
Submitted to NIPS*97, Section: Visual Processing. Presentation Preference: Oral.Complex Cells and Object RecognitionShimon EdelmanCenter for Biol & Comp LearningMIT E25-201Cambridge, MA 02142edelman@ai.mit.eduNathan IntratorSchool of Mathematical SciencesTel Aviv UniversityTel Aviv 69978, Israelnin@math.tau.ac.il Tomaso PoggioCenter for Biol & Comp LearningMIT E25-201Cambridge, MA 02142tp@ai.mit.eduAbstractNearest-neighbor correlation-based similarity computation in thespace of outputs of complex-type receptive �elds can support ro-bust recognition of 3D objects. Our experiments with four collec-tions of objects resulted in mean recognition rates between 84%(for subordinate-level discrimination among 15 quadruped animalshapes) and 94% (for basic-level recognition of 20 everyday ob-jects), over a 40� � 40� range of viewpoints, centered on a storedcanonical view and related to it by rotations in depth. This resulthas interesting implications for the design of a front end to an ar-ti�cial object recognition system, and for the understanding of thefaculty of object recognition in primate vision.1 INTRODUCTIONOrientation-selective receptive �elds (RFs) patterned after those found in the mam-malian primary visual cortex (V1) are employed by a growing number of connec-tionist approaches to machine vision (for a review, see Edelman, 1997). Despitethe success of RF-based systems in tasks ranging from binocular stereopsis to ob-ject recognition, they have been declared inherently incapable of replicating theseemingly universal human ability to generalize recognition from a single exampleview, across transformations such as translation, scaling, and rotation of the object(Fiser et al., 1997). Although recent psychophysical research revealed importantlimitations to the capacity of human vision for invariant recognition (B�ultho� andEdelman, 1992; Tarr et al., 1997), a large part of the problem | how to achieve



even approximately invariant recognition without invoking biologically controver-sial mechanisms such as shifter circuits or active alignment | still remains. Here,we explore a relatively neglected approach to this problem, grounded in a classicalfunctional model of cortical neurobiology (Hubel and Wiesel, 1962).
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sFigure 1: A schematic diagram of the formation of a complex-type response (thebiophysics and the actual wiring is much more complicated; see, e.g., (Ghose et al.,1994)). The complex cell selective to a given orientation integrates the orientedenergy (computed from a phase-quadrature pair of simple-cell responses) over itsreceptive �eld.Models that mimic the primary visual cortex typically use as their main buildingblock RFs resembling those of the simple cells (Rolls, 1996; Bricolo et al., 1996),whose response pro�les can be approximated by products of Gaussian windowswith sine gratings of varying phase and orientation. Because of their small size,simple-cell RFs o�er very little tolerance to object transformations that cause imagefeatures to change their location relative to the RF array. The simple cells, however,are only a small fraction of the population of orientation-selective cells in V1. Themajority of cells, which combine orientation tuning with insensitivity to positionwithin RFs that are several times larger than those of simple cells, have been termedcomplex (Hubel and Wiesel, 1962). In the past, attempts have been made to builda model of invariant recognition around Hubel and Wiesel's simple to complexhierarchy (Fukushima, 1988). Because of the recent modi�cations to the classicalview of the complex RF (Heeger, 1992), and because of their utility in modelingstereopsis (Qian and Zhu, 1997), we decided to explore the degree of invariancewhich can be imparted by a complex-type representation, confronted with a varietyof realistically detailed shaded 3D objects.2 A REPRESENTATION BASED ON COMPLEX CELLS2.1 BASIC APPROACHA complex cell responds to a properly oriented line segment located anywhere withinits RF (cf. Figure 1). Consequently, a representation based on responses of complexcells is immediately invariant to translation that leaves each piece of contour underthe same RF at all times (this quali�cation will be reconsidered in the next section).Moreover, rotating the contour in depth should also be tolerated, if the rotation isnot too large (because of self-occlusion, large rotations cannot be handled by abrute-force invariance mechanism, and must be treated on an aspect by aspectbasis). In this case, the di�erential displacement of various segments relative toeach other, due to their arrangement in depth, is absorbed by the complex RFmechanism (the same reasoning applies to moderate changes of object size).The simplest way to use RF-based representations is to store \snapshots" of theRF space corresponding to images of various reference objects, and to judge theidentity of a new image based on its similarity to each of the stored ones. The basic
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XFigure 2: Left: The computation of similarity between two \snapshots" of complex-cell responses (or, for that matter, of any two arrays of RF activities) is confoundedby the e�ect of slippage of contours between frames 1 and 2 with respect to theboundaries of individual cells in the sensory array. This e�ect cannot be coun-tered merely by using partially overlapping RFs: some contours will always crossfrom one RF to another, introducing noise into the \default" elementwise similaritycomputation, based on the l2 norm. Right: If the similarity measure downplaysthe contribution of RFs which, in at least one of the two images, respond weaklybecause of contour slippage (cases A and B), the system can be made to behavemuch more robustly. A natural similarity measure, then, is the correlation betweenthe two RF activity vectors (see section 2.2).operation here is the computation of distance between two vectors of RF responses.In the ideal case (see Figure 2, left), this distance will be zero even for somewhatdi�erent views of the same object.2.2 CORRELATION-BASED SIMILARITYSuch ideal invariance can only be attained if the shift of each contour, due to theparticular combination of transformations of the object relative to the referencepose, does not exceed the RF size. Importantly, this assumption can be relaxed,by considering separately the di�erent scenarios that may occur in practice (seeFigure 2, right). In case A, a contour is present within the RF in image 1, butnot in image 2; in case B, the situation is reversed. In case C, in comparison, thecontour does not leave the con�nes of the RF. Clearly, if cases like C are given alarger weight in the determination of the similarity between the two images, theproblem of contours slip-sliding away from under their original RFs would be alle-viated (there would still remain the problem of crowding among nearby contours).Following this line of reasoning, we de�ne distance between two RF activity vectorsas dcorr(x;y) = 1 � xTy=p(xTx) (yTy). In other words, we base similarity oncorrelation, rather than on the Euclidean metric dEucl = Pi (xi � yi)2. The hopehere is that cases A and B will interfere less with dcorr than with dEucl, because ofthe normalization of vector lengths in the computation of the former (normalizationdownplays the contribution of vector components that are large in absolute terms,but small relative to the other components of the same vector).1 As we shall seenext, this expectation is ful�lled in practice.1Although Euclidean distance over normalized vectors is equivalent to correlation, thelatter seems to be preferable on biophysical grounds; see (Girosi et al., 1995), p.249.



Figure 3: Test objects. Top left: 20 objects, some courtesy of SGI, Inc., otherschosen at random from a commercially available collection (Viewpoint Datalabs,Inc.). Top right: 12 geon trees (courtesy of Michael J. Tarr, Brown University).Bottom left: 20 \paper-clip" objects, similar to those of (B�ultho� and Edelman,1992). Bottom right: 15 four-legged animal shapes, from the Viewpoint database.3 TESTING THE REPRESENTATIONThe particular model of complex-cell RF that we have implemented and tested isbased on the oriented energy approach described, e.g., in (Spitzer and Hochstein,1988). More recently, that model has been modi�ed to include an additional nonlin-earity in the form of cross-orientation inhibition (Heeger, 1992), according to whichcells tuned to di�erent orientations are made to inhibit each other. A successfulapplication of this model to stereopsis is described in (Qian and Zhu, 1997). Themain parameters of our implementation are as follows: simple cell size, 8 pixels;complex cell size, 16 pixels; overlap factor, �4; number of orientations, 4 (this re-sulted in a 3364-dimensional representation space, with 29�29 = 841 complex cellsat each orientation). Down-scaling the sizes by a factor of 2 had little e�ect on theperformance; maintaining an overlap factor of 4 proved, however, important.Objects on which the model was tested (Figure 3) had been rendered, realisticallyshaded, at 25 orientations, spaced at 10� and forming a 40 � 40� grid centered ona canonical view of each object (for the quadrupeds, this was taken to be slightlyto the side and above the head of the animal; for the other objects, a random view
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Figure 4: Recognition performance. Top left: diverse objects. Mean correctrecognition rate (CR) = 94% (CR without cross-orientation inhibition in com-plex cells: 93%; CR using simple cells only: 35%; CR using Euclidean distancein non-normalized complex-cell space: 17%). Testing the model on combinations ofhorizontal image-plane translation (�16 pixels, or about 1/5 the size of the objects;in biological vision, invariance over much larger translations is common) and rota-tion in depth around the vertical axis (�20�) resulted in CR = 85% (note that thee�ects of these two transformations compound each other). Top right: geon trees.Mean CR = 95%. Bottom left: paper-clip objects. Mean CR = 92%. Bottom right:four-legged animals. Mean CR = 84%.was picked). Image resolution was 256 � 256 pixels, 8-bit gray-scale; the objectstypically occupied the central third of the frame. In each of the four experiments,the single reference view per object was piped through the model, and the complexcell outputs were stored, and subsequently used in a nearest-neighbor recognitionscheme. This simple scheme resulted in an average recognition rate of 92% overfour experiments. Both the use of complex cells and the divisive normalization oftheir responses (inherent in the correlation-based similaritymeasure) proved crucial:control experiments using simple cells only or non-normalized Euclidean distanceresulted in respective recognition rates of 35% and 17% (see Figure 4).4 DISCUSSIONThe degree of invariance to rotation in depth that we found for general objects iscomparable to that exhibited by human subjects in naming and recognition exper-iments (Biederman, 1987). Because of the di�culty to control for prior exposure



to such objects, a more informative comparison is the one involving the geon trees;these constituted novel stimuli both for our model, and for the subjects of (Tarret al., 1997). The model's 95% recognition rate for those objects indicates, there-fore, that much of the invariance in basic-level object recognition by humans maybe attained already at the level of complex-like cells; the addition of higher-levelprocessing such as contour grouping and nonaccidental feature detection should leadto the development of even more robust models.For the paper-clip objects, the model's performance exceeds that of human sub-jects (B�ultho� and Edelman, 1992). This curious �nding suggests that the humanperformance in this case is limited not by the lack of invariance in the early rep-resentations, but rather by the selective commitment of such representations tomemory; if, for some reason (possibly related to the statistics of naturally occur-ring objects) the long-term memory is biased against retaining traces of wire-frameobjects, such objects would be di�cult to learn and recognize, even though theirearly representations are quite informative.In the case of the subordinate-level discrimination (the quadruped stimuli), it isclear that the model must be augmented by some additional mechanisms to attainhuman-level performance. Such mechanisms (e.g., class-based processing (Landoand Edelman, 1995; Vetter and Poggio, 1996), or combination of information acrossmultiple spatial scales) are, however, beyond the scope of the present paper.The one-shot learning performance of the present model compares favorably to thatof two recent recognition systems based on storing histograms of receptive �eld-likemeasurements (Mel, 1997; Schiele and Crowley, 1996). Despite its exclusion ofcolor information and of higher-order features, our model performs as well as thehistogram methods, without requiring global pooling of measurements (which causethe latter to respond equally well to scrambled images, a trait found in pigeon, butnot in human, vision). Moreover, this high performance is achieved in conjunctionwith a biologically credible representation (complex cells) and a similarity measurewell-adapted for neural hardware (inner product). Thus, the present model seemsworth developing further, whether it is compared to recognition schemes developedin computer vision, or to the theories of biological visual processing. The chal-lenges facing such a development are (1) better dealing with objects that are, likequadruped animals or human faces, highly similar to each other, (2) improvinginvariance to translation and scaling, (3) reducing the dimensionality of the rep-resentation, and (4) tolerating background clutter and occlusion. Two promisingsources of inspiration in this task are empirical studies of the neurobiology of therecognition subsystem in primates (Logothetis et al., 1995; Rolls, 1996; Tanaka,1996), and theoretical results concerning learning low-dimensional object represen-tations from examples (Edelman and Intrator, 1997).AcknowledgmentThanks to Eero Simoncelli for the MEX �les that were indispensable for speedingup the Matlab simulations.ReferencesBiederman, I. (1987). Recognition by components: a theory of human image understand-ing. Psychol. Review, 94:115{147.Bricolo, E., Poggio, T., and Logothetis, E. (1996). 3D object recognition: a model ofview-tuned units. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors,Advances in Neural Information Processing Systems, volume 8. MIT Press, Cam-bridge, MA.
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