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Abstract

An interventionist account of causation characterizes causal relations in terms of changes
resulting from particular interventions. I provide a new example of a causal relation for which
there does not exist an intervention satisfying the common interventionist standard. I consider
adaptations that would save this standard and describe their implications for an interventionist
account of causation. No adaptation preserves all the aspects that make the interventionist
account appealing. Part of the fallout is a clearer account of the difficulties in characterizing

so-called “soft” interventions.

1 Introduction

James Woodward’s (2003) account of causation characterizes causal relations in terms of interven-
tions. On this account, speaking very roughly, for a variable x to be a cause of variable y, wiggling
2 must result in some change in (the probability of) y. Woodward’s more circumspect description
converts “wiggling” into a technical term. The result is an account that has a close connection to
scientific practice and avoids dubious metaphysical baggage while still providing conceptual clarity
of what it takes to stand in a causal relation.

In this article I present an example that challenges the specific commitments an interventionist
endorses in characterizing a causal relation. The problem is neither entirely new, nor is it a
problem the interventionist cannot avoid. It does, however, illustrate some of the details that may
have gone unnoticed and forces any proponent of the interventionist account to be explicit about

the assumptions she intends to make in order to avoid the uncomfortable implications described.



1.1 Interventionism

Woodward [2003, p. 55] provides the following definition of what it takes to be a direct cause on

the interventionist account:

Definition 1 (Direct Cause (Woodward)) A necessary and sufficient condition for x to be a
direct cause of z with respect to some variable set V is that there be a possible intervention on x
that will change z (or the probability distribution of z) when all other variables in V' besides x and

2 are held fized at some value by interventions.!

Woodward provides other variations of this definition. I will return to these below, but for now it
will suffice to note that I do not consider them to be substantially different for the present argument.

Definition 1 is most easily understood in terms of the representation of causal relations in so-
called causal Bayes nets [Spirtes et al., 2000, Pearl, 2000]. In a causal Bayes net two variables
are connected by an arrow whenever there is a direct causal relation between those variables. The
resulting causal graph then gives rise to a probability distribution over the variables that satisfies the
well-known Markov condition. The Markov condition states that each variable is probabilistically
independent of its non-descendents given its parents in the graph. One way of understanding
Definition 1 is that it provides a criterion consistent with the Markov condition for when a directed
edge between two variables should be added to a causal graph (see Woodward [2003, p. 59]).

Several aspects of Woodward’s definition are worth emphasizing:

1. The definition of a direct cause is relative to a set of variables V. While x may be a direct
cause of z, i.e. z — z, when we only consider the two variables V' = {x, 2z}, it is possible that
once we include the variable y in our considerations, the causal relation is in fact z — y — z,
so z is no longer a direct cause relative to the set of variables V' = {z,y, 2z}, only an indirect
one. To avoid the requirement that all intermediary variables are included in V, the notion

of a direct cause is relativized to V.

2. As the name of the account suggests, interventions play a special role. According to Wood-

ward, one of the features of an intervention is that it is an exogenous influence that determines



the value of the intervened variable and makes the intervened variable independent of its nor-
mal causes (p. 96-98). This can be achieved by varying the variable as in a randomized
experiment, or by locking the variable to a particular value. Although there are further de-
tails, for our purposes here it will suffice to note that the interventions Woodward proposes
are of a particularly strong kind: they break the causal influences on the intervened variables
and are therefore often referred to as “surgical” interventions. For the purpose of illustration,
consider the effect of drinking wine on heart disease. One may worry that the correlation
between drinking wine and heart disease is due to some confounder — a common cause of the
two — such as socio-economic status (SES). But if one were to perform a controlled experi-
ment in which participants were randomly assigned to a wine drinking or no wine drinking
condition, then any influence of SES on wine drinking would be broken. The randomized
controlled trial is a “surgical” intervention on wine drinking. The probability distribution
arising from such an experiment is commonly referred to as a “manipulated distribution”.
One of the advantages of surgical interventions is that they can be performed without knowl-
edge of the causal relations influencing the intervened variables. We need not know whether
SES is in fact a cause of wine-drinking in order to perform the experiment. In Section 6
we will return to consider “softer” interventions that only nudge the intervened variable but
may not break the influences of its other causes. While Definition 1 itself does not include an
explicit restriction to surgical interventions (on x), Woodward’s definition of an intervention

in Making Things Happen only permits surgical interventions (IV.I2, p. 98).

. Interventions in Definition 1 are existentially quantified, and modulated by the operator
“possible”. (In similar definitions Woodward has also used the term “hypothetical” or “plau-
sible”.) Woodward explains the motivation for the existential quantification as an explicitly
weak requirement to permit interactive causes as direct causes. For example, a filled gas tank
will only have an effect on the motor starting if the battery is also charged. If the battery is
dead, then despite a full tank the motor will not start. So although the gas level has no effect
on the motor starting when the battery is dead, it seems reasonable to consider the gas level

to be a direct cause of the motor starting since it makes a difference for some setting of the



battery charge. The existential quantification captures such cases since it only requires that

a change in x results in a change in z for some value assignment to the variables in V'\ {z, z}.

A full justification and characterization of “possible” (interventions) is more difficult. Wood-
ward discusses the issue in some detail in his Section 3.5. One motivation is to avoid the
charge that the interventionist account of causation would otherwise appear inapplicable to
causal relations in which an intervention does not seem feasible. For example, Woodward
maintains that the gravitation of the Moon is a cause of the tides despite the fact that an
intervention on the gravitation of the Moon does not appear feasible given our abilities (and
is arguably physically impossible if everything else is supposed to be held fixed). For now we

will rely on a suitably charitable reading and postpone the issue until Section 6.

Woodward may have intended Definition 1 to be couched in the context of additional background
assumptions, although he is not explicit about them. We will consider such assumptions as we need

them to handle the main example of this article.

2 Experimental Indistiguishability

Here, then, is the tricky case for the interventionist: Consider the two causal models T' (triangle)
and C (chain) over the binary variables {u,v,z,y,z} in Figure 1. The variables =,y and z are
observed, while u and v are unobserved, hence the dashed arrows. The models are identical except
that in T the observed variable x is a direct cause of the observed variable z, i.e. z — z, in addition
to being an indirect cause of z via y. Table 2 specifies for each model all the parameters of the
conditional probability distribution of each variable given its direct causes. Except for the (bold)
parameters tg and t13 of the conditional probability of z given its causes, the parameterization of

the two models are identical. Note that for model C' the parameters

p(Z’u’,Uvm = 17y) =p(2|u,v,x = O7y) = p(2|u,v,y) vzauavaya

so in model C' the conditional distribution of z does not depend on x.



Figure 1: Model (7T')riangle (left) and (C)hain (right). w and v are assumed to be unobserved
variables, hence the dashed arrows.

What, according to a proponent of the interventionist account, justifies the direct cause r — 2z

i model T'?

The answer is not as straightforward as it may seem. Definition 1 depends on the set of variables
we consider: If we take the perspective of a scientist who is only aware of the three observed variables
x,y and z, then the set of variables under consideration is V' = {x,y, z}. It follows from Definition 1
that = is a direct cause of z if and only if there is an intervention on x that results in a change in
z while y is held fixed at 1 or at 0. It turns out that this is not the case for either model T or
model C. In fact, if u and v are not observed then it can be verified that model T" and C' give rise

to exactly the same distribution for

1. the passive observational distribution without interventions,

2. the manipulated distribution when only z is randomized,

3. the manipulated distribution when only y is randomized,

4. the manipulated distribution when only z is randomized,

5. the manipulated distribution when z and y are randomized simultaneously,

6. the manipulated distribution when x and z are randomized simultaneously, and

J

. the manipulated distribution when y and z are randomized simultaneously.

Recall that identical joint distributions imply identical conditional and marginal distributions, so

the fifth case includes as a conditional distribution the distribution when x is manipulated and y



parameter conditional probability terms T C

t p(u=1) 03 |03
to p(v=1) 04 | 04
t3 plz=1u=1) 0.8 |08
t4 p(z = 1ju =0) 0.2 | 0.2
ts ply=1v=1z=1) 08 |08
to ply=1v=1,2=0) 0.8 |08
tr ply=1v=0,2=1) 0.8 | 0.8
ts p(y=1lv =0,z =0) 0.2 | 0.2
tog pz=1lu=1v=1x=1,y=1) || 0.65 | 0.8
t1o pz=1lu=1lv=1Lxz=1,y=0) 0.8 | 0.8
t11 pz=1lu=1l,v=1Lx=0,y=1) 0.8 | 0.8
t1o p(z=1llu=1,v=1,2=0,y =0) 0.8 | 0.8
t13 p(z=1lu=1v=0,x=1y=1) | 09 |08
t1g p(z=1lu=1v=0,2z=1,y=0) 0.8 | 0.8
tis pz=1lu=1v=0,2=0,y=1) 0.8 | 0.8
t1g p(z=1lu=1,v=0,2=0,y =0) 0.8 | 0.8
t17 pz=1lu=0v=1Lz=1y=1) 0.8 | 0.8
t1g p(z=1lu=0v=1Lx=1,y=0) 0.8 | 0.8
t1g pz=1lu=0v=12x=0,y=1) 0.8 | 0.8
tao p(z=1lu=0v=1,2=0,y =0) 0.8 | 0.8
to1 p(z=1lu=0v=0,z=1,y=1) 0.8 | 0.8
t22 p(z=1lu=0,v=0,z =1,y =0) 02 | 0.2
to3 p(z=1llu=0,v =0,z =0,y =1) 0.8 | 0.8
(= )

to4 P 0.2 | 0.2

Figure 2: Parameters of the two models in Figure 1. The differences between the models are shown
in bold.



is held fixed at 0 (or 1) by an intervention. Given the graphical structures in Figure 1, the reader
may note that for all these distributions the two models have exactly the same independence and
dependence relations over V' = {z,y,z}. The claim here, however, is stronger: The models have
identical (manipulated) distributions.

The two models are thus in principle indistinguishable by passive observational data or by any
(possibly simultaneous) surgical intervention on the observed variables. The models illustrate the
most extreme form of experimental indistinguishability mentioned in Eberhardt [2012]. According
to Definition 1, one must conclude that x is not a direct cause of z relative to V' = {x,y,z} in
either T" or (obviously) in C. Should, then, the arrow x — z in model T' be omitted?

Here is a reason to think not: If instead of just the observed variables, we consider the enlarged
set of variables V* = {u,v,z,y, 2}, then in an experiment that intervenes on z and holds the

variables other than z fixed at u = v = y = 1, we have for model T'

pr(z = 1set(u=1,0 =12 =1,y =1))

pr(z=1llu=1l,v=1z=1y=1)

= t&' = 065
4 th = 08

= prie=1u=1v=1z=0y=1)

pr(z =1lset(fu=1,v=1,2 =0,y = 1)),

where the set(.)-operator fixes the variables at particular values by intervention. But for model C'



we have, as expected,

We see that in model T the probability distribution of z changes depending on x, while all other
variables are held fixed at some value. So by Definition 1, = is a direct cause of z relative to
V* ={u,v,z,y,z} in T, but not in C.

So far there is nothing inconsistent with the interventionist account of causation: z is a direct
cause of z relative to some V*, but not relative to some other V. Nevertheless, it may be surprising
that the direct causal effect of x on y in model T is not detectable by any surgical intervention on
the observed variables V' = {z,y, z}. The interventionist account is, among other things, supposed
to support causal explanations and be closely related to how a scientist may go about establishing
causal relations (see Woodward [2003, Sections 1.9 and 3.1.8]). How then should we react to this
example?

On the one hand, it seems like the scientist is given all the tools she may desire — any randomized
controlled trial on any set of the observed variables — but she is still in principle unable to detect the
direct cause x — z, unless she identifies the unobserved variables u and v first. On the other hand,
for the set of variables V' that she observes, it appears reasonable to claim that x is not a direct
cause of z relative to V' = {x,y, z}. After all, what would be the point of maintaining that x is a
(direct) cause of z in model T'? The above list of distributions that are identical for 7" and C' shows
that the direct causal effect only makes a difference to the (surgically) manipulated distributions

once u and v are included in the set of variables under consideration. This was part of the reason in



the first place for relativizing the concept of direct cause to the set of variables under consideration.
Note, however, the difference to the case mentioned in the first comment on Definition 1 above:
There we had a shift from x as a direct cause of z, to x as an indirect cause of z. However, when
we change the set of variables from V to V* in the present case, model T" exhibits a shift from x
as an indirect cause of z, to z as an indirect and a direct cause of z, of which neither causal path
inwolves the variables u or v that were added into consideration. The problem becomes most vivid
in the manipulated distribution when x and y are subject to intervention (thereby breaking the
pathway © — y — z): An entirely new causal connection between z and z appears — x becomes a

direct cause of y — while apparently unrelated variables v and v are brought into view.

3 Causal Sufficiency

A natural first reaction to this example is to blame the unobserved variables. A similar example
could not be constructed if all causal influences were observed.? But Woodward is careful not
to endorse such a strong assumption. It would make the interventionist account of a direct cause
inapplicable to most scientific contexts, since it is generally not the case that one observes all causal
influences. Instead, Woodward explicitly endorses probabilistic causal connections with unobserved
“error terms”. These are common in the literature on structural equation models where a causal
effect is determined by a function of its causes plus some unobserved disturbance. Often these
disturbance terms are taken to be independent of one another, only influencing one variable each.
In our models T" and C', however, the unobserved variables u and v influence two variables each;
they are so-called confounders or latent common causes. In the causal modeling literature the
assumption of causal sufficiency is used to draw the line between independent disturbance terms
and confounders: A set of variables is said to be causally sufficient if it contains all common causes
of the set of variables, i.e. there are no latent confounders.

Glymour notes in his review of Making Things Happen that Woodward does not consider cases
in which causal sufficiency is violated [Glymour, 2004]. Should Definition 1 consequently be read
as implicitly referring to a causally sufficient set of variables?

I do not think so. Apart from the fact that it would undermine the relevance of the definition to



much of science where causal claims among causally insufficient sets of variables are investigated,
there are reasons why the omission of causal sufficiency from Definition 1 may have been delib-
erate. The statistician Ronald Fisher is generally credited (or blamed?) for making randomized
controlled trials the gold standard for causal discovery [Fisher, 1935]. One of the advantages that
Fisher recognized was that the manipulation of the treatment variable according to a (causally)
independent distribution made the treatment variable independent of its normal causes, including
any unobserved confounders of the treatment and outcome. The same applies for Woodward’s
interventionist account: The surgical intervention on the potential cause breaks any confounding
by unobserved variables (as we noted earlier in the case of drinking wine, heart disease and SES).
The additional assumption of causal sufficiency therefore appears redundant.

More importantly, as can be seen when considering the graphical structures of model T and
C in Figure 1, in the manipulated distribution when both x and y are subject to intervention,
the causal influence of u on x and v on y are broken by the interventions. In this manipulated
distribution v and v just function as independent “disturbance terms” on z. Thus, in the setting
of Definition 1 that supposedly determines whether x is a direct cause of z, the set of variables
V ={z,y, z} is in fact causally sufficient. The bottom line is that there are not only good reasons
why causal sufficiency would be a superfluous addition to Definition 1, but that even if it were
added, it would not solve the problem exhibited by model T

The unobserved variables are thus the wrong target for blame here. Instead, the problem arises
due to an independence relation between x and z that is not implied by the causal structure. In
the causal Bayes net literature such cases are known to occur when a particular assumption, known

as causal faithfulness, is violated.

4 Faithfulness

Although Definition 1 does not include any explicit mention, causal faithfulness is a common
assumption associated with causal discovery methods. Faithfulness states that all the independence
relations in the probability distribution over the variables in V are a consequence of the Markov

condition. One of the most common and well-understood violations of faithfulness occurs when

10



Figure 3: If the causal effects along the two paths from a to ¢ cancel each other out exactly, then
that is one way in which the model can exhibit a violation of the faithfulness condition.

there are two (or more) paths between variables that cancel each other out exactly (see e.g. Pearl
[2000, p. 49]). Consider the three variables W = {a,b,c} and suppose that they are causally
related as shown in Figure 3. If each variable is determined by a linear function of its causal
parents (plus some independent noise term) and the correlation between a and ¢ due to the causal
path a — b — ¢ cancels out exactly the correlation due to the direct effect of a — ¢, then a and
c will appear independent despite the fact that they are multiply causally related. Linearity plays
no specific role other than that it is easy to understand. The following binary parameterization for

the causal structure in Figure 3 results in a similar violation of faithfulness:3

pla=1) 0.2
pb=1la=1) 0.6875
p(b=1la=0) 0.2188

plc=1lla=1,b=1)| 0.6
plc=1la=1,b=0) | 0.92
plc=1la=0,b=1) | 0.2

ple=1la=0,b=0) | 0.84

Variable a is (unconditionally) independent of c¢. Consequently, if b were not observed, then a
and ¢ would appear independent (violating faithfulness) in the passive observational distribution
and in the manipulated distribution intervening on a, and would appear independent for an inter-
vention on ¢ (though not violating faithfulness in this case, obviously). Unless b is also observed,
the causal paths from a to ¢ are undetectable even with surgical interventions. Strevens [2008, p.
177] uses an example like this to argue that on Woodward’s account causal relations can come into
existence when the set of variables is expanded. Given that the model in Figure 3 exhibits a similar
shift from no causal relation between a and ¢ to a direct and indirect causal relation between the

two variables depending on whether b is observed, should model T" just be understood as a similar,
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but more elaborate example of Figure 3 (or Strevens’ example)?

No. While model T exhibits a violation of faithfulness?®, it is a violation of a different kind
than the case of canceling pathways in Figure 3 or Strevens’ example. First, unlike the model in
Figure 3 and Strevens’ example, model T" does not violate faithfulness in the passive observational
distribution. Second, when model T is subject to the surgical intervention on both x and y si-
multaneously (i.e. the case crucial to Definition 1), the causal effects + — y, v — y and v — =
are broken. Thus, in the true manipulated model of this intervention there are no two (or more)
pathways between x and z whose causal effects could cancel each other out, there is only one path
from x to z, namely the direct effect of x — 2z that remains. Still, this direct effect is not detectable
by any surgical intervention or passive observation of V' = {z,y, z}. The phenomenon of model T’
should also not be confused with the case of “single path unfaithfulness” that McDermott [1995, p.
531] describes. In that case an intermediary variable (between z and z) with at least three states
would be required.

Model T results in particular discomfort for the interventionist account as all the desiderata
of the account are fulfilled unambiguously: the intervention directly randomizes x independent of
any other observed or unobserved variable (thus satisfying Woodward’s response to Strevens’ salty
food example [Woodward, 2008]), the other observed variables are held fixed by an intervention
(as required by Definition 1), there are no multiple pathways between x and z in the manipulated
distribution relevant to the determination of the direct cause (in constrast to Figure 3 or Strevens’
example of canceling pathways), and the variables that are brought into view — u and v — do not
appear on pathways between the variables of interest (as in McDermott’s case or the canceling
pathways). This last point also makes any discussion of whether the situation can be saved by
shifting the definition from direct to contributing causes redundant. One could just as well ask
whether x is a contributing cause of z in the distribution in which x and y are manipulated — the
problem remains.® Consequently, though also a violation of faithfulness, model 7" is not consid-
ered or addressed by Woodward’s and Strevens’ discussion of variable relativity [Strevens, 2007,
Woodward, 2008, Strevens, 2008]. More specifically, Woodward could address Strevens’ concern

of canceling pathways without resolving the ambiguity arising from model T or could address the
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p(s=1) 0.8

pw=1) 0.5

w p(r=1s=1Lw=1) |02
p(r=1s=1w=0) | 0.8

! p(r=1s=0,w=1) | 0.8
§——=>71 p(r=1s=0,w=0) | 0.2

Figure 4: A simple model with a noisy xor-parameterization. If w is not observed, then no surgical
intervention on s or r can reveal the s — r edge.

problem of model 7" without handling canceling pathways. Or he could handle both by assuming
faithfulness.

The violation of faithfulness that 71" exhibits is more similar to a model with a noisy xor-
parameterization.® Consider the model in Figure 4 and its parameterization. If w is not observed,
then s and r would appear independent in the passive observational distribution and in the ma-
nipulated distribution with an intervention on s, even though s is a direct cause of r. In Figure 4,
however, the violation of faithfulness depends on the particular parameter of p(w = 1) = 0.5. For
any other (non-extreme) value of that parameter, the direct cause of s — r is detectable. In con-
trast, due to its extra complexity, model T is not sensitive to a specific value of its parameters, even
though it is sensitive to the relations among its parameters (see Appendix A). Nevertheless, model
T and the model in Figure 4 share many similarities. In particular, in both cases the violation of
faithfulness and the resulting undetectability of a direct causal effect is due to an averaging effect

when summing over the unobserved variables. This is easily seen for the model in Figure 4:

pr=1s=1) = > p(r=1[s=1w)p(w)
w
—  08x05+02x0.5

= Zp(r:1|s:0,w)p(w) = p(r=1|s=0)

Simiarly, obviously, for 7 =0, hence s is independent of r, i.e. s I r.

The case is similar for model T' when summing over the unobserved variables v and v.

13



Violations of faithfulness, at least those resulting from canceling paths, are widely discussed in
the causal inference literature and familiar to proponents of the interventionist framework [Wood-
ward, 2003, p. 49-50]. So it may seem surprising that none of the interventionist definitions of a
causal relationship include the faithfulness condition. It would have provided a simple way to avoid
all the problematic examples I have discussed so far. My guess is that the faithfulness assumption
was deliberately omitted to avoid other undesirable consequences: First, in some cases violations
of faithfulness are detectable once interventions are considered. For example, in the graph of Fig-
ure 3, if a,b and ¢ are observed, then a and ¢ would be unconditionally independent (due to the
violation of faithfulness), but dependent given b. Given only passive observational data one may
then incorrectly conclude that a — b < ¢ is the true model. But an intervention on b would easily
resolve the confusion despite the unfaithfulness. Woodward uses an example like this to motivate
his interventionist account [Woodward, 2003, p. 53].

Second, it is well known that deterministic causal relations trivially violate faithfulness. If
Definition 1 depended on faithfulness, it would not apply to deterministic causal relations. Again,
suitable surgical interventions can in many cases be used to identify even deterministic causal
relations [Richardson et al., 2007, Glymour, 2007], so requiring faithfulness would seem like an
unnecessarily strong restriction. For completeness I provide in Appendix B parameterizations of
models T" and C that are deterministic, but exhibit the same failure of detectability of the x — 2
edge for all surgical interventions on the observed variables. Obviously, these examples also show
that the maximal change in the direct causal effect that is not detectable can be as high as 0 vs.
1. In general, the maximum causal effect that can be occluded depends on the other parameters of
the model.

There are more reasons why the addition of faithfulness to Definition 1 would appear unde-
sirable. For example, in causal relations with feedback, violations of faithfulness may be more
plausible than the measure theoretic argument of Meek [1995] suggests. So, overall, assuming

faithfulness does not seem like a promising route, though not an impossible one.
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5 Population vs. Individual

In the previous section I pointed out that the undetectability of the £ — z edge in model T' given
only V' = {z,y,z} is due to averaging that results from the marginalization of the unobserved
variables u and v. Averaging, of course, requires more than one instance, and so it is tempting to
hope that the problem is restricted to a population (or type) level account of causation and can be
avoided at the token or unit level.

A little bit of background is necessary: In the philosophical literature on causation there is a
common distinction that separates “actual causation” from “type level causation”. The former is
supposed to characterize the causal relations among events for one unit, while the latter considers
causal relations at the population level. Details and criticism aside, very roughly the contrast is
supposed to be something like “my smoking in the 80s in Europe caused my lung cancer in 2000
in the US” versus “smoking causes lung cancer”. Among other things, the latter may still be true
even if the former is not.

Woodward’s account of causation discussed here follows Reichenbach and Suppes in considering
causal relations at the population level. The suggestion for model 1" now goes as follows: When
V = {x,y, z} there may be an ambiguity about whether x is a direct cause of z at the population
level. But for each individual unit in the population (think of a unit as a person in your sample
population), is it not the case that either x directly caused z or not?

In order to answer this question, we need to establish what it takes to be a direct cause for
a unit. In this context the natural way is to interpret Definition 1 at the unit level: For unit
U, x is a direct cause of z with respect to some variable set V if and only if there is a possible
intervention on wunit U’s variable x that will change unit U’s variable z (or unit U’s probability
distribution of z), when all other of unit U’s variables in V' besides x and z are held fixed at some
value by interventions. Various aspects would need to be spelled out in more detail (e.g. what are
interventions on units? are the probabilities to be understood as propensities? etc.), but the gist
is clear: Keep Definition 1, but restrict it to one unit.

This move will not resolve the problem: A single instance of manipulating a particular unit in

the way suggested does not establish whether x is a unit-direct-cause of z (relative to V') because the
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observed change in z (if any) of that unit may have resulted from an unobserved change of v and v in
that unit. Consequently, to establish the direct cause within one unit, several manipulations of the
same unit are required to establish the direct cause. But if one were to intervene repeatedly on the
same unit, then each time the unobserved v and v can change for that unit as well, independently
of the intervention. We are thus back where we started: We have reconstructed for a single unit the
averaging effect that hides the x — z edge. The edge is undetectable in the multiple manipulations
of the same unit given V' = {z,y,z}. But the edge is easily detectable once V* = {z,y, z,u, v} is
observed for that unit, just as at the population level.

One could insist, along the lines of more standard counterfactual analyses, that at the unit
level, unobserved causes may not change when the unit is manipulated. Such a move weakens the
importance of the intervention in the definition of direct cause and removes the close connection to
causal discovery, as in practice there is no guarantee that unobserved causes remain fixed for a unit
subject to intervention. Moreover, while addressing this violation of faithfulness, it fails to handle
the case of canceling pathways (Figure 3). But the reader is free to insist on constraints that are
not testable in principle.”

Of course, if the definition of a unit-direct-cause permits interventions that are dependent on
the unobserved variables u and v, then the problem of model T goes away.® But then one need not
have resorted to the unit level, the problem would also disappear if one permitted such interventions
in Definition 1 (at the population level). The main point is that a natural re-writing of Definition 1
for the unit level will not resolve the problem exhibited by model T. A more elaborate story
would have to be told at the unit level and it is doubtful whether that story would then still be
in the spirit of Woodward’s original definition. Definition 1 includes an epistemological component
of how we come to learn the causal relations, and without a move to some form of population
level, there is currently no epistemology of actual (unit) causal relations that considers unobserved
variables. Some philosophers may want to resort to an exclusively metaphysical truth about the
underlying causal relations at the unit level, but the importance of the connection to epistemology

in Woodward’s project cannot be denied.

16



6 Interventions

I have considered three general approaches of how an interventionist may respond to the ambiguity
in Definition 1 illustrated by model T". All of these either do not work or look unappealing. There
are other routes one could take, some of which are mentioned in Section 7 below, but they have a
much more ad hoc nature. Instead, the interventionist could just bite the bullet and maintain that
x is not a direct cause of z in model T relative to V' = {x,y, z}, but is a direct cause relative to
V* ={z,y,z,u,v}. Leaving aside the (at least metaphysical) concern resulting from direct causes
popping in and out of existence, it seems as though for each specific set of observed variables the
practical consequences are well-defined. Such a pragmatic argument hinges on an assumption that
when only V' = {z,y, 2z} is observed, the x — z edge is in fact completely undetectable, not just
undetectable by surgical interventions.

This assumption is false. There exist soft, rather than surgical, interventions such that models
C and T are distinguishable even if only the variables in V' = {z,y, z} are observed. For example,
a soft intervention on y that changes the parameter t5 = p(y = 1jlv = 1,z = 1) from 0.8 to 0.85
would make models 7" and C distinguishable (see Appendix C). No other variable would need to be
intervened on. In fact, this generalizes: For all models that violate faithfulness (including Strevens’
case of canceling pathways), there exist soft interventions that make the causal relations detectable
without having to enlarge the variable set (see Appendix C).

What are soft interventions? In contrast to surgical interventions they are a weaker form of
intervention. For example, a surgical intervention on the variable “income” would set the income of
the participants in the experiment independently of its normal causes. But alternatively, one could
also consider the effect of an intervention that only adds, say, $5,000 to each participant’s income.
In that case, the variable “income” is still influenced by its normal causes (education, etc.), but
the intervention adds an additional “nudge”. Such an intervention is often referred to as a “soft”
intervention. To give a maximally general account of an intervention, one could only require that
an intervention change the conditional probability distribution of the intervened variable given its
normal causes. A surgical intervention makes the intervened variable independent of its normal

causes, while a soft intervention is an intervention that is not surgical.
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In model T" a soft intervention on y that only changes the parameter t5 = p(y = ljlv = 1,2 = 1)
from 0.8 to 0.85 leaves the dependencies of y on its causes (z and v) intact in the manipulated
distribution. A surgical intervention would break the causal influences and make y independent
of its causes, replacing all the parameters of y’s conditional probability distribution with a single
parameter for p*(y = 1) of the manipulation.

Woodward does not consider soft interventions. He permits a wide scope of “possible” in-
terventions, including, as I noted in the introduction, interventions that are arguably physically
impossible, but all his interventions are supposed to be surgical (see Woodward [2003, IV.12, p. 98]).
Nevertheless, one could extend Definition 1 to include soft interventions, though one would have to
decide whether any (combination of) soft interventions on any variable is permitted. Only a soft
intervention on y or z, and only particular soft interventions at that, would distinguish model T’
and model C' when V' = {z,y, z}. A soft intervention on x or a soft intervention on ¢ would not
be sufficient (see Appendix A).

This points to the crux with soft interventions: While it is easy to define a soft intervention on
a particular model mathematically, the success of a correct implementation of a soft intervention is
not always testable given the observed data. Although it is not unique in its ability to distinguish
between model 7" and model C' when V' = {x,y, z}, the soft intervention on y that only changes
the parameter t5 = p(y = 1jv = 1, = 1) from 0.8 to 0.85 is sufficient to distinguish the two
models, and illustrates the difficulty of implementing soft interventions: Suppose as a scientist we
only observe V' = {z,y,z}, but are aware that there may be unmeasured latent variables. How
would we implement the soft intervention that changes t5 in the way described? We can see when
x equals 1, but we do not know when v = 1. Nevertheless, the intervention is not supposed to
affect t7 = p(y = 1jv = 0,z = 1), at least not in exactly the same way as it affects ¢t5. Without
observing v then, the success of the soft intervention is not directly verifiable. But there is no logical
reason that prevents a justification of the assumption that such a soft intervention is successful in
specific cases. For example, we may have domain knowledge about how particular chemicals work
and that they can manipulate specific interactions (such as that between = and v on y) even if we

do not know whether v is present or what value it takes. In such cases we may have reason to
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believe that a soft intervention of the kind described can be implemented successfully. One can
imagine other circumstances where suitable domain knowledge and appropriate tools are available.
The implementation of soft interventions cannot be specified in terms of the intervened variables,
because the target of a soft intervention is a particular parameters of a variable rather than the
whole variable. The parameters may not be known, not even how many there are.

This limitation constitutes good reason to be cautious about basing an entire account of causa-
tion on soft interventions. But the difficulty of implementation in general does not undermine the
point that it is sometimes possible to use soft interventions to discover causal relations when sur-
gical interventions are insufficient. Moreover, the difficulty found with soft interventions suggests
a closer look at the conditions for a surgical intervention. Woodward reminds the reader explicitly
that an intervention makes the intervened variable independent not only of its observed causes, but
also of its unobserved causes [Woodward, 2008]. Above I loosely spoke of a surgical intervention
as manipulating a variable, while a soft intervention manipulates a parameter of the variable. But
a surgical intervention as Woodward describes it, amounts to manipulating all the parameters of
that variable. Also, just like the case for soft interventions, without observing v there is no way
of directly verifying whether a surgical intervention on y successfully made y independent of v.
The success of such an intervention rests on an assumption about the randomizing device and a
sufficiently large sample. While not the same, the difficulties in the implementation of soft inter-
ventions are not entirely foreign to the implementation of surgical interventions. At the very least,
a more explicit account is required of what aspects of an intervention should be verifiable, before
clean lines can be drawn between the two types. Woodward says nothing about the testability of
his criteria for interventions (see the parts of Definition IV on p. 98 in Woodward [2003]) and this
testability is, as has been noted in Baumgartner [2012], not obvious.

I see the situation then as follows: Due to the difficulties in providing a general implementation
technique, it does not seem promising to include soft interventions in the definition of direct cause.
But I do think it is very plausible that there are specific circumstances where soft interventions
of the form described are well justified and successfully implementable. This implies that model

T and model C' are sometimes distinguishable on the basis of soft interventions even when just
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V = {x,y, z} are observed. Thus, a direct cause that is not covered by Definition 1 is sometimes
detectable, and so one cannot simply retreat to the pragmatic position that x is a direct cause of
z relative to V* = {z,y, z,u,v} in model T, but is not a direct cause of z relative to V = {z,y, z}
in model T. The ardent interventionist can now disallow soft interventions® (citing, for example,
some of the reasons mentioned above) or can hope that there is no nifty scientist who provides a
concrete example of a discovery of a direct cause as I describe, thus leaving Definition 1 practically

unchallenged. Neither option seems desirable.

7 Implications for Causal Discovery

In light of the discussion in this paper it is evident that Definition 1 is not sufficiently precise to
form part of a basis for a causal discovery algorithm. Unless cases such as model T" are excluded
by additional assumptions, there will be cases where the detection of direct causal effects will not
depend only on the surgical interventions that are possible.

Apart from faithfulness, the problem of model T" could be resolved by supplementing Definition 1
with a requirement that causal relations have a particular parametric form. For example, one cannot
parameterize model T with linear causal relations without making the x — z edge detectable for
some surgical intervention on a subset of the variables in V. This holds quite generally: For linear
relations Hyttinen et al. [2012] show that even when faithfulness is not assumed, all causal relations
among a set of observed but causally insufficient variables can be detected by a set of experiments
each intervening surgically on a (different) single variable. However, linearity constitutes, like
faithfulness, a strong assumption about the causal relations among the set of variables. It is known
to be violated in many real causal relations, and there are causal discovery procedures, especially
ones involving interventions, that do not depend on it.

Alternatively, one could modify the assumption of causal sufficiency such that it must hold not
only for the crucial distribution of Definition 1, but also for the passive observational distribution
(which is clearly not the case for model T"). But one should then consider just how much of science
the resulting definition would not apply to: I have so far described the unobserved variables

and v in model T as if they were well-defined causal variables that — if they were observed —
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could be subject to intervention. However, often latent variables are used as a catch-all for various
background effects that result in confounding. For many inference procedures that permit latent
confounding, there may not be a commitment that the latent variable is a particularly nicely
defined variable that can be subject to intervention. In econometrics, latent confounding often just
represents any type of correlation in the error variables. Consequently, the skepticism that has
been raised concerning the possibility of performing all the interventions required in the standard
interventionist account, applies in much stronger form to potential interventions on variables we
currently do not observe. Consequently, a demand that in principle one can, so to speak, always
zoom out far enough to capture all unobserved variables, is too strong.

I expect cases like model T to raise interesting issues for causal discovery from data sets that
do not share the same set of variables, so-called overlapping data sets. For example, suppose that
the true underlying causal structure has the form of model T', but one research group collects data
(possibly using surgical interventions) over the variables V' = {x,y, z}, and another research group
collects data (also using surgical interventions) over the variables W = {u, z, z}. The first research
group will not detect the x — z edge, while the second will. How should they now combine their
findings? It seems that their findings conflict, but in fact we know that each group found exactly
what they should, given the underlying true model. The appropriate inference principles to combine
the results must still be worked out.

A further aspect that is neglected by Definition 1 is that causal relations may involve feedback:
What should count as a direct effect of z on z if z also has an effect on itself? Ordinarily, such
feedback relations are represented in terms of time series or differential equations. The detection
of feedback from data, especially if it involves “self-loops”, is known to be difficult. Depending on
how exactly one characterizes the feedback, the notion of direct cause may change. Hyttinen et al.
[2012] discuss this issue in some detail for the linear case in their Section 2.3, and proceed to use a
standardized notion of direct cause that includes the self-loops on the non-intervened variable, but

no feedback via other observed variables.
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8 Conclusion

I have argued that Woodward’s interventionist account of a direct cause runs into difficulties with
particular cases of violations of faithfulness that I believe have not been discussed and analyzed in
this way before. Although I have focused on Woodward’s definition, as stated here in Definition 1,
I believe that if anything, it is among the least problematic among (interventionist) definitions of
‘cause’. The argument presented here can be adapted easily to apply to other purely interventionist
definitions, as well as to anthropocentric definitions of cause that in addition to interventions, build
on the presence of an agent [Menzies and Price, 1993]. Regularity accounts of cause are known
to have problems with violations of faithfulness and do not consider causally insufficient sets of
variables, while mechanistic accounts have no systematic commitment in the first place about how
the causal relations manifest themselves in measured data. So all these other definitions are in my
view substantially vaguer with regard to their commitments and subject to additional criticism.
Definition 1 is in that sense pleasantly clear and widely applicable.

I repeat that the argument I have given does not imply an inconsistency in Woodward’s defini-
tion. My challenge on the basis of model 7" and model C' can be avoided by a requirement that the
causal models be faithful, or by any of the other modifications I have pointed to. For any responses
of this type, it only behooves a proponent of the interventionist account to be more explicit, and
complete the commitments they subscribe to in defining a direct cause (or a cause or a contributing
cause). I have suggested that none of these additional commitments are particularly desirable be-
cause they come at the expense of the virtues that make the interventionist account so appealing.
They require stronger assumptions that are known to be violated or they require knowledge about
unobserved variables that undermines the relevance of the account to scientific practice. But if one
leaves the details of the connection to causal discovery aside, one may just accept that along the

edges most concepts have counterexamples.
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A Constraints for Models T and C

I consider the general constraints on the parameterization that two models of the structure of T" and
C must satisfy in order to be indistinguishable for a passive observation and all surgical interventions
on the observed variables. In the following T" and C' refer to models with the respective structures
in Figure 1, rather than the specific parameterizations listed in Table 2, and I use the notation
p(A|BJ|C) to refer to the probability of the variables in A conditional on the variables in B in the
distribution in which the variables in C have been subject to a surgical intervention.

To remain indistinguishable when V' = {z,y, 2}, model T" and model C' must be identical for

the following seven distributions over the observed variables:

1. the passive observational distribution:

P(X,Y,Z) ZP P(X|U)P(Y|V,X)P(Z|U,V,X,Y)

2. the manipulated distribution'” with an intervention on X

Py, ZIX||X) = ZP PY|V, X||X)P(Z]U,V, X, Y||X)

= ZP P(Y|V,X)P(Z|U,V,X,Y)

To illustrate the implied constraints, I substitute the distribution parameters from Table 2
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for this particular case. It can be done analogously for all seven distributions.

Ply=1l,z=1z=1|jlz =1)

Ply=1,z=0z=1|lz=1)

Ply=0,z=1lz =1z =1)

Ply=0,z=0z=1llz=1)

Ply=1,z=1lz =0||lx =0)

P(y=1,z=0|z =0|jlz =0)

Ply=0,z=1|xz = 0[]z =0)

P(y=0,z=0|x =0||lx =0)

titatsty + (1 — t1)tatstiz + t1(1 — to)trtis + (1 — t1)(1 — ta)trto
trtats(1 — to) + (1 — t1)tats (1 — t17)
+t1(1 = to)t7(1 —t13) + (1 — t1)(1 — t2)t7(1 — to1)
tito(1 —t5)tio + (1 — t1)ta(1 — t5)tis
1 (1 — to) (1 — tr)trg + (1 — t1) (1 — to)(1 — t7)tan
tita(1 —t5)(1 — t10) + (1 — t1)t2(1 — t5)(1 — 1)
+t1(1 —t2) (1 —t7) (1 —t14) + (1 — #1) (1 — t2)(1 — t7)(1 — ta2)
titatstin + (1 — t1)tatstg
+t1(1 — ta)tstys + (1 — t1)(1 — t2)tstas
titote(1 —t11) 4+ (1 — t1)tate(1 — t1g)
+t1(1 — to)ts(1 — t15) + (1 — t1)(1 — t2)ts (1 — ta3)
tita(1 — tg)tio + (1 — t1)t2(1 — tg)tao
+t1(1 —t2)(1 —tg)t1e + (1 — t1)(1 — t2)(1 — tg)toy
t1ta(1 — t6) (1 — t12) + (1 — t1)ta(1 — t6)(1 — t20)

(1 —t2)(1 —ts) (1 — t1g) + (1 — t1)(1 — t2)(1 — ts)(1 — t24)

3. the manipulated distribution with an intervention on Y

P(X, Z|Y]|Y)

S POPWPXIYIV)PEI Y X YY)

ZP P(X|U)P(Z|U,V,X,Y)

4. the manipulated distribution with an intervention on Z (since this distribution does not

involve the parameters specifying p(z|u, v, x,y) that distinguish the models, these equations

are trivially satisfied by T and C)

P(X,Y|Z||2) ZP P(X|U)P(Y|V, X)
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5. the manipulated distribution with an intervention on X and Y simultaneously

P(ZIX,Y||X,Y) = ZP P(Z|U,V,X,Y||X,Y)
= ZP P(Z|U,V,X,Y)
6. the manipulated distribution with an intervention on X and Z simultaneously (since this

distribution does not involve the parameters specifying p(z|u,v,z,y) that distinguish the

models, these equations are trivially satisfied by 7" and C')

P(Y|X,Z|X,Z) = ZP P(Y|U,V, X, Z||X, Z)
= ZP P(Y|V,X)
7. the manipulated distribution with an intervention on Y and Z simultaneously (since this

distribution does not involve the parameters specifying p(z|u,v,z,y) that distinguish the

models, these equations are trivially satisfied by 7" and C')

P(X|Y,Z||Y,Z) = ZP P(X|U,V,Y, Z||Y, Z)

= ZP P(X|U)

In addition, in order to establish the relevant causal effects, both models must satisfy the following
inequalities. The bold font indicates (at least one way) in which the parameterizations of T and C

in Table 2 satisfy the inequalities.

1. to make u a cause of z:

t3 # ty
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2. to make x and v causes of y:

((ts #t7) V (te #ts)) A ((ts #t6) V (b7 # ts))

3. to make u,v and y a cause of z:

((te # t17) V (t10 # t18) V (t11 # t19) V (t12 # t20) V (t13 # t21) V (t1a # t22) V (t15 # t23) V (t16 # t24))
A((te # t13) V (t1o # t14) V (t11 # t15) V (t12 # t16) V (t17 # to1) V (t18 # ta2) V (t1g # t23) V (t20 # t24))

A((te # t10) V (t11 # t12) V (t13 # t14) V (15 # t16) V (t17 # t1g) V (t19 # t20) V (t21 # t22) V (t23 # t24))

Model T' must in addition make x a cause of z by satisfying the following inequality:

(to # t11) V (t13 # t1s) V (t17 # t1g) V (t21 # t23) (1)

Vo (tio # ti2) V (ta # tie) V (t18 # t20) V (tog # tos)

while model C' must satisfy its negations, i.e. all the parameter pairs must be equal.

Since model T' must satisfy at least one disjunct of Constraint (1), while C' must satisfy its
negation, one can easily detect the distributional constraints from the list 1-7 above that will not
be trivially satisfied. All such quantities contain either only parameters from the first line, or only
parameters from the second line of Constraint (1). I will focus only on the satisfaction of disjuncts
from the first line, the case for the second line is exactly analogous.

In the most general case model T differs from model C' by satisfying every disjunct in Con-
straint (1), and we can write the parameters as tg = t11 + di, t17 = t19 + da, t13 = t15 + d3, and
to1 = to3 + d4 for non-zero di,...,ds. There are seven distributional quantities containing the
parameters tg, t13,t17 and to1, giving rise to the following four independent constraints if models

T and C are to be indistinguishable for a passive observation and all surgical interventions on the
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observed variables:

titotstsdy + (1 — tl)t2t4t5d2 + tl(l — t2)t3t7d3 + (1 — tl)(l — t2)t4t7d4 = 0
titotsdy + (1 — tl)tgtg)dg + tl(l - tz)t7d3 + (1 - tl)(l - tg)t7d4 = 0
titotsdy + (1 — tl)t2t4d2 + tl(l - tg)t3d3 + (1 - tl)(l - t2)t4d4 = 0

titodr + (1 — tl)thQ + tl(l — t2)d3 + (1 — tl)(l — tg)d4 =0

Solving these constraints implies that a model T" must satisfy the following constraints on its

parameters

ts
ti
15
19

tog

t7

to — (ds(—1 + t2)/t2)

tiz — d3 (2)
ti7 — (da(—=1+t2)/t2)

to1 —ds

where ds and d4 can be chosen freely as long as at least one of them is non-zero and the resulting

quantities remain probabilities. An analogous set of constraints results when the difference between

models T" and C results from disjuncts in the second line of Constraint (1). These are non-trivial

algebraic constraints on the parameter space, which, following Meek [1995], implies that their

solution space has measure zero compared to arbitrary parameterizations of a model with a structure

like T

Similarly, these constraints can be used to construct a parameterization for a model T that is

indistinguishable from a parameterized model C, as long as the parameterization of C' also respects

the t5 = t7 constraint (or tg = tg). In particular, the parameterization of 7" in Table 2 is constructed

from the parameterization of C' in that table using d3 = 0.1 and d4 = 0.
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B Deterministic Parameterizations of 7" and C

Deterministic parameterizations of the two models in Figure 1 that are indistinguishable for a pas-

sive observation and any surgical intervention on the observed variables.

parameter conditional probability terms T | C
t plu=1) 05105
to p(v=1) 05105
ts plz=1u=1) 0|0
ta p(z = 1u =0) 1 1
ts p(y:1|v—1:1:—1) 1 1
te ply=1lv=1,2=0) 1 1
tr ply=1v=0,z=1) 1 1
ts ply=1v =0,z =0) 00
tg pz=1llu=lLv=1Lz=1Ly=1)| 1 | O
t1o pz=1llu=lv=1zx=1y=0) | 1 1
t11 pz=1lu=1l,v=1Lx=0,y=1)| 0 | 0
ti2 pz=1llu=1lv=12x=0,y=0) | 1 1
t13 pz=1lu=1Lv=0x=1y=1)| 0 1
t14 pz=1llu=1Lv=0z=1y=0) | 1 1
tis pz=1llu=1Lv=0,x=0,y=1) || 1 1
tig pz=1lu=1Lv=0,2=0,y=0) || 1 1
t17 pz=1lu=0v=1Lzxz=1y=1)| 1 1
t1g pz=1llu=0v=1xz=1y=0) | 1 1
ti9 pz=1llu=0v=1z=0y=1) | 1 1
t20 p(z=1llu=0v=1,2=0,y=0) | 1 1
to1 pz=1llu=0v=0r=1y=1) | 1 1
tao pz=1lu=0v=0,z=1,y=0) | 1 1
to3 p(z=1lu=0,v=0r=0,y=1) | 1 1
tog p(z=1lu=0,v=0,2=0,y=0) || 1 1

Note that if the latent variables u and v are supposed to be non-extreme, then only u = v = 0.5
are possible values.

I do not find the deterministic case particularly enlightening. Moreover, it is well known that
deterministic causal relations are often more difficult to discover than probabilistic ones. In that
sense I think that the examples of parameterizations for model 7" and C in Table 2 with purely

positive distributions provide a much stronger case.
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C Soft Interventions

Note that the constraints in (2) do not contain the parameters t3 or t4 which could be influenced by
a soft intervention on x, hence a soft intervention on x is not going to distinguish between models
T and C.

A soft intervention on y that changes t5 will break the first equality in (2), thus the models
become distinguishable. In particular, if ¢5 is changed from 0.8 to 0.85 by a soft intervention on y

in both models T" and C, then in the resulting manipulated distribution, we will have

prlt=y=2=1) = 0.24856

vs. pole=y=2z=1) = 0.24928

which is not a rounding error.

Note that ¢t does not feature in the constraints in (2), so a soft intervention that changes it in
both T and C, will not distinguish between the two models.

Lastly, as Meek [1995] showed, violations of faithfulness occur for particular constellations of
the parameters that make up the distribution. A violation of faithfulness always constitutes a
non-trivial algebraic constraint on these parameters. Since soft interventions influence individual
parameters, they can be (in principle, leaving the mentioned concerns of implementation aside)
used to break these algebraic constraints. Thus, soft interventions are in general sufficient to make
unfaithful models faithful. Once faithfulness is achieved, the causal relations can be detected as
usual. In the case of canceling pathways with unobserved intermediary variables (Figure 3), the

soft intervention must occur on the final variable.

Notes

!Note that I have exchanged y for z from the original formulation to reduce confusion in the application of the
definition in the subsequent discussion.
2For the close reader, I literally mean “all” here, i.e. even noise terms. As will be seen in Figure 4 below, cases

similar to model T' are possible when particular unobserved noise terms are permitted.
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3This parameterization was constructed by marginalizing over a noisy-or model where b is a negative (inhibiting)
cause of c.

“In its standard form, faithfulness only refers to the passive observational distribution, and since the models in
Figure 1 do not exhibit any (conditional) independencies in the passive observational distribution, they do not violate
the standard formulation of faithfulness. However, it is natural to extend faithfulness to apply to all manipulated
graphs and their interventional distributions as well. Model T clearly violates this stronger version of faithfulness, since
it leaves x and z independent in the distribution where z and y are simultaneously subject to an intervention, even
though z is a direct cause of z (as determined by the intervention on the full causal graph including u and v). As with
violations of standard faithfulness, model T exhibits a particular constellation of parameters that can be characterized
by an algebraic constraint on the parameters. Meek’s measure theoretic argument that such constellations only occur
with measure zero (see Theorem 7 in Meek [1995]) can be similarly applied here (see Appendix A).

5T am grateful to an anonymous reviewer for making this proposal. I hope this clarifies why such a move will not
work, at least not with the definition of ‘contributing cause’ that Woodward gives in Woodward [2008, p. 209].

T am grateful to Dominik Janzing for pointing this out. The example is similar to the “matching pennies” game,
only with one coin flip unobserved.

"I am grateful to a reviewer for alerting me to this route and at the same time supplying the reasons why it does
not sound promising.

8Standard discussions of actual causation do not consider unobserved variables, so the problem exhibited by model
T does not arise.

9The interventionist may want to be cautious not to throw out the baby with the bathwater, since instrumental
variables have formally the same structure as soft interventions and are widely used as a causal discovery tool.

197 condition on the intervened variable(s) in order to avoid having to specify a particular intervention distribution.
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