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Reverse mathematics is a programme in mathematical logic, initiated in the mid-1970s, which
seeks to determine which axioms are necessary to prove theorems in areas of ordinary mathematics
such as real analysis, countable abstract algebra, countably infinite combinatorics, and the topology
of complete separable metric spaces. Reverse Mathematics: Proofs From the Inside Out is the first
popular book on the subject, aimed at advanced undergraduates in mathematics, but also a good
introduction for philosophers of mathematics. The time is certainly ripe for such a book, bringing
this fascinating area of contemporary mathematical logic to a broader audience.

Stillwell motivates the study of reverse mathematics through the following extended analogy
with geometry, developed in the first chapter. In Euclid’s Elements, the fifth (parallel) postulate is
used to prove the Pythagorean theorem. But is the use of the parallel postulate necessary? In fact,
it is, but demonstrating this necessity in a rigorous manner requires two things that are at the heart
of reverse mathematics. The first requirement is a base theory that does not prove the Pythagorean
theorem, but that is compatible with its truth. The second is a reversal : an implication, provable
in the base theory, from the theorem (the Pythagorean theorem, in this case) to the axiom (the
parallel postulate). The base theory in the case of Euclidean geometry is provided by the first
four of Euclid’s postulates. The existence of non-Euclidean geometries that make the first four
postulates true but the parallel postulate false demonstrates that the base theory does not prove
the parallel postulate. This makes the reversal from theorem to axiom non-trivial, and shows that
the axiom is indeed necessary in order to derive the theorem: whenever the theorem is true, the
axiom must also be true.

Although the details are very different, in broad strokes reverse mathematics follows the same
methodology in order to determine which axioms are necessary to prove theorems of ordinary
mathematics. Instead of a language of points and lines, the base theory used in reverse mathe-
matics, along with the axioms and theorems studied, is formulated in the language of second-order
arithmetic. This is a two-sorted first-order system that extends the language of first-order Peano
arithmetic by permitting quantification over both natural numbers, using variables of the first
sort (called “number variables”), and over sets of natural numbers, using variables of the second
sort (called “set variables”).1 One of Stillwell’s main examples is the monotone convergence the-
orem, which states that every increasing, bounded sequence of real numbers converges to a limit.
By formalising the notions of real number, sequence, limit, and convergence within second-order
arithmetic, one can represent the monotone convergence theorem by a sentence MCT in the formal
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1Since it is aimed at a fairly general audience, the book does not address the following important point about the

semantics employed, namely that in reverse mathematics one always uses first-order semantics (Henkin semantics)
to interpret the set variables, rather than interpreting them as ranging over the full powerset of the range of the
number variables, as one does in the standard semantics for second-order logic [Shapiro 1991]. This means that, for
example, if we take N to denote the standard model of arithmetic and REC to denote the set of computable sets
of natural numbers, then (N,REC) is a model of the subsystem of second-order arithmetic RCA0 described below.
Such a model would not be admissible under the standard semantics for second-order logic, since not every set of
natural numbers is computable, and so REC is not the full powerset of the natural numbers.
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language. One may then formalise the standard proof of the monotone convergence theorem within
a subsystem of second-order arithmetic known as ACA0, where ‘ACA’ stands for the Arithmeti-
cal Comprehension Axiom, an axiom scheme stating that every set definable by a formula in the
language of first-order arithmetic exists.

The other axioms of ACA0 are the axioms of Robinson arithmetic Q, which give the usual
properties of the successor, addition, and multiplication operations, plus the second-order induction
axiom ∀X((0 ∈ X ∧ ∀n(n ∈ X → n + 1 ∈ X)) → ∀n(n ∈ X)). Having shown that arithmetical
comprehension is, in the presence of the other axioms, sufficient to prove the formalisation MCT of
the monotone convergence theorem, one then seeks to show that it is also necessary. To do this one
works in a weak base theory known as RCA0. ‘RCA’ stands for Recursive Comprehension Axiom:
a weakening of arithmetical comprehension that asserts that every computable (i.e. recursive) set
exists. The other axioms of RCA0 are those of Robinson arithmetic Q, plus the induction scheme
for Σ0

1 formulas. By adding the formalisation MCT of the monotone convergence theorem to the
axioms of RCA0, one can then derive any instance of the arithmetical comprehension scheme. This
reversal from theorem (MCT) to axiom (ACA) shows that the axiom is indeed necessary in order
to prove the theorem. Crucially, RCA0 cannot prove all instances of arithmetical comprehension,
and thus cannot prove MCT either. This illustrates the analogy with geometry, and also highlights
the importance of the base theory, which must be weak enough so as to not prove outright the
theorems being reversed, but strong enough to prove both directions of their equivalences.

Many hundreds of mathematical theorems have been studied in reverse mathematics. The vast
majority have been found, somewhat surprisingly, to fall into just five equivalence classes: either
they are provable in the base theory RCA0, or they are equivalent to one of just four other axioms,
listed in order of increasing strength (with the system name in brackets): weak König’s lemma
(WKL0), the restriction of König’s infinity lemma to trees formed from binary sequences; arithmeti-
cal comprehension (ACA0); arithmetical transfinite recursion (ATR0), which allows arithmetically
definable operations to be iterated along any well-ordering; and Π1

1 comprehension (Π1
1-CA0). The

book focuses primarily on equivalences to arithmetical comprehension, with some discussion of
equivalences to weak König’s lemma in the penultimate chapter.

Stillwell’s presentation of the methodology and goals of reverse mathematics follows closely the
template laid down by Harvey Friedman and Stephen Simpson [Friedman 1975, Simpson 2009],
as a programme of classifying theorems of analysis, algebra, logic, combinatorics, etc., in terms
of set existence axioms of increasing strength. One locus classicus of this view is a passage in
Simpson [2009, p. 2] which formulates the main question of reverse mathematics as “Which set
existence axioms are needed to prove the theorems of ordinary, non-set-theoretic mathematics?”.
In articulating the received view of reverse mathematics, Stillwell writes (p. 24) that “The [set ex-
istence] axioms in question state there is a set of natural numbers n corresponding to each property
ϕ(n) in a certain class”. The natural reading of this passage is that all set existence axioms are
comprehension principles: axiom schemes asserting the existence of all sets of a certain definable
class. Of the set existence principles that play a major role in reverse mathematics, recursive com-
prehension, arithmetical comprehension, and Π1

1 comprehension are all of this form. But as noted
by Dean and Walsh [2017], such a characterisation fails to include two of the five main subsystems
of second-order arithmetic, WKL0 and ATR0.2 As I argue in [Eastaugh 2019], the received view
of reverse mathematics sketched above can only be maintained if one provides a more nuanced
account of set existence principles that includes weak König’s lemma and arithmetical transfinite
recursion as well as comprehension principles, for example by taking set existence principles to be
closure conditions on the powerset of the natural numbers.

After sketching the development of geometry and how it provides the basic methodology of
base theory and reversals, Stillwell turns to the development of analysis, and in particular to the
so-called “arithmetization of analysis” that took place during the nineteenth century. During this
process, intuitive geometrical conceptions of the continuum were replaced by set-theoretic ones.
The formalisation sketched in chapter 2 uses Dedekind’s influential representation of real numbers
as ‘cuts’ partitioning the rational numbers into upper and lower parts, with the real number
thus represented corresponding to the point in the continuum where the rationals are divided by

2This point is much stronger than just the observation that weak König’s lemma does not have the surface
grammar of a comprehension principle. Rather, weak König’s lemma is not equivalent over RCA0 to any subscheme
of the arithmetical comprehension scheme. For details see theorem 2.1 of [Eastaugh 2019, p. 160].
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the cut. Rational numbers themselves are represented as pairs of integers (n, d) whose intended
interpretation is n

d , while integers are represented as pairs of natural numbers (m, k) whose intended
interpretation is m−k. These pairs can themselves be coded by single natural numbers, for example
by letting the pair of natural numbers (a, b) be coded by the number (a+ b)2 + a. In this way the
concepts of integer, rational, and real number are arithmetized : reduced to the two basic concepts
available in the formal language of second-order arithmetic, namely natural numbers and sets of
natural numbers.

The rest of chapter 2 covers the arithmetization of continuous functions, the language and ax-
ioms of Peano arithmetic, and an introduction to arithmetically definable sets of natural numbers.
In many ways this makes this chapter the most difficult of the book, since it requires the reader
to absorb several quite different developments in analysis, arithmetic, and computability theory,
and begin to understand the connections between them. The decision to focus on theorems of
analysis has obvious pedagogical advantages, since most readers in the target audience will have
sufficient familiarity with the material to follow the general idea. Nevertheless, it does have its
downsides, most obviously that the coding needed to arithmetize even the most basic concepts of
analysis is complex and often opaque. The weakness of the formal systems involved also means
that the choices involved in coding analytical objects must be made with great care. Stillwell’s
choice of Dedekind cuts, in particular, is not a suitable way of coding reals in RCA0, because even
simple manipulations of sequences of real numbers represented in this way often require stronger
set existence principles than are available in the base theory. For this reason, working reverse
mathematicians prefer to use fast-converging Cauchy sequences of rational numbers, a more com-
putationally tractable coding scheme which avoids the pathologies of Dedekind cuts [Hirst 2007].

Chapter 3 surveys some classical topics in analysis, including limits, continuity and the inter-
mediate value theorem, the Bolzano–Weierstraß theorem, and the Heine–Borel theorem. This is
done with a focus on so-called sequential forms of these theorems which, because they quantify only
over hereditarily countable objects, are amenable to being formalised in subsystems of second-order
arithmetic. For example, one version of the Heine–Borel theorem states that if S is an infinite set
of open intervals that covers [0, 1], then there is some finite subset F ⊆ S such that F also covers
[0, 1]. An immediate corollary is the following sequential form: if I = 〈I0, I1, . . . 〉 is a countable
sequence of open covers, then there is a finite subsequence F = 〈I0, I1, . . . , Ik〉 which covers [0, 1].
In the first version of the theorem, S can be any set of open intervals, even an uncountable one. In
the sequential form of the theorem, however, both the countable sequence of open covers I and the
finite subsequence F are coded by a single real number or set of natural numbers. The sequential
form can therefore, unlike the more general version, be formalised in second-order arithmetic by a
statement HB that quantifies only over natural numbers and sets of natural numbers.

Chapter 4 reviews some basic results in computability theory, and then applies them to analysis.
After sketching Hilbert’s tenth problem and the need for a precise characterisation of the notion of
algorithm or effective procedure, Stillwell gives some properties of computable functions, followed
by an outline of an argument that the halting problem is undecidable, and a description of the
computably enumerable sets. The existence of sets that are computably enumerable but not
computable is then used to generate what are typically called recursive counterexamples in the
literature on constructive and computable analysis. A stock example is that of Specker sequences:
bounded increasing sequences of rational numbers whose least upper bound is a non-computable
real number. The existence of Specker sequences shows that the monotone convergence theorem is
not provable in RCA0, because the axioms of RCA0 do not prove the existence of non-computable
sets.3

Chapter 5 is concerned primarily with how computability-theoretic notions can be arithmetized.
Stillwell does this via Smullyan’s elementary formal systems [Smullyan 1961], which are syntactic
systems similar to those of Post. Elementary formal systems are an elegant way of exposing
the computational aspects of formal systems, but they are rarely taught in contemporary logic
courses, making this feel like an idiosyncratic choice. While it may help convey the ideas in a
relatively compact way, the lack of good contemporary resources will make it hard for readers not

3This point relies implicitly on the use of the model (N,REC) described in footnote 1: the axioms of RCA0 are
true when we interpret their set variables as only ranging over computable sets, i.e. (N,REC) |= RCA0. Any Specker
sequence S is computable, and hence a member of REC, but since the limit of S is non-computable, it is not in
REC and thus the monotone convergence theorem is false in the model (N,REC).
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already versed in computability theory to reconstruct the arguments in a rigorous way. After some
background on Turing and Post’s analyses of computation, and how they relate to one another
and to elementary formal systems, the elementary formal systems are put to use in representing
numbers and arithmetical relations. The converse procedure of representing elementary formal
systems in arithmetic is done in a somewhat impressionistic manner, but it does convey the central
ideas about coding sequences with Gödel’s β function.

One way in which we can understand the hierarchy of systems studied in reverse mathematics
is as examples of incompleteness that show the various ways in which non-computable sets are
essential to mathematical practice. For example, if one starts out with an axiom system like
RCA0 that only proves the existence of computable real numbers, then one must add additional
axioms in order to prove the least upper bound principle and all the theorems that rely on it.
Reverse mathematics gives us a precise determination of which axiom must be added to RCA0 to
achieve this outcome, namely the arithmetical comprehension scheme (ACA). This is the subject of
chapter 6, which brings us to reverse mathematics proper via a demonstration that different ways
of expressing the sequential completeness of the real line (such as the sequential least upper bound
principle, the monotone convergence theorem, and the sequential Bolzano–Weierstraß theorem)
are all equivalent to one another and to ACA.

Chapter 6 also discusses another important set of concepts in computability theory and reverse
mathematics, finitely branching trees. A tree is a set of finite sequences that is closed under
subsequences. An important special case is where the elements of the tree are binary sequences,
finite sequences of 0s and 1s. König’s infinity lemma (KL) that every finitely branching tree with
infinitely many nodes contains an infinite path has a computability-theoretic interpretation: there
are computable, infinite, finitely branching trees with no computable paths, so König’s lemma is
computably false. However, all such trees contain paths which are computable relative to the set
K of solutions to the halting problem. Viewed through the lens of reverse mathematics, this means
that König’s lemma implies arithmetical comprehension, and indeed is equivalent to it.

Restricting to trees of binary sequences produces a very different result. The principle that every
infinite tree of binary sequences has an infinite path is known as weak König’s lemma (WKL). This
principle is, as discussed in chapter 7, equivalent to a wide variety of theorems in analysis including
the sequential Heine–Borel covering theorem and the extreme value theorem (“Every continuous
function on the closed unit interval attains a maximum”), and like the full König’s lemma it is
computably false. However, computable infinite trees of binary sequences always contain infinite
paths that are less complex than the halting set K, thus showing that WKL is a strictly weaker
principle than the full König’s lemma.

The remainder of chapter 7 is devoted to a discussion of the base theory RCA0, including giving
a more precise account of how e.g. continuous functions can be represented in the base theory,
and briefly describing the other so-called “Big Five” systems ATR0 and Π1

1-CA0, and some of their
equivalences. However, as noted earlier, the main focus of the book is on equivalences with ACA.
Although this is an understandable choice given the book’s focus on theorems of analysis, and the
technical complexities sometimes involved in equivalences to the stronger axioms of arithmetical
transfinite recursion and Π1

1 comprehension, it does mean that the book provides a rather partial
impression of the field.

A similar issue arises in section 6.6, which concerns Ramsey’s theorem. Stillwell does an
excellent job of introducing the reader to the fundamentals of Ramsey theory, explaining in some
detail how different weakenings of Ramsey’s theorem are related to one another. A particularly
important such weakening is the principle known as Ramsey’s theorem for pairs (RT2

2). As Stillwell
explains, RT2

2 is important in reverse mathematics because it is provable in ACA0 but does not
reverse to it. However, having reached a crucial point in the exposition, the book stumbles: it
does not make clear that RT2

2 is not provable in the base theory RCA0—that Ramsey’s theorem
for pairs is not computably true—nor does it explain that RT2

2 is actually incomparable with the
intermediate system WKL0, and thus lies outside the realm of the “Big Five” subsystems. This
phenomenon is quite general, and the constellation of non-equivalent combinatorial principles that
lie in the “Reverse Mathematics Zoo” between RCA0 and ACA0 provides much of the impetus
behind contemporary research in reverse mathematics (see e.g. Hirschfeldt 2014). Since by this
point in the book the reader would be in a good position to appreciate the importance of these
results, Stillwell misses a golden opportunity to paint a richer and more complex picture of the
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field.
The short final chapter tries to place the results from the rest of the book into a larger context,

relating reverse mathematics to constructive mathematics, the incompleteness phenomenon, and
computability theory. While they are understandably quite compressed, these closing remarks are
nevertheless to be commended for their references to both historical sources and more recent sur-
veys, and they will hopefully encourage interested readers to delve more deeply. One unfortunate
omission, given the focus on constructive mathematics in this chapter, is any mention of construc-
tive reverse mathematics: the programme of proving equivalences between mathematical theorems
and various non-constructive principles from within a constructively acceptable base theory [Ishi-
hara 2006, Bridges and Palmgren 2018, §5]. This would have helped substantiate Stillwell’s claim
(p. 156) that Brouwer’s fixed-point theorem “is not far outside constructive mathematics, since
it is constructively equivalent to the weak König lemma”. Reasoning within RCA0 is not so far
removed from constructive mathematical reasoning, but contrary to what this passage seems to
imply, proofs of equivalences in RCA0 are not in general constructively acceptable, since RCA0 is a
classical system that admits the law of excluded middle (for example, RCA0 proves the intermedi-
ate value theorem, whose proof uses the law of excluded middle in an essential way, and which is
thus not constructively valid). Nevertheless, the equivalence between WKL and Brouwer’s fixed-
point theorem can in fact be proven in a genuinely constructive way within constructive reverse
mathematics [Hendtlass 2012, pp. 9–10].

Overall, Reverse Mathematics: Proofs from the Inside Out is an engaging and rewarding book
which should excite the interests of anyone who has a familiarity with undergraduate-level real
analysis and an interest in the foundations of mathematics. Readers with some background in
mathematical logic (preferably including some familiarity with the basics of computability theory)
who are interested in pursuing the subject further will find Denis Hirschfeldt’s book Slicing the
Truth [Hirschfeldt 2014] an excellent follow-up to this one, although Hirschfeldt focuses on combi-
natorics, rather than analysis. Working through the relevant sections (primarily in chapters I–IV)
of Stephen Simpson’s canonical reference work Subsystems of Second Order Arithmetic [Simpson
2009] would allow the motivated reader to grasp the finer details of the proofs sketched by Stillwell.

Such a reader should, however, be aware of a few imprecisions in the present volume. These
include a typographical error (p. 40) in which one of the axioms of Peano arithmetic is given as the
statement that for all m and n, if S(m) 6= S(n) then m 6= n. Rather than an axiom of arithmetic,
this is a simple validity of classical first-order logic with identity. The correct form of the axiom
is the statement that for all m and n, if S(m) = S(n) then m = n, expressing that the successor
function S is injective. The relationship between subsystems of second-order arithmetic like RCA0

and ACA0 and their unsubscripted counterparts RCA and ACA is also misdescribed (p. 107, fn. 5,
and p. 110, fn. 1). The ‘0’ subscript denotes a system with restricted induction, thus tying the
strength of the induction principle to the amount of set comprehension available in the system. The
unsubscripted subsystems such as RCA and ACA, on the other hand, include the induction scheme
for all formulas in the language of second-order arithmetic, i.e. with unrestricted use of both set
and number quantifiers. Finally, a parenthetical remark (p. 146) states that weak König’s lemma
“implies recursive comprehension, so it is the set existence axiom for WKL0”. Taken literally, this
is incorrect: weak König’s lemma is a conditional set existence principle that relies on the presence
of recursive comprehension, stated as an additional axiom, to guarantee that there are any binary
trees to begin with [Eastaugh 2019, pp. 167–8]. However, since the base theory RCA0 includes
recursive comprehension, we can always assume that it is available, and in this sense weak König’s
lemma is indeed “the” set existence principle of WKL0, since it is the sole axiom that distinguishes
WKL0 from the base theory RCA0. Helpfully, a list of errata is available on the publisher’s website
at https://press.princeton.edu/titles/11143.html, although at the time of writing only the first of
the issues mentioned above was included.
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