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Experimental Indistinguishability
of Causal Structures

Frederick Eberhardt*

Using a variety of different results from the literature, I show how causal discovery with
experiments is limited unless substantive assumptions about the underlying causal struc-
ture are made. These results undermine the view that experiments, such as randomized
controlled trials, can independently provide a gold standard for causal discovery. More-
over, I present a concrete example in which causal underdetermination persists despite ex-
haustive experimentation and argue that such cases undermine the appeal of an interven-
tionist account of causation as its dependence on other assumptions is not spelled out.

1. Introduction. Causal search algorithms based on the causal Bayes net
representation ðPearl 2000; Spirtes, Glymour, and Scheines 2000Þ have pri-
marily focused on the identification of causal structure using passive obser-
vational data. The algorithms build on assumptions that connect the causal
structure represented by a directed ðacyclicÞ graph among a set of vertices
with the probability distribution of the data generated by the causal structure.
Two of the most common such bridge principles are the causal Markov as-
sumption and the causal faithfulness assumption. The causal Markov as-
sumption states that each causal variable is probabilistically independent of
its ðgraphicalÞ nondescendents given its ðgraphicalÞ parents. Causal Markov
enables the inference from a probabilistic dependence between two variables
to a causal connection and from a causal separation to a statistical indepen-
dence. The precise nature of such causal separation and connection relations
is fully characterized by the notion of d-separation ðGeiger, Verma, and Pearl
1990; Spirtes et al. 2000, 3.7.1Þ. The causal faithfulness assumption can be
seen as the converse to the Markov assumption. It states that all and only
the independence relations true in the probability distribution over the set
of variables are a consequence of the Markov condition. Thus, faithfulness
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permits the inference from probabilistic independence to causal separation
and from causal connection to probabilistic dependence. Together causal
Markov and faithfulness provide the basis for causal search algorithms based
on passive observational data. For the simplest case they are combined with
the assumptions that the causal structure is acyclic and that the measured
variables are causally sufficient, that is, that there are no unmeasured com-
mon causes of the measured variables. For example, given three variables x,
y, and z, if we find that the only ðconditional or unconditionalÞ independence
relation that holds among the three variables is that x is independent of z
given y, then causal Markov and faithfulness allow us to infer that the true
causal structure is one of those presented in figure 1.

Causal Markov and faithfulness do not determine which of the three
causal structures is true, but this underdetermination is well understood for
causal structures in general. It is characterized by the so-called Markov
equivalence classes of causal structures. These equivalence classes consist
of sets of causal structures ðgraphsÞ that have the same independence and
dependence relations among the variables. The three structures in figure 1
are one such equivalence class. To identify the true causal structure uniquely
there are two options: one can make stronger assumptions about the under-
lying causal model or one can run experiments. Here I will first focus on the
latter to then show that one cannot really do without the former.

I will take an experiment to consist of an intervention on a subset of the
variables under consideration. While there are a variety of different types of
interventions, I will focus here on experiments involving so-called surgical
interventions ðPearl 2000Þ. In a surgical intervention the intervention com-
pletely determines the probability distribution of the intervened variable
and thereby makes it independent of its normal causes. Such an intervention
is achieved ðat least in principleÞ by a randomized controlled trial: whether
or not a particular treatment is administered is determined entirely by the
randomizing device and not by any other factors. In a causal Bayes net a
surgical intervention breaks the arrows into the intervened variable, while
leaving the remaining causal structure intact. It is possible to perform an
experiment that surgically intervenes on several variables simultaneously
and independently. In that case, of course, all information about the causal
relation among intervened variables is lost.

For the threeMarkov equivalent structures in figure 1, a single-intervention
experiment intervening only on y would distinguish the three causal struc-
tures: it would make x independent of y if the first structure is true, but not

Figure 1.
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for the second and third. And it would make y independent of z if the second
structure is true, but not for the first and the third. Together these two con-
siderations show that such an experiment on y would resolve the under-
determination of this Markov equivalence class completely.

Ever since Ronald A. Fisher’s work in the 1930s, experiments have come
to be seen as the gold standard for causal discovery ðFisher 1935Þ. This view
suggests that if one can perform experiments, then causal discovery is ðthe-
oreticallyÞ trivial. The recent rise of the interventionist account of causation
in philosophy appears to endorse this view, since it holds that just what it is
to stand in a causal relation, is the possibility of performing the appropriate
kind of experiment ðWoodward 2003Þ.

2. Underdetermination despite Experiments. First the hopeful news: Eber-
hardt, Glymour, and Scheines ð2005Þ showed that one can generalize the
strategy used to identify the true causal structure in figure 1 to arbitrary
causal structures over N variables: assuming that causal Markov, faithful-
ness, and causal sufficiency hold, and that the causal structure is acyclic, one
can uniquely identify the true causal structure among a set of variables given
a set of single-intervention experiments. Generally such a procedure will re-
quire several experiments intervening on different variables, but a sequence
of experiments that guarantees success can be specified.

Similar results can be obtained without experiments but by instead strength-
ening the assumptions one makes about the underlying causal structure.
Shimizu et al. ð2006Þ show that if causal sufficiency holds, the causal re-
lations are linear, and the error distributions on the variables are non-
Gaussian, then the causal structures can also be uniquely identified. A set
of causal variables is related linearly when the value of each variable is de-
termined by a linear function of the values of its parents plus an error term.
Each error variable has a disturbance distribution, and as long as these dis-
tributions are not Gaussian ðand not degenerateÞ, then the same identifi-
ability of causal structure is guaranteed as would be obtained by not making
the assumptions about the causal relations, but instead running a set of single-
intervention experiments.

In either case, whether by strengthening assumptions or using experi-
ments, the results rely on the assumption of causal sufficiency—that there
are no unmeasured common causes. In many discovery contexts it is im-
plausible that such an assumption is appropriate. Moreover, part of the
rationale for randomized controlled trials in the first place was that a ran-
domization makes the intervened variable independent of its normal causes,
whether those causes were measured or not. Thus, if there is an unmeasured
common cause u—a confounder—of x and z, then randomizing x would
break the ðspuriousÞ correlation observed between x and z that is due to
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the confounder u. However, without the assumption of causal sufficiency,
underdetermination returns despite the possibility of experiments.

In figure 2, x, y, and z are observed ðand can be subject to interventionÞ,
while u and v are unobserved. If only causal Markov, faithfulness, and
acyclicity are assumed, the two causal structures in figure 2 cannot be dis-
tinguished by any set of experiments that intervene on only one variable in
each experiment ðor by a passive observationÞ. Since u and v are not ob-
served, no variable is ðconditionallyÞ independent of any other variable under
passive observation. The same is true when x is subject to an intervention,
even though the surgical intervention would break the influence of u on x: x
is not independent of z conditional on y, since conditioning on y induces a
dependence via v ðconditioning on a common effect makes the parents de-
pendentÞ. In an experiment intervening on y only, x and y are independent,
but x and z remain dependent for both causal structures ðbecause of u in
structure 2 and because of u and the direct effect x → z in structure 1Þ. In
an experiment intervening on z, the edge x → z that distinguishes the two
causal structures is broken, so both structures inevitably have the same in-
dependence and dependence relations. The problem is that no set of single-
intervention experiments is sufficient to isolate the x→ z edge in structure 1,
and so the underdetermination remains.

This underdetermination can, of course, be resolved: if one could inter-
vene on x and y simultaneously, then x will be independent of z if the sec-
ond structure is true, but dependent if the first is true. So, assuming only
causal Markov, faithfulness, and acyclicity, the two causal structures are ex-
perimentally indistinguishable for single-intervention experiments but dis-
tinguishable for double-intervention experiments.

How does this generalize to arbitrary causal structures? The resolution of
the underdetermination of the causal structures in figure 2 depended on an
experiment that intervened on all but one variable simultaneously. This is
true in general: assuming causal Markov, faithfulness, and acyclicity, but not

Figure 2.
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causal sufficiency, there exist at least two causal structures over N vari-
ables that are indistinguishable on the basis of the independence and depen-
dence structure for all experiments that intervene on at most N22 variables,
where N is the number of observed variables. That is, at least one experi-
ment intervening on all but one variable is necessary to uniquely identify the
true causal structure. In fact, the situation is worse, because a whole set of
experiments, each intervening on at least N2 i variables, for each integer i
in 0 < i < n, is in the worst case necessary to ensure that the underdeter-
mination is resolved ðsee app. A for a proofÞ. So, even when multiple si-
multaneous interventions are possible, a large number of experiments each
intervening on a large number of variables simultaneously are necessary to
resolve the underdetermination.

Again, one need not pursue this route. One could instead strengthen the
search space assumptions. Part of why single-intervention experiments were
not sufficient to resolve the underdetermination of the causal structures in
figure 2 is that independence tests are a general but crude tool of analysis.
If one could separate the causal effect of the x → y → z pathway from the
direct causal effect of x → z in the structures in figure 2, then the two
causal structures could be distinguished. For linear causal relations this is
possible, since so-called trek rules specify that the correlation between two
variables in a linear model is given by the sum-product of the correlations
along the ðactiveÞ treks that connect the variables. Suppose that the linear
coefficient of the x→ y edge is a, of the y→ z edge is b and of the x→ z edge
is c in figure 2. If the second structure is true, then in an experiment that
intervenes on x, we have corðx, zÞ 5 ab, while if the first structure is true,
then corðx, zÞ 5 ab 1 c in the same experiment. We can measure the cor-
relations and compare the result to the predictions: in an experiment that
intervenes on y, we can determine b by measuring corðy, zÞ. In an experi-
ment intervening on x, we can determine a by measuring corðx, yÞ, and we
can measure corðx, zÞ. If corðx, zÞ 5 corðx, yÞcorðy, zÞ 5 ab, then the
second structure is true, while if the first structure is true, then corðx, zÞ ≠
corðx, yÞcorðy, zÞ, and we can determine c 5 corðx, zÞ 2 corðx, yÞcorðy, zÞ.
Thus, on the basis of single-intervention experiments alone we are able to
resolve the underdertermination. But we had to assume linearity.

Eberhardt, Hoyer, and Scheines ð2010Þ show that this approach gener-
alizes: if the causal model is linear ðwith any nondegenerate distribution on
the error termsÞ, but causal sufficiency does not hold, then there is a set of
single-intervention experiments that can be used to uniquely identify the
true causal structure among a set of variables. This result holds even when
the assumptions of acyclicity and faithfulness are dropped. It shows just
how powerful the assumption of linearity is. Linearity is sufficient to achieve
identifiability even for single-intervention experiments, but it is known not
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to be necessary. Hyttinen, Eberhardt, and Hoyer ð2011Þ have shown that
similar results can be achieved for particular types of discrete models—so-
called noisy-or models. It is currently not known what type of parametric
assumption is necessary to avoid single-intervention experimental indistin-
guishability.

However, there is a weaker result: appendix B contains two discrete ðbut
faithfulÞ parameterizations, one for each of the causal structures in figure 2
ðadapted from Hyttinen et al. 2011Þ. I refer to the parameterized model
corresponding to the first structure as PM1 and that for the second structure
as PM2. As can be verified from appendix B, PM1 and PM2 have identical
passive observational distributions, identical manipulated distributions for
an experiment intervening only on x, an experiment intervening only on y,
and ðunsurprisinglyÞ for an experiment intervening only on z. That is, the
two parameterized models are not only indistinguishable on the basis of
independence and dependence tests for any single-intervention experiment
or passive observation. They are indistinguishable in principle, that is, for
any statistical tool, given only single-intervention experiments ðand passive
observationÞ, because those ðexperimentalÞ distributions are identical for
the two models. This underdetermination exists despite the fact that all
ðexperimentalÞ distributions are faithful to the underlying causal structure.
The models are, however, distinguishable in a double-intervention experi-
ment intervening on x and y simultaneously. Only for such an experiment do
the experimental distributions differ so that the presence of the x → z edge
in PM1 is in principle detectable. I do not know, but conjecture, that this in-
principle-underdetermination ðrather than just the underdetermination based
on the ½in-�dependence structure, as shown in app. AÞ can be generalized to
arbitrary numbers of variables and will hold for any set of experiments that
at most intervene on N 2 2 variables.

The example shows that in order to identify the causal structure by single-
intervention experiments some additional parametric assumption beyond
Markov, faithfulness, and acyclicity is necessary. Alternatively, without ad-
ditional assumptions, causal discovery requires a large set of very demand-
ing experiments, each intervening on a large number of variables simulta-
neously. For many fields of study it is not clear that such experiments are
feasible, let alone affordable or ethically acceptable. It is unclear how com-
mon cases like PM1 and PM2 are. It is possible that in practice such cases are
quite rare. When the assumption of faithfulness was subject to philosophi-
cal scrutiny, one argument in its defense was that a failure of faithfulness was
for certain types of parameterizations a measure-zero event ðSpirtes et al.
2000, theorem 3.2Þ. While this defense of faithfulness has not received much
philosophical sympathy, such assessments of the likelihood of trouble are of
interest when one is willing or forced to make the antecedent parametric as-
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sumptions anyway. The example here does not involve a violation of faith-
fulness, but a similar analysis of the likelihood of underdetermination de-
spite experimentation is possible.

PM1 and PM2 cast a rather dark shadow on the hopes that experiments
on their own can provide a gold standard for causal discovery. They suggest
that causal discovery, whether experimental or observational, depends cru-
cially on the assumptions one makes about the true causal model. As the
earlier examples show, assumptions interact with each other and with the
available experiments to yield insights about the underlying causal struc-
ture. Different sets of assumptions and different sets of experiments result
in different degrees of insight and underdetermination, but there is no clear
hierarchy either within the set of possible assumptions, or between experi-
ments and assumptions about the model space or parameterization.

3. Interventionism. On the interventionist account of causation, “X is a
direct cause of Y with respect to some variable set V if and only if there is a
possible intervention on X that will change Y ðor the probability distribution
of YÞ when all other variables in V besides X and Y are held fixed at some
value by interventions” ðWoodward 2003Þ. The intuition is easy enough: in
figure 2, x is a direct cause of z because x and z are dependent in the double-
intervention experiment intervening on x and y simultaneously.

According to this definition of a direct cause it is true by definition that N
experiments each intervening on N 2 1 variables are sufficient to identify
the causal structure among a set of N variables even when causal sufficiency
does not hold. ðAbove I only discussed necessary conditions.Þ If each of the
N experiments leaves out a different variable from its intervention set, then
each experiment can be used to determine the presence of the direct effects
from the N2 1 intervened variables to the one nonintervened one. Together
the experiments determine the entire causal structure.

An interventionist should therefore have no problem with the results
discussed so far, since the cases of experimental underdetermination that
I have considered were all restricted to experiments intervening on at most
N2 2 variables. The causal structures could always be distinguished by an
experiment intervening on all but one variable.

But there are unusual cases. In appendix C, I provide another parame-
terization ðPM3Þ for the first causal structure in figure 2 ðthe one with the
extra x → z edgeÞ. The example and its implications are discussed more
thoroughly than can be done here in Eberhardt ð2013Þ. PM3 is very similar
to PM1 and PM2. In fact, for a passive observation and a single intervention
on x, y, or z they all imply the exact same distributions. However, PM3 is
also indistinguishable from PM2 for a double-intervention experiment on x
and y ðand similarly, of course, for all other double-intervention experi-
mentsÞ. That is, PM3 and PM2 differ in their causal structure with regard to

690 FREDERICK EBERHARDT

This content downloaded from 131.215.71.79 on Thu, 27 Feb 2014 10:44:28 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


the x → z edge but are experimentally indistinguishable for all possible
experiments on the observed variables.

In what sense, then, is the direct arrow from x→ z in PM3 justified? After
all, in a double-intervention experiment on x and y, x will appear indepen-
dent of z. Given Woodward’s definition of a direct cause, x is not a direct
cause relative to the set of observed variables fx, y, zg. However, if one in-
cluded u and v as well, x would become a direct cause of z, since x changes
the probability distribution of z in an experiment that changes x and holds
y, u, and v fixed.

So, the interventionist can avoid the apparent contradiction. The defi-
nition of a direct cause is protected from the implications of PM3 since it is
relativized to the set of variables under consideration. But one may find a
certain level of discomfort that this interventionist definition permits the
possibility that a variable ðx hereÞ

ðiÞ is not a direct cause relative to V 5 fx, y, zg,
ðiiÞ is not even an indirect cause when y is subject to intervention and

V 5 fx, y, zg,
ðiiiÞ but is a direct cause relative to V* 5 fx, y, z, u, vg.

Unlike PM1, PM3 violates the assumption of faithfulness in the double-
intervention distribution when x and y are manipulated simultaneously: in
PM3 x is independent of z despite being ðdirectlyÞ causally connected.

Violations of faithfulness have been recognized to cause problems for
the interventionist account ðStrevens 2008Þ. In particular, when there are
two causal pathways between a variable p and a variable q that cancel each
other out exactly, then an intervention on p will leave p and q independent
despite the ðdoubleÞ causal connection. But this case here is different: in
the double-intervention distribution intervening on x and y that is crucial to
determining whether x is a direct cause of z, there is only one pathway be-
tween x and z. Thus, we are faced here with a violation of faithfulness that
does not follow the well-understood case of canceling pathways. But like
those cases, it shows that the interventionist account of causation either
misses certain causal relations or implicitly depends on additional assump-
tions about the underlying causal model. The interventionist need not as-
sume faithfulness. As indicated earlier the assumption of linearity guaran-
tees identifiability using only single-intervention experiments even if we do
not assume faithfulness. In other words, a linear parameterization of struc-
ture 1 cannot be made indistinguishable from a linear parameterization of
structure 2.

Part of the appeal of the interventionist account is its sensitivity to the set
of variables under consideration when defining causal relations. This helped
enormously to disentangle direct from total and contributing causes. Ex-
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amples like PM3 suggest that the relativity may be too general for defini-
tional purposes unless one makes additional assumptions: I may measure
one set of variables in an experiment and say there is no causal connection
between two variables. You may measure a strict superset of my variables
and intervene on a strict superset of my intervened variables and come to the
conclusion that the same pair of variables stand in a direct causal relation.
Moreover, the claim would hold when all the interventions were success-
fully surgical, that is, breaking causal connections.

The other part of the interventionist appeal was the apparent indepen-
dence of the interventionist account from substantive assumptions such as
faithfulness that have received little sympathy despite their wide applica-
tion. This article suggests that you cannot have both.

Appendix A

Theorem: Assuming only causal Markov, faithfulness, and acyclicity, n
experiments are in the worst case necessary to discover the causal struc-
ture among n variables.

Proof: Suppose that every pair of variables in V is subject to confound-
ing. Consequently, independence tests conditional on any nonintervened
variable will always return a dependence, since they open causal connec-
tions via the unmeasured variables.

Without loss of generality we can assume that the following about the
causal hierarchy over the variables is known:

ðx1; x2Þ > x3 > : : : > xn:

In words: the causal order between x1 and x2 is unknown, but they are both
higher in the order than any other variable. To satisfy the order, there must
ðat leastÞ be a path

x3 → x4 → : : :→ xn21 → xn:

Let an experiment E 5 ðJ, UÞ be defined as a partition of the variables in V
into a set J and U 5 V \J, where the variables in J are subject to a surgical
intervention simultaneously and independently, and the variables in U are
not.

Now note the following: the only experiment that establishes whether
x2 → x1 are experiments with x2 in J1 and x1 not in J1. That is, x2 is subject
to an intervention ðwith possibly other variablesÞ and x1 is not. Select any
one such experiment and call it E1 5 ðJ1, U1Þ.
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Suppose that experiment E1 showed that x2 and x1 were independent,
such that the ordering between x1 and x2 remains underdetermined.

The only experiment that establishes whether x1 → x2 are experiments E2

with x1 in J2 and x2 not in J2.
Experiments E1 and E2 resolve the order between x1 and x2, suppose

without loss of generality that it is x1 → x2. In the worst case this required
two experiments.

Now for the remainder: the only experiment that establishes whether
x1 → x3 are experiments E 3 with x1 and x2 in J 3 and x3 not in J 3. Note that
none of the previous experiments could have been an E3.

The only experiment that establishes whether x1 → x4 are experiments
E4 with x1, x2, x3 in J4 and x4 not in J4. None of the previous experi-
ments could have been an E4.

. . .
The only experiment that establishes whether x1 → xn is an experiment

En with x1, . . ., xn–1 in Jn and xn not in Jn. None of the previous experi-
ments could have been an En. It follows that n experiments are in the worst
case necessary to discover the causal structure. QED

The above proof shows that in the worst case a sequence of n experi-
ments is necessary that have intervention sets that intervene on at least n2 i
variables simultaneously for each integer i in 1 < i < n.

Appendix B

Parameterization PM1 for structure 1 in figure 2 ðall variables are binaryÞ:

pðu5 1Þ5 :5 pðz5 1ju5 1; v5 1; x5 1; y5 1Þ5 :8
pðz5 1ju5 1; v5 1; x5 1; y5 0Þ5 :8
pðz5 1ju5 1; v5 1; x5 0; y5 1Þ5 :84

pðv5 1Þ5 :5 pðz5 1ju5 1; v5 1; x5 0; y5 0Þ5 :8
pðz5 1ju5 1; v5 0; x5 1; y5 1Þ5 :8
pðz5 1ju5 1; v5 0; x5 1; y5 0Þ5 :8

pðx5 1ju5 1Þ5 :8 pðz5 1ju5 1; v5 0; x5 0; y5 1Þ5 :64
pðx5 1ju5 0Þ5 :2 pðz5 1ju5 1; v5 0; x5 0; y5 0Þ5 :8

pðz5 1ju5 0; v5 1; x5 1; y5 1Þ5 :8
pðz5 1ju5 0; v5 1; x5 1; y5 0Þ5 :8

pð y5 1jv5 1; x5 1Þ5 :8 pðz5 1ju5 0; v5 1; x5 0; y5 1Þ5 :79
pð y5 1jv5 1; x5 0Þ5 :8 pðz5 1ju5 0; v5 1; x5 0; y5 0Þ5 :8
pð y5 1jv5 0; x5 1Þ5 :8 pðz5 1ju5 0; v5 0; x5 1; y5 1Þ5 :8
pð y5 1jv5 0; x5 0Þ5 :2 pðz5 1ju5 0; v5 0; x5 1; y5 0Þ5 :2

pðz5 1ju5 0; v5 0; x5 0; y5 1Þ5 :84
pðz5 1ju5 0; v5 0; x5 0; y5 0Þ5 :2
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Parameterization PM2 for structure 2 in figure 2:

pðu5 1Þ5 :5
pðv5 1Þ5 :5 pðz5 1ju5 1; v5 1; y5 1Þ5 :8

pðz5 1ju5 1; v5 1; y5 0Þ5 :8
pðx5 1ju5 1Þ5 :8 pðz5 1ju5 1; v5 0; y5 1Þ5 :8
pðx5 1ju5 0Þ5 :2 pðz5 1ju5 1; v5 0; y5 0Þ5 :8

pðz5 1ju5 0; v5 1; y5 1Þ5 :8
pð y5 1jv5 1; x5 1Þ5 :8 pðz5 1ju5 0; v5 1; y5 0Þ5 :8
pð y5 1jv5 1; x5 0Þ5 :8 pðz5 1ju5 0; v5 0; y5 1Þ5 :8
pð y5 1jv5 0; x5 1Þ5 :8 pðz5 1ju5 0; v5 0; y5 0Þ5 :2
pð y5 1jv5 0; x5 0Þ5 :2

Passive observational distribution:

PM1: PðX; Y; ZÞ5o
uv

PðUÞPðV ÞPðX jUÞPðY jV;X ÞPðZjU;V;X; Y Þ

PM2: PðX; Y; ZÞ5o
uv

PðUÞPðV ÞPðX jUÞPðY jV;X ÞPðZjU;V; Y Þ

Experimental distribution when x is subject to an intervention ðI write
PðAjBjjBÞ to mean the conditional probability of A given B in an experiment
where B has been subject to a surgical interventionÞ:

PM1: PðY; ZjX jjX Þ5o
uv

PðUÞPðV ÞPðY jV;X ÞPðZjU;V;X; Y Þ

PM2: PðY; ZjX jjX Þ5o
uv

PðUÞPðV ÞPðY jV;X ÞPðZjU;V; Y Þ

Experimental distribution when y is subject to an intervention:

PM1: PðX; ZjY jjY Þ5o
uv

PðUÞPðV ÞPðX jUÞPðZjU;V;X; Y Þ

PM2: PðX; ZjY jjY Þ5o
uv

PðUÞPðV ÞPðX jUÞPðZjU;V; Y Þ

Experimental distribution when z is subject to an intervention:

PM1: PðX; Y jZjjZÞ5o
uv

PðUÞPðV ÞPðX jUÞPðY jV;X Þ

PM2: PðX; Y jZjjZÞ5o
uv

PðUÞPðV ÞPðX jUÞPðY jV;X Þ

By substituting the terms of PM1 and PM2 in the above equations it
can be verified that PM1 and PM2 have identical passive observational
and single-intervention distributions but that they differ for the following
double-intervention distribution on x and y.
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Experimental distribution when x and y are subject to an intervention:

PM1: PðZjX; Y jjX; Y Þ5o
uv

PðUÞPðV ÞPðZjU;V;X; Y Þ

PM2: PðZjX; Y jjX; Y Þ5o
uv
PðUÞPðV ÞPðZjU;V; Y Þ

PM1 and PM2 ðunsurprisinglyÞ have identical distributions for the other
two double-intervention distributions, since the x → z edge is broken and
the remaining parameters are identical in the parameterizations:

Experimental distribution when x and z are subject to an intervention:

PM1: PðY jX; ZjjX; ZÞ5o
v
PðV ÞPðY jV;X Þ

PM2: PðY jX; ZjjX; ZÞ5o
v
PðV ÞPðY jV;X Þ

Experimental distribution when y and z are subject to an intervention:

PM1: PðX jY; ZjjY; ZÞ5o
u
PðUÞPðX jUÞ

PM2: PðX jY; ZjjY; ZÞ5o
u
PðUÞPðX jUÞ

Appendix C

Parameterization PM3 for structure 1 in figure 2:

pðu5 1Þ5 :5 pðz 5 1ju5 1; v5 1; x5 1; y5 1Þ5 :825
pðz5 1ju5 1; v5 1; x5 1; y5 0Þ5 :8
pðz 5 1ju5 1; v5 1; x5 0; y5 1Þ5 :8

pðv5 1Þ5 :5 pðz5 1ju5 1; v5 1; x5 0; y5 0Þ5 :8
pðz5 1ju5 1; v5 0; x5 1; y5 1Þ5 :775
pðz5 1ju5 1; v5 0; x5 1; y5 0Þ5 :8

pðx5 1ju5 1Þ5 :8 pðz5 1ju5 1; v5 0; x5 0; y5 1Þ5 :8
pðx5 1ju5 0Þ5 :2 pðz5 1ju5 1; v5 0; x5 0; y5 0Þ5 :8

pðz5 1ju5 0; v5 1; x5 1; y5 1Þ5 :7
pðz5 1ju5 0; v5 1; x5 1; y5 0Þ5 :8

pð y5 1jv5 1; x5 1Þ5 :8 pðz5 1ju5 0; v5 1; x5 0; y5 1Þ5 :8
pð y5 1jv5 1; x5 0Þ5 :8 pðz5 1ju5 0; v5 1; x5 0; y5 0Þ5 :8
pð y5 1jv5 0; x5 1Þ5 :8 pðz5 1ju5 0; v5 0; x5 1; y5 1Þ5 :9
pð y5 1jv5 0; x5 0Þ5 :2 pðz5 1ju5 0; v5 0; x5 1; y5 0Þ5 :2

pðz5 1ju5 0; v5 0; x5 0; y5 1Þ5 :8
pðz5 1ju5 0; v5 0; x5 0; y5 0Þ5 :2

Substituting the parameters of PM3 in the equations for the passive obser-
vational or any experimental distributions of PM1 in appendix 2, it can be
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verified that PM2 and PM3 are experimentally indistinguishable for all pos-
sible experiments on fx, y, zg. Nevertheless, it should be evident that in an
experiment intervening on x, y, u, and v, the difference between the bold font
parameters will indicate that x is a direct cause of z.
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