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Abstract

This survey presents some of the main principles involved in discover-

ing causal relations. They belong to a large array of possible assumptions

and conditions about causal relations, whose various combinations limit

the possibilities of acquiring causal knowledge in different ways. How

much and in what detail the causal structure can be discovered from

what kinds of data depends on the particular set of assumptions one is

able to make. The assumptions considered here provide a starting point

to explore further the foundations of causal discovery procedures, and how

they can be improved.

1 Introduction

David Hume’s skeptical argument on induction concluded that causal knowledge
must be based on custom and habit [17]. Hume had argued that causal knowl-
edge is not a priori and that there is no perceptual component beyond constant
conjunction, time order and spatio-temporal proximity – which are jointly in-
sufficient – to detect a causal relation. If we took this conclusion to have dealt
the devastating final blow to any hope of scientifically justified causal knowl-
edge, then all research efforts into policy analysis (e.g. introduction of public
healthcare, climate change or bailout plans for the financial sector etc.) would
be futile not just because we do not have enough data, but because we are in
principle unable to provide a justification for any influence that our policy might
have, no matter how much research we do. Worse, every careful deliberation of
our own actions could at best be described as a consideration of the habits of
our mind rather than an assessment of the expected outcome of an intervention.
The reason to go to a doctor when ill would have to be described not as hope of
finding a cure that has been shown to be successful, but as a desire to explore
the mental associations the doctor has with our ailment (admittedly, it does
sometimes feel like that). Ultimately, the whole idea of knowing a reason for
something would stand on a somewhat dubious footing.

We know that in particular circumstances nothing other than causal knowl-
edge will do: To predict the behavior of a system under intervention (e.g. the
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behavior of the economy subject to a new policy, or the effect of new treatment
on a patient etc.) simple dependencies will not do. For example, finding that
arthritis is correlated with diabetes provides no indication of what the incidence
rate of arthritis will be once diabetes can be cured. Knowing that there is a
common cause of arthritis and diabetes implies that the incidence rate of arthri-
tis will depend on where in the process the cure of diabetes impacts. It therefore
comes as no surprise that scholars have tried to find ways out of Hume’s dilemma
and supply alternative accounts of how we come to have causal knowledge. Here
I will not provide a historical review – such can be found in more detail in [24],
with Bacon, Kant, Mill and Reichenbach as the main non-contemporary philo-
sophical figures with constructive attempts. Instead, I will outline some of the
main principles underlying current procedures for causal discovery, and describe
how they fit together to form an epistemology of causation.

2 Bridge Principles

In the philosophical literature the metaphysics of causality arguably occupies
the prime position. In light of Hume’s argument one may regard this as a result
of an attempt to first establish what it is that we talk about in making causal
claims, before we then figure out how we come to know it. But the metaphysical
accounts have provided essentially no guidance for methods of discovery, because
it remains unclear how they could be operationalized into discovery procedures
that do not depend on the availability of causal knowledge in the first place.1

Epistemological headway was made by a completely different strategy that
largely ignored metaphysical considerations. The approach, in broad strokes,
was this: Let us accept with Hume that there is no immediate perceptual or mea-
surable feature that identifies uniquely a causal relation. (This assumption is by
no means obvious, since many psychological experiments show that humans and
animals seem very sensitive to purely perceptual features when making causal
inferences. [13, 19]) If no direct identification of causal features is possible, then
assumptions are required that connect what can be observed to the underlying
causal structure that generates the phenomena: bridge principles.

With the Principle of Common Cause, Reichenbach [23] was one of the first
to pursue this strategy. The Principle of Common Cause was an attempt to
connect the constraints implied by a causal structure with measurable con-
straints in the resulting probability distribution generated by the variables that
are causally connected. If the distribution over two variables exhibits a depen-

1In Lewis’ account of causation in terms of counterfactuals a measure of distances between
possible worlds is needed to assess the counterfactuals. Proposed measures depend on knowl-
edge of laws, which presumably represent causal facts in the first place. In accounts that are
based on causation as a transfer of a conserved quantity (Salmon, Dowe) it remains a mystery
how one comes to know which quantity is conserved without knowing the causal relations
first. A similar concern applies to attempts using the mechanistic approach of Machamer et
al.. Mackie’s “INUS condition” specifies criteria for a cause, but it supplies no procedure. It
is unclear whether “INUS-causes” can be discovered by an analysis of regularities or by an
analysis of the differences between individual instances, or both.
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dence, then this dependence may result from one variable causing the other.
It is also possible that there is a third variable, a common cause, that causes
both: For example, the occurrence of storms and particular barometer readings
are correlated, although neither is the cause of the other (shifting the barom-
eter needle does not prevent the storm, and the barometer reading generally
precedes the storm, and since one generally assumes that there is a time order
from cause to effect, the storm cannot be the cause of the barometer reading).
A third variable, atmospheric pressure, which causes both, explains the corre-
lation. The Principle of Common Cause takes a dependence to be indicative of
either one variable causing the other, or the existence of a common cause. It
excludes the possibility of the variables being causally disconnected, but leaves
the exact connection still underdetermined.

The motivating idea of the Principle of Common Cause is spelled out in full
generality in the Causal Markov Condition, which is widely seen as the most
fundamental bridge principle in causal epistemology. It uses the causal Bayes
net framework [29, 21], which represents the causal structure as a directed graph
over a set of variables. For example, the causal structure between storm (S),
the barometer reading (B) and atmospheric pressure (A) would be represented
as follows:
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Causal effects between variables result in a probability distribution over the
graph, e.g. for the above example, p(A, S,B) = p(A)p(S|A)p(B|A). The causal
Markov condition matches the absence of particular causal relations (arrows
between vertices in the directed graph) with (conditional) independence rela-
tions in this distribution, and dependence relations with the presence of causal
connections.

Causal Markov Condition: Let G be a causal graph with vertex
set V and P be a probability distribution over the vertices in V

generated by the causal structure represented by G. G and P satisfy
the Causal Markov Condition if and only if for every W in V , W is
independent of V \ Descendants(W ) given Parents(W ). (see [29], p.
29). [The genealogical terminology is interpreted in the obvious way
with reference to the directed graph.]

For the barometer-storm example the Markov condition implies that given the
value of atmospheric pressure, the occurrence of storm and the state of the
barometer needle are independent. While the Markov condition constrains the
dependencies in the probability distribution over a set of variables of interest,
independencies are constrained by a converse principle:

Faithfulness Condition: A causal graph G and a probability
distribution P over G are faithful to one another if all and only
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the conditional independence relations true in P are entailed by the
Markov condition applied to G. ([29], p. 13).

Together, causal Markov and faithfulness enable the inference from indepen-
dence and dependence constraints in a probability distribution to features of the
underlying causal structure, even though they do not identify the causal struc-
ture uniquely in all cases. For example, if we measure the variables storm (S),
barometer reading (B) and atmospheric pressure (A), then we might find that
storm and barometer reading are dependent (S⊥⊥/ B), as are barometer reading
and atmospheric pressure (B⊥⊥/ A) and storm and atmospheric pressure (S⊥⊥/ A),
while storm and barometer reading given atmospheric pressure are independent
(S⊥⊥B|A). From these constraints alone (assuming Markov and faithfulness) we
can only infer that one of the following three causal structures is true, but we
do not know which:

S → A → B

S ← A ← B

S ← A → B

These three structures form a Markov equivalence class, since they imply the
same independence constraints. If we in addition know that the measurements
of A always preceded the measurements of S and B, then we can uniquely
identify the third structure.

In some cases Markov and faithfulness are sufficient for unique identification
of the causal structure. For example, consider a car where we measure the state
of the gas tank (G), the battery (B) and whether the motor (M) starts. We
might find the following distributional constraints:

G⊥⊥B G⊥⊥/ M B⊥⊥/ M and G⊥⊥/ B|M.

These constraints uniquely imply (given Markov and faithfulness) that the un-
derlying causal structure is

G→M ← B.

The fact that conditional on a common effect, two variables that are otherwise
independent, become dependent (such as B and G here) provides a unique signa-
ture of the underlying causal structure (referred to as v-structure or unshielded
collider) in the dependence and independence constraints of the distribution.
This can be used for causal discovery (and the orientation of causal influences!)
between variables, even when no time order information is available.

The examples show that causal Markov and faithfulness provide a set of
assumptions that enable first steps towards a justification of inferences from ob-
servable features to particular causal relations. They do not necessarily uniquely
identify the causal structure – so they can certainly not be viewed as defining
causal relations – and they do not endorse a particular metaphysical account
of causation. Instead, they pick up on particular features of causality that are
relevant to knowledge acquisition and that are shared by many metaphysical ac-
counts. Markov and faithfulness can only be viewed as one starting point: They
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provide constraints that enable discovery, but in many cases one is interested in
a further reduction of the remaining underdetermination which may require ad-
ditional assumptions. In other cases one might be unsure whether even Markov
or faithfulness are satisfied, and so one might wonder whether there are alterna-
tive assumptions one can use. This suggests a general epistemological approach
for the discovery of causal relations: Given a set of assumptions that function as
bridge principles, one can determine the possibilities of discovery and develop
appropriate procedures. One can work out how the limits of discovery depend
on different assumptions. One can ask what justifications are available for any
particular set of assumptions, and investigate what happens if an assumption
fails.

The remainder of this paper takes precisely this approach: It considers some
of the most common sets of assumptions used for causal discovery, indicates,
where possible, justifications for those assumptions and points to procedures
that use these assumptions. Often a distinction is made between causal discov-
ery in observational data and causal discovery using experiments. It is certainly
true that these two circumstances imply different limits to causal discovery, but
the distinction is not as clear cut as it may initially seem. First, there is a
continuum of circumstances from purely observational studies over weak exper-
imental to fully randomized controlled trials. Second, the power of inferences
in experimental circumstances is not solely a result of the experimental setting,
but a result of the combination of the experimental setting with other assump-
tions. Third, we often are in a situation in which experimentation is impossible
or unethical, but we will find that some of the following assumptions that are
not specifically experimental enable rather powerful inferences even in these
circumstances. Consequently, experimental circumstances will be discussed as
their own set of assumptions in a section at the end, suggesting that those as-
sumptions stand on a similar epistemic footing as the other assumptions that
are not explicitly constrained to the experimental setting.

3 Discovery Strategy

What are the desiderata of a search procedure? – Minimally, any discovery
procedure should be correct. That is, if its assumptions are satisfied it should
not return any false claims. However, since discovery procedures are based on
statistical data, and no informative procedure can guarantee not to make errors
on finite samples, this minimal correctness must be framed in terms of a limiting
condition: In the large sample limit, the procedure should not make errors. For
this to be possible, the output of a search procedure based on a particular set of
assumptions must be sensitive to the remaining underdetermination that cannot
be avoided in the large sample limit. (In the example with the barometer above
there were three causal structures that are indistinguishable by dependence and
independence constraints, no matter how much data is available.) Given a
specification of the underdetermination that will remain in the output (such as
given by a Markov equivalence class), a procedure that is guaranteed to make
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no errors in the large sample limit is said to be consistent with respect to this
residual underdetermination. So as not to be trivially consistent, the residual
underdetermination should be in some sense (close to) minimal.

Consistency alone is generally considered a necessary requirement, but since
we are bound to finite samples, guarantees about the limiting behavior of a
procedure provide little assurance. Ideally, one would like a characterization or
a bound on the error for the output of any procedure given a particular sample
size. For other statistical procedures such re-assurance is often specified in terms
of confidence intervals or p-values that provide a probabilistic bound on the size
of the error. Causal search procedures that support confidence intervals are
said to be uniformly consistent, ones that do not are pointwise consistent. The
difference between the two types of consistency is ultimately one of quantifier
order: For uniform consistency there is one sample size that bounds the error
for all possible distributions over the variables. For pointwise consistency for
each distributions there is a sample size that bounds the error. If one does not
know which distribution one is dealing with, then the appropriate sample size
is similarly unknown.

Whether a procedure is pointwise or uniformly consistent depends on its
assumptions. There are search algorithms of both types, and in some cases a
pointwise consistent procedure can be made uniformly consistent by a strength-
ening of some of its assumptions. Without such strengthening, an identification
of causal structures using a pointwise consistent procedure can be difficult, be-
cause two different causal structures can have distributions that are arbitrarily
close to each other, and therefore make a distinction virtually impossible with
finite samples. For example, suppose there are three variables X,Y and Z, and
the causal structure between them is

X Y��X

Z

��

Y

Z

����
��

��
��

��
�

but the direct causal influence of X on Z is almost balanced out by the indirect
causal influence of X on Z via Y . For a finite sample, X and Z might appear in-
dependent, even though there is no violation of faithfulness (in the large sample
limit the two variables are not independent). If X and Z appear independent
in the finite sample (and X⊥⊥/ Y , Y⊥⊥/ Z, and X⊥⊥/ Z|Y ), Markov and faithfulness
alone imply that the generating causal structure is a collider: X → Y ← Z.
Depending on how closely the two causal connections between X and Z cancel
each other out in the true causal structure, an arbitrarily large sample may
be required to distinguish the two qualitatively very different causal structures
even though no assumption was violated.

This example highlights two issues: First, Markov and faithfulness are as-
sumptions that relate causal structure with distributional structure, not with
sample associations. Consequently, given only a finite sample, the question of

6



whether one has reason to believe that the observed associations and indepen-
dence features in the sample generalize to the distribution, is separate from
what inferences one can make about the causal structure given a particular dis-
tributional structure. Second, it is an open question how one should treat the
output of procedures that are only pointwise consistent: Should one in light of
these finite sample problems abandon such procedures altogether, should one
search for a justification of further assumptions that ensure uniform consistency
(e.g. time order or the possibility of an intervention would help here), or should
one try what one has anyway? Reichenbach argued that the minimal guarantee
that pointwise consistent procedures converge at some point, even though we
do not know when, gives us – at least in the absence of other procedures with
stronger guarantees – a rational foundation for inference [22]. If Keynes’ slogan
that in the long run we all die, can be taken to be indicative of his views of
search procedures as well, then he presumably took the opposite view.

Even if we could provide a definitive answer on the question of uniform vs.
pointwise consistent procedures, open questions remain on how to treat the
output of discovery procedures. Such procedures build on a set of assumptions
that mark out the hypothesis space they search. In general we have no guar-
antee that a particular assumption holds with certainty – none are a priori or
necessary. We can at best have a certain belief, more or less justified, that
a particular assumptions holds. Consequently, even the confidence interval or
the p-value returned by a uniformly consistent search procedure cannot on its
own provide the basis for some absolute credence in the output. It is doubtful,
whether we can quantify our belief in the search space assumptions sufficiently
to appropriately integrate such a belief with the confidence (or lack thereof) in a
causal relation determined by the search procedure. (Although again, Reichen-
bach believed we could provide whole hierarchies of higher order probabilities
that were grounded in observable phenomena. [22]) There remains a genuine
open question of which epistemic stand one should take towards the output of
search procedures.

4 Assumptions for Causal Discovery

Unfortunately, much of the debate in philosophy has focused primarily on the
justification and criticism of the Markov and faithfulness conditions. This focus
is damaging in two ways: It disregards the possibility of alternatives (especially
in the case of faithfulness) and ignores the difficulty of providing alternatives
(in the case of Markov). I will cast the net a little further.

Causal Markov

There is a general consensus that the Markov condition describes a central fea-
ture of many metaphysical accounts of causation. It generalizes and formalizes
the intuition that causes “screen off” their effects from any causal processes that
do not descend from the effects. Criticism consequently has taken two forms:
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On the one hand it disputes that the real causal metaphysics satisfies such a
condition – much of Cartwright’s criticism [1, 3, 4] takes this form. Wood-
ward and Hausman [11, 12] have attempted to respond by relating the Markov
condition to the idea of modularity (see also [31, 21]) – that one ought to be
able to intervene on a causal variable without affecting variables other than
the intervened variable and its causal descendents. Alternatively, critics have
argued against the inferences the Markov condition licenses. (see e.g. Sober
[28] and Cartwright [2]). Most of the purported counterexamples of this latter
type involve cases where there is by assumption no causal connection between
two variables but an association between the variables is still observed. These
examples risk a confusion of the statistical question of generalizability of sample
features with the actual claim of the Markov condition that licenses the inference
from distributional features to causal structure. We will not pursue the debate
here (but see [30, 14, 9, 10] for responses). The real problem is that the Markov
condition appears central to just about any scientific investigation, and so far no
(weaker) alternative to the Markov condition has been proposed. So while the
criticism can be taken as a caution against universal application of the Markov
condition, it appears to be a rather tough task to propose any alternative that
comes anywhere close to a similar starting point for causal inference.

Causal Faithfulness

The situation is different with regard to faithfulness. The justification for faith-
fulness is pragmatic, to enable particular inferences in search procedures. Coun-
terexamples are more easily constructed and more plausible – as are remedies.
For example, if the causal effects along the two paths in the example in Sec-
tion 3 cancelled exactly, then X and Z would be independent although they
are causally connected, thereby violating faithfulness. Independencies that are
not due to the Markov condition can arise in the distributional structure for all
sorts of reasons, including cancelling pathways, deterministic causal relations
or particular discrete causal relations along causal chains. One can provide a
mathematical argument that most probability distributions are faithful to the
generating causal structure (see [29], p. 41, Theorem 3.2), but there are circum-
stances where it is reasonable to argue that precisely the unfaithful cases are of
scientific interest. The good news is that in the case of faithfulness, the space of
alternatives is much better understood. There are many discovery procedures
that do not require the faithfulness assumption [25, 20], and there has been
a precise investigation into the types of violations of faithfulness that can be
detected [33], or where a slight strengthening of other assumptions enables such
a detection [32].

Linearity

In general, more than just the causal structure is of interest. One is also in-
terested in the precise quantitative effect one variable has on another. Inde-
pendence constraints place very minor constraints on the functional form of a
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causal effect, and consequently estimation of the quantitative influence would
be difficult without further assumptions. One very common assumption about
the functional form of the causal relation is linearity. Linearity requires that the
value of a variable is determined by a linear sum of the values of its causes plus
some error term that is generally, though not necessarily, assumed to have a
Gaussian distribution. Consider the relation of wine consumption (x-axis) and
the risk of cardiovascular disease (y-axis) in the following three graphs. Only

the first graph satisfies the assumption of a linear relation. Causal relations that
involve a threshold below (or above) which there is no, or a different causal effect
(middle graph), or causal relations with a non-monotonic effect (third graph)
are examples that violate linearity. When investigating the effect of wine con-
sumption on cardiovascular disease it is not obvious even within plausible ranges
of wine consumption, whether a linearity assumption is justified. It is perfectly
plausible that a positive effect can be observed for small quantities, but that
there is a jump in risk as soon as one drinks more than a certain quantity (mid-
dle graph). It is also plausible that the relation is quadratic, with a positive
effect only for small quantities (right graph).

Apart from that the fact that linearity captures formally something like a
dose-reponse relation, the justification for its application arguably has a histor-
ical origin: Linear relations are simple, the statistical computations have been
tractable for a long time and consequently are well understood (regression anal-
ysis). In addition, the assumption enables an enormous reduction in the residual
underdetermination of search procedures, especially when there are unmeasured
variables [16, 5]. Linearity implies that the causal effect of one particular causal
connection (pathway) between two variables can be considered independently of
any other connections between the two variables. Consequently, there are many
implied constraints on the probability distribution that can be used to identify
causal relations.

Gaussianity

Commonly, a linearity assumption is combined with an assumption that the
errors of a variable have a Gaussian distribution (bell-curve). Anyone familiar
with linear regression will recognize this assumption from the parameter estima-
tion. Part of the motivation to assume Gaussian errors derives from their com-
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putational simplicity, since combinations of Gaussian distributions again form
joint Gaussian distributions. But more importantly, Gaussian distributions are
supported by the central limit theorem: If multiple independent and identically
distributed effects (with finite mean and variance) combine, then their sum will
approximately follow a Gaussian distribution. Consequently, if the errors in a
linear model are taken to represent the many minor individual influences not
captured in the model, then for a large sample, the error distribution can rea-
sonably be expected to be Gaussian. Of course, it would be a mistake to assume
that error distributions are always or necessarily Gaussian, even when one has
large sample sizes. Often the independency assumption of the errors (and their
identical distribution) is difficult to guarantee. The assumption would be of mi-
nor importance if it made no difference to discovery procedures. Surprisingly,
non-Gaussian error distributions can actually make the discovery task easier in
the sense that in the large sample limit, more detail can be discovered about
the causal structure. Some of the very recent developments of search procedures
build on a linearity assumption combined with non-Gaussian errors, and it can
be shown, that such procedures actually enable the unique identification of the
underlying causal structure [26, 25, 18].

Causal Sufficiency

In many circumstances one cannot assume that all the relevant variables have
been measured. There might be unmeasured variables that lead to spurious
correlations in the data, that – if not recognized as spurious – can lead to in-
correct conclusions about the underlying causal structure. For example, if we
find that wine consumption is correlated with a lower incidence rate of car-
diovascular disease then this might be due to wine consumption causing the
reduction, or it may be the case that people with a higher income can afford to
buy wine and can afford proper health care and a balanced lifestyle, resulting
in the observed correlation even though wine consumption may have no effect
whatsoever on cardiovascular disease. If such variables as socio-economic status
are not measured in the study then what inferences can one draw about the
true causal structure? The assumption of causal sufficiency, i.e. that there are
no unmeasured common causes, is a very strong assumption. In some cases,
one can detect that this assumption fails. For example, given four observed
variables W,X, Y and Z, if the only independencies (represented by ⊥⊥ ) between
the variables are

W⊥⊥Y W⊥⊥Z X⊥⊥Z

W⊥⊥Y |Z W⊥⊥Z|X W⊥⊥Z|Y X⊥⊥Z|W

then the only causal structure satisfying these constraints is

W → X ← L→ Y ← Z

where L is an unobserved variable. The presence of the unobserved variable L

can be inferred from the independence constraints. But this is not generally
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the case. If causal sufficiency cannot be assumed, then the residual underde-
termination in the output is generally much larger. For example, just assuming
Markov and faithfulness, if a dependence between X and Y is observed, it could
have been generated by any of the following structures (again we assume that
L is unobserved):

X Y��

L

X

����
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��
��

��
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L
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Only the last two are possible candidates if causal sufficiency is assumed. Unless
one is dealing with a closed system, there rarely seems to be a justification for
the assumption of causal sufficiency, other than that the discovery problem is
otherwise often not tractable. There are, however, procedures that are designed
to identify whatever can be identified about the causal structure in the case
of causal insufficiency, and the situation is not as bleak as might be expected:
In general, the residual underdetermination – though more substantial – can
be precisely characterized (see FCI-algorithm in [29]), and with the assumption
of linearity with non-Gaussian errors, the underdetermination can be reduced
substantially (in the large sample limit), and the presence and location of latent
variables can (to a certain extent) be determined [15, 16]. Furthermore, there
are procedures that can then be used to investigate the structure between latent
variables as well [27].

Interventions

The more common way to avoid spurious correlations due to unmeasured vari-
ables is to use interventions. Experimental interventions on a system of variables
are often hailed as the golden standard of causal discovery. A large literature in
statistics is dedicated to the experimental design of randomized controlled trials.
The basic idea of randomized controlled trials is that the values of the purported
cause variable (the treatment) are set by a distribution that is (causally) inde-
pendent of the system of variables under consideration. This “setting” of the
values of the treatment variable by the intervention (I) implies that the causal
influence of any other variable on the treatment variable is broken, and thereby
any spurious correlation between treatment (T) and outcome (O) due to any
unmeasured common cause (L) can be avoided.
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If a correlation between treatment and outcome is measured in the experiment,
it must then be due to the treatment causing the outcome. However, such an
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inference is only licensed if it is known that the intervention only influences the
intervened variable. If the intervention is “fat hand” – influencing more than
one variable similar to someone who has insufficiently slim fingers to manipulate
an intricate mechanism – then a correlation between variables might be due to
the fat-hand intervention rather than a causal influence between variables.

The “surgical” aspect (breaking the causal influences in the treatment vari-
able) of a randomized controlled trial is one way of dealing with unmeasured
common causes in an experimental setting. But even if the intervention is weaker
than a randomized controlled trial in that it does not make the treatment vari-
able independent of its other causes, there are circumstances in which causal
discovery is possible despite the presence of latent variables. In fact, for par-
ticular types of “soft” interventions, if one can assume that causal relations are
linear, one can uniquely identify the causal structure among an arbitrarily large
set of causal variables in a single experiment, and one can detect the presence
and location of latent variables. The theory in this case is very similar to that
of instrumental variables in economics [7, 5]. These results can also be utilized
in circumstances when it is unethical, uneconomical or physically impossible to
perform a randomized controlled trial. Even a small external influence on a
variable may result in constraints on the system that can be used for causal
discovery. Needless to say, there might well be more residual underdetermina-
tion, which will require additional assumptions of the type discussed in previous
sections to determine the unique causal structure.

How much one can discover about the causal relations, and in what detail,
depends on the exact type of intervention, how many variables one can subject
to interventions, how many experiments with interventions one can perform and
what other assumptions one can make about the causal relations.

The main advantage of interventions therefore is not so much their surgical
feature, but that they introduce an external influence into the system under
investigation, which helps to disentangle causal relations and, importantly, to
orient causal influences, if no time order is available in the data.

There is an additional set of interesting questions that I can only hint at
in this overview: Unlike the passive observational setting in which questions of
efficient discovery are limited to sample size and the computational aspects of
model selection (e.g. the order of statistical tests, such as independence tests, or
the computation of scores of particular models), we have to additionally decide
in the experimental setting which experiments to perform, i.e. which variables
to subject to an intervention, and in what order to perform the experiments.
Although these questions do not necessarily imply a difference in the limit of
what can be discovered in any sequence of experiments, it may well make a
practical difference in terms of what can be discovered in a finite number of
experiments or with a finite amount of resources. One example of a result of
this kind is that one might naively think that the most efficient way to discover
a causal relations among a set of variables is to intervene on one variable while
holding all but one other variable fixed at a certain value. In fact it turns out
(and has been known at least since the seminal work on experimental design by
R.A. Fisher [8]) that much more efficient sequences of experiments are possible
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when multiple variables are subject to an intervention simultaneously in each
experiment (see also [6]). More generally this raises many questions of how as-
pects of decision theory can guide causal discovery.2

Needless to say, there are many other forms of assumptions that I have not
discussed here (e.g. time order, determinism, cyclicity etc.) which have their
own implications for causal discovery. In each case, various procedures are al-
ready available.

5 Conclusion

This brief survey was intended to suggest a perspective that seems to have been
lost in the philosophical discussions focused on particular assumptions: There
are many assumptions beyond causal Markov and faithfulness that are used for
causal discovery. These assumptions can be combined in different ways that
enable a variety of search procedures that (in the large sample limit) are guar-
anteed to yield different insights into the underlying causal structure. In some
cases, combinations of assumptions can be used to make others, such as faithful-
ness or causal sufficiency, redundant. In many cases the exact implications for
discovery given a set of assumptions have been worked out already, but many
open questions remain, since general conclusions for all discovery procedures are
not available.

While I cannot even begin to list the most important open problems for
causal discovery here, this context lends itself to point to one area in desperate
need of further investigation: the robustness of procedures. I have indicated
that discovery procedures can be based on a variety of different assumptions.
But very little is known about how these procedures perform when one of their
assumptions fails or is incompletely satisfied. Since there is no obvious hierar-
chy of assumptions, one cannot always guarantee that one can fall back into a
safety net of weaker assumptions. At present we simply do not know how well
procedures perform when some of their assumptions fail, or what the nature
of their errors then is. Obviously, an epistemology of causation would benefit
enormously from a better understanding of this matter.
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