Skip to main content
Log in

The Milky Way’s Supermassive Black Hole: How Good a Case Is It?

A Challenge for Astrophysics & Philosophy of Science

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The compact and, with \({\sim }4.3\pm 0.3\times 10^6\) M\(_{\odot }\), very massive object located at the center of the Milky Way is currently the very best candidate for a supermassive black hole (SMBH) in our immediate vicinity. The strongest evidence for this is provided by measurements of stellar orbits, variable X-ray emission, and strongly variable polarized near-infrared emission from the location of the radio source Sagittarius A* (SgrA*) in the middle of the central stellar cluster. Simultaneous near-infrared and X-ray observations of SgrA* have revealed insights into the emission mechanisms responsible for the powerful near-infrared and X-ray flares from within a few tens to one hundred Schwarzschild radii of such a putative SMBH. If SgrA* is indeed a SMBH it will, in projection onto the sky, have the largest event horizon and will certainly be the first and most important target for very long baseline interferometry observations currently being prepared by the event horizon telescope (EHT). These observations in combination with the infrared interferometry experiment GRAVITY at the very large telescope interferometer and other experiments across the electromagnetic spectrum might yield proof for the presence of a black hole at the center of the Milky Way. The large body of evidence continues to discriminate the identification of SgrA* as a SMBH from alternative possibilities. It is, however, unclear when the ever mounting evidence for SgrA* being associated with a SMBH will suffice as a convincing proof. Additional compelling evidence may come from future gravitational wave observatories. This manuscript reviews the observational facts, theoretical grounds and conceptual aspects for the case of SgrA* being a black hole. We treat theory and observations in the framework of the philosophical discussions about “(anti)realism and underdetermination”, as this line of arguments allows us to describe the situation in observational astrophysics with respect to supermassive black holes. Questions concerning the existence of supermassive black holes and in particular SgrA* are discussed using causation as an indispensable element. We show that the results of our investigation are convincingly mapped out by this combination of concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. In the context of the Galactic Center, the black hole mass is given in millions of solar masses (M\(_{\odot }\) \(\,= 1.98\times 10^{30}\) kg).

  2. e.g. the European Southern Observatory’s Very Large Telescope on Paranal in Chile or the W.M. Keck Observatory’s Keck telescopes on Mauna Kea in Hawai’i, USA.

  3. The EHT is a Very Long Baseline Interferometry (VLBI) array working at millimeter wavelengths, and dedicated for observing the event horizons (but see section 2.2) of the largest SMBHs in the sky; http://www.eventhorizontelescope.org/.

  4. For a detailed account for the history of black holes, see [153].

  5. “When the long eye of Herschel Burrowed the heavens Near the belt of Orion He trembled in awe At the black hole of Chaos”.

  6. For black holes the spin can be characterized by the angular momentum parameter \(a=J/Mc\), where J is the angular momentum, M the mass of the black hole, and c is the speed of light.

  7. LISA and eLISA are proposed Laser Interferometer Space Antennae; see https://www.elisascience.org/.

  8. Recent aspects regarding quantum properties of very small black holes (which are not subject of our article but are important to get a complete picture of the envisaged properties of back holes) are given in e.g. [19, 20, 49, 142, 168, 261].

  9. The same mathematical formalism allows us to include the magnetic charge (a monopole) as the “fourth hair”. However, this possibility is usually rejected on simple physical grounds—there are no magnetic monopoles found in nature so far.

  10. Because GR is time-symmetric, there is also a past event horizon. It is the boundary of a so-called “white-hole region”, that is, a spacetime region into which nothing can enter and which thus will never become part of an external observer’s future. White holes are usually excluded for thermodynamic reasons, analogously to the exclusion of advanced potentials in electrodynamics, cf. [328] for a careful and detailed discussion of these issues.

  11. Hawking has recently claimed that only apparent horizons exist [143].

  12. For the observers of the black hole’s “shadow”, it is perhaps the photon sphere that is the most important quantity.

  13. Provided the so-called “null energy condition” holds.

  14. Angular scales in this context are mostly given in fractions of arcseconds, i.e., milliarcseconds (mas) or microarcseconds (\(\upmu \)as). While the physical distance to the Galactic Center is given in kilo-parsecs (kpc; one parallactic second or 1 pc = 3.09\(\times 10^{16}\) m) the physical scales at the Center are given in light years (ly = 9.46\(\times \)10\(^{15}\) m) or parsecs (parallactic seconds or 1 pc = 3.3 ly) or fractions thereof, i.e., milli-parsecs (mpc) or micro-parsecs (\(\upmu \)pc). On even smaller scales, the sizes are given in astronomical units (AU = 149,597,871 km) or in Schwarzschild radii \(R_s\) that are linked to the black hole mass M via \(R_s\) = \(\frac{2GM}{c^2}\), where G is the gravitational constant and c is the speed of light.

  15. Values from Menten et al. [193] with corrections by Reid et al. [254]: (J2000).

  16. A Plummer 3-dimensional density profile with the Plummer radius \(r_0\) is given by \(\rho =\rho _0 (1+\frac{r}{r_0})^{-\alpha }\). Functions of this form are often used as models to describe the density profile of dense stellar clusters.

  17. For black holes the spin can be characterized via the angular momentum parameter \(a=J/Mc\), where J is the angular momentum and M the mass of the black hole. It has the dimension of a length and lies in the interval between zero and \(a^2 \le (GM/c^2)^2\). This results into the dimensionless parameter \(a^*=ac^2/GM\), which now lies between 0 and 1. Non-rotation black holes have \(a^*=0\) and maximally rotation black holes have \(a^*=1\). The spin is usually determined from modeling spin dependent quantities, like light curves of orbiting hot spots or observing jets (in Sect. 4.8) or searching for a black hole shadow (in Sect. 4.10).

  18. http://www.eventhorizontelescope.org/.

  19. https://www.eso.org/sci/facilities/alma.html.

  20. The Square Kilometre Array (SKA) will be the worlds largest radio telescope, with a collecting area of more than one square kilometre (one million square metres); https://www.skatelescope.org/.

  21. https://www.eso.org/sci/facilities/develop/instruments/gravity.html.

  22. http://www.jwst.nasa.gov/.

  23. http://constellation.gsfc.nasa.gov/.

  24. http://www.rssd.esa.int/index.php?project=XEUS.

  25. http://www.ligo.org/science.php.

  26. In the context of the SMBH candidate SgrA* at the Galactic Center and the large number of achievable and potential observables, the conceptual strategy laid out in Sect. 3 and depicted in Fig. 3 is not trivial. If several combinations of necessary conditions may lead to a convincing statement concerning the existence of an SMBH at the center of the Milky Way, then a conceptual or philosophical challenge arises through the fact that some are more convincing than others. A mere measurement of a relativistic jet might be less valued than the detection of an pulsar extremely close to the black hole. In this case, we would have to refrain from Boolean logic, in which only true and false (1 or 0) are allowed as values of the necessary and sufficient conditions N and S and the resulting value K (see Sect. 3.3). A many-valued logic in which the values of these conditions can be any real number between 0 and 1 is then a possible way and Eqs. (5)–(10) must be modified accordingly.

    Using the notation from Sects. 3.3 Eq. (8) would then for the sufficient condition \(\lambda '\) translate into:

    $$\begin{aligned} K_{\lambda '}=\Pi _{i=1}^{\mu (\lambda ')}~~~N_{\kappa _{i,\mu (\lambda ')}} \end{aligned}$$
    (18)

    The value of K will be high in case that a combination of necessary conditions have been met well. Then the favorite sufficient condition would have a value of:

    $$\begin{aligned} K=max\left[ K_{\lambda } | \lambda = 1 , \nu \right] =max\left[ \Pi _{i=1}^{\mu (\lambda )}~~~N_{\kappa _{i,\mu (\lambda )}} | \lambda = 1 , \nu \right] . \end{aligned}$$
    (19)
  27. The case of pulsars and the case of the identification of sources in which gamma-ray bursts originate may be a further example in which establishing existence claims is or has been important in the the recent history of physics.

References

  1. Aasi, J., Abadie, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Accadia, T., Acernese, F., Adams, C., Adams, T., et al.: Directed search for continuous gravitational waves from the Galactic center. Phys. Rev. D 88(10), 102002 (2013). arXiv:1309.6221

    Article  ADS  Google Scholar 

  2. Aasi, J., Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M.R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., et al.: Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005–2010. Phys. Rev. D 89(10), 102006 (2014). arXiv:1403.5306

    Article  ADS  Google Scholar 

  3. Abbott, B.P., Abbott, R., Abbott, T.D., Abernathy, M.R., Acernese, F., Ackley, K.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). doi:10.1103/PhysRevLett.116.061102

    Article  ADS  Google Scholar 

  4. Abdolrahimi, S., Mann, R.B., Tzounis, C.: Distorted local shadows. Phys. Rev. D 91(8), 084052 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Abramowicz, M.A., Kluźniak, W., Lasota, J.P.: No observational proof of the black-hole event-horizon. A&A 396, L31–L34 (2002). arXiv:astro-ph/0207270

    Article  ADS  MATH  Google Scholar 

  6. Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C.J., Babak, S.: Topical review: intermediate and extreme mass-ratio inspirals astrophysics, science applications and detection using LISA. Class. Quantum Gravity 24, R113–R169 (2007)

    Article  ADS  MATH  Google Scholar 

  7. Amaro-Seoane, P., Aoudia, S., Babak, S., et al.: Low-frequency gravitational-wave science with ELISA/NGO. Class. Quantum Gravity 29(12), 124016 (2012)

    Article  ADS  Google Scholar 

  8. Anderl, S.: Astronomy and astrophysics in the philosophy of science. (2015). arXiv:1510.03284

  9. Anderl, S.: Astronomy and Astrophysics. In: Humphreys, P. (ed.) The Oxford Handbook of Philosophy of Science. Oxford University Press, Oxford (2016). doi:10.1093/oxfordhb/9780199368815.013.45

  10. Arca-Sedda, M.: On the formation of compact, massive subsystems in stellar clusters and its relation with intermediate-mass black holes. MNRAS 455, 35–50 (2016). arXiv:1502.01242

  11. Armstrong, D. (ed.): A World of States of Affairs, p. 41. Cambridge University Press, Cambridge (2001). ISBN-13:9780521580649, ISBN-10:0521580641

  12. Baganoff, F.K., Bautz, M.W., Brandt, W.N., Chartas, G., Feigelson, E.D., Garmire, G.P., Maeda, Y., Morris, M., Ricker, G.R., Townsley, L.K., Walter, F.: Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic centre. Nature 413, 45–48 (2001)

    Article  ADS  Google Scholar 

  13. Baganoff, F.K., Maeda, Y., Morris, M., Bautz, M.W., Brandt, W.N., Cui, W., Doty, J.P., Feigelson, E.D., Garmire, G.P., Pravdo, S.H., Ricker, G.R., Townsley, L.K.: Chandra X-ray spectroscopic imaging of Sagittarius A* and the central parsec of the galaxy. ApJ 591, 891–915 (2003)

    Article  ADS  Google Scholar 

  14. Bahcall, J.N., Wolf, R.A.: Star distribution around a massive black hole in a globular cluster. ApJ 209, 214–232 (1976)

    Article  ADS  Google Scholar 

  15. Balick, B., Brown, R.L.: Intense sub-arcsecond structure in the galactic center. ApJ 194, 265–270 (1974)

    Article  ADS  Google Scholar 

  16. Barbour, J.B., Pfister, H. (eds.): Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, Boston (1995). ISBN 978-0-8176-3823-8

    MATH  Google Scholar 

  17. Bardeen, J.M.: Rapidly rotating stars, disks, and black holes. In: DeWitt, C., DeWitt, B.S. (eds.) Black Holes (Les Astres Occlus), pp. 241–289 (1973)

  18. Bardeen, J.M., Wagoner, R.V.: Relativistic disks. I. Uniform rotation. ApJ 167, 359 (1971)

    Google Scholar 

  19. Barrau, A., Rovelli, C., Vidotto, F.: Fast radio bursts and white hole signals. Phys. Rev. D 90(12), 127503 (2014)

    Article  ADS  Google Scholar 

  20. Barrau, A., Bolliet, B., Schutten, M., Vidotto, F.: Bouncing black holes in quantum gravity and the Fermi gamma-ray excess. (2016). arXiv:1606.08031

  21. Barrière, N.M., Tomsick, J.A., Baganoff, F.K., Boggs, S.E., Christensen, F.E., Craig, W.W., Dexter, J., Grefenstette, B., Hailey, C.J., Harrison, F.A., Madsen, K.K., Mori, K., Stern, D., Zhang, W.W., Zhang, S., Zoglauer, A.: NuSTAR detection of high-energy X-ray emission and rapid variability from Sagittarius A* flares. ApJ 786, 46 (2014). arXiv:1403.0900

    Article  ADS  Google Scholar 

  22. Bartusiak, M.: Black Hole. Yale University Press, New Haven (2015). ISBN 9780300210859

    MATH  Google Scholar 

  23. Berti, E., Barausse, E., Cardoso, V., Gualtieri, L., Pani, P., Sperhake, U., Stein, L.C., Wex, N., Yagi, K., Baker, T., Burgess, C.P., Coelho, F.S., Doneva, D., De Felice, A., Ferreira, P.G., Freire, P.C.C., Healy, J., Herdeiro, C., Horbatsch, M., Kleihaus, B., Klein, A., Kokkotas, K., Kunz, J., Laguna, P., Lang, R.N., Li, T.G.F., Littenberg, T., Matas, A., Mirshekari, S., Okawa, H., Radu, E., O’Shaughnessy, R., Sathyaprakash, B.S., Van Den Broeck, C., Winther, H.A., Witek, H., Emad Aghili, M., Alsing, J., Bolen, B., Bombelli, L., Caudill, S., Chen, L., Degollado, J.C., Fujita, R., Gao, C., Gerosa, D., Kamali, S., Silva, H.O., Rosa, J.G., Sadeghian, L., Sampaio, M., Sotani, H., Zilhao, M.: Testing general relativity with present and future astrophysical observations. Class. Quantum Gravity 32(24), 243001 (2015)

  24. Berti, E., Sesana, A., Barausse, E., Cardoso, V., Belczynski, K.: Spectroscopy of Kerr Black Holes with Earth- and Space-based interferometers. Phys. Rev. Lett. 117(10), 101102 (2016)

    Article  ADS  Google Scholar 

  25. Bethge, K., Gruber, G., Stöhlker, T. (eds.): Physik der Atome und Moleküle: Eine Einfhrung, p. 4445. Wiley, New York (2012). ISBN 978-3-527-66255-5

  26. Bilic, N., Tupper, G.B., Viollier, R.D.: Supermassive fermion balls and constraints from stellar dynamics near Sgr A*. Astrophysics (2003). arXiv:astro-ph/0310172

  27. Bird, S., Cholis, I., Muñoz, J.B., Ali-Haïmoud, Y., Kamionkowski, M., Kovetz, E.D., Raccanelli, A., Riess, A.G.: Did LIGO detect dark matter? Phys. Rev. Lett. (2016). arXiv:1603.00464

  28. Blais, D., Kiefer, C., Polarski, D.: Can primordial black holes be a significant part of dark matter? Phys. Lett. B 535, 11–16 (2002). arXiv:astro-ph/0203520

    Article  ADS  Google Scholar 

  29. Blandford, R.D., Begelman, M.C.: On the fate of gas accreting at a low rate on to a black hole. MNRAS 303, L1–L5 (1999). arXiv:astro-ph/9809083

    Article  ADS  Google Scholar 

  30. Boehle, A., Ghez, A.M., Schödel, R., Meyer, L., Yelda, S., Albers, S., Martinez, G.D., Becklin, E.E., Do, T., Lu, J.R., Matthews, K., Morris, M.R., Sitarski, B., Witzel, G.: An improved distance and mass estimate for Sgr A* from a multistar orbit analysis. ApJ 830, 17 (2016). arXiv:1607.05726

  31. Bogdanović, T.: Supermassive Black Hole Binaries: The Search Continues. In: Astrophysics and Space Science Proceedings, vol. 40, p. 103 (2015). arXiv:1406.5193

  32. Branham, R.L.: The distance to the Galactic center determined by OB stars. Ap&SS 353, 179–190 (2014)

    Article  ADS  Google Scholar 

  33. Britzen, S., Eckart, A., Lämmerzahl, C., et al.: Jet signatures of black holes: from Sgr A* to active galactic nuclei. Astronomische Nachrichten 5(2015), 471–476 (2015)

    Article  ADS  Google Scholar 

  34. Broderick, A.E., Loeb, A.: Imaging bright-spots in the accretion flow near the black hole horizon of Sgr A*. MNRAS 363, 353–362 (2005). arXiv:astro-ph/0506433

    Article  ADS  Google Scholar 

  35. Broderick, A.E., Loeb, A.: Imaging optically-thin hotspots near the black hole horizon of Sgr A* at radio and near-infrared wavelengths. MNRAS 367, 905–916 (2006). arXiv:astro-ph/0509237

    Article  ADS  Google Scholar 

  36. Broderick, A.E., Narayan, R.: Where are all the gravastars? Limits upon the gravastar model from accreting black holes. Class. Quantum Gravity 24, 659–666 (2007). arXiv:gr-qc/0701154

  37. Broderick, A.E., Johannsen, T., Loeb, A., Psaltis, D.: Testing the no-hair theorem with event horizon telescope observations of Sagittarius A*. ApJ 784, 7 (2014)

    Article  ADS  Google Scholar 

  38. Broderick, A.E., Narayan, R., Kormendy, J., Perlman, E.S., Rieke, M.J., Doeleman, S.S.: The event horizon of M87. ApJ 805, 179 (2015)

    Article  ADS  Google Scholar 

  39. Brown, E.: Ann E. Ewing, 89, Washington Post, Sunday, August 1, 2010, p. 39, (2010). http://www.washingtonpost.com/ wp-dyn/content/article/

  40. Buchholz, R.M., Schödel, R., Eckart, A.: Composition of the galactic center star cluster. Population analysis from adaptive optics narrow band spectral energy distributions. A&A 499, 483–501 (2009). arXiv:0903.2135

  41. Bursa, M., Abramowicz, M.A., Karas, V., Kluźniak, W., Schwarzenberg-Czerny, A.: The timescale of encircling light. In: Hledík, S., Stuchlík, Z. (eds.) Proceedings of RAGtime 8/9: Workshops on Black Holes and Neutron Stars, pp. 21–25 (2007)

  42. Calmet, X.: Quantum Aspects of Black Holes. Springer, Heidelberg (2015). ISBN 978-3-319-10852-0

    Book  MATH  Google Scholar 

  43. Cardoso, V., Crispino, L.C.B., Macedo, C.F.B., Okawa, H., Pani, P.: Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects. Phys. Rev. D 90(4), 044069 (2014)

    Article  ADS  Google Scholar 

  44. Cardoso, V., Franzin, E., Pani, P.: Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 116(171101), 116 (2016)

    Google Scholar 

  45. Carnap, R.: Logische Syntax der Sprache (1968). ISBN 978-3-662-25376-2(e-book), ISBN 978-3-662-23331-3; 1934 by Julius Springer, 2. Auflage

  46. Chakravartty, A.: A Metaphysics for Scientific Realism: Knowing the Unobservable (2010) ISBN 978-0-521-13009-7; 2015 Paperback: ISBN-10: 1508932867, ISBN-13: 978-1508932864

  47. Chandrasekhar, S.: The mathematical theory of black holes. Oxford University Press

  48. Chapline G (2003) Quantum Phase Transitions and the Failure of Classical General Relativity. International Journal of Modern Physics A 18:3587–3590, gr-qc/0012094

  49. Christodoulou, M., Rovelli, C., Speziale, S., Vilensky, I.: Planck star tunneling time: An astrophysically relevant observable from background-free quantum gravity. Phys. Rev. D 94(8), 084035 (2016)

    Article  ADS  Google Scholar 

  50. Clavel, M., Terrier, R., Goldwurm, A., Morris, M.R., Ponti, G., Soldi, S., Trap, G.: Echoes of multiple outbursts of Sagittarius A revealed by Chandra. A&A 558, A32 (2013). 1307.3954

  51. Cleland, C.: Living with the abstract: realism and models. Philosophy of Science 69, 474–496 (2002)

    Article  Google Scholar 

  52. Colbert, E.J.M., Mushotzky, R.F.: The Nature of Accreting Black Holes in Nearby Galaxy Nuclei. ApJ 519, 89–107 (1999). astro-ph/9901023

    Article  ADS  Google Scholar 

  53. Colpi, M., Shapiro, S.L., Wasserman, I.: Boson stars - Gravitational equilibria of self-interacting scalar fields. Phys. Rev. Lett. 57, 2485–2488 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  54. Colyvan, M.: Can the eleatic principle be justified? Canad. J. Philos. 28, 313–335 (1998)

    Article  Google Scholar 

  55. Colyvan, M.: The Indispensability of Mathematics; Oxford University Press, Oxford (2001)(1983). ISBN 0-19-513754-X

  56. Contini, M.: The low-luminosity active galactic nucleus in the centre of the Galaxy. MNRAS 418, 1935–1947 (2011). arXiv:1104.1282

    Article  ADS  Google Scholar 

  57. Cumpa, J., Tegtmeier, E.: Phenomenological Realism Versus Scientific Realism. In: Cumpa, J., Tegtmeier, E. (eds.) Metaphysical Correspondences. Ontos Verlag, Heusenstamm (2009). ISBN 978-3-86838-051-4

    Google Scholar 

  58. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Rúnarsson, H.F.: Shadows of Kerr Black Holes with Scalar Hair. Phys. Rev. Lett. 115(21), 211102 (2015). arXiv:1509.00021

  59. Danzmann, K.: ELISA and the Gravitational Universe. In: IAU General Assembly , vol. 22, p. 2248153 (2015)

  60. De Paolis, F., Ingrosso, G., Nucita, A.A., Orlando, D., Capozziello, S., Iovane, G.: Astrophysical constraints on a possible neutrino ball at the Galactic Center. A&A 376, 853–860 (2001). arXiv:astro-ph/0107497

    Article  ADS  Google Scholar 

  61. Deccock, L., Horsten, L.: Quine, Naturalized Epistemology, Perceptual Knowledge and Ontology. In: Lieven, D., Leon, H. (eds.). Editions Rodopi B.V. Amsterdam, Atlanta, GA (2000). ISBN 90-420-1241-2

  62. Dékány, I., Minniti, D., Catelan, M., Zoccali, M., Saito, R.K., Hempel, M., Gonzalez, O.A.: VVV survey near-infrared photometry of known bulge RR lyrae stars: the distance to the galactic center and absence of a barred distribution of the metal-poor population. ApJL 776, L19 (2013)

    Article  ADS  Google Scholar 

  63. DeWitt C, DeWitt BS (1973) Black holes. In: DeWitt, C., DeWitt, B.S. (eds.)Lectures Delivered at the Summer School of Theoretical Physics of the University of Grenoble at Les Houches. Gordon and Breach, New York

  64. Dexter, J., Fragile, P.C.: Tilted black hole accretion disc models of Sagittarius A*: time-variable millimetre to near-infrared emission. MNRAS 432, 2252–2272 (2013)

    Article  ADS  Google Scholar 

  65. Dexter, J., O’Leary, R.M.: The peculiar pulsar population of the central parsec. ApJL 783, L7 (2014)

    Article  ADS  Google Scholar 

  66. Dexter, J., Agol, E., Fragile, P.C., McKinney, J.C.: The submillimeter bump in Sgr A* from relativistic MHD simulations. ApJ 717, 1092–1104 (2010)

    Article  ADS  Google Scholar 

  67. Dexter, J., Agol, E., Fragile, P.C., McKinney, J.C.: Radiative models of Sagittarius A* and M87 from relativistic MHD simulations. J. Phys. Conf. Ser. 372(1), 012023 (2012a). 1202.0348

    Article  Google Scholar 

  68. Dexter, J., McKinney, J.C., Agol, E.: The size of the jet launching region in M87. MNRAS 421, 1517–1528 (2012b). arXiv:1109.6011

  69. Do, T., Ghez, A.M., Morris, M.R., Lu, J.R., Matthews, K., Yelda, S., Larkin, J.: High angular resolution integral-field spectroscopy of the galaxy’s nuclear cluster: a missing stellar cusp? ApJ 703, 1323–1337 (2009). arXiv:0908.0311

  70. Do, T., Martinez, G.D., Yelda, S., Ghez, A., Bullock, J., Kaplinghat, M., Lu, J.R., Peter, A.H.G., Phifer, K.: Three-dimensional stellar kinematics at the galactic center: measuring the nuclear star cluster spatial density profile, black hole mass, and distance. ApJL 779, L6 (2013)

    Article  ADS  Google Scholar 

  71. Dobler, G., Finkbeiner, D.P., Cholis, I., Slatyer, T., Weiner, N.: The fermi haze: a gamma-ray counterpart to the microwave haze. ApJ 717, 825–842 (2010). arXiv:0910.4583

  72. Doeleman, S.S., Lonsdale, C.J., Greenhill, L.J.: VLBI imaging of the 86 GHz SiO maser emission in the circumstellar envelope of VX sagittarii. ApJ 494, 400–408 (1998)

    Article  ADS  Google Scholar 

  73. Doeleman, S.S., Weintroub, J., Rogers, A.E.E., Plambeck, R., Freund, R., Tilanus, R.P.J., Friberg, P., Ziurys, L.M., Moran, J.M., Corey, B., Young, K.H., Smythe, D.L., Titus, M., Marrone, D.P., Cappallo, R.J., Bock, D.C.J., Bower, G.C., Chamberlin, R., Davis, G.R., Krichbaum, T.P., Lamb, J., Maness, H., Niell, A.E., Roy, A., Strittmatter, P., Werthimer, D., Whitney, A.R., Woody, D.: Event-horizon-scale structure in the supermassive black hole candidate at the galactic centre. Nature 455, 78–80 (2008)

    Article  ADS  Google Scholar 

  74. Doeleman, S.S., Fish, V.L., Broderick, A.E., Loeb, A., Rogers, A.E.E.: Detecting flaring structures in Sagittarius A* with high-frequency VLBI. ApJ 695, 59–74 (2009)

    Article  ADS  Google Scholar 

  75. Dvali, G., Gomez, C.: Black Hole’s Quantum N-Portrait. (2011). FortschPhys. 61 742–767 (2013) arXiv:1112.3359

  76. Dvali, G., Gomez, C.: Black hole’s 1/N hair. Phys. Lett. B 719, 419–423 (2013). arXiv:1203.6575

  77. Dvali, G., Gomez, C., Lüst, D.: Black hole quantum mechanics in the presence of species. Fortsch. Phys. 61(7–8), 768–778 (2013). arXiv:1206.2365

  78. Dvali, G., Gomez, C., Lüst, D.: Classical limit of black hole quantum N-portrait and BMS symmetry. Phys. Lett. B 753, 173–177 (2016). arXiv:1509.02114

  79. Earnshaw, H.M., Roberts, T.P., Heil, L.M., Mezcua, M., Walton, D.J., Done, C., Harrison, F.A., Lansbury, G.B., Middleton, M.J., Sutton, A.D.: A variable ULX and possible IMBH candidate in M51a. MNRAS 456, 3840–3854 (2016). arXiv:1512.04825

  80. Eatough, R., Lazio, T.J.W., Casanellas, J., Chatterjee, S., Cordes, J.M., Demorest, P.B., Kramer, M., Lee, K.J., Liu, K., Ransom, S.M., Wex, N.: Observing radio pulsars in the galactic centre with the square kilometre array. Advancing Astrophysics with the Square Kilometre Array (AASKA14), vol. 45 (2015). arXiv:1501.00281

  81. Eatough, R.P., Falcke, H., Karuppusamy, R., Lee, K.J., Champion, D.J., Keane, E.F., Desvignes, G., Schnitzeler, D.H.F.M., Spitler, L.G., Kramer, M., Klein, B., Bassa, C., Bower, G.C., Brunthaler, A., Cognard, I., Deller, A.T., Demorest, P.B., Freire, P.C.C., Kraus, A., Lyne, A.G., Noutsos, A., Stappers, B., Wex, N.: A strong magnetic field around the supermassive black hole at the centre of the Galaxy. Nature 501, 391–394 (2013). arXiv:1308.3147

  82. Eckart, A., Genzel, R.: Observations of stellar proper motions near the Galactic Centre. Nature 383, 415–417 (1996)

    Article  ADS  Google Scholar 

  83. Eckart, A., Genzel, R.: Stellar proper motions in the central 0.1 PC of the galaxy. MNRAS 284, 576–598 (1997)

    Article  ADS  Google Scholar 

  84. Eckart, A., Genzel, R., Ott, T., Schödel, R.: Stellar orbits near Sagittarius A*. MNRAS 331, 917–934 (2002)

    Article  ADS  Google Scholar 

  85. Eckart, A., Moultaka, J., Viehmann, T., Straubmeier, C., Mouawad, N., Genzel, R., Ott, T., Schödel, R., Baganoff, F.K., Morris, M.R.: Monitoring Sagittarius A* in the MIR with the VLT. Astron. Nachr. Suppl. 324, 557–561 (2003)

    Article  ADS  Google Scholar 

  86. Eckart, A., Schödel, R., Straubmeier, C.: The black hole at the center of the Milky Way / Andreas Eckart, Rainer Schödel, Christian Straubmeier. Imperial College Press, London (2005)

  87. Eckart, A., Baganoff, F.K., Schödel, R., Morris, M., Genzel, R., Bower, G.C., Marrone, D., Moran, J.M., Viehmann, T., Bautz, M.W., Brandt, W.N., Garmire, G.P., Ott, T., Trippe, S., Ricker, G.R., Straubmeier, C., Roberts, D.A., Yusef-Zadeh, F., Zhao, J.H., Rao, R.: The flare activity of Sagittarius A*. New coordinated mm to X-ray observations. A&A 450, 535–555 (2006a)

    Article  ADS  Google Scholar 

  88. Eckart, A., Schödel, R., Meyer, L., Trippe, S., Ott, T., Genzel, R.: Polarimetry of near-infrared flares from Sagittarius A*. A&A 455, 1–10 (2006b)

    Article  ADS  Google Scholar 

  89. Eckart, A., Schödel, R., Straubmeier, C., Bertram, T., Pott, J.U., Muzic, K., Meyer, L., Moultaka, J., Viehmann, T., Rost, S., Herbst, T.: Interferometric observations of the galactic center: LBT and VLTI. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6268 (2006c)

  90. Eckart, A., Zamaninasab, M., Straubmeier, C., Fischer, S., Araujo-Hauck, C., Garcia-Marin, M., Wiest, M., Witzel, G., Buchholz, R.M., Sabha, N., Muzic, K., Eisenhauer, F., Paumard, T., Yazici, S., Perrin, G., Brandner, W., Perraut, K., Amorim, A., Schöller, M.: Signatures of strong gravity with GRAVITY. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol . 7734 (2010)

  91. Eckart, A., Britzen, S., Horrobin, M., Zamaninasab, M., Muzic, K., Sabha, N., Shahzamanian, B., Yazici, S., Moser, L., Zuther, J., Garcia-Marin, M., Valencia-S, M., Bursa, M., Karssen, G., Karas, V., Jalali, B., Vitale, M., Bremer, M., Fischer, S., Smajic, S., Rauch, C., Kunneriath, D., Moultaka, J., Straubmeier, C., Rashed, Y.E., Iserlohe, C., Busch, G., Markakis, K., Borkar, A., Zensus, A.J.: The Galactic Center as a pradigm for low-luminosity nuclei? What can be learned from SgrA* for the central engine and conditions of star formation in nuclei of Seyfert galaxies and low luminosity nearby QSOs. The K-band identification of the DSO/G2 source from VLT and Keck data. In: Proceedings of Nuclei of Seyfert galaxies and QSOs—Central Engine and Conditions of Star Formation (Seyfert 2012), 6–8 November, 2012. Max-Planck-Insitut fuer Radioastronomie (MPIfR), Bonn, Germany (2012a). arXiv:1311.2743

  92. Eckart, A., García-Marín, M., Vogel, S.N., Teuben, P., Morris, M.R., Baganoff, F., Dexter, J., Schödel, R., Witzel, G., Valencia-S, M., Karas, V., Kunneriath, D., Straubmeier, C., Moser, L., Sabha, N., Buchholz, R., Zamaninasab, M., Mužić, K., Moultaka, J., Zensus, J.A.: Millimeter to X-ray flares from Sagittarius A*. A&A 537, A52 (2012b)

    Article  ADS  Google Scholar 

  93. Eckart, A., García-Marín, M., Vogel, S.N., Teuben, P., Morris, M.R., Baganoff, F., Dexter, J., Schödel, R., Witzel, G., Valencia-S, M., Karas, V., Kunneriath, D., Straubmeier, C., Moser, L., Sabha, N., Buchholz, R., Zamaninasab, M., Mužić, K., Moultaka, J., Zensus, J.A.: Millimeter to X-ray flares from Sagittarius A*. A&A 537, A52 (2012c)

    Article  ADS  Google Scholar 

  94. Eckart, A., Sabha, N., Witzel, G., Straubmeier, C., Shahzamanian, B., Valencia-S, M., García-Marín, M., Horrobin, M., Moser, L., Zuther, J., Fischer, S., Rauch, C., Rost, S., Iserlohe, C., Yazici, S., Smajic, S., Wiest, M., Araujo-Hauck, C., Wank, I.: Beating the confusion limit: the necessity of high angular resolution for probing the physics of Sagittarius A* and its environment: opportunities for LINC-NIRVANA (LBT), GRAVITY (VLTI) and and METIS (E-ELT). In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8445 (2012d). arXiv:1208.1129

  95. Einstein, A.: Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936)

    Article  ADS  MATH  Google Scholar 

  96. Einstein, A.: On a stationary system with spherical symmetry consisting of many gravitating masses. Ann. Math. 40, 922 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Eisenhauer, F., Schödel, R., Genzel, R., Ott, T., Tecza, M., Abuter, R., Eckart, A., Alexander, T.: A geometric determination of the distance to the galactic center. ApJL 597, L121–L124 (2003)

    Article  ADS  Google Scholar 

  98. Eisenhauer, F., Genzel, R., Alexander, T., Abuter, R., Paumard, T., Ott, T., Gilbert, A., Gillessen, S., Horrobin, M., Trippe, S., Bonnet, H., Dumas, C., Hubin, N., Kaufer, A., Kissler-Patig, M., Monnet, G., Ströbele, S., Szeifert, T., Eckart, A., Schödel, R., Zucker, S.: SINFONI in the galactic center: young stars and infrared flares in the central light-month. ApJ 628, 246–259 (2005). arXiv:astro-ph/0502129

  99. Eisenhauer, F., Perrin, G., Brandner, W., Straubmeier, C., Richichi, A., Gillessen, S., Berger, J.P., Hippler, S., Eckart, A., Schöller, M., Rabien, S., Cassaing, F., Lenzen, R., Thiel, M., Clénet, Y., Ramos, J.R., Kellner, S., Fédou, P., Baumeister, H., Hofmann, R., Gendron, E., Boehm, A., Bartko, H., Haubois, X., Klein, R., Dodds-Eden, K., Houairi, K., Hormuth, F., Gräter, A., Jocou, L., Naranjo, V., Genzel, R., Kervella, P., Henning, T., Hamaus, N., Lacour, S., Neumann, U., Haug, M., Malbet, F., Laun, W., Kolmeder, J., Paumard, T., Rohloff, R.R., Pfuhl, O., Perraut, K., Ziegleder, J., Rouan, D., Rousset, G.: GRAVITY: getting to the event horizon of Sgr A*. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7013 (2008). arXiv:0808.0063

  100. Ellis, H.G.: Ether flow through a drainhole: a particle model in general relativity. J. Math. Phys. 14, 104–118 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  101. Emmanoulopoulos, D.: Pinpointing the base of the AGN jets through general relativistic X-ray reverberation studies. In: Massaro, F., Cheung, C.C., Lopez, E., Siemiginowska, A. (eds.) IAU Symposium, vol. 313, pp. 346–351 (2015). arXiv:1411.0727

  102. Esteban, E.P., Ramos, E.: Rotating black hole in an external electromagnetic field. Phys. Rev. D 38, 2963–2971 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  103. Ewing, E.A.: ’Black Holes’ in Space for Science S, the Public (edn) Science News Letters, January 18, p. 39 (1964)

  104. Falcke, H., Markoff, S.: The jet model for Sgr A*: radio and X-ray spectrum. A&A 362, 113–118 (2000)

    ADS  Google Scholar 

  105. Falcke, H., Melia, F., Agol, E.: Viewing the shadow of the black hole at the galactic center. ApJL 528, L13–L16 (2000)

    Article  ADS  Google Scholar 

  106. Falcke, H., Markoff, S., Bower, G.C.: Jet-lag in Sagittarius A*: what size and timing measurements tell us about the central black hole in the Milky Way. A&A 496, 77–83 (2009)

    Article  ADS  Google Scholar 

  107. Ferrarese, L., Côté, P., Dalla Bontà, E., Peng, E.W., Merritt, D., Jordán, A., Blakeslee, J.P., Haşegan, M., Mei, S., Piatek, S., Tonry, J.L., West, M.J.: A fundamental relation between compact stellar nuclei, supermassive black holes, and their host galaxies. ApJL 644, L21–L24 (2006). arXiv:astro-ph/0603840

  108. Ferré-Mateu, A., Mezcua, M., Trujillo, I., Balcells, M., van den Bosch, R.C.E.: Massive relic galaxies challenge the co-evolution of super-massive black holes and their host galaxies. ApJ 808, 79 (2015). arXiv:1506.02663

  109. Finkelstein, D.: Past-future asymmetry of the gravitational field of a point particle. Phys. Rev. 110(965), 110 (1958)

    MATH  Google Scholar 

  110. Fish, V.L., Doeleman, S.S., Beaudoin, C., Blundell, R., Bolin, D.E., Bower, G.C., Chamberlin, R., Freund, R., Friberg, P., Gurwell, M.A., Honma, M., Inoue, M., Krichbaum, T.P., Lamb, J., Marrone, D.P., Moran, J.M., Oyama, T., Plambeck, R., Primiani, R., Rogers, A.E.E., Smythe, D.L., SooHoo, J., Strittmatter, P., Tilanus, R.P.J., Titus, M., Weintroub, J., Wright, M., Woody, D., Young. K.H., Ziurys, L.M.: 1.3 mm wavelength VLBI of Sagittarius A*: detection of time-variable emission on event horizon scales. ApJL 727, L36 (2011)

  111. Fish, V.L., Johnson, M.D., Lu, R.S., Doeleman, S.S., Bouman, K.L., Zoran, D., Freeman, W.T., Psaltis, D., Narayan, R., Pankratius, V., Broderick, A.E., Gwinn, C.R., Vertatschitsch, L.E.: Imaging an event horizon: mitigation of scattering toward Sagittarius A*. ApJ 795, 134 (2014). arXiv:1409.4690

  112. Fish, V.L., Johnson, M.D., Doeleman, S.S., Broderick, A.E., Psaltis, D., Lu, R.S., Akiyama, K., Alef, W., Algaba, J.C., Asada, K., Beaudoin, C., Bertarini, A., Blackburn, L., Blundell, R., Bower, G.C., Brinkerink, C., Cappallo, R., Chael, A.A., Chamberlin, R., Chan, C.K., Crew, G.B., Dexter, J., Dexter, M., Dzib, S.A., Falcke, H., Freund, R., Friberg, P., Greer, C.H., Gurwell, M.A., Ho, P.T.P., Honma, M., Inoue, M., Johannsen, T., Kim, J., Krichbaum, T.P., Lamb, J., León-Tavares, J., Loeb, A., Loinard, L., MacMahon, D., Marrone, D.P., Moran, J.M., Mościbrodzka, M., Ortiz-León, G.N., Oyama, T., Özel, F., Plambeck, R.L., Pradel, N., Primiani, R.A., Rogers, A.E.E., Rosenfeld, K., Rottmann, H., Roy, A.L., Ruszczyk, C., Smythe, D.L., SooHoo, J., Spilker, J., Stone, J., Strittmatter, P., Tilanus, R.P.J., Titus, M., Vertatschitsch, L., Wagner, J., Wardle, J.F.C., Weintroub, J., Woody, D., Wright, M., Yamaguchi, P., Young, A., Young, K.H., Zensus, J.A., Ziurys, L.M.: Persistent asymmetric structure of Sagittarius A* on event horizon scales. ApJ 820, 90 (2016)

    Article  ADS  Google Scholar 

  113. Francis, C., Anderson, E.: Two estimates of the distance to the Galactic Centre. MNRAS 441, 1105–1114 (2014)

    Article  ADS  Google Scholar 

  114. Franklin, A.: What Makes a Good Experiment? University of Pittsburgh Press, Pittsburgh (2016). ISBN-13 9780822944416

  115. Freitag, M.: Gravitational waves from stars orbiting the Sagittarius A* black hole. Astrophys. J. Lett. 583(1), L21 (2003)

    Article  ADS  Google Scholar 

  116. Fritz, T.K., Gillessen, S., Dodds-Eden, K., Martins, F., Bartko, H., Genzel, R., Paumard, T., Ott, T., Pfuhl, O., Trippe, S., Eisenhauer, F., Gratadour, D.: GC-IRS13E—a puzzling association of three early-type stars. ApJ 721, 395–411 (2010). arXiv:1003.1717

  117. Gair, J.R., Barack, L., Creighton, T., Cutler, C., Larson, S.L., Phinney, E.S., Vallisneri, M.: Event rate estimates for LISA extreme mass ratio capture sources. Class. Quantum Gravity 21, S1595–S1606 (2004)

    Article  ADS  MATH  Google Scholar 

  118. Gair, J.R., Vallisneri, M., Larson, S.L., Baker, J.G.: Testing general relativity with low-frequency, space-based gravitational-wave detectors. Liv. Rev. Relat. 16, 7 (2013)

    Article  Google Scholar 

  119. Galison, P.: How Experiments End. The University of Chicago Press, Chicago (1987). ISBN: 9780226279152

  120. García Díaz, A.: Magnetic generalization of the Kerr-Newman metric. J. Math. Phys. 26, 155–156 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  121. Genzel, R., Pichon, C., Eckart, A., Gerhard, O.E., Ott, T.: Stellar dynamics in the Galactic Centre: proper motions and anisotropy. MNRAS 317, 348–374 (2000). arXiv:astro-ph/0001428

  122. Genzel, R., Schödel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan, D., Aschenbach, B.: Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre. Nature 425, 934–937 (2003). arXiv:astro-ph/0310821

  123. Genzel, R., Eisenhauer, F., Gillessen, S.: The Galactic Center massive black hole and nuclear star cluster. Rev. Mod. Phys. 82, 3121–3195 (2010) arXiv:1006:0064

  124. Ghez, A., Morris, M., Lu, J., Weinberg, N., Matthews, K., Alexander, T., Armitage, P., Becklin, E., Brown, W., Campbell, R., Do, T., Eckart, A., Genzel, R., Gould, A., Hansen, B., Ho, L., Lo, F., Loeb, A., Melia, F., Merritt, D., Milosavljevic, M., Perets, H., Rasio, F., Reid, M., Salim, S., Schödel, R., Yelda, S.: The galactic center: a laboratory for fundamental astrophysics and galactic nuclei. In: astro2010: The Astronomy and Astrophysics Decadal Survey, Astronomy (2009). arXiv:0903.0383

  125. Ghez, A.M., Klein, B.L., Morris, M., Becklin, E.E.: High proper-motion stars in the vicinity of Sagittarius A*: evidence for a supermassive black hole at the center of our galaxy. ApJ 509, 678–686 (1998). arXiv:astro-ph/9807210

  126. Ghez, A.M., Duchene, G., Morris, M., Becklin, E.E., Hornstein, S.D., Tanner, A., Kremenek, T., Matthews, K., Thompson, D., Soifer, B.T., Larkin, J., McLean, I.: Full 3-D orbital solutions for stars making a close approach to the supermassive black hole at the center of the galaxy. In: American Astronomical Society Meeting Abstracts, Bulletin of the American Astronomical Society, vol. 34, p. 1219 (2002)

  127. Ghez, A.M., Wright, S.A., Matthews, K., Thompson, D., Le Mignant, D., Tanner, A., Hornstein, S.D., Morris, M., Becklin, E.E., Soifer, B.T.: Variable infrared emission from the supermassive black hole at the Center of the Milky Way. ApJL 601, L159–L162 (2004). arXiv:astro-ph/0309076

  128. Ghez, A.M., Salim, S., Weinberg, N.N., Lu, J.R., Do, T., Dunn, J.K., Matthews, K., Morris, M.R., Yelda, S., Becklin, E.E., Kremenek, T., Milosavljevic, M., Naiman, J.: Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. ApJ 689, 1044–1062 (2008)

    Article  ADS  Google Scholar 

  129. Ghisellini, G., Foschini, L., Volonteri, M., Ghirlanda, G., Haardt, F., Burlon, D., Tavecchio, F.: The blazar S5 0014+813: a real or apparent monster? MNRAS 399, L24–L28 (2009). arXiv:0906.0575

  130. Ghisellini, G., Della Ceca, R., Volonteri, M., Ghirlanda, G., Tavecchio, F., Foschini, L., Tagliaferri, G., Haardt, F., Pareschi, G., Grindlay, J.: Chasing the heaviest black holes of jetted active galactic nuclei. MNRAS 405, 387–400 (2010). arXiv:0912.0001

  131. Giannios, D., Lorimer, D.R.: Flares from Galactic Centre pulsars: a new class of X-ray transients? MNRAS 459, L95–L99 (2016)

    Article  ADS  Google Scholar 

  132. Giddings, S.B.: Possible observational windows for quantum effects from black holes. Phys. Rev. D 90(12), 124033 (2014). arXiv:1406.7001

  133. Gillessen, S., Eisenhauer, F., Quataert, E., Genzel, R., Paumard, T., Trippe, S., Ott, T., Abuter, R., Eckart, A., Lagage, P.O., Lehnert, M.D., Tacconi, L.J., Martins, F.: Variations in the Spectral Slope of Sagittarius A* during a Near-Infrared Flare. ApJL 640, L163–L166 (2006). arXiv:astro-ph/0511302

  134. Gillessen, S., Eisenhauer, F., Fritz, T.K., Bartko, H., Dodds-Eden, K., Pfuhl, O., Ott, T., Genzel, R.: The orbit of the star S2 Around SGR A* from very large telescope and keck data. ApJL 707, L114–L117 (2009a)

    Article  ADS  Google Scholar 

  135. Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., Ott, T.: Monitoring stellar orbits around the massive black hole in the Galactic Center. ApJ 692, 1075–1109 (2009b)

    Article  ADS  Google Scholar 

  136. Graham, A.W., Scott, N., Schombert, J.M.: Super-massive black hole mass scaling relations. Publ. Kor. Astron. Soc. 30, 335–339 (2015). arXiv:1411.1438

  137. Grenzebach, A., Perlick, V., Lämmerzahl, C.: Photon regions and shadows of accelerated black holes. Int. J. Mod. Phys. D 24, 1542024 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  138. Guedes, J., Madau, P., Mayer, L., Callegari, S.: Recoiling massive black holes in gas-rich galaxy mergers. ApJ 729, 125 (2011). arXiv:1008.2032

  139. Gwinn, C.R., Kovalev, Y.Y., Johnson, M.D., Soglasnov, V.A.: Discovery of Substructure in the Scatter-broadened Image of Sgr A*. ApJL 794, L14 (2014). arXiv:1409.0530

  140. Hacking, I. (ed.): Representing and Intervening, p. 24. Cambridge University Press, Cambridge (1983)

  141. Hacking, I.: Extragalactic reality: the case of gravitational lensing. Philos. Sci. 56, 555–581 (1989)

    Article  MathSciNet  Google Scholar 

  142. Haggard, H.M., Rovelli, C.: Quantum-gravity effects outside the horizon spark black to white hole tunneling. Phys. Rev. D 92(10), 104020 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  143. Hawking, S.: Information preservation and waether forcasting for black holes (2014). arXiv:1401.5761

  144. Hawking, S., Penrose, R.: The Nature of Space and Time. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  145. Hawking, S.W., Israel, W.: Three Hundred Years of Gravitation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  146. Herdeiro, C.A.R., Radu, E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112(22), 221101 (2014). arXiv:1403.2757

  147. Heusler, M.: Black Hole Uniqueness Theorems. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  148. Hoefer, C., Smeenk, C.: Philosophy of the physical sciences. In: Humphreys, P. (ed.) Oxford Handbook of the Philosophy of Science. Oxford University Press, Oxford (2016)

  149. Hopman, C., Alexander, T.: Resonant relaxation near a massive black hole: the stellar distribution and gravitational wave sources. ApJ 645, 1152–1163 (2006)

    Article  ADS  Google Scholar 

  150. Horrobin, M., Eisenhauer, F., Tecza, M., Thatte, N., Genzel, R., Abuter, R., Iserlohe, C., Schreiber, J., Schegerer, A., Lutz, D., Ott, T., Schödel, R.: First results from SPIFFI. I: the galactic center. Astron. Nachr. 325, 88–91 (2004)

    Article  ADS  Google Scholar 

  151. Hughes, S.A.: Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. Phys. Rev. D 61(8), 084004 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  152. Hughes, S.A.: Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. II. Inspiral trajectories and gravitational waveforms. Phys. Rev. D 64(6), 064004 (2001)

    Article  ADS  Google Scholar 

  153. Israel, W.: Dark stars: the evolution of an idea. In: Hawking, S.W., Israel, W. (eds.) Three Hundred Years of Gravitation, pp. 199–276 (1987)

  154. Iwata, K., Yamazaki, S., Mutombo, P., Hapala, P., Ondráček, M., Jelínek, P., Sugimoto, Y.: Chemical structure imaging of a single molecule by atomic force microscopy at room temperature. Nat. Commun. 6, 7766 (2015)

    Article  ADS  Google Scholar 

  155. Jaroszynski, M.: Prospects for the Determination of Star Orbits near the Galactic Center. ApJ 521, 591–596 (1999). arXiv:astro-ph/9903354

  156. Johannsen, T.: Sgr A* and general relativity. (2015) arXiv:1512.03818

  157. Johannsen, T.: Testing the no-hair theorem with observations of black holes in the electromagnetic spectrum. Class. Quantum Gravity 33(12), 124001 (2016). arXiv:1602.07694

  158. Johnson, M.D., Fish, V.L., Doeleman, S.S., Marrone, D.P., Plambeck, R.L., Wardle, J.F.C., Akiyama, K., Asada, K., Beaudoin, C., Blackburn, L., Blundell, R., Bower, G.C., Brinkerink, C., Broderick, A.E., Cappallo, R., Chael, A.A., Crew, G.B., Dexter, J., Dexter, M., Freund, R., Friberg, P., Gold, R., Gurwell, M.A., Ho, P.T.P., Honma, M., Inoue, M., Kosowsky, M., Krichbaum, T.P., Lamb, J., Loeb, A., Lu, R.S., MacMahon, D., McKinney, J.C., Moran, J.M., Narayan, R., Primiani, R.A., Psaltis, D., Rogers, A.E.E., Rosenfeld, K., SooHoo, J., Tilanus, R.P.J., Titus, M., Vertatschitsch, L., Weintroub, J., Wright, M., Young, K.H., Zensus, J.A., Ziurys, L.M.: Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*. Science 350, 1242–1245 (2015). arXiv:1512.01220

  159. Karas, V., Vokrouhlický, D.: On interpretation of the magnetized Kerr-Newman black hole. J. Math. Phys. 32, 714–716 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  160. Karas, V., Huré, J.M., Semerák, O.: TOPICAL REVIEW: Gravitating discs around black holes. Classical and Quantum Gravity 21, 1 (2004). arXiv:astro-ph/0401345

  161. Karas, V., Kopáček, O., Kunneriath, D.: Influence of frame-dragging on magnetic null points near rotating black holes. Class. Quantum Gravity 29(3), 035010 (2012). arXiv:1201.0009

  162. Kardashev, N.S., Andreyanov, V.V., Gromov, V.D., Buyakas, V.I., Gvamichava, A.S., Kotik, A.N., Kurt, V.G., Lazareva, G.S., Mironova, E.N., Myshonkova, N.V., Slysh, V.I., Trubnikov, A.G., Vinogradov, I.S., Troitsky, V.F., Puryaev, D.T., Usyukin, V.I.: The millimetron project. In: Kardashev, N.S., Dagkesamanskii, S.A. (eds.) Radioastronomical Tools and Techniques, p 111 (2007)

  163. Kardashev, N.S., Novikov, I.D., Lukash, V.N., Pilipenko, S.V., Mikheeva, E.V., Bisikalo, D.V., Wiebe, D.S., Doroshkevich, A.G., Zasov, A.V., Zinchenko, I.I., Ivanov, P.B., Kostenko, V.I., Larchenkova, T.I., Likhachev, S.F., Malov, I.F., Malofeev, V.M., Pozanenko, A.S., Smirnov, A.V., Sobolev, A.M., Cherepashchuk, A.M., Shchekinov, Y.A.: Review of scientific topics for the Millimetron space observatory. Phys. Usp. 57, 1199–1228 (2014)

    Article  ADS  Google Scholar 

  164. Kaup, D.J.: Klein-Gordon geon. Phys. Rev. 172, 1331–1342 (1968)

    Article  ADS  Google Scholar 

  165. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  166. Kiefer, C.: Thermodynamics of black holes and Hawking radiation. In: Fré, P., Gorini, V., Magli, G., Moschella, U. (eds.) Classical and Quantum Black Holes, pp. 17–74. Institute of Physics Publishing, Bristol (1999)

  167. Kiefer, C.: Quantum Gravity, 3rd edn. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  168. Kiefer, C.: Quantum black hole without singularity. In: BH6 Session at the Marcel Grossmann Conference MG14 on General Relativity and Quantum Cosmology, WSPC Proceedings (2015). arXiv:1512.08346

  169. Kiefer, C., Marto, J., Moniz, P.V.: Indefinite oscillators and black hole evaporation. Ann. Phys. (Berlin) 18, 722 (2009)

  170. King, A.: How big can a black hole grow? MNRAS 456, L109–L112 (2016)

    Article  ADS  Google Scholar 

  171. Kiziltan, B., Baumgardt, H., Loeb, A.: An intermediate-mass black hole in the centre of the globular cluster 47 Tucanae. Nature 542, 203–205 (2017). arXiv:1702.02149

  172. Kormendy, J., Ho, L.C.: Coevolution (Or Not) of supermassive black holes and host galaxies. ARA&A 51, 511–653 (2013)

    Article  ADS  Google Scholar 

  173. Krabbe, A., Genzel, R., Eckart, A., Najarro, F., Lutz, D., Cameron, M., Kroker, H., Tacconi-Garman, L.E., Thatte, N., Weitzel, L., Drapatz, S., Geballe, T., Sternberg, A., Kudritzki, R. The nuclear cluster of the milky way: star formation and velocity dispersion in the central 0.5 parsec. ApJL 447, L95 (1995)

  174. Laudan, L., Leplin, J.: Empirical equivalence and underdetermination larry laudan & jarrett leplin journal of philosophy 88 (9):449–472 (1991). J. Philos. 88, 449–472 (1991)

    Article  MathSciNet  Google Scholar 

  175. Leinert, C., Graser, U.: MIDI: a mid-infrared interferometric instrument for the VLTI. In: Reasenberg, R.D. (ed) Astronomical Interferometry, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3350, pp 389–393 (1998)

  176. Li, Z., Morris, M.R., Baganoff, F.K.: Evidence for a parsec-scale jet from the galactic center black hole: interaction with local gas. ApJ 779, 154 (2013)

    Article  ADS  Google Scholar 

  177. Löckmann, U., Baumgardt, H.: Tracing intermediate-mass black holes in the Galactic Centre. MNRAS 384, 323–330 (2008). arXiv:0711.1326

  178. Lu, R.S., Roelofs, F., Fish, V.L., Shiokawa, H., Doeleman, S.S., Gammie, C.F., Falcke, H., Krichbaum, T.P., Zensus, J.A.: Imaging an event horizon: mitigation of source variability of Sagittarius A*. ApJ 817 173 (2016). arXiv:1512.08543

  179. Lu, Y., Torres, D.F.: The Relativistic Iron K\(\alpha \) Line from an Accretion Disc Onto a Static Non-Baryonic Compact Object. International Journal of Modern Physics D 12, 63–77 (2003). arXiv:astro-ph/0205418

  180. Luminet, J.P.: Image of a spherical black hole with thin accretion disk. A&A 75, 228–235 (1979)

    ADS  Google Scholar 

  181. Maillard, J.P., Paumard, T., Stolovy, S.R., Rigaut, F.: The nature of the Galactic Center source IRS 13 revealed by high spatial resolution in the infrared. A&A 423, 155–167 (2004)

    Article  ADS  Google Scholar 

  182. Majaess, D.J., Turner, D.G., Lane, D.J.: Characteristics of the galaxy according to cepheids. MNRAS 398, 263–270 (2009)

    Article  ADS  Google Scholar 

  183. Malkin, Z.M.: Analysis of determinations of the distance between the sun and the galactic center. Astron. Rep. 57, 128–133 (2013)

    Article  ADS  Google Scholar 

  184. Maoz, E.: Dynamical constraints on alternatives to supermassive black holes in galactic nuclei. ApJL 494, L181–L184 (1998). arXiv:astro-ph/9710309

  185. Marcus, R.: The eleatic and the indispensabilist. THEORIA 30(3), 415–429 (2015)

    Article  MathSciNet  Google Scholar 

  186. Markakis, K., Dierkes, J., Eckart, A., Nishiyama, S., Britzen, S., García-Marín, M., Horrobin, M., Muxlow, T., Zensus, J.A.: Subaru and e-Merlin observations of NGC 3718. Diaries of a supermassive black hole recoil? A&A 580, A11 (2015)

    Article  ADS  Google Scholar 

  187. Markoff, S.: Sagittarius A* in context: daily flares as a probe of the fundamental X-ray emission process in accreting black holes. ApJL 618, L103–L106 (2005)

    Article  ADS  Google Scholar 

  188. Markoff, S., Bower, G.C., Falcke, H.: How to hide large-scale outflows: size constraints on the jets of Sgr A*. MNRAS 379, 1519–1532 (2007)

    Article  ADS  Google Scholar 

  189. Markoff, S., Nowak, M.A., Maitra, D., Wilms, J., Gallo, E., Hynes, R., Plotkin, R.: Fitting along the fundamental plane: new comparisons of jet physics across the black hole mass scale. In: Romero, G.E., Sunyaev, R.A., Belloni, T. (eds.) Jets at All Scales, IAU Symposium, vol. 275, pp. 250–254 (2011)

  190. Matsuoka, Y., Strauss, M.A., Shen, Y., Brandt, W.N., Greene, J.E., Ho, L.C., Schneider, D.P., Sun, M., Trump, J.R.: The sloan digital sky survey reverberation mapping project: post-starburst signatures in quasar host galaxies at z \({<}\) 1. ApJ 811, 91 (2015). arXiv:1506.07535

  191. Mazur, P.O., Mottola, E.: Gravitational condensate stars: an alternative to black holes. ArXiv General Relativity and Quantum Cosmology arXiv:gr-qc/0109035 (2001)

  192. Melia, F., Falcke, H.: The supermassive black hole at the galactic center. ARA&A 39, 309–352 (2001)

    Article  ADS  Google Scholar 

  193. Menten, K.M., Reid, M.J., Eckart, A., Genzel, R.: The position of Sagittarius A*: accurate alignment of the radio and infrared reference frames at the galactic center. ApJL 475, L111–L114 (1997)

    Article  ADS  Google Scholar 

  194. Merritt, D.: The distribution of stars and stellar remnants at the Galactic Center. ApJ 718, 739–761 (2010). arXiv:0909.1318

  195. Merritt, D., Alexander, T., Mikkola, S., Will, C.M.: Testing properties of the Galactic center black hole using stellar orbits. Phys. Rev. D 81(6), 062002 (2010)

    Article  ADS  Google Scholar 

  196. Meyer, L., Schödel, R., Eckart, A., Karas, V., Dovčiak, M., Duschl, W.J.: K-band polarimetry of an Sgr A* flare with a clear sub-flare structure. A&A 458, L25–L28 (2006)

    Article  ADS  Google Scholar 

  197. Meyer, L., Schödel, R., Eckart, A., Duschl, W.J., Karas, V., Dovčiak, M.: On the orientation of the Sagittarius A* system. A&A 473, 707–710 (2007)

    Article  ADS  Google Scholar 

  198. Mielke, E.W., Schunck, F.E.: Boson stars: alternatives to primordial black holes? Nucl. Phys. B 564, 185–203 (2000) arXiv:gr-qc/0001061

  199. Mielke, E.W., Schunck, F.E.: Boson and Axion Stars. In: Gurzadyan, V.G., Jantzen, R.T., Ruffini, R. (ed.). The Ninth Marcel Grossmann Meeting, pp. 581–591 (2002)

  200. Miller, J.M., Tomsick, J.A., Bachetti, M., Wilkins, D., Boggs, S.E., Christensen, F.E., Craig, W.W., Fabian, A.C., Grefenstette, B.W., Hailey, C.J., Harrison, F.A., Kara, E., King, A.L., Stern, D.K., Zhang, W.W.: New constraints on the black hole low/hard state inner accretion flow with NuSTAR. ApJL 799, L6 (2015). arXiv:1411.1921

  201. Miller, M.C.: Constraints on alternatives to supermassive black holes. MNRAS 367, L32–L36 (2006). arXiv:astro-ph/0512194

  202. Misner, C., Thorne, K., Wheeler, J.: Gravitation. W. H. Freeman, San Francisco (1973). ISBN 978-0-7167-0344-0

    Google Scholar 

  203. Montero, B.: Varieties of causal closure. In: Walter, S., Heckmann, H.-D. (eds.) Physicalism and Mental Causation: The Metaphysics of Mind and Action, Chapt. 8. Imprint Academic, Charlottesville, VA (2003). ISBN 0907845460

  204. Mori, K., Gotthelf, E.V., Zhang, S., An, H., Baganoff, F.K., Barrière, N.M., Beloborodov, A.M., Boggs, S.E., Christensen, F.E., Craig, W.W., Dufour, F., Grefenstette, B.W., Hailey, C.J., Harrison, F.A., Hong, J., Kaspi, V.M., Kennea, J.A., Madsen, K.K., Markwardt, C.B., Nynka, M., Stern, D., Tomsick, J.A., Zhang, W.W.: NuSTAR discovery of a 3.76 s transient magnetar near Sagittarius A*. ApJL 770, L23 (2013). arXiv:1305.1945

  205. Morris, M., Howard, C., Muno, M., Baganoff, F.K., Park, S., Feigelson, E., Garmire, G., Brandt, N.: The hot interstellar medium of the galactic center: observations with Chandra. In: Pfalzner, S., Kramer, C., Staubmeier, C., Heithausen, A. (eds.) The Dense Interstellar Medium in Galaxies. Springer, Berlin (2004)

    Google Scholar 

  206. Mościbrodzka, M., Falcke, H.: Coupled jet-disk model for Sagittarius A*: explaining the flat-spectrum radio core with GRMHD simulations of jets. A&A 559, L3 (2013)

    Article  ADS  Google Scholar 

  207. Mościbrodzka, M., Falcke, H., Shiokawa, H., Gammie, C.F.: Observational appearance of inefficient accretion flows and jets in 3D GRMHD simulations: application to Sagittarius A*. A&A 570, A7 (2014)

    Article  ADS  Google Scholar 

  208. Mossoux, E., Grosso, N., Vincent, F.H., Porquet, D.: Study of the X-ray activity of Sagittarius A* during the 2011 XMM-Newton campaign. A&A 573, A46 (2015)

    Article  ADS  Google Scholar 

  209. Mou, G., Yuan, F., Bu, D., Sun, M., Su, M.: Fermi Bubbles Inflated by Winds Launched from the Hot Accretion Flow in Sgr A*. ApJ 790, 109 (2014). arXiv:1403.2129

  210. Mou, G., Yuan, F., Gan, Z., Sun, M.: The accretion wind model of fermi bubbles. II. Radiation. ApJ 811, 37 (2015). arXiv:1505.00892

  211. Mužić, K., Eckart, A., Schödel, R., Meyer, L., Zensus, A.: First proper motions of thin dust filaments at the Galactic center. A&A 469, 993–1002 (2007)

    Article  ADS  Google Scholar 

  212. Mužić, K., Eckart, A., Schödel, R., Buchholz, R., Zamaninasab, M., Witzel, G.: Comet-shaped sources at the Galactic center. Evidence of a wind from the central 0.2 pc. A&A 521, A13 (2010)

    Article  ADS  Google Scholar 

  213. Nakamura, M., Asada, K.: The parabolic jet structure in M87 as a magnetohydrodynamic nozzle. ApJ 775, 118 (2013). arXiv:1308.1436

  214. Narayan, R., Yi, I., Mahadevan, R.: Explaining the spectrum of Sagittarius A\(^{*}\) with a model of an accreting black hole. Nature 374, 623–625 (1995)

    Article  ADS  Google Scholar 

  215. Narayan, R., Mahadevan, R., Grindlay, J.E., Popham, R.G., Gammie, C.: Advection-dominated accretion model of Sagittarius A\(^{*}\): evidence for a black hole at the Galactic center. ApJ 492, 554–568 (1998)

    Article  ADS  Google Scholar 

  216. Natarajan, P., Treister, E.: Is there an upper limit to black hole masses? MNRAS 393, 838–845 (2009). arXiv:0808.2813

  217. Nayakshin, S., Power, C., King, A.R.: The observed M-\(\sigma \) relations imply that super-massive black holes grow by cold chaotic accretion. ApJ 753, 15 (2012). arXiv:1203.3450

  218. Neilsen, J., Markoff, S., Nowak, M.A., Dexter, J., Witzel, G., Barrière, N., Li, Y., Baganoff, F.K., Degenaar, N., Fragile, P.C., Gammie, C., Goldwurm, A., Grosso, N., Haggard, D.: The X-ray flux distribution of Sagittarius A* as seen by Chandra. ApJ 799, 199 (2015a)

    Article  ADS  Google Scholar 

  219. Neilsen, J., Markoff, S., Nowak, M.A., Dexter, J., Witzel, G., Barrière, N., Li, Y., Baganoff, F.K., Degenaar, N., Fragile, P.C., Gammie, C., Goldwurm, A., Grosso, N., Haggard, D.: The X-ray flux distribution of Sagittarius A* as Seen by Chandra. ApJ 799, 199 (2015b). arXiv:1412.3106

  220. Nelson, O.J.: Hume’s ’new scene of thought’ and the several faces of David Hume in the dialogues concerning natural religion; with a preface by Jeff Broome; University Press of America, New York (2010). ISBN 978-0-7618-4735-9

  221. Neugebauer, G., Meinel, R.: The Einsteinian gravitational field of the rigidly rotating disk of dust. ApJL 414, L97–L99 (1993)

    Article  ADS  Google Scholar 

  222. Newmann, A.: The correspondence theory of truth; an essay on the metaphysics of predication; part of Cambridge studies in philosophy. University of Nebraska, Omaha (2002). ISBN: 9780521811392

  223. Nordström, G.: On the energy of the gravitation field in Einstein’s theory. K. Ned. Akad. Wet. Proc. Ser. B 20, 1238–1245 (1918)

    ADS  Google Scholar 

  224. Oka, T., Mizuno, R., Miura, K., Takekawa, S.: Signature of an intermediate-mass black hole in the central molecular zone of our galaxy. ApJL 816, L7 (2016)

    Article  ADS  Google Scholar 

  225. Oppenheimer, J.R., Snyder, H.: On continued gravitational contraction. Phys. Rev. 56, 455–459 (1939)

    Article  ADS  MATH  Google Scholar 

  226. Oppenheimer, J.R., Volkoff, G.M.: On massive neutron cores. Phys. Rev. 55, 374–381 (1939)

    Article  ADS  MATH  Google Scholar 

  227. Ostriker, J.: The equilibrium of self-gravitating rings. ApJ 140, 1067 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  228. de Oteyza, D., Gorman, P., et al.: Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434 (2013)

    Article  ADS  Google Scholar 

  229. Parsa, M., Eckart, A., et al.: Investigating relativistic motion of stars near the supermassive black hole in the Galactic center. A&A (2017, in preparation)

  230. Pasham, D.R., Strohmayer, T.E., Mushotzky, R.F.: A 400-solar-mass black hole in the galaxy M82. Nature 513, 74–76 (2014)

    Article  ADS  Google Scholar 

  231. Paumard, T., Perrin, G., Eckart, A., Genzel, R., Lena, P., Schoedel, R., Eisenhauer, F., Mueller, T., Gillessen, S.: Scientific prospects for VLTI in the Galactic Centre: getting to the Schwarzschild radius. Astron. Nachr. 326, 568–568 (2005)

    ADS  Google Scholar 

  232. Paumard, T., Perrin, G., Eckart, A., Genzel, R., Léna, P., Schödel, R., Eisenhauer, F., Müller, T., Gillessen, S.: Scientific prospects for VLTI in the Galactic Centre: getting to the Schwarzschild radius. In: Richichi, A., Delplancke, F., Paresce, F., Chelli, A. (eds.) The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation (2008)

  233. Peters, P.C., Mathews, J.: Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131, 435–440 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  234. Pierro, V., Pinto, I.M., Spallicci, A.D., Laserra, E., Recano, F.: Fast and accurate computational tools for gravitational waveforms from binary stars with any orbital eccentricity. MNRAS 325, 358–372 (2001). arXiv:gr-qc/0005044

  235. Plewa, P.M., Gillessen, S., Eisenhauer, F., Ott, T., Pfuhl, O., George, E., Dexter, J., Habibi, M., Genzel, R., Reid, M.J., Menten, K.M.: Pinpointing the near-infrared location of SgrA* by correcting optical distortion in the NACO imager. MNRAS 453, 3234–3244 (2015). doi:10.1093/mnras/stv1910

  236. Poisson, E.: A Relativist’s Toolkit—the Mathematics of Black-Hole Mechanics. A Relativist’s Toolkit—The Mathematics of Black-Hole Mechanics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  237. Pollney, D., Reisswig, C.: Gravitational memory in binary black hole mergers. ApJL 732, L13 (2011) arXiv:1004.4209

  238. Porquet, D., Grosso, N., Predehl, P., Hasinger, G., Yusef-Zadeh, F., Aschenbach, B., Trap, G., Melia, F., Warwick, R.S., Goldwurm, A., Bélanger, G., Tanaka, Y., Genzel, R., Dodds-Eden, K., Sakano, M., Ferrando, P.: X-ray hiccups from Sagittarius A* observed by XMM-Newton. The second brightest flare and three moderate flares caught in half a day. A&A 488, 549–557 (2008)

    Article  ADS  Google Scholar 

  239. Pott, J.U., Eckart, A., Glindemann, A., Viehmann, T., Schodel, R., Straubmeier, C., Leinert, C., Feldt, M., Genzel, R., Robberto, M.: VLTI Observations of IRS 3: The brightest compact MIR source at the Galactic Centre. Messenger 119, 43–44 (2005). arXiv:astro-ph/0505189

  240. Pott, J.U., Eckart, A., Glindemann, A., Schödel, R., Viehmann, T., Robberto, M.: The enigma of GCIRS 3. Constraining the properties of the mid-infrared reference star of the central parsec of the Milky Way with optical long-baseline interferometry. A&A 480, 115–131 (2008)

    Article  ADS  Google Scholar 

  241. Price, H.: Quining naturalism. J. Philos. 104, p375–p402 (2007)

    Article  Google Scholar 

  242. Psaltis, D.: The influence of gas dynamics on measuring the properties of the black hole in the center of the Milky Way with stellar orbits and pulsars. ApJ 759, 130 (2012). arXiv:1112.0026

  243. Psaltis, D., Narayan, R., Fish, V.L., Broderick, A.E., Loeb, A., Doeleman, S.S.: Event horizon telescope evidence for alignment of the black hole in the center of the Milky Way with the inner stellar disk. ApJ 798, 15 (2015)

    Article  ADS  Google Scholar 

  244. Psaltis, D., Wex, N., Kramer, M.: A quantitative test of the no-hair theorem with Sgr A* using stars, pulsars, and the event horizon telescope. ApJ 818, 121 (2016a). arXiv:1510.00394

  245. Psaltis, D., Wex, N., Kramer, M.: A quantitative test of the no-hair theorem with Sgr A* using stars, pulsars, and the event horizon telescope. ApJ 818, 121 (2016b). arXiv:1510.00394

  246. Psillos, S.: Living with the abstract: realism and models. Synthese 180, 3–17 (2011a)

    Article  Google Scholar 

  247. Psillos, S.: Making contact with molecules: on Perrin and Achinstein. In: Morgan, G.J. (ed.) Philosophy of Science Matters: The Philosophy of Peter Achinstein, pp. 177–190. Oxford University Press, Oxford (2011b)

    Chapter  Google Scholar 

  248. Quataert, E.: Radiatively Inefficient Accretion Flow Models of Sgr A*. Astron. Nachr. Suppl. 324, 435–443 (2003). arXiv:astro-ph/0304099

  249. Quine, W.: On what there is. Rev. Metaphys. 2(1948/1949), p21–38 (1948)

    Google Scholar 

  250. Rauch, C., Ros, E., Krichbaum, T.P., Eckart, A., Zensus, J.A., Shahzamanian, B., Mužić, K.: Wisps in the Galactic center: near-infrared triggered observations of the radio source Sgr A* at 43 GHz. A&A 587, A37 (2016)

    Article  ADS  Google Scholar 

  251. Rees, M.J.: Black hole models for active galactic nuclei. ARA&A 22, 471–506 (1984)

    Article  ADS  Google Scholar 

  252. Reid, M.J.: The distance to the center of the Galaxy. ARA&A 31, 345–372 (1993)

    Article  ADS  Google Scholar 

  253. Reid, M.J., Menten, K.M., Genzel, R., Ott, T., Schödel, R., Brunthaler, A.: The position, motion, and mass of Sgr A*. Astron. Nachr. Suppl. 324, 505–511 (2003a)

    Article  ADS  Google Scholar 

  254. Reid, M.J., Menten, K.M., Genzel, R., Ott, T., Schödel, R., Eckart, A.: The position of Sagittarius A*. II. Accurate positions and proper motions of stellar SiO masers near the Galactic Center. ApJ 587, 208–220 (2003b). arXiv:astro-ph/0212273

  255. Reissner, H.: Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Ann. Phys. 355, 106–120 (1916)

    Article  Google Scholar 

  256. Renn, J., Sauer, T.: In the limelight of stars. Einstein, Mandl, and the origins of gravitational lens research (German Title: Im Rampenlicht der Sterne. Einstein, Mandl und die Ursprünge der Gravitationslinsenforschung). Acta Hist. Astron. 27, 210–239 (2005)

    ADS  Google Scholar 

  257. Revnivtsev, M.G., Churazov, E.M., Sazonov, S.Y., Sunyaev, R.A., Lutovinov, A.A., Gilfanov, M.R., Vikhlinin, A.A., Shtykovsky, P.E., Pavlinsky, M.N.: Hard X-ray view of the past activity of Sgr A* in a natural Compton mirror. A&A 425, L49–L52 (2004)

    Article  ADS  Google Scholar 

  258. Reynolds, C.S.: Measuring black hole spin using X-ray reflection spectroscopy. Space Sci. Rev. 183, 277–294 (2014). arXiv:1302.3260

  259. Ricarte, A., Dexter, J.: The event horizon telescope: exploring strong gravity and accretion physics. MNRAS 446, 1973–1987 (2015)

    Article  ADS  Google Scholar 

  260. Roedig, C., Sesana, A.: Origin and implications of high eccentricities in massive black hole binaries at sub-pc scales. J. Phys. Conf. Ser. 363(1), 012035 (2012). arXiv:1111.3742

  261. Rovelli, C., Vidotto, F.: Planck stars. Int. J. Mod. Phys. D 23, 1442026 (2014)

    Article  ADS  Google Scholar 

  262. Rozanska, A., Kunneriath, D., Czerny, B., Adhikari, T.P., Karas, V.: Multiphase environment of compact galactic nuclei: the role of the nuclear star cluster. MNRAS 464, 2090–2102 (2017)

    Article  ADS  Google Scholar 

  263. Rubilar, G.F., Eckart, A.: Periastron shifts of stellar orbits near the Galactic Center. A&A 374, 95–104 (2001)

    Article  ADS  Google Scholar 

  264. Ruffini, R., Bonazzola, S.: Systems of self-gravitating particles in general relativity and the concept of an equation of state. Phys. Rev. 187, 1767–1783 (1969)

    Article  ADS  Google Scholar 

  265. Sabha, N., Eckart, A., Merritt, D., Zamaninasab, M., Witzel, G., García-Marín, M., Jalali, B., Valencia-S, M., Yazici, S., Buchholz, R., Shahzamanian, B., Rauch, C., Horrobin, M., Straubmeier, C.: The S-star cluster at the center of the Milky Way. On the nature of diffuse NIR emission in the inner tenth of a parsec. A&A 545, A70 (2012)

    Article  ADS  Google Scholar 

  266. Sakai, N., Saida, H., Tamaki, T.: Gravastar shadows. Phys. Rev. D 90(10), 104013 (2014). arXiv:1408.6929

  267. Salpeter, E.E.: Accretion of interstellar matter by massive objects. ApJ 140, 796–800 (1964)

    Article  ADS  Google Scholar 

  268. Sandell, M.: Astronomy and experimentation. Techné 14, 252–269 (2010)

    Google Scholar 

  269. Schnittman, J.D.: Astrophysics of super-massive black hole mergers. Classical and Quantum Gravity 30(24), 244007 (2013). arXiv:1307.3542

  270. Schödel, R., Ott, T., Genzel, R., Hofmann, R., Lehnert, M., Eckart, A., Mouawad, N., Alexander, T., Reid, M.J., Lenzen, R., Hartung, M., Lacombe, F., Rouan, D., Gendron, E., Rousset, G., Lagrange, A.M., Brandner, W., Ageorges, N., Lidman, C., Moorwood, A.F.M., Spyromilio, J., Hubin, N., Menten, K.M.: A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 419, 694–696 (2002)

    Article  ADS  Google Scholar 

  271. Schödel, R., Eckart, A., Iserlohe, C., Genzel, R., Ott, T.: A black hole in the Galactic Center complex IRS 13E? ApJL 625, L111–L114 (2005). arXiv:astro-ph/0504474

  272. Schödel, R., Eckart, A., Alexander, T., Merritt, D., Genzel, R., Sternberg, A., Meyer, L., Kul, F., Moultaka, J., Ott, T., Straubmeier, C.: The structure of the nuclear stellar cluster of the Milky Way. A&A 469, 125–146 (2007)

    Article  ADS  Google Scholar 

  273. Schödel, R., Gallego-Cano, E., Dong, H., Nogueras-Lara, F., Gallego-Calvente, A.T., Amaro-Seoane, P., Baumgardt, H.: The distribution of stars around the Milky Way’s central black hole II: diffuse light from sub-giants and dwarfs. A&A (2017). arXiv:1701.03817

  274. Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einstein’schen Theorie (On the gravitational field of a mass point according to Einstein’s theory). Abh Königl Preuss Akad Wissenschaften, math-phys Klasse, 424 (1916). arXiv:physics/9912033 [physics.hist-ph]

  275. Sellars, W.: Science, perception and reality. Ridgeview Publishing Company, Atascadero, CA (1963)

  276. Sesana, A., Gair, J., Berti, E., Volonteri, M.: Reconstructing the massive black hole cosmic history through gravitational waves. Phys. Rev. D 83(4), 044036 (2011). 1011.5893

    Article  ADS  Google Scholar 

  277. Shahzamanian, B., Eckart, A., Valencia-S, M., Witzel, G., Zamaninasab, M., Sabha, N., García-Marín, M., Karas, V., Karssen, G.D., Borkar, A., Dovčiak, M., Kunneriath, D., Bursa, M., Buchholz, R., Moultaka, J., Straubmeier, C.: Polarized light from Sagittarius A* in the near-infrared K\(_{s}\)-band. A&A 576, A20 (2015a)

    Article  ADS  Google Scholar 

  278. Shahzamanian, B., Eckart, A., Valencia-S, M., Witzel, G., Zamaninasab, M., Sabha, N., García-Marín, M., Karas, V., Karssen, G.D., Borkar, A., Dovčiak, M., Kunneriath, D., Bursa, M., Buchholz, R., Moultaka, J., Straubmeier, C.: Polarized light from Sagittarius A* in the near-infrared K\(_{s}\)-band. A&A 576, A20 (2015b)

    Article  ADS  Google Scholar 

  279. Shapiro, S., Teukolsky, S.: Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. Wiley, New York (1983). ISBN 0-471-87317-9

    Book  Google Scholar 

  280. Shcherbakov, R.V., Penna, R.F.: McKinney JC (2012) Sagittarius A* accretion flow and black hole parameters from general relativistic dynamical and polarized radiative modeling. ApJ 755, 133 (2012). arXiv:1007.4832

  281. Shen, Y., Greene, J.E., Ho, L.C., Brandt, W.N., Denney, K.D., Horne, K., Jiang, L., Kochanek, C.S., McGreer, I.D., Merloni, A., Peterson, B.M., Petitjean, P., Schneider, D.P., Schulze, A., Strauss, M.A., Tao, C., Trump, J.R., Pan, K., Bizyaev, D.: The sloan digital sky survey reverberation mapping project: no evidence for evolution in the M -\(\sigma \) relation to z   1. ApJ 805, 96 (2015). arXiv:1502.01034

  282. Shen, Z.Q., Lo, K.Y., Liang, M.C., Ho, P.T.P., Zhao, J.H.: A size of \(\sim \)1AU for the radio source Sgr A* at the centre of the Milky Way. Nature 438, 62–64 (2005)

    Article  ADS  Google Scholar 

  283. Slaný, P., Kovář, J., Stuchlík, Z., Karas, V.: Charged Tori in spherical gravitational and dipolar magnetic fields. ApJS 205, 3 (2013). arXiv:1302.2356

  284. Smeenk, C.: False vacuum: early universe cosmology and the development of inflation. In: Eisenstaedt, J., Kox, A.J. (eds.) The Universe of General Relativity. Einstein Studies, vol. 11. Birkhauser, Boston (2005)

    Google Scholar 

  285. Spitler, L.G., Lee, K.J., Eatough, R.P., Kramer, M., Karuppusamy, R., Bassa, C.G., Cognard, I., Desvignes, G., Lyne, A.G., Stappers, B.W., Bower, G.C., Cordes, J.M., Champion, D.J., Falcke, H.: Pulse broadening measurements from the Galactic Center pulsar J1745–2900. ApJL 780, L3 (2014). arXiv:1309.4673

  286. Su, M., Slatyer, T.R., Finkbeiner, D.P.: Giant gamma-ray bubbles from fermi-LAT: active galactic nucleus activity or bipolar galactic wind? ApJ 724, 1044–1082 (2010). arXiv:1005.5480

  287. Sunyaev, R., Churazov, E.: Equivalent width, shape and proper motion of the iron fluorescent line emission from molecular clouds as an indicator of the illuminating source X-ray flux history. MNRAS 297, 1279–1291 (1998). arXiv:astro-ph/9805038

  288. Synge, J.L.: The escape of photons from gravitationally intense stars. MNRAS 131, 463 (1966)

    Article  ADS  Google Scholar 

  289. Terrier, R., Ponti, G., Bélanger, G., Decourchelle, A., Tatischeff, V., Goldwurm, A., Trap, G., Morris, M.R., Warwick, R.: Fading hard X-ray emission from the Galactic Center molecular cloud Sgr B2. ApJ 719, 143–150 (2010). arXiv:1005.4807

  290. The eLISA Consortium: Seoane PAea: The Gravitational Universe. (2013). arXiv:1305.5720

  291. The L.I.G.O. Scientific Collaboration; The Virgo Collaboration.: Properties of the binary black hole merger GW150914. (2016). arXiv:1602.03840

  292. Torres, D.F., Capozziello, S., Lambiase, G.: Supermassive boson stars: prospects for observational detection. (2000). ArXiv:gr-qc/0012031

  293. Trippe, S., Paumard, T., Ott, T., Gillessen, S., Eisenhauer, F., Martins, F., Genzel, R.: A polarized infrared flare from Sagittarius A* and the signatures of orbiting plasma hotspots. MNRAS 375, 764–772 (2007). arXiv:astro-ph/0611737

  294. Tsupko, O.Y., Bisnovatyi-Kogan, G.S.: Gravitational lensing in plasma: relativistic images at homogeneous plasma. Phys. Rev. D 87(12), 124009 (2013)

    Article  ADS  Google Scholar 

  295. van Fraassen, C.: Images of Science: Essays on Realism and Empiricism; Churchland, P.M. (ed.). University Of Chicago Press, Chicago (1985). ISBN-13: 978-0226106540

  296. Vanhollebeke, E., Groenewegen, M.A.T., Girardi, L.: Stellar populations in the Galactic bulge. Modelling the Galactic bulge with TRILEGAL. A&A 498, 95–107 (2009)

    Article  ADS  Google Scholar 

  297. Vasudevan, R.V., Fabian, A.C.: Piecing together the X-ray background: bolometric corrections for active galactic nuclei. MNRAS 381, 1235–1251 (2007)

    Article  ADS  Google Scholar 

  298. Verozub, L.: Sgr A* as probe of the theory of supermassive compact objects without event horizon. Astron. Nachr. 327, 355 (2006)

    Article  ADS  Google Scholar 

  299. Vincent, F.H., Paumard, T., Perrin, G., Mugnier, L., Eisenhauer, F., Gillessen, S. (2011a) Astrometric study of the complex environment of Sgr A* in imaging mode with the VLTI/GRAVITY instrument. In: Morris, M.R., Wang, Q.D., Yuan, F. (eds.) The Galactic Center: A Window to the Nuclear Environment of Disk Galaxies, Astronomical Society of the Pacific Conference Series, vol. 439, p. 275

  300. Vincent, F.H., Paumard, T., Perrin, G., Mugnier, L., Eisenhauer, F., Gillessen, S.: Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the Galactic Centre black hole. MNRAS 412, 2653–2664 (2011b). arXiv:1011.5439

  301. Vincent, F.H., Paumard, T., Perrin, G., Varniere, P., Casse, F., Eisenhauer, F., Gillessen, S., Armitage, P.J.: Distinguishing an ejected blob from alternative flare models at the Galactic Centre with GRAVITY. MNRAS 441, 3477–3487 (2014). arXiv:1404.6149

  302. Vincent, F.H., Meliani, Z., Grandclement, P., Gourgoulhon, E., Straub, O.: Imaging a boson star at the Galactic center. (2015). arXiv:1510.04170

  303. Viollier, R.D., Leimgruber, F.R., Trautmann, D.: Halos of heavy neutrinos around baryonic stars. Phys. Lett. B 297, 132–137 (1992)

    Article  ADS  Google Scholar 

  304. Wald, R.: General Relativity. The University of Chicago Press, Chicago (1984). ISBN: 9780226870335

  305. Walker, S.A., Fabian, A.C., Russell, H.R., Sanders, J.S.: The effect of the quasar H1821+643 on the surrounding intracluster medium: revealing the underlying cooling flow. MNRAS 442, 2809–2816 (2014). arXiv:1405.7522

  306. Walsh, J.L., Barth, A.J., Ho, L.C., Sarzi, M.: The M87 black hole mass from gas-dynamical models of space telescope imaging spectrograph observations. ApJ 770, 86 (2013). arXiv:1304.7273

  307. Wang, X., Loeb, A.: Detecting floating black holes as they traverse the gas disc of the Milky Way. MNRAS 441, 809–812 (2014)

    Article  ADS  Google Scholar 

  308. Wharton, R.S., Chatterjee, S., Cordes, J.M., Deneva, J.S., Lazio, T.J.W.: Multiwavelength constraints on pulsar populations in the Galactic Center. ApJ 753, 108 (2012). arXiv:1111.4216

  309. Will, C.M.: Perturbation of a slowly rotating black hole by a stationary axisymmetric ring of matter. I. Equilibrium configurations. ApJ 191, 521–532 (1974)

    Article  ADS  Google Scholar 

  310. Witzel, G., Eckart, A., Bremer, M., Zamaninasab, M., Shahzamanian, B., Valencia-S, M., Schödel, R., Karas, V., Lenzen, R., Marchili, N., Sabha, N., Garcia-Marin, M., Buchholz, R.M., Kunneriath, D., Straubmeier, C.: Source-intrinsic near-infrared properties of Sgr A*: total intensity measurements. ApJS 203, 18 (2012a)

    Article  ADS  Google Scholar 

  311. Witzel, G., Eckart, A., Bremer, M., Zamaninasab, M., Shahzamanian, B., Valencia-S, M., Schödel, R., Karas, V., Lenzen, R., Marchili, N., Sabha, N., Garcia-Marin, M., Buchholz, R.M., Kunneriath, D., Straubmeier, C.: Source-intrinsic near-infrared properties of Sgr A*: total intensity measurements. ApJS 203, 18 (2012b). arXiv:1208.5836

  312. Wollman, E.R., Geballe, T.R., Lacy, J.H., Townes, C.H., Rank, D.M.: NE II 12.8 micron emission from the galactic center. II. ApJL 218, L103–L107 (1977)

    Article  ADS  Google Scholar 

  313. Wrobel, J.M., Miller-Jones, J.C.A., Middleton, M.J.: A very large array search for intermediate-mass black holes in globular clusters in M81. Astron. J. 152, 22 (2016)

    Article  ADS  Google Scholar 

  314. Wu, Q., Czerny, B., Grzedzielski, M., Janiuk, A., Gu, W.M., Aj, Dong, Cao, X.F., You, B., Yan, Z., Sun, M.Y.: The universal heartbeat; oscillations in black hole systems across the mass-scale. ApJ 833, 79 (2016)

  315. Wyithe, J.S.B., Loeb, A.: Low-Frequency Gravitational Waves from Massive Black Hole Binaries: Predictions for LISA and Pulsar Timing Arrays. ApJ 590, 691–706 (2003). arXiv:astro-ph/0211556

  316. Yagi, K., Stein, L.C.: Black hole based tests of general relativity. Class. Quantum Gravity 33(5), 054001 (2016). arXiv:1602.02413

  317. Yuan, F., Narayan, R.: Hot accretion flows around black holes. ARA&A 52, 529–588 (2014)

    Article  ADS  Google Scholar 

  318. Yuan, F., Quataert, E., Narayan, R.: Nonthermal electrons in radiatively inefficient accretion flow models of Sagittarius A*. ApJ 598, 301–312 (2003). arXiv:astro-ph/0304125

  319. Yuan, F., Bu, D., Wu, M.: Numerical simulation of hot accretion flows. II. Nature, origin, and properties of outflows and their possible observational applications. ApJ 761, 130 (2012) arXiv:1206.4173

  320. Yunes, N., Siemens, X.: Gravitational-wave tests of general relativity with ground-based detectors and pulsar-timing arrays. Liv. Rev. Relat. 16, 9 (2013)

    Article  Google Scholar 

  321. Yusef-Zadeh, F., Wardle, M., Miller-Jones, J.C.A., Roberts, D.A., Grosso, N., Porquet, D.: Rapid intrinsic variability of SGR A* at radio wavelengths. ApJ 729, 44 (2011)

    Article  ADS  Google Scholar 

  322. Yusef-Zadeh, F., Arendt, R., Bushouse, H., Cotton, W., Haggard, D., Pound, M.W., Roberts, D.A., Royster, M., Wardle, M.: A 3 pc scale jet-driven outflow from Sgr A*. ApJL 758, L11 (2012a)

    Article  ADS  Google Scholar 

  323. Yusef-Zadeh, F., Wardle, M., Dodds-Eden, K., Heinke, C.O., Gillessen, S., Genzel, R., Bushouse, H., Grosso, N., Porquet, D.: An inverse compton scattering origin of X-ray flares from Sgr A*. AJ 144, 1 (2012b)

    Article  ADS  Google Scholar 

  324. Yusef-Zadeh, F., Wardle, M., Cotton, W., Schödel, R., Royster, M.J., Roberts, D.A., Kunneriath, D.: Tidal distortion of the envelope of an AGB star IRS 3 near Sgr A*. (2017)

  325. Zajacek, M., Karas, V., Kunneriath, D.: Galactic Center minispiral: interaction modes of neutron stars. Acta Polytech. 55, 203–214 (2015)

    Article  ADS  Google Scholar 

  326. Zakharov, A.F.: Constraints on a charge in the Reissner-Nordström metric for the black hole at the Galactic Center. Phys. Rev. D 90(6), 062007 (2014)

    Article  ADS  Google Scholar 

  327. Zamaninasab, M., Eckart, A., Witzel, G., Dovciak, M., Karas, V., Schödel, R., Gießübel, R., Bremer, M., García-Marín, M., Kunneriath, D., Mužić, K., Nishiyama, S., Sabha, N., Straubmeier, C., Zensus, A.: Near infrared flares of Sagittarius A*. Importance of near infrared polarimetry. A&A 510, A3 (2010)

    Article  ADS  Google Scholar 

  328. Zeh, H.D.: The Physical Basis of the Direction of Time, Fifth edn. Springer, Berlin (2007). ISBN 978-3-540-68000-0

  329. Zel’dovich, Y.B., Novikov, I.D.: The radiation of gravity waves by bodies moving in the field of a collapsing star. Sov. Phys. Dokl. 9, 246 (1964)

    ADS  Google Scholar 

  330. Zubovas, K., Nayakshin, S., Markoff, S.: Sgr A* flares: tidal disruption of asteroids and planets? MNRAS 421, 1315–1324 (2012). arXiv:1110.6872

Download references

Acknowledgements

We thank Sybille Anderl (IPAG Grenoble) for valuable comments and support on the philosophy of science sections, Georgi Dvali (LMU Munich) for constructive and valuable discussions and input, and Grischa Karssen (University of Cologne) for contributing Fig. 12 and part of the corresponding discussion. We also thank Rainer Schödel (IAA Granada, CSIC Spain) for valuable comments. This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) via the Cologne Bonn Graduate School (BCGS), the Max Planck Society through the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics. Part of this work was supported by fruitful discussions with members of the European Union funded COST Action MP0905: Black Holes in a Violent Universe and the Czech Science Foundation DFG collaboration (No.  14-37086G) and with members of the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement No. 312789, Strong Gravity: Probing Strong Gravity by Black Holes Across the Range of Masses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Eckart.

Appendices

Appendix 1: An Example for Establishing Existence Claims

As an example for establishing existence claims in the (recent) history of physics, we look at the case of atoms and molecules. We consider this case—because it has been widely discussed in philosophy of science—is the final acceptance of the existence of molecules/atoms due to the work of Jean Perrin on Brownian motion in the early 20th century as the collision with the quick atoms or molecules in the gas or liquid. Brownian motion itself was first discovered by the Scottish botanist Robert Brown in 1827 as random motion of particles.

Perrin received the Nobel Prize for physics in 1926 for his work that “put a definite end to the long struggle regarding the real existence of molecules” (C.W. Oseen, member of the Nobel Committee for Physics). So, how was Perrin able to establish the existence of molecules/atoms and what can we learn from this for the question of the existence of black holes? Atoms and molecules among other places played a major role in the kinetic theory of heat. However, there were debates about whether atoms/molecules were merely a useful fiction that yielded (in many cases) the right result or whether they should be accepted as real. For some time it appeared to be the case that this question could not be resolved by experimental means. In the early 20th century (partly through the work of Einstein) atoms and molecules became accessible, i.e. new theoretical means were devised so as to bring the hypothesis into the reach of established experimental methods (see [247], “Making Contact with Molecules: On Perrin and Achinstein”).

In making the question of atoms/molecules not only experimentally accessible but to decide it positively, three features proved to be important:

  1. i.

    The assumption that atoms/molecules exist puts constraints on observational data: The assumptions could only be true if some observable magnitudes had certain very definite values (Avogadro’s number/constant). This appears to be an essential point in a number of cases. What is asked for here are novel predictions, i.e. the prediction of phenomena, which would be very unlikely if atoms/molecules did not exist (compare the prediction of the deflection of light by the sun as evidence for GR; Karl Popper tried to capture this by his notion of a high degree of falsifiability). The prediction has to be risky.

  2. ii.

    On rival accounts, i.e. on the denial of atoms/molecules, the value of Avogadro’s number would have been completely different. Hence, the value of Avogadro’s constant is dependent on the existence of atoms.

  3. iii.

    The relevant value was experimentally established in a number of different/independent ways. Avogadro’s constant is tested in several different ways and today there are about 60 different and independent ways to measure it [25], making use of e.g. electrical charge and current, in determinating the properties of gas, liquids and crystals.

Following the ground breaking work of Perrin, today the acceptance of atoms is supported by direct imaging of molecules, atoms or even their bounds (e.g. [154, 228]).Footnote 27

Appendix 2: From (Anti)realism and Underdetermination to a Causal Principle

How for theory and observations the concepts of “Realism” and “Underdetermination” may be linked to causation is outlined in the following:

Theory Taken Literally as Being True Black holes are extremely simple objects and hence, ideally suited to be regarded as a kind of theoretical concept that historically has the tendency to be taken literally as real by realists (see below and statements by Psillos [246] and Sellars [275]). The problem is that other theories could be regarded as being similarly simple (although they are often more complex as they require the definition of additional quantities like particle masses and interaction forces etc.). The fact that one cannot easily distinguish between them experimentally, leaves enough freedom to being unable to decide if some other entities implied by a literal reading of the theory, e.g. a compact object like a black hole and its possible alternatives, are indeed real (e.g. the shadow of such a compact object, i.e. the presence, depth and size of an emission free or sparse region close to the position of the compact object; see Sect. 4.10).

Here, also the possibility of an experimental comparison between theory and implied entities (if interpreted as predicted phenomena like speeds of stars or emitting blobs, timescales associated with consecutive events, or structures like the shadow) in a way relieves many philosophers (especially if facts or statements are being taken literally) from the “commitment to a host of entities with a (to say the least) questionable ontic status: numbers, geometrical points, theoretical ideals, models and suchlike” [246].

Therefore, we must clarify that at this point we are not concerned with the question of whether there is reality to the theoretical concept of a black hole as such, for instance as a concept within the theory or relativity. The goal of the observational and experimental astrophysics is to test the properties of an observable entity against a theoretical concept in order to identify it in a commonly agreeable way with the object described by this very theoretical concept.

Reality of Entities Derived from Theory The entities implied by the theory of black holes (here taken as observational results or as implied physical scenarii, i.e. how stars orbit the black hole or—in the near future—how exactly the black hole shadow looks like) can also be regarded as real, as they all come (are derived) indeed “from theory and \(\ldots \) there is no theory-free standpoint from which” [246], these entities can be viewed. This means, as valuable observational predictions are usually all derived from theory there is no theory-independent criterion of reality that can be used in an accepted way. The goal is to define and successfully observe entities i.e. predictions, for which a black hole plays an indispensable role in their explanation.

While this is clearly the preferred situation for the physicist (i.e. a successful comparison between observational results or the properties of implied physical scenarii) this is also true for theory as such from the viewing angle of realists that historically tend to read (take) theories literally as real. As this can be explained out of theory it can be regarded as a permissive criterion [275] that particularly does not disallow abstract entities from being real. Psillos [246] points out that “this explanatory criterion should not be confused with a causal criterion”, e.g. in the form of the Eleatic Principle (see below), “according to which being causally active, that is having causal powers, is a criterion of objecthood. Causal efficacy may well be a mark of reality, but not everything that is real is causally efficacious” [246]. The former would be good for experimentalists, the latter would be supported by black hole theory. Here, Psillos points at entities that are causally idle but causally relevant. Hence, he describes Colyvan’s “rounded out” version of the Eleatic Principle (Colyvan [54] and the following Appendix 3).

Causation as a Clue to Probe Existence For observed entities, may they be derived from theory or not, causation may be taken as a clue to make their existence plausible beyond doubt. David M. Amstrong states in his reply to Reinhardt Grossmann in the correspondence on the “Ontology and the Physical Universe” [57] that if one does not “postulate an entity [...] which is not required in ones account of causation”, then indeed causation can be used as a partial clue to the existence. The word “partial” is used here as it needs to be seen how the analysis of the causation needs to be done in every particular case. Goal of the observational astrophysics is to optimize this aspect.

As Andrew Newman states: “Talking about existing and talking about being real are just different ways of talking about the same thing” [222]. As supporting examples he quotes Gottlob Frege and Bertrand Russell who are guided to things that are real by syntax (e.g. in [45]), Quine, who demands that something must be quantifiable if it is called real (e.g. in [61]), and D.M. Amstrong demanding causal significance for real things (e.g. in [222]). Causal significance or relevance is an essence of any form of the Eleatic Principle (see below).

Andrew Newman points out [222]: “Alex Oliver claims that the Eleatic Principle is ambiguous because there is an epistemological reading of ‘reason’ and a metaphysical reading of ‘reason’, mostly worried about the existence of causally inactive entities.” This criticism might appear to be applicable to aspects of the black hole physics, however, all experiments aim at consolidating causal activity.

Reality and the Eleatic Principle In the case of black holes, we may make use of the possible claim that the physical world is causally closed, i.e. that all genuine causes of physical events are physical causes (e.g. [203]). Hence, in the case of black holes we do not run into the problem that this particular science entity is not reducible to a physical entity. Even if the reduction to such an entity is currently not fully conducted, all instrumental and observational efforts aim at improving the performance of that reduction.

Appendix 3: The Eleatic Principle

If underdetermination can be fought or even partially overcome, then causation may be used to further underline the realism or existence of an entity in a generally acceptable way. This involves the usage of a causal criterion that may be in the form of the Eleatic Principle (for a general overview see e.g. [54, 55]). Colyvan [54] gives a consice definition of the classical Eleatic Principle “An entity is to be counted as real if and only if it is capable of participating in causal processes”.

The principle is named after a Greek school in lower Italy Elea (’\(E \lambda \acute{\epsilon } \alpha \)) closely linked to the philosophers Parmenides, Zeno and Xenophanes of Colophon (going back to a figure in Plato’s dialogue Sophistes). As a philosophical conceptual aspect, the School of Elea rejects any epistemological criteria simply based on sensual experiences (Fig. 2). According to the Eleatic Principle, we should be realists about whatever manifests itself in virtue of having effects (in ‘A World of States of Affairs’ by Amstrong [11], see also the discussion in “Quining Naturalism” by Price [241]). The use of the Eleatic Principle in our context needs some clarification. The classical version of the Eleatic Principle uses and connects (in a more time-like fashion) mainly causally active entities. In this version non-causal entities like abstract mathematical and physical concepts are regarded as causally idle and therefore they are not considered as suitable entities. This problem has been explained in detail by Colyvan in his article “Can the Eleatic Principle be Justified?” [54]. He investigates several justification attempts and shows how and when they fail or what their drawbacks are. In order to avoid these problems he suggests to use a “rounded out” version of the Eleatic Principle in which also causally idle entities can be used. This “rounded out” version contains the classical version of the Eleatic Principle (Fig. 2). In the case of the Galactic Center and supermassive black holes in general, involvement of at least the “rounded out” version of the Eleatic Principle is justified (see below and [54]).

Mark Colyvan’s version of the “rounded out” Eleatic Principle does not stand alone. He points out that this more general principle that he proposes has great similarities to Quine’s thesis that “we are only ontologically committed to all and only the entities that are indispensable to our current best scientific theories” (see [249]). Indispensable entities then include both causally idle and causally efficacious entities. A critical discussion of the Eleatic Principle with a focus on the role of mathematical objects and Colyvan’s defense of Quine’s indispensability argument is given by Marcus [185]. It should also be mentioned that the entities we connect in the synthesis Sect. 7 have by themselves a rather complex nature. In most cases they are the result of a logical combination of causally idle and active entities and have a structure similar to that shown in Eq. (9). Causally idle (but ally relevant) entities occur e.g. through the theory of image formation in all wavelength domains or in relativistic concepts that are used to extract expected situations and compare them to measurements. In particular the “data inversion” problem in the image formation theory of interferometry might well serve as an example of true “underdetermination” in astrophysics. Causally efficacious entities occur e.g. in the form of stars, pulsars, emitted radiation or astrophysical instruments and telescopes, all of which can be located in spacetime in contrast to the causally idle entities.

Appendix 4: Time Scales and Luminosities of Gravitational Wave “Ringing”

The analysis is done based on the formalism presented in Misner et al. [202] and Shapiro and Teukolsky [279]. The tidal disruption radius \(r_\mathrm{{T}}\) for main-sequence stars with mass \(m_{\star }\) and radius \(R_{\star }\) is larger than the Schwarzschild radius \(R_\mathrm{{S}}\) of the supermassive black hole,

(20)

so we cannot expect any gravitational wave event from main-sequence star inspirals, since they will be tidally disrupted. On the other hand, Schwarzschild radius is larger than tidal disruption radius for white dwarfs with \(R_{\star }=0.01\,R_{\odot }\), neutron stars with \(R_{\star }=10^{-5}\,R_{\odot }\), and stellar black holes, so these are not subject to tidal disruption.

A circularized orbit of a compact star with the semimajor axis \(a_{\star }\) around the supermassive black hole emits gravitational waves at a frequency

(21)

reaching \(\sim 1.1\,\mathrm {mHz}\) at the innermost stable circular orbit.

The characteristic scaling amplitude for the EMRI event at the distance of the Galactic center is

(22)

and the effective metric perturbation is given by the amplitude \(h_0\) times the square root of the number of cycles the EMRI spends in the band with a bandwidth \(\Delta \nu \) centered at the frequency \(\nu \). The number of cycles N is given by \(N=\nu ^2/\dot{\nu }=\nu \tau \), where the characteristic evolution time-scale \(\tau \equiv \nu /\dot{\nu } = 8/3(t_\mathrm{coal}-t) \propto \mathcal {M}^{-5/3} \nu ^{-8/3}\) and \(t_\mathrm{coal}\) is the coalescence time. The ‘chirp mass’ may be expressed as , where the approximation holds for the EMRI. Finally, the metric perturbation or basically the signal is proportional to .

The expected luminosity \(L_\mathrm{GW}\) averaged over one period and evaluated at the innermost stable circular orbit [233] is

(23)

which is valid for circular orbits. In general, the equation 23 depends strongly on the orbital eccentricity [233]. The incoming flux \(F_\mathrm{GW}\) may be expressed as a function of the amplitude \(h_0\) and the observed frequency \(\nu _\mathrm{{GW}}\),

$$\begin{aligned} F_\mathrm{GW}\simeq 0.005 \left( \frac{\nu _\mathrm{GW}}{1\,\mathrm{mHz}}\right) ^2 \left( \frac{h_{0}}{4\times 10^{-18}\,} \right) ^2\,\mathrm{erg\,cm^{-2}\,s^{-1}}\,. \end{aligned}$$
(24)

The coalescence (merger) time-scale \(\tau _\mathrm{{merge}}\) depends on the eccentricity of the orbit e. For a circular orbit,

(25)

where \(a_0\) is an initial semi-major axis. For initially highly eccentric orbits, \(e\approx 0.99\), it reduces to \(\tau _\mathrm{{merge}}=768/425 \tau _0(a_0)(1-e_0)^{7/2}\approx 0.016\,\mathrm {year}\).

The detection of an EMRI event associated with the Galactic center black hole would enable us to precisely measure the mass and the spin of the black hole with an independent measurement. The waveform could also reveal deviations from the Kerr metric as well as a possibly different character of a central compact object (e.g. a boson star). An exemplary waveform for an EMRI event for the ratio and the black hole spin \(J=0.998\) is depicted in Fig. 9. The inspiral starts at four gravitational radii.

The EMRI events from the Galactic center will be within the detection sensitivity limits of the planned LISA and eLISA space-base interferometers that will be capable to detect the gravitational wave events with low frequencies in the range \(\nu _\mathrm{{GW}}=0.1\)\(1\,\mathrm {mHz}\). Although the likelihood to detect an EMRI event for the Galactic center is rather low during the mission lifetime, [117] estimate that LISA will be able to detect \({\sim }2\) EMRI events of \(1.4\,M_{\odot }\) compact objects (white dwarfs and neutron stars) per cubic Gpc per year for black holes with similar masses as Sgr A*.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eckart, A., Hüttemann, A., Kiefer, C. et al. The Milky Way’s Supermassive Black Hole: How Good a Case Is It?. Found Phys 47, 553–624 (2017). https://doi.org/10.1007/s10701-017-0079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0079-2

Keywords

Navigation