Then there is some counterexample B ∈ C such that C 6|= ψ(X,B). Since the in-
terpretation of the first order quantifiers and nonlogical symbols are the same in all
ω-models, such a B will remain a counterexample in the full model.

This completes the proof of the claim.
Given ϕ(m1, X1) as above, let A = { n ∈ ω | ϕ(n,X) }. Define the function fA :

ω → ω as fA(n) = pϕ(n,X)q. This function is recursive and injective, since if a 6= b
then pϕ(a,X)q 6= pϕ(b,X)q by the properties of the Gödel coding. Finally by the
claim above and the fact that ϕ(m1, X1) is Π1

1, n ∈ A ↔ ϕ(n,X) ↔ pϕ(n,X)q =
fA(n) ∈ C(X).

Having shown that C is Π1
1-hard, i.e. that all sets A ∈ Π1

1 are 1-reducible to
it, we shall show that C is itself Π1

1 and thus is Π1
1 complete. In doing so we shall

lean on the following definition which shows how a set can code a countable Turing
ideal. A countable coded ω-model is a set W which codes countable sequence of sets
〈(W )n | n ∈ N〉 where (W )n = { i | (i, n) ∈W }. For a full definition of countable
coded ω-models see Simpson [2009, §VII.2].

Definition 7.6. Suppose W ⊆ N is a set coding the countable model M and X ⊆ N.
W codes a countable Turing ideal containing X iff

(i) For every m,n, there exists a k such that (W )k = (W )m ⊕ (W )n;

(ii) For every m, if Y ≤T (W )m then there exists a k such that (W )k = Y ;

(iii) There exists some k such that (W )k = X.

Lemma 7.7. Let X,W ⊆ N. The predicate “W codes a countable Turing ideal
containing X” is arithmetical.

Proof. Throughout we use the countable coded ω-model W as a parameter. The
following formula is an analogue of condition (i) of definition 7.6.

(5)
∀m∀n∃k∀x∀y[x ∈ (W )m ∧ y ∈ (W )n

↔ 2x ∈ (W )k ∧ 2y + 1 ∈ (W )k ].

For (ii), let π(e, n, Y ) be a universal lightface Π0
1 formula with the given free variables.

The existence of such formulae is provable in RCA0; a definition is provided in Simpson
[2009, definition VII.1.3, p. 244]. They play the role of universal Turing machines.

(6)
∀m∀e0∀e1[∀n(π(e0, n, (W )m)↔ ¬π(e1, n, (W )m))

→ ∃k∀n(n ∈ (W )k ↔ π(e0, n, (W )m)) ].

Finally we add condition (iii) that X is an element of the Turing ideal coded by W ,

(7) ∃k∀n(n ∈ X ↔ n ∈ (W )k).

One can (tediously) verify that these conditions hold of W if and only if the ω-model
coded by W is a Turing ideal containing X.

Lemma 7.8. For any set parameter X ⊆ ω, if an L2(X)-sentence ϕ is false in any
Turing ideal containing X, then it is false in a countable Turing ideal containing X.
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Proof. Let M be a Turing ideal containing X, and assume that M |= ¬ϕ. By the
downwards Löwenheim–Skolem theorem, M has a countable ω-submodel M ′ ⊆ω M
such that X ∈ M ′. M ′ is a Turing ideal, as this property is definable by an L2(X)
sentence which is true in M , and thus in M ′ by elementarity. Finally, ϕ is false in
M ′, again by elementarity.

Proof of theorem 7.2. Fix a set parameter X. By lemma 7.5, C(X) 1-reduces
every Π1

1(X) set. It only remains to show that C(X) is itself a Π1
1(X) set.

Let C†(X) be the set of Gödel codes of L2-sentences ϕ such that every countable
Turing ideal containing X satisfies ϕ. Lemma 7.8 shows that any sentence ϕ of second
order arithmetic is satisfied by every Turing ideal containing X iff it is satisfied by
every countable Turing ideal containing X. So pϕq ∈ C(X) ⇔ pϕq ∈ C†(X). Thus
by proving that C†(X) is a Π1

1(X) set, we show that C(X) is also Π1
1(X).

The relation pϕq ∈ C†(X) can be defined in second order arithmetic as:

(8) (∀ countable Turing ideals M)(X ∈M →M |= ϕ)

By lemma 7.7, the predicate “W codes a countable Turing ideal M” is arithmetical.
M |= ϕ means “There exists a satisfaction function f for M such that f(pϕq) = 1.”
Although this is Σ1

1, every such f is provably unique, and thus M |= ϕ is equivalent
to a Π1

1 formula. �

Computable entailment thus transcends arithmetical truth, being recursively iso-
morphic to the Π1

1 theory of the natural numbers, and also to membership in Kleene’s
O, the set of notations for recursive ordinals. Nevertheless its complexity is towards
the lower end of the logics considered by Väänänen [2001] and Koellner [2010], being
for instance far less complex than the full second-order consequence relation. But as
we shall soon see, such complexity is incompatible with the requirements of founda-
tional analysis.

The Entscheidungsproblem was considered by Hilbert and others to be of such
importance because a positive solution would have meant we could obtain, by finite
means, knowledge of the provability or unprovability of all mathematical statements.
The computational intractability of the classical provability relation constitutes an
epistemic difficulty for mathematics. From this perspective, we should be troubled by
an entailment relation such as Shore’s with a far greater degree of uncomputability.

It’s well known that truth definitions are not simple: Kripke’s fixed-point construc-
tion of a truth predicate over the natural numbers is also Π1

1 complete [Kripke 1975].
Provability, at least for classical first-order logic, is comparatively uncomplicated. If
RCA0 |= ϕ then we can produce a finitary proof witness by an exhaustive search. We
have no such assurance when |=c ϕ: computable entailment does not satisfy Gödel’s
completeness theorem, so we are unable to reduce this complex semantic relation to
the more finitistically acceptable provability relation.

ω-logic does have a completeness theorem of sorts, namely the ω-completeness
theorem of Henkin and Orey, as mentioned in §5. By this theorem, restricting to
ω-models is equivalent to closing one’s consequence set under the ω-rule. This is typi-
cally formalised in terms of an infinitary proof calculus, where proofs are well-founded
trees which branch infinitely on uses of the ω-rule. However, this completeness the-
orem does not induce a reduction in the complexity of the computable entailment
relation: computable entailment is irredeemably infinitary. Computable entailment
is also impredicative. Shore’s definition quantifies over all Turing ideals, and while
theorem 7.2 shows that a definition quantifying only over countable Turing ideals is
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in fact equivalent to Shore’s, computable entailment is still Π1
1 complete, and thus an

archetypal impredicative relation.
While determining the complexity of the computable entailment relation in a tra-

ditional, computability-theoretic way as we have above is a useful classification ex-
ercise, it comes with some disadvantages. Principally, it does not make clear what
proof-theoretic resources are required in order to prove the result. This means that it
is unclear whether the result is epistemically accessible to the convinced F-theorist,
where F is a given foundational approach such as those studied in §3 and §4. From
an external viewpoint we can see that the computable entailment relation is definable
in the language of second order arithmetic, by quantifying over all countable Turing
ideals. We therefore turn to the resources of reverse mathematics and show that an
analogue of theorem 7.2 can be proved within a predicative subsystem of second order
arithmetic.

To do so we must select the correct base theory, and then formulate the principle
that truth sets for the X-computable entailment relations exist with some care. The
first barrier is that RCA0 does not prove that codes for countable Turing ideals exist.
Nor, given a countable coded Turing ideal M , does it prove that the satisfaction
function f for M exists. We therefore work in the stronger theory ACA0. However,
ACA0 does not prove that the full satisfaction function for any countable coded Turing
ideal (considered as an ω-model) exists, since such a satisfaction function is essentially
a truth predicate for the first-order language of arithmetic, and thus not arithmetically
definable. We therefore formulate the definition of the truth set for X-computable
entailment C(X) in a slightly modified form, using not full satisfaction functions but
valuation functions for single sentences.24 For details of the notion of a valuation
function see definition VII.2.1 of Simpson [2009].

Definition 7.9. The following definition is made in ACA0. Let X ⊆ N be any set and
let pϕq be a Gödel code for a sentence ϕ in the language of second order arithmetic
L2 extended with a constant symbol for X. We say that ϕ is X-computably entailed,
pϕq ∈ C(X), if for every code W for a countable Turing ideal M such that X ∈ M ,
and for every valuation function f : SubM (ϕ)→ { 0, 1 }, we have that f(pϕq) = 1.

Lemma 7.10. Suppose ϕ(m,X) is a Π1
1 formula with exactly the displayed free vari-

ables. Then the following is provable in ACA0. For all X ⊆ N, if C(X) exists, then
Y = {m | ϕ(m,X) } exists and Y ≤T C(X).

Proof. Let ϕ(m,X) be as above. By the Kleene normal form theorem for Π1
1 formulas,

there is a Σ0
1 formula σ(m, f,X) with exactly the displayed free variables such that

ACA0 proves
∀m∀X(ϕ(m,X)↔ ∀fσ(m, f,X)).

Given m ∈ N and X ⊆ N, we reason in ACA0 and show that

∀fσ(m, f,X)↔ p∀fσ(m, f,X)q ∈ C(X).

(⇒) Suppose p∀fσ(m, f,X)q 6∈ C(X). Then there exists a codeW1 for a countable
Turing ideal M1 containing X, and a valuation function g1 : SubM1

(ψ1) → { 0, 1 }
(where ψ1 ≡ ∀fσ(m, f,X)), such that g1(ψ1) = 0. By the definition of the valuation

24This definition is extensionally equivalent to the previous one using full satisfaction functions,
as can be seen from the viewpoint of proof-theoretically stronger but still predicatively reducible
theories such as ACA+

0 , which prove that satisfaction functions for countable coded ω-models exist.
Dorais [2012] explains many of the subtleties involved.
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function, there exists k ∈ N which is the index of a function f1 = (W )k, such that
g1(pσ(m, f1, X)q) = 0. f1 exists by recursive comprehension in the parameter W ,
and since arithmetical formulas are absolute between the ambient model and any
countable coded ω-model, we have that ¬σ(m, f1, X), and so ¬∀fσ(m, f,X).

(⇐) Suppose there exists f2 such that ¬σ(m, f2, X). By arithmetical comprehen-
sion there exists a code W2 for a countable Turing ideal M2 such that X, f2 ∈ M2

(for example, just take the code for the ideal consisting of the sets recursive in
X⊕f2). Arithmetical comprehension also proves the existence of a valuation function
g2 : SubM2

(ψ2)→ { 0, 1 }, where ψ2 ≡ ¬σ(m, f2, X)∧∀fσ(m, f,X). By absoluteness,
g2(p¬σ(m, f2, X)q) = 1, so g2(p∀fσ(m, f,X)q) = 0, and hence p∀fσ(m, f,X)q 6∈
C(X).

Given a set X ⊆ N, assume that C(X) exists. Let Y be the set of all m such
that p∀fσ(m, f,X)q ∈ C(X). Y is recursive in C(X), and thus exists by recursive
comprehension. So by the equivalence just proved, ∀m(m ∈ Y ↔ ϕ(m,X)).

While this result demonstrates that the complexity of the computable entailment
relationship is in some sense accessible to the predicativist, if not the finitistic reduc-
tionist, it is not clear what the philosophical moral should be. A natural interpretation
might be that a Π1

1 complete entailment relation such as computable entailment is
much more uncomputable than the relation of provability in classical logic, and that
this degree of uncomputability can be comprehended from within a predicativist for-
mal theory. This conclusion goes hand in hand with a more general view that the
Turing degrees track a hierarchy of relative difficulty of problem solving: problems
with higher Turing degree are harder to solve than those with lower Turing degree.

This is related to the näıve reading of the intuition discussed in §5.2 that “being
harder to prove” means “harder to compute”, and is an unsatisfying interpretation
for similar reasons. The first concerns the use of the computable entailment relation.
We are not seeking a general method that for any ϕ,ψ in the language of second
order arithmetic tells us whether or not ϕ |=c ψ. Rather, given specific statements
of mathematical interest, we try to prove (or disprove) that one computably entails
the other. The proofs involved here are typical mathematical proofs, carried out in
the usual way, not infinitary inferences: they quantify over Turing ideals, but they
do not require that we are able, as mathematicians, to solve the halting problem or
determine membership in Kleene’s O. Secondly, it is unclear why—given that they
are both uncomputable—that the computable entailment relation is epistemically any
more intractable than the standard first order provability relation of classical logic.
Absent the ability to carry out supertasks, we cannot solve the halting problem, so
even in principle, determining for arbitrary ϕ,ψ whether or not RCA0 ` ϕ→ ψ seems
as out of reach as determining whether ϕ |=c ψ.

Given this, a more plausible reconstruction of mathematical practice when we
prove computable entailments or failures of computable entailment is that we work in
a way that can be formalised in a standard deductive calculus, but that in doing so
we assume that quantifying over all Turing ideals (or equivalently, over all countable
Turing ideals) is well-defined. One way of ensuring this well-definedness is to work
in a background theory that proves that the extension of the computable entailment
relation exists. In this context, knowing the precise Turing degree of the computable
entailment relation takes on greater significance, since it allows us to determine what
axioms are both necessary and sufficient to prove its well-definedness.

Corollary 7.11. The following are equivalent over ACA0.

1. Π1
1 comprehension.
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2. For every X ⊆ N, the truth set C(X) of the X-computable entailment relation
exists.

Proof. The definition of C(X) is Π1
1, as can be seen from definition 7.9, so Π1

1 com-
prehension proves that for any X ⊆ N, C(X) exists.

For the reversal we work in ACA0. Let ϕ(m) be a Π1
1 formula. Using pairing, join

all n free set variables in ϕ(m), to produce an equivalent formula ϕ′(m,Y ) with a
single free set variable Y , such that ACA0 proves

∀X1 . . . ∀Xn∀Y ∀m(ϕ(m)↔ ϕ′(m,Y )).

Given Y , assume that C(X) exists. Lemma 7.10 applied to ϕ′(m,Y ), together with
the above equivalence, implies the existence of a set Z such that ∀m(m ∈ Z ↔ ϕ(m)).
This proves Π1

1 comprehension.

Π1
1-CA0 is the strongest of the subsystems of second order arithmetic usually stud-

ied in reverse mathematics. Computational reverse mathematics therefore draws on
resources which are unavailable in the four members of the Big Five that are proof-
theoretically weaker than Π1

1-CA0. Moreover, since 7.11 is provable within a predica-
tive system, the predicativist is in a position to calibrate the strength of the commit-
ment involved in accepting computable entailment. Doing so, she will see that not
only is it stronger than predicative systems like ACA0, but also predicatively reducible
ones like ATR0. So not only does the existence of the truth set for the computable
entailment relation exceed the strength of the predicativist and the predicative re-
ductionist’s theoretical resources, but they are in a position to see that it does. Since
they reject impredicative mathematics, and thus reject Π1

1 comprehension, they must
therefore reject the equivalent statement that the truth set for computable entailment
exists.

For foundational analysis to be a useful and worthwhile endeavour within the phi-
losophy of mathematics, the fruits of its analysis must be epistemically available to
disputants. Recall our example of Sarah the predicativist from §2. Since she accepts
ACA0, she believes that the equivalence between Π1

1 comprehension and the statement
(?), “Every countable abelian group can be expressed as a direct sum of a divisible
group and a reduced group” is true, since it is provable in a system contained in ACA0

(namely RCA0). How she responds to Rebecca’s challenge that Sarah’s predicativism
is misguided, since it does not allow her to prove the ordinary mathematical theorem
(?), will depend on the details of her views about the foundations of mathematics, but
she cannot dismiss the equivalence as question-begging. On the other hand, suppose
Rebecca were instead to present Sarah with the following argument: Π1

1-CA0 and (?)
are computably equivalent, that is to say they are true in exactly the same Turing
ideals. Sarah should therefore accept Π1

1-CA0, since (?) is an ordinary mathematical
theorem that any reasonable foundational system should prove. In this case Sarah
can resist the conclusion by refusing to accept the antecedent: computable equiv-
alence is not a well-defined notion, since it presupposes theoretical resources which
predicativism denies. Any argument presupposing that computable equivalence is a
well-defined notion therefore begs the question against her position.

We argued in §2 that philosophical arguments that attempts to invoke reverse
mathematical results in foundational analysis should, if they are to have any force,
appeal only to principles that targets of these argument already accept. In other
words, its presuppositions must not exceed their theoretical commitments. But the
argument above shows that the theoretical commitments which accompany the use
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of computable entailment outstrip those acceptable to partisans of most of the foun-
dational programs associated with subsystems of second order arithmetic. Computa-
tional reverse mathematics does not allow one, in general, to persuasively demonstrate
the mathematical limits of these foundational programs to those who accept them.

Funding

This work was supported by the Arts and Humanities Research Council [doctoral
studentship, 2011–14]; and the Leverhulme Trust [International Network grant “Set
Theoretic Pluralism”].

Acknowledgements

This article is drawn from my doctoral research at the University of Bristol. I am
indebted to Carl Mummert for his proof of theorem 7.2 and for his patient explanations
of the result and related matters. I would also like to thank Kentaro Fujimoto, who
helped me determine the correct base theory for lemma 7.10, and François G. Dorais,
for explaining the subtleties of satisfaction relations in reverse mathematics. I am
grateful to the journal editor and two anonymous referees whose comments helped
me to substantially improve this paper. Finally I would like to thank Marianna
Antonutti Marfori, Walter Dean, Leon Horsten, Richard Kaye, Øystein Linnebo, Toby
Meadows, Richard Pettigrew, Sam Sanders, Sean Walsh, and Philip Welch, for fruitful
discussions and their many helpful comments, as well as the audiences of talks in Lund,
Bristol, Munich, Birmingham, and Vienna, where I presented earlier versions of this
material.

References

J. Avigad. Formalizing forcing arguments in subsystems of second-order arith-
metic. Annals of Pure and Applied Logic, 82(2):165–191, 1996. doi:10.1016/0168-
0072(96)00003-6.

P. Bernays. Hilbert, David. In P. Edwards, editor, Encyclopedia of Philosophy,
volume 3. Macmillan, 1967.

D. K. Brown and S. G. Simpson. The Baire Category Theorem in Weak Subsystems
of Second-Order Arithmetic. Journal of Symbolic Logic, 58(2):557–578, June 1993.
doi:10.2307/2275219.

J. P. Burgess. On the outside looking in: a caution about conservativeness. In
S. Feferman, C. Parsons, and S. G. Simpson, editors, Kurt Gödel, Essays for His
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