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Moment haraterization of higher-order risk preferenesSebastian Ebert*
24 September, 2010.Abstrat Prudene and temperane play key roles in aversion to negative skewness and kurtosis, re-spetively. This paper puts a new perspetive on these relationships and presents a haraterization ofhigher-order risk preferenes in terms of statistial moments. An impliation is, for example, that pru-dene implies preferene for distributions with higher skewness as de�ned by all odd moments. Moreover,we show that this preferene is robust towards variation in kurtosis as de�ned by all even moments. Wethus speak of the kurtosis robustness feature of prudene. Further, we show that all higher-order riskpreferenes of odd order imply skewness preferene, but for di�erent distributions than prudene. Similarresults are presented for temperane and higher-order risk preferenes of even order that an be relatedto kurtosis aversion and have a skewness robustness feature.Keywords Deision making under risk · Higher-order risk preferenes · Kurtosis aversion · Moments ·Prudene · Skewness preferene · TemperaneJEL D811 IntrodutionIt is well known that risk aversion only partially desribes individuals' risk preferenes. Numerous behav-ioral traits stem from higher-order risk preferenes suh as prudene or temperane. The most prominentone is that prudene is neessary and su�ient for the preautionary savings motive1 as shown by Kimball(1990). Eekhoudt and Gollier (2005) analyze the impat of prudene on prevention, i.e. the ation un-*Address: Bonn Graduate Shool of Eonomis, BWL 3 - Banking and Finane, Adenauerallee 24 - 42, 53113 Bonn,Germany. Phone: +49-228-73 9225. E-mail: sebastianebert�uni-bonn.de. An earlier version (12 June 2010) of this paperirulated under the title �On higher-order risk preferenes, skewness and diversi�ation.� I thank Mihael Adler, LouisEekhoudt, Patrik Roger, Harris Shlesinger, Gregor Shwerho� and Daniel Wiesen for helpful omments and disussionson the topi. All remaining errors are my own. Finanial support from the Bonn Graduate Shool of Eonomis is gratefullyaknowledged.1 That means the awareness of unertainty in future payo�s will raise an individual's optimal saving today. The rela-tionship between preautionary savings and the third derivative of the utility funtion was reognized already by Leland(1968) and Sandmo (1970) and has been of major eonomi interest ever sine.



2 Sebastian Ebertdertaken to redue the probability of an adverse e�et ouring. These rather general onepts are easilyapplied to spei� problems in various areas of eonomis and �nane. For example, prudene has beenshown to be an important fator in preventive are deisions within a medial deision making ontext(see Courbagé and Rey, 2006). Esö and White (2004) show that there an be preautionary bidding inautions when the value of the objet is unertain and when bidders are prudent. Likewise, White (2008)analyzes prudene in bargaining. Treih (2010) shows that prudene an derease rent-seeking e�orts ina symmetri ontest model. Fagart and Sinlair-Desagné (2007) investigate prudene in a prinipal-agentmodel with appliations to monitoring and optimal auditing. Temperane generally implies aversiontowards mutually aggravating risks (see Kimball, 1992 and 1993). Eekhoudt and Shlesinger (2008)show that temperane is neessary and su�ient for an inrease in downside risk of future labor inomealways to inrease the level of preautionary savings. Within a standard maroeonomi onsumptionand labor model, Eekhoudt and Shlesinger (2008) analyze the impat of prudene and temperane onpoliy deisions suh as hanges in the interest rate. Other examples for the signi�ant impat of riskpreferenes of higher order than risk aversion are insurane demand, e.g. Fei and Shlesinger (2008) orlife-yle investment behavior, e.g. Gomes and Mihaelides (2005). By neessity this is not a ompletelist of appliations.These preditions are derived from models based on the expeted utility (EU) framework. Under EU,assuming di�erentiability of a utility funtion u, risk aversion, prudene and temperane are equivalentto u′′ < 0, u′′′ > 0 and u(4) < 0, respetively. More generally, Ekern (1980) de�nes a deision makeras being nth-degree risk-averse if and only if sgn(u(n)) = (−1)n+1. It is important to note that thesespei�ations are exhibited by �all the ommonly used utility funtions� (see Brokett and Golden, 1987).They also serve as neessary onditions for numerous stronger preferene spei�ations employed in theeonomis literature. Prudene, for example, is also widely assumed beause it is neessary (but notsu�ient) for dereasing absolute risk aversion.In this paper, we fous on the other reason why higher-order risk preferenes are important. This reasonis independent of the EU paradigm. Prudene and temperane are linked to preferene for high skewnessand small kurtosis of distributions, respetively. Menezes et al. (1980) show that an individual dislikesinreases in downside risk if and only if she is prudent. A downside risk inrease is a mean-varianepreserving density transformation shifting variation from the right to the left of the distribution. Thisis in analogy to the mean-preserving spread of Rothshild and Stiglitz (1970) disliked by a risk-averseindividual. The former motivates the de�nition of prudene as downside risk aversion. Menezes et al.also diretly show that prudene, unlike risk aversion, relates to measures of skewness, in partiularto the third entral moment and semi-target variane. For more on prudene and skewness, see Chiu(2005 and forthoming). Likewise, Menezes and Wang (2005) show that an individual dislikes inreasesin outer risks if and only if she is temperate. Edginess (5th-degree risk aversion) has been onsidered byLajeri-Chaherli (2004).



Moment haraterization of higher-order risk preferenes 3However, despite this progress, the relationship between higher-order risk preferenes and the statistialmoments of a distribution has not been investigated exhaustively. For example, the above mentionedauthors presented results on moments up to order n for nth-degree risk aversion only. Statistial mo-ments are interesting beause they are among the standard summary statistis whih are well understoodand applied by a wide audiene in various �elds of eonomis and �nane. In partiular, moments aremeasures of skewness and kurtosis. Further, numerous risk and performane measures are also based onmoments. On the other hand, preferene impliations based on a �nite number of moments are generally�awed; see e.g. Brokett and Kahane (1992) and Brokett and Garven (1996). Thus the goal of this paperis to investigate the relationships of higher-order risk preferenes to all moments.The approah undertaken makes use of the proper risk apportionment model of Eekhoudt and Shlesinger(2006). They give another de�nition of nth-degree risk aversion as a preferene over (seemingly) simplelotteries and show equivalene to Ekern's de�nition. The lottery preferenes an be interpreted as thedesire to �disaggregate the harms� of unavoidable risks and losses, i.e. to apportion them properly arossdi�erent states of nature. These lotteries allow for studying risk attitudes outside the EU framework.Furthermore, one an exploit the simpliity of de�ning risk preferenes via proper risk apportionment forboth theoretial and empirial purposes.2 The remarkable equivalene between the lottery preferenesand nth-degree risk aversion motivates the intensive study of their statistial properties.In this paper, we ompute all moments of the proper risk apportionment lotteries of all orders. Thuswe atually present a haraterization of the lotteries and, impliitly, of higher-order risk preferenes.This is beause the sequene of moments uniquely determines the distribution of a bounded randomvariable. This is known as the solution to the Hausdor� moment problem in the probability literature;see Hausdor� (1921).3 This haraterization provides a better understanding of the relationships betweenhigher-order risk preferenes, skewness preferene and kurtosis aversion. In partiular, not only prudeneand and temperane, but all higher-order risk preferenes of odd and even order, are shown to relateto skewness seeking and kurtosis aversion, respetively. As the measures of skewness and kurtosis usedare moments, these results should be aessible to a wide audiene. Our results, whih are independentof EU, build up on the reent work of Roger (forthoming), who made an important ontribution inahieving this haraterization. He omputed all moments of the proper risk apportionment lotteriesfor the speial ase where the risks that have to be apportioned are symmetri. However, we will showthat the asymmetry of these risks is just the origin of the proper risk apportionment model's statistialgenerality. We also generalize the early work of Ekern (1980), who onsidered di�erenes in moments up2 For example, the lotteries are used by Gollier (2010) to investigate eologial disounting, by Maier and Rüger (2009)to investigate referene-dependent risk preferenes of higher orders and by Jindapon (2009) to de�ne probability premiaof higher order. Dek and Shlesinger (forthoming) and Ebert and Wiesen (2009) employ the lotteries in a laboratoryexperiment and �nd strong evidene for third- and fourth-order risk preferenes (rather than indi�erene), whih furtherhighlights their importane. Furthermore, the onept of proper risk apportionment an be generalized to the bivariatease, as shown in Eekhoudt et al. (2007) or Tsetlin and Winkler (2009), whih are largely applied in health eonomis.3 The assumption of boundedness is unproblemati from an eonomi point of view as there is not an in�nite amountof money. Thus the assumption is standard in the literature on deision making under risk. A stronger assumption oftenmade is that distributions are de�ned on a ompatum whih implies boundedness.



4 Sebastian Ebertto order n for nth-degree risk aversion.The paper proeeds as follows. In setion 2, we review the proper risk apportionment model of Eekhoudtand Shlesinger and disuss our notions of skewness and kurtosis and how they relate to all odd andeven moments, respetively. In partiular, we illustrate how skewness and kurtosis manifest in disrete(lottery) distributions. For binary risks we prove that all odd moments (exept for the mean) must be ofthe same sign. This also provides intuition why they are generalized skewness omparable in the senseof Chiu (forthoming).In setion 3, we expliitly ompute all moments of the prudene and temperane lotteries. We show thatdistributions preferred by a prudent deision maker must have higher skewness as de�ned by high oddmoments of any order, but they may or may not have higher kurtosis as de�ned by higher even momentsof any order. We refer to this as the kurtosis robustness feature of prudene. That is, the preferene forskewness of a prudent deision maker must not be disturbed by di�erenes in kurtosis. In partiular,prudene does not only determine preferene between distributions that purely di�er in skewness. Tobest of our knowledge, this has not been disussed in any paper disussing prudene as being related toskewness preferene. Whether the prudent lottery hoie has the smaller or larger kurtosis solely dependson the skewness of the risk that has to be apportioned. Therefore, what makes the preferene a strongpreferene is that asymmetri risks onsistently have to be apportioned in the same way. This also helpsto explain reent experimental evidene of Ebert and Wiesen (2009) who �nd a signi�ant di�erene inthe number of prudent deisions for adversely skewed zero-mean risks. Likewise, though not as lear-ut,we show that temperane implies a preferene for distributions with small kurtosis as de�ned by smalleven moments and whih is robust towards variation in the odd moments. This is referred to as theskewness robustness feature of temperane.In setion 4, we generalize these results and investigate all moments of the proper risk apportionmentlotteries of all orders. We show how all higher-order risk preferenes of odd and even order (not onlyprudene and temperane), respetively, are related to skewness preferene and kurtosis aversion in aomplementary way. This should raise more interest in these onepts whih are generally viewed asrather abstrat. In both setions 3 and 4, we will disuss how our results relate to those of Roger (forth-oming) and whih of his results are partiular to the symmetry of the zero-mean risks.Setion 5 onludes. All proofs are given in the appendix.2 Proper risk apportionment, skewness, kurtosis and momentsWe �rst de�ne the lotteries of Eekhoudt and Shlesinger (2006) and explain the importane of properrisk apportionment. Let X be Bernoulli distributed with parameter 0.5. Let k > 0 suh that the amount
−k an be interpreted as a sure redution in wealth. For all n ∈ N let ǫn be a zero-mean risk (i.e.
E[ǫn] = 0) with �nite moments. The lotteries for monotoniity and risk aversion, respetively, are givenby A1 = −k, B1 = 0 and A2 = ǫ1, B2 = 0. For the �rst two so-alled higher-order preferenes, prudene



Moment haraterization of higher-order risk preferenes 5and temperane, the lotteries are
A3 = X · 0 + (1 − X) (ǫ1 − k) = XB1 + (1 − X)(A1 + ǫ1)

B3 = X(−k) + (1 − X)ǫ1 = XA1 + (1 − X)(B1 + ǫ1)and
A4 = X · 0 + (1 − X)(ǫ1 + ǫ2) = XB2 + (1 − X)(A2 + ǫ2)

B4 = Xǫ1 + (1 − X)ǫ2 = XA2 + (1 − X)(B2 + ǫ2).Figure 1 illustrates examples of these lotteries where outomes have been aggregated. For higher orders,Fig. 1 Examples of a prudene and a temperane lottery pair with symmetri (S) zero-mean risksPrudene Lottery Pair
BS

3

3
1

4

13

4

AS
3

2
3

4

01

4Temperane lottery pair
BS

4

3
1

2

11

2

AS
4

41

8

2

6

8

0
1

8The prudene lotteries are onstruted with initial wealth x = 2, �xed loss
−k = −1 and the zero-mean risk ǫ yields 1 or −1 with equal probability. Forthe temperane lotteries, initial wealth is x = 2 and the zero-mean risks ǫ̃1 and
ǫ̃2 both yield 1 or −1 with equal probability.proper risk apportionment of order n is de�ned iteratively by ontinuing the previously illustrated nestingproess, i.e.

An = XBn−2 + (1 − X)
(
An−2 + ǫ

xn/2y

)

Bn = XAn−2 + (1 − X)
(
Bn−2 + ǫ

xn/2y

)where xn/2y is the largest integer smaller than or equal to n/2. An agent exhibits proper risk apportion-ment of order n, if she prefers Bn over An for all wealth levels x, for all sure losses k and, in partiular,for all zero-mean risks ǫ. A prudent deision maker, for example, will prefer to disaggregate the sureloss −k and the zero-mean risk ǫ. That is, she prefers to have the two items in di�erent rather than inthe same of two equally likely states of nature. In other words, she disaggregates the two �harms� of a



6 Sebastian Ebertsure loss and a zero-mean risk.4 A �nanial eonomist might speak of a preferene for diversi�ation. Anequivalent interpretation is that the additional risk is preferred when wealth is higher. These numerousinterpretations already illustrate the impliit generality of the preferene. Moreover, preferene betweenthe proper risk apportionment lotteries has strong impliations within the EU framework as shown byEekhoudt and Shlesinger (2006).Theorem 1 Within the EU paradigm with di�erentiable utility funtion u, proper risk apportionmentof order n is equivalent to the ondition sgn(u(n)) = (−1)n+1.Thus, the lottery preferene of B2 over A2, for example, is equivalent to a onave utility funtion withinthe di�erentiable EU framework, i.e. to risk aversion. While none of the results in this paper are basedon EU, the above theorem tells us how to interpret them under the assumption of EU.Next we review the qualitative de�nitions of skewness and kurtosis, respetively. For the purpose of thispaper, it will be partiularly insightful to disuss how skewness and kurtosis are re�eted in disrete(lottery) distributions. This will be done with referene to Figure 1.Generally, a distribution is right-skewed if it has a longer right tail. This is true for lottery BS
3 in Figure1 beause the low outome 1 has a small distane to the mean of 1.5, whereas the high outome 3 has alarge distane to the mean. In general, any binary lottery is right-skewed if and only if the high outomeours with the smaller probability. Formally, this is a onsequene of Theorem 1 in Ebert and Wiesen(2009) and Theorem 2 in this paper. Thus, lottery AS

3 in Figure 1 (whih also has mean 1.5) is left-skewed.The partiular lottery pair (AS
3 , BS

3 ) has been introdued in Mao (1970) and motivated the de�nition ofdownside risk aversion in Menezes et al. (1980). A downside risk-averse deision maker will prefer BS
3over AS

3 . She rather goes for the smaller outome 1 most of the time suh that she is safe with respetto the worst outome 0 that an our when taking AS
3 instead. Choie BS

3 also implies a small haneof winning the high prize (outome 3).Now we onsider the lotteries BS
4 and AS

4 in Figure 1 to disuss kurtosis. Generally, high kurtosis of adistribution implies peakedness and fat tails. Peakedness means that there is a high probability (a �peak�in the frequeny distribution) of outomes lose to the mean. Fat tails mean that there is a hane ofextreme outomes (ompared to the mean) to our, i.e. suh outomes have a high probability mass.This is true for lottery A4, whih has a probability peak of 6/8 at its mean, whih is 2. Lottery BS
4 , inontrast, has no probability mass at its mean (whih is also 2) and its outomes are also less extremeompared to those of lottery BS

4 . Thus, lottery AS
4 has a higher kurtosis than lottery BS

4 .Now we disuss statistial moments and how they relate to skewness and kurtosis. We denote the pth(non-standardized) entral moment of a random variable Z by
Mp(Z) = E[(Z − E[Z])p].4 This interpretation from Eekhoudt and Shlesinger (2006) requires the deision maker to be risk-averse suh that azero-mean risk indeed onstitutes a harm.



Moment haraterization of higher-order risk preferenes 7When speaking of moments we always mean (non-standardized) entral moments. It is important to notethat in this paper skewness and kurtosis do not refer to the third and fourth moment, respetively. Ifnot noted otherwise, they refer to the qualitative features disussed above. One reason is that the thirdand fourth moment, respetively, might fail to indiate that a distribution is more skewed or leptokurtithan another one.5 On the other hand, all higher odd and even moments share reasonable propertiesof a skewness and kurtosis measure, respetively; see van Zwet (1964). In general, the link between any�nite number of moments and preferene is �awed. For example, for any utility funtion u with u′ > 0and u′′ < 0, there exist random variables X and Y suh that X has the higher mean and the lowervariane, but u prefers Y to X ; see Brokett and Kahane (1992) and Brokett and Garven (1998) forexpliit examples. Therefore, a more reliable requirement for a distribution to be more skewed is thatall odd moments are at least as high as the orresponding moments of the distribution in omparison.Likewise, for a distribution to be more leptokurti, all its even moments are required to be higher. Theresults in our disussion of higher-order risk preferenes, skewness preferene and kurtosis aversion anbe based on these strong notions of skewness and kurtosis.6The following theorem shows that in the ase of binary risks any single odd moment is an appropriatemeasure of skewness, as the sign of all other odd moments is redundant. It also provides additionalintuition to the reent result of Chiu (forthoming), who shows that all binary risks are generalizedskewness omparable implying that third-order moment preferenes over suh risks are onsistent withEU maximization. As binary risks are widely employed in experiments the result ould be useful to testfor skewness preferene.Theorem 2 Consider a binary lottery B = Xy1 + (1 − X)y0 with X being Bernoulli distributed withparameter p and without loss of generality let y1 > y0. Then
∃ n ≥ 3 odd: Mn(B) < 0 =⇒ Mn(B) < 0 ∀ n ≥ 3 oddwhere the relation < may be replaed by > or = .3 Prudene, Temperane and MomentsIn this setion, we present the statistial haraterizations of prudene and temperane in terms ofmoments. The following Propositions 1-4 generalize Propositions 1-4 in Roger (forthoming) to arbitraryzero-mean risks. Proposition 1 is a generalization of Proposition 3 in Ebert and Wiesen (2009) to momentsof order higher than 4. Propositions 1-4 are also generalizations of results in Ekern (1980) in that theyonsider all moments rather than only moments 1, 2, . . . , n where n is the onsidered degree of riskaversion.We start with Proposition 1 whih presents a statistial haraterization of prudene in terms of moments.5 We give suh an example for the third moment in Figure 3.6 For more on moments and other measures of skewness see, e.g., MaGillivray (1986).



8 Sebastian EbertProposition 1 (All moments of the prudene lotteries.)For p ∈ N we have
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, p odd.Further, the di�erene Mp (B3) − Mp (A3) is stritly positive for all p odd. For all p even, it an bepositive, negative or zero.From Menezes et al. (1980) we already knew that the prudene lotteries have equal mean and varianeand that B3 has a higher third moment. These results are reovered from part (3) in Proposition 1 byonsidering p = 1, 2, 3. Firstly, let us disuss the impliation from part (3) stating that all odd momentsfor the prudent lottery hoie B3 are stritly larger than those of the orresponding imprudent lottery

A3. This shows that the prudent lottery hoie B3 is indeed more skewed to the right (not only inan approximate third-order sense), for all possible zero-mean risks. Seondly, part (3) implies that theeven moments may not be idential as proven for symmetri zero-mean risks ǫ1 in Roger (forthoming).Roger's result is obtained as a speial ase from part (3), as symmetry of a random variable implies allits odd moments to be zero. Proposition 1 shows that in that ase, and only in that ase, lotteries A3and B3 have equal kurtosis. This an also be seen qualitatively from our sample lottery pair in Figure 1.Both lotteries AS
3 and BS

3 have a 3/4-probability peak at an outome lose to the mean (distane of 0.5)whih are 2 and 1, respeitively. The �extreme� outomes of lotteries AS
3 and BS

3 are 0 and 3, respetively.Both have a distane of 1.5 from the mean and our with equal probability.In the general ase, the even moments of the prudent hoie an be larger or smaller than those ofthe imprudent hoie. They are larger (smaller) if and only if the zero-mean risks to be apportionedare right-skewed (left-skewed), in the sense that most of its odd moments are positive (negative). Anexample is given in Figure 2. Lottery BR
3 has a 7/8 probability peak at 1 whih is lose to the mean of

1.5. It also has a very extreme outome 5. Lottery AR
3 in ontrast has only a 4/8 probability peak at theoutome 2 whih is lose to the mean and both remaining outomes 0 and 4 are less extreme than 5 astheir distane to the mean of 1.5 is smaller. Analogous arguments apply to lottery pair (AL

3 , BL
3 ) wherethe zero-mean risk is left-skewed and thus AL

3 has the higher kurtosis.In general, prudene must be understood as a preferene for high skewness (i.e. high odd moments of allorders) that is robust towards variation in kurtosis (i.e. di�erenes in high even moments of all orders).



Moment haraterization of higher-order risk preferenes 9We refer to this as the kurtosis robustness feature of prudene. That is, prudene not only determinespreferene between distributions that purely di�er in their skewness. Prudene implies preferene fordistributions with higher skewness independent of whether they have the higher or smaller kurtosis. Tobest of our knowledge, this has not yet been pointed out in any disussion of prudene and skewnesspreferene.Thus, the restrition to symmetri zero-mean risks in the proper risk apportionment model of Eekhoudtand Shlesinger (2006) is rather severe from a statistial point of view. It redues prudene to �pure�skewness seeking (distributions with higher odd moments are preferred) and neglets the kurtosis robust-ness feature. Empirial support for the kurtosis robustness feature has been found in the experiment ofEbert and Wiesen (2009) who onlude that there is more to prudene than skewness seeking. A prudentdeision is made more frequently when the zero-mean risk is left-skewed, i.e. the even moments are higherfor the imprudent hoie. An interpretation is that when the risk is left-skewed, for a prudent deisionmaker it onstitutes a greater harm suh that there is a higher neessity to be prudent. Proposition 1 is ageneralization of their Proposition 3 whih puts their result on a sound theoretial basis that is not basedon an approximate fourth-order analysis. Next we present a haraterization of temperane in terms ofmoments.Fig. 2 Prudene lottery pairs with skewed zero-mean risksPrudene lottery pair with right-skewed (R) zero-mean risk
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8Prudene lottery with left-skewed (L) zero-mean risk
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8This Figure shows a prudene lottery pair (AL
3
, BL

3
) where the zero-mean risk ǫ1 is left-skewed and a prudene lotterypair (AR

3
, BR

3
) where the zero-mean risk ǫ1 is right-skewed. Both BL

3
and BR

3
are, respetively, more skewed to the rightthan AL

3
and AR

3
. However, whereas BR

3
has a higher kurtosis than AR

3
, BL

3
has a smaller kurtosis than AL

3
. This is inaordane with the result on moments proven in Proposition 1. The prudene lotteries with the right-skewed zero-meanrisk are onstruted with initial wealth x = 2, loss −k = −1 and the zero-mean risk ǫ1 yields 3 with probability 1/4 and

−1 with probability 3/4. For the prudene lotteries with the left-skewed zero-mean risk, initial wealth is x = 2, the loss is
−k = −1 and the zero-mean risk ǫ1 yields −3 with probability 1/4 and 1 with probability 3/4.



10 Sebastian EbertProposition 2 (All moments of the temperane lotteries.) For p ∈ N

(1) Mp (A4) =
1

2

p
∑

j=0

(
p

j

)

E
[

ǫj
1

]

E
[

ǫp−j
1

]

(2) Mp (B4) =
1

2
(E [ǫp

2] + E [ǫp
1])

(3) Mp (B4) − Mp (A4) = −
1

2





p−1
∑

j=2

(
p

j

)

E
[

ǫj
1

]

E
[

ǫp−j
2

]



 .Further, for p > 4 odd the di�erene Mp (B3) − Mp (A3) an be positive, negative or zero.
Roger (forthoming) further shows that in the ase of symmetri zero-mean risks

Mp (An) = Mp (Bn) = 0 ∀ p odd.For illustrative purposes, onsider the ase of p = 5 and n = 4. Using equation (5), we have
M5 (B4) − M5 (A4) = −

1

2





5−1∑

j=2

(
5

j

)

E
[

ǫj
1

]

E
[

ǫ5−j
2

]





= −
1

2

((
5

2

)

E
[
ǫ21
]
E
[
ǫ32
]
+

(
5

3

)

E
[
ǫ31
]
E
[
ǫ22
]
+ 0

) (1)whih an be positive, negative or zero, depending on the third moments of the zero-mean risks. Theproof in the appendix essentially generalizes this example to all odd moments. We interpret the laststatement of Proposition 2 as the skewness robustness feature of temperane. Roger also shows that
Mp (B4) − Mp (A4) < 0 holds for all p > n even. This we annot prove in the general ase. To see thereason why, in equation (5) set p = 6 and n = 4, i.e.

M6 (B4) − M6 (A4) =
1

2





5∑

j=2

(
6

j

)

E
[

ǫj
1

]

E
[

ǫ6−j
2

]





= −
1

2

(

0 +

(
6

2

)

E
[
ǫ21
]
E
[
ǫ42
]
+

(
6

3

)

E
[
ǫ31
]
E
[
ǫ32
]
+

(
6

4

)

E
[
ǫ41
]
E
[
ǫ22
]
+ 0

)

. (2)This expression might beome positive if the middle term is negative whih ould happen if and only ifthe two zero-mean risks are adversely skewed. However, we ould onjeture that for all random variables
ǫ1 and ǫ2 this is not possible. Using Proposition 2, part (3), the onjeture an be validated or dismissedfor any risks spei�ally onsidered. Evidently, it is true if both zero-mean risks are symmetri or skewedin the same diretion. For prudene, we obtained the lear statement that proper risk apportionmentimplies preferene for large odd moments of all orders that is robust towards variation in the evenmoments. Analogously, we �nd some evidene that temperane is a preferene for small even moments(kurtosis aversion) that is robust towards variation in the odd moments (skewness robustness).



Moment haraterization of higher-order risk preferenes 114 Higher-order generalizationsIn this setion, we generalize the results from the previous setion to risk apportionment of orders higherthan 4. Lemma 1 presents reursive formulae that an be used to ompute any moment of a proper riskapportionment lottery of any order and thus ompletes our moment haraterization of higher-order riskpreferenes.Lemma 1 For n ≥ 3 (even or odd) we have the following reursive formulae
Mp(An) =

1

2



Mp(Bn−2) + Mp(An−2) +

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(An−2)



 (3)
Mp(Bn) =

1

2



Mp(An−2) + Mp(Bn−2) +

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(Bn−2)



 (4)
Mp (Bn) − Mp (An) =

1

2





p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

(Mp−j(Bn−2) − Mp−j(An−2))



 . (5)We now investigate how our Proposition 2 and Roger's Proposition 3 generalize to higher even orders.Proposition 3 Let n ≥ 4.

(1) Mp (An) − Mp (Bn) = 0, for 1 ≤ p < n

(2) Mn (An) > Mn (Bn) , for p = n.Further, for p > n odd the di�erene Mp (B3) − Mp (A3) an be positive, negative or zero.The last statement says that all higher-order risk preferenes of even order have a skewness robustnessfeature, i.e. the preferred lottery may or may not have higher odd moments of any order. As Rogershowed for symmetri zero-mean risks, we also onjeture (as we did in the ase of temperane) that inthe general ase Mp (An) > Mp (Bn) for p ≥ n even is true. For any lotteries spei�ally onsidered, thisan be heked using equation (5) in Lemma 1. The next Proposition generalizes Roger's Proposition 4.Proposition 4 n ≥ 3 odd.
(1) Mp (An) = Mp (Bn) for p < n

(2) Mp (Bn) − Mp (An) > 0 for p = n.Further, for p > n even the di�erene Mp (B3) − Mp (A3) an be positive, negative or zero.



12 Sebastian EbertThe last statement says that all higher-order risk preferenes of odd order have a kurtosis robustnessfeature. Under the symmetry assumption, for n ≥ 3 odd Roger (forthoming) shows
(1a) Mp(An) = Mp(Bn) = 0 ∀ p < n odd,
(2′) Mp(An) = −Mp(Bn) < 0 ∀ p ≥ n odd,
(3) Mp(An) = Mp(Bn) ∀ p > n even.While (1a) trivially holds for prudene, in general only the �rst equality is true. The following is aounterexample for the seond inequality. For n = 5 and p = 3 the reursive formula derived in Lemma 1,equation (5) gives

M3(A5) =
1

2



M3(B3) + M3(A3) +

3∑

j=2

(
3

j

)

E[ǫj
2]M3−j(A3)



 .From Proposition 1, M3(B3) = 1
2

((
3
2

)
E[ǫ21]

k
2 + E[ǫ31]

)
, M3(A3) = 1

2

((
3
2

)
E[ǫ21]

(
−k

2

)
+ E[ǫ31]

) and M1(A3) =

0 suh that
M3(A5) = 2E[ǫ31]whih an be negative, positive or zero, depending on the asymmetry of the zero-mean risks.A ounterexample for (3) is given by the fourth entral moment of the prudene lotteries, i.e. n = 3 and

p = 4, as disussed subsequent to Proposition 1.The equality in (2') is not true and a ounterexample is given by the third moment of the prudenelotteries; see parts (1) and (2) of Proposition 1. Also, in the general ase we annot prove the inequality
Mp(Bn) − Mp(An) > 0 for p odd, whih is redundant from (2'). To see the reason why, take n = 5 and
p = 7 in (5) and impute the expressions for the moments of the prudene lotteries stated in Proposition1. We get

M7(B5) − M7(A5) =
1

2







7∑

j=2, j even(7

j

)

E
[

ǫj
5

]





7−j
∑

l=2, l even(7 − j

l

)

E
[
ǫl
2

]
(

k

2

)7−j−l




+

7∑

j=2, j odd(7

j

)

E
[

ǫj
5

]





7−j
∑

l=2, l odd(7 − j

l

)

E
[
ǫl
3

]
(

k

2

)7−j−l









.The seond sum of the above expression an be omputed as

(
7

3

)

E
[
ǫ35
]

(

+

(
4

3

)

E
[
ǫ33
]
(

k

2

)1
)

+

(
7

5

)

E
[
ǫ55
]
·

((
2

1

)

· 0

)

= 4E
[
ǫ33
]
(

k

2

)

,whih might be negative suh that the whole expression might be negative. However, we again onjeturethat this is not possible. For the prudene lotteries Mp(Bn) − Mp(An) > 0 for p ≥ 3 odd is true (see



Moment haraterization of higher-order risk preferenes 13Proposition 1). It is also true for the example of the edginess lottery pair depited in Figure 3. Clearly,
BS

5 is skewed to the right as it has a long right tail due to outome 4 being far right of the mean of 1.5and ouring with small probability. The right tail is shorter as outome 0 is loser to the mean and hasheavier probability mass. Analogous arguments imply that AS
5 is left-skewed. As all zero-mean risks usedin the onstrution of (AS

5 , BS
5 ) are symmetri, all even moments of the two lotteries are equal, i.e. theyhave the same kurtosis. Likewise, BS

5 has higher odd moments of order 5 and higher whih indiates thatit is more skewed to the right, although the third moments of the lotteries are the same.The previous example shows two important points. Firstly, it illustrates why the third moment of adistribution an fail as a measure of skewness. Seondly, prudene does not exhaustively desribe skewnesspreferene. The right-skewed lottery BS
5 is preferred to the left-skewed lottery AS

5 if and only if the deisionmaker exhibits edginess. This illustrates that higher-order risk preferenes of any order are important inmodeling skewness preferene. Analogous arguments show that all higher-order risk preferenes of evenorder imply kurtosis aversion in a omplementary way.Fig. 3 Edginess lottery pair with symmetri (S) zero-mean risks
BS

5

41

16

2

10

16

0
5

16

AS
5

35

16

1

10

16

−1
1

16This �gure shows an edginess lottery pair (AS
5
, BS

5
) where both zero-mean risks are symmetri. BS

5
is more skewed tothe right than AS

5
, although the lotteries do not di�er in their third moment. BS

5
has higher odd moments of all ordershigher than three. Initial wealth is x = 2, loss −k = −1 and the zero-mean risks ǫ̃1 and ǫ̃2 both yield 1 or −1 withequal probability. Thus, the nested prudene lotteries used in the onstrution are AS

3
and BS

3
displayed in Figure 1.

5 ConlusionIn this paper, we presented a haraterization of higher-order risk preferenes in terms of statistialmoments. This haraterization provides a better understanding of how higher-order risk preferenes arerelated to skewness preferene and kurtosis aversion. Further, moments are well understood suh thatour results should be easily aessible to a wide audiene in eonomis and �nane.Prudene is shown to be a preferene for high odd moments (skewness seeking) that is robust towardsvariation in the even moments (kurtosis robustness). In partiular, prudene does not only determinepreferene between distributions that purely di�er in their skewness. However, restrition to symmetrizero-mean risks in the proper risk apportionment model of Eekhoudt and Shlesinger redues prudeneto �pure� skewness seeking. Thus, our theoretial results are in line with experimental evidene by Ebertand Wiesen (2009), who �nd that there is more to prudene than skewness seeking. Analogous results



14 Sebastian Ebertin the present paper relate temperane to preferene for small even moments (kurtosis aversion) that isrobust towards variation in the odd moments (skewness robustness).Moreover, we showed that not only prudene and temperane, but all higher-order risk preferenes of oddand even order, respetively, are related to skewness preferene and kurtosis aversion in a omplementaryway. This highlights the importane of these onepts whih are generally viewed as rather abstrat andthus have not reeived that muh attention in the literature yet.Appendix (Proofs)Proof of Theorem 2. We �rst show that M3(B) < 0 implies Mn(B) < 0 ∀ n > 3 odd. Using translationinvariane we an write the nth entral moment of B as
Mn(B) = Mn(B − y0) = Mn (X(y1 − y0)) = E [(X(y1 − y0) − p(y1 − y0))

n]whih for the Bernoulli distribution an be omputed expliitly as
Mn(B) = p ((y1 − y0) − p(y1 − y0))

n
+ (1 − p) (−p(y1 − y0))

n
.Using that n is odd this is easily simpli�ed to

Mn(B) = (y1 − y0)
n · (p (1 − p)n − (1 − p)pn) .It is easily seen that (p(1 − p)n − (1 − p)pn) < 0 ⇐⇒ p > 0.5, and sine (y1 − y0)

n > 0 by de�nition wehave
Mn(B) < 0 ⇐⇒ p > 0.5. (6)From Theorem 1 in Ebert and Wiesen (2009) we have that p > 0.5 if and only if the third entral momentof B is stritly negative. Thus the laim is proved for n = 3 by the neessity of the equivalene in (6).Now suppose that for some (arbitrary) n we have Mn(B) < 0. Then by the su�ieny in (6) we have

p > 0.5 whih implies M3(B) < 0 from whih the laim follows as just demonstrated. The statementsfor the other relations are obtained analogously. �The following lemma is proven in Roger (forthoming) and will be used several times in our proofs.Lemma 2 (Roger's Lemma) Let X be Bernoulli distributed with parameter 0.5 and be independent from
Y1 and Y2. Then:

E [(XY1 + (1 − X)Y2)
p] =

1

2
(E [Y p

1 ] + E [Y p
2 ]) .If E[Y1] = E[Y2], then

Mp [XY1 + (1 − X)Y2] =
1

2
(Mp [X ] + Mp [Y ]) .



Moment haraterization of higher-order risk preferenes 15Proof of Proposition 1. We �rst de�ne auxiliary lotteries
Â3 := A3 +

k

2
= X ·

k

2
+ (1 − X)

(

−
k

2
+ ǫ1

)

B̂3 := B3 +
k

2
= X

(

−
k

2

)

+ (1 − X)

(

ǫ1 +
k

2

)

.These lotteries an be understood as the prudene lotteries shifted suh that they have mean zero.Beause the operator Mp(·) is translation invariant we have
Mp(A3) = Mp(Â3) = E[Âp

3] (7)whih analogously holds for B3. Thus it su�es to fous on the omputation of the non-entral moments
E[Âp

3] and E[B̂p
3 ]. In the seond equality below we apply Roger's Lemma and obtain

Mp (A3) = E

[{

X ·
k

2
+ (1 − X)

(

ǫ1 −
k

2

)}p]

=
1

2
E

[(

ǫ1 +

(

−
k

2

))p]

+
1

2

(
k

2

)p

=
1

2
E





p
∑

j=0

(
p

j

)

ǫj
1

(

−
k

2

)p−j


+
1

2

(
k

2

)p

=
1

2

p
∑

j=2

(
p

j

)(

−
k

2

)p−j

E
[

ǫj
1

]

+
1

2

((

−
k

2

)p

+

(
k

2

)p)

. (8)where we used that the summand for j = 1 is zero sine E[ǫ1] = 0. This argument will be used severaltimes in the proofs of this paper. Similarly, for B3 we get
Mp (B3) =

1

2

p
∑

j=2

(
p

j

)(
k

2

)p−j

E
[

ǫj
1

]

+
1

2

((

−
k

2

)p

+

(
k

2

)p)

. (9)To prove (1) and (2), if p is odd we have
Mp (A3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](

−
k

2

)p−j

+
1

2

(

−

(
k

2

)p

+

(
k

2

)p)

=
1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](

−
k

2

)p−jand analogously
Mp (B3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](k

2

)p−j

.



16 Sebastian EbertIf p is even
Mp (A3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](

−
k

2

)p−j

+
1

2

((
k

2

)p

+

(
k

2

)p)

=

(
k

2

)p

+
1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](

−
k

2

)p−jand analogously
Mp (B3) =

(
k

2

)p

+
1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

](k

2

)p−j

.

Proof of part (3). For odd p, using the expressions proven in (1) and (2), this di�erene an be omputedas
Mp (B3) − Mp (A3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

]
((

k

2

)p−j

−

(

−
k

2

)p−j
)

︸ ︷︷ ︸

=







2
(

k
2

)p−j
, p − j odd ⇔ j even

0 , o.w.
=

p
∑

j=2, j even(p

j

)

E
[

ǫj
1

](k

2

)p−j

.Similarly, for even p we obtain
Mp (B3) − Mp (A3) =

1

2

p
∑

j=2

(
p

j

)

E
[

ǫj
1

]
((

k

2

)p−j

−

(

−
k

2

)p−j
)

︸ ︷︷ ︸

=







2
(

k
2

)p−j
, p − j odd ⇔ j odd

0 , o.w.
=

p
∑

j=2, j odd(p

j

)

E
[

ǫj
1

](k

2

)p−j

.The laims on the sign of Mp (B3) − Mp (A3) are evident from the expressions proved. �Proof of Proposition 2. The proof essentially follows that of Roger for the symmetri ase. By appliationof Roger's Lemma we have
Mp (A4) = E [(1 − X)

p
(ǫ1 + ǫ2)

p
] =

1

2
E [(ǫ1 + ǫ2)

p
]

=
1

2

p
∑

j=0

(
p

j

)

E
[

ǫj
1

]

E
[

ǫp−j
2

]



Moment haraterization of higher-order risk preferenes 17and
Mp (B4) =

1

2
(E [ǫp

2] + E [ǫp
1]) .Claim (3) follows immediately by substration. For the last statement, onsider the produts E

[

ǫj
1

]

·

E
[

ǫp−j
2

]

. Suppose both zero-mean risks are binary and reall the result of Theorem 2. Obviously, if bothzero-mean risks are right-skewed, then all these produts are positive suh that Mp (B4)− Mp (A4) < 0.If both zero-mean risks are symmetri, we have that the di�erene is zero (as shown by Roger). Finally,as p is odd, p − j is odd if and only if j is even. Thus, if both zero-mean risks are left-skewed, we havethat (B4) − Mp (A4) > 0. �

Proof of Lemma 1. First, let n be even. By Roger's Lemma we have
Mp (An) = E [Ap

n] = E
[(

XBn−2 + (1 − X)
(
An−2 + ǫ

xn/2y

))p]

=
1

2

(
E
[
Bp

n−2

]
+ E

[(
An−2 + ǫ

xn/2y

)p])

=
1

2



E
[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

E
[

Ap−j
n−2

]





=
1

2



E
[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(An−2)



 (10)and similarly
Mp (Bn) =

1

2

(
E
[
Ap

n−2

]
+ E

[(
Bn−2 + ǫ

xn/2y

)p])

=
1

2



E
[
Bp

n−2

]
+ E

[
Ap

n−2

]
+

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(Bn−2)



 . (11)Thus we get
Mp (Bn) − Mp (An) =

1

2





p
∑

j=2

(
p

j

)[

ǫj
xn/2y

]

(Mp−j(Bn−2) − Mp−j(An−2))



whih is equation (5). Now assume n is odd. Like in the proof of Proposition 1 de�ne Â3 = A3 + k
2 and

B̂3 = B3 + k
2 . For n ≥ 5 we naturally extend this de�nition, i.e. let

Ân = XB̂n−2 + (1 − X)
(

ǫ
xn/2y

+ Ân−2

)

B̂n = XÂn−2 + (1 − X)
(

ǫ
xn/2y

+ B̂n−2

)

.



18 Sebastian EbertThen, like in the proof of Proposition 1, we have
Mp (An) = Mp

(

Ân

)

= E
[

Âp
n

]

=
1

2

(

E
[

B̂p
n−2

]

+ E
[(

ǫ
xn/2y

+ Ân−2

)p])

=
1

2



E
[

B̂p
n−2

]

+

p
∑

j=0

(
p

j

)

E
[

ǫj
xn/2y

]

E
[

Âp−j
n−2

]





=
1

2



E
[

B̂p
n−2

]

+ E
[

Âp
n−2

]

+

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

E
[

Âp−j
n−2

]





=
1

2



Mp(Bn−2) + Mp(An−2) +

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(An−2)



 (12)and analogously
Mp (Bn) =

1

2



Mp(An−2) + Mp(Bn−2) +

p
∑

j=2

(
p

j

)

E
[

ǫj
xn/2y

]

Mp−j(Bn−2)



 . (13)Equations (12) and (13), respetively, are idential to equations (10) and (11). Thus the subtration ofequation (12) from equation (13) is also given by equation (5). �Proof of Proposition 3. We prove (1) by indution. For n = 4 we show that for p = 1, 2, 3 the summandsin the equation of Proposition 2, part (3), are zero. The only e�etive summand is for p = 3 whih iszero beause E[ǫ3−2
2 ] = 0. Now assume the laim is true for n − 2. Let p < n. For j = 2, 3, ..., n we have

p− j < n− j ≤ n−2, thus Mp−j(Bn−2)−Mp−j(An−2) = 0 by the indution assumption. Then the laimdiretly follows from equation (5) in Lemma 1. Also (2) is proven by indution. For n = 4 the laim aneasily be inferred from Proposition 2, part (3). Now assume the laim is true for n− 2. Equation (5) for
p = n is

Mn(Bn) − Mn(An) =
1

2





n∑

j=2

(
n

j

)

E[ǫj
xn/2y

] (Mn−j(Bn−2) − Mn−j(An−2))



 . (14)For j = 2 we have Mn−2(Bn−2) − Mn−2(An−2) > 0 by the indution assumption, further E[ǫ2
xn/2y

] > 0and thus this summand is stritly positive. For j > 2 all summands are zero by Proposition part (1)of this Proposition and the laim follows. To prove the last statement, suppose that ǫ1, ǫ2, . . . , ǫxn/2y−1are symmetri. Then from Roger (forthoming), Proposition 3, we have that Mk (Bn−2)− Mk (An−2) isstritly positive for k ≥ n even and zero otherwise. We want to show that for p > n odd Mp (Bn)−Mp (An)an be positive, negative, or zero. In order to do this, we onsider the summands in Equation (5) inLemma 1 and start with those summands for whih j is even. As p is odd, p − j is odd and thus
Mp−j (Bn−2) − Mp−j (An−2) is zero always. If j is odd, then p − j is even and thus Mp−j (Bn−2) −

Mp−j (An−2) is zero if p − j < n − 2 and stritly positive otherwise. Now, if ǫ
xn/2y

is symmetri, i.e.
E[ǫj

xn/2y
] = 0 for all j odd, all summands are zero and we have (as proven by Roger) that Mp (Bn) −

Mp (An) = 0. If ǫ
xn/2y

is right-skewed and binary (see Theorem 2), then all summands are positive and
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xn/2yis left-skewed and binary, we obtain that Mp (Bn) − Mp (An) < 0. �Proof of Proposition 4. By indution. For prudene, i.e. n = 3, both laims (1) and (2) ould be veri�edusing part (3) of Proposition 1. However, the results are also given in Crainih and Eekhoudt (2006)and Ebert and Wiesen (2009). Suppose the laim is true for n−2. For part (1), the indution assumptionis that p < n − 2 implies that Mp (Bn−2) − Mp (An−2) = 0. If p < n, then for j = 2, 3, . . . , p we have

p − j < n − j ≤ n − 2. Thus Mp (Bn−2) − Mp (An−2) = 0 for j = 2, 3, . . . , p suh that eah summandon the right hand side of equation (5) in Lemma 1 is zero. For part (2), the indution assumption is
Mn−2 (Bn−2)−Mn−2 (An−2) > 0. Consider equation (14) whih likewise holds for n odd. The summandfor j = 2 is stritly positive by the indution assumption and all other summands are zero by part (1)of this Proposition and the laim follows. To prove the last statement, suppose that ǫ1, ǫ2, . . . , ǫxn/2y−1are symmetri. Then from Roger (forthoming), Proposition 4, we have that Mk (Bn−2)− Mk (An−2) isstritly positive for k ≥ n odd and zero otherwise.We want to show that for p > n evenMp (Bn)−Mp (An)an be positive, negative, or zero. In order to do this, we onsider the summands in Equation (5) inLemma 1 and start with those summands for whih j is even. As p is even, p − j is even and thus
Mp−j (Bn−2) − Mp−j (An−2) is zero always. If j is odd, then p − j is odd and thus Mp−j (Bn−2) −

Mp−j (An−2) is zero if p − j < n − 2 and stritly positive otherwise. Now, if ǫ
xn/2y

is symmetri, allsummands are zero and we have (as proven by Roger) that Mp (Bn) − Mp (An) = 0. If ǫ
xn/2y

is right-skewed and binary (see Theorem 2), then all summands are positive and as p > n at least one summandis stritly positive, suh that Mp (Bn) − Mp (An) > 0. Similarly, if ǫ
xn/2y
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