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Abstract

We report a quantitative analysis of the cross-utterance
coordination observed in child-directed language, where
successive utterances often overlap in a manner that
makes their constituent structure more prominent, and
describe the application of a recently published unsuper-
vised algorithm for grammar induction to the largest
available corpus of such language, producing a gram-
mar capable of accepting and generating novel well-
formed sentences. We also introduce a new corpus-based
method for assessing the precision and recall of an auto-
matically acquired generative grammar without recourse
to human judgment. The present work sets the stage
for the eventual development of more powerful unsuper-
vised algorithms for language acquisition, which would
make use of the coordination structures present in nat-
ural child-directed speech.

Keywords: Language acquisition; grammar inference;
computational linguistics.

Introduction

Does child-directed speech — what Newport, Gleitman,
and Gleitman (1977) called “Motherese” — possess spe-
cial characteristics that make it easier to learn from?
In this paper, we present two kinds of corpus-based ev-
idence that should be useful in addressing this ques-
tion. First, we report a quantitative analysis of the
cross-utterance coordination observed in child-directed
language, where successive utterances often overlap in
a manner that makes their constituent structure more
prominent. Second, we describe the application of a re-
cently published unsupervised algorithm for grammar in-
duction to the largest available corpus of child-directed
language, and the performance of the resulting grammar
in accepting and generating novel well-formed sentences.
This work sets the stage for the development of more
powerful unsupervised algorithms for language acquisi-
tion, which would make use of the coordinated structures
present in natural child-directed speech.

Cross-utterance coordination in
Motherese

There is a great deal of evidence suggesting that par-
ents produce structured dialogues when talking with
very young children. Parents’ speech to young chil-
dren is highly repetitive and often includes clusters of
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partial self-repetitions — wvariation sets — when speak-
ing to young children acquiring language (Furrow, Nel-
son, & Benedict, 1979; Kavanaugh & Jirovsky, 1982;
Kaye, 1980; Snow, 1972; Hoff-Ginsberg, 1985, 1986,
1990; Kiintay & Slobin, 1996; Waterfall, 2006).

Variation sets

Hoff-Ginsberg (1985) conducted one of the initial ex-
aminations of the effect of maternal self-repetitions on
children’s progress in language acquisition. She showed
that alternations in maternal self-repetitions that con-
formed to major constituent boundaries were related
to growth in children’s verb use, while those repeti-
tions that altered material within a phrasal constituent
aided in noun-phrase growth. In a subsequent study,
Hoff-Ginsberg (1986) found that the frequency of self-
repetitions and expansions was positively correlated with
child verb phrase development. Similarly, Hoff-Ginsberg
(1990) confirmed that maternal self-repetitions and ex-
pansions were positively correlated with the average
number of verbs per utterance in child speech.

Hoff-Ginsberg’s analyses, however, concentrated on
the corpus as a whole and did not examine the contin-
gent nature of clusters of such repetitions. Kiintay and
Slobin (1996) pioneered the research into variation sets,
conducting the first longitudinal study specifically ana-
lyzing the effect of local clusters of partial repetitions in
child-directed speech on language development. Focus-
ing on the acquisition of Turkish, they found that vari-
ation sets made up approximately 20% of child-directed
speech. The use of variation sets was positively associ-
ated with children’s acquisition of specific verbs.

In sum, variation sets seem to be ideal environments
for learning lexical items and constituent structures. By
holding most of the utterance constant, while altering it
slightly (see Table 1 for an example), parents may allow
children to discover lexical items, syntactic constituents,
and their place in the syntax, vis-a-vis comparison and
contrast, as envisaged (in the context of the discovery of
grammar by linguists) by Zellig Harris (1946).

Waterfall (2006) conducted the first longitudinal study
of variation sets in English. We briefly mention here
some of her findings (Waterfall, 2007). The participants
were twelve parent-child dyads (ages 14-30 months). The
subjects were balanced for child gender, child birth or-



Table 1: A variation set addressed to a 14 month old.
You got to push them to school.
Push them.
Push them to school.
Take them to school.
You got to take them to school.

der, and for maternal educational level as a measure of
socio-economic status.? The subjects were videotaped in
their homes for 90 minutes every four months starting
when the child was approximately 14 months old and
continuing to 30 months. There were five observations
in total. The data for (Waterfall, 2007) come from tran-
scripts made from those videotapes.

To determine whether or not variation sets foster
the acquisition of syntactic constituents, child-directed
speech was analyzed for the manipulation of multi-word
constituents in variation sets (e.g., You can sit [on
this]. You can sit [up here].). Children’s speech
was then examined for the use of those structures.
Lastly, children’s production of a constituent (e.g., di-
rect objects) was correlated with the manipulation of
that constituent in variation sets.

Table 2: Correlation results for variation set use and
children’s constituent structure production (reproduced
from Waterfall, 2007). Significance levels: * — p < .05;
*¥* _p < .01; ¥*¥*F — p < .0001.

Prepositional Phrase Adjuncts .58

Entire clause 6THE
Subjects .68**
Direct objects Kol ok

When examining multi-word constituents,® Waterfall
(2006) found that children’s production of a structure
is highly correlated with parents’ manipulation of that
structure in variation sets. The results form a fairly nat-
ural scale. Variation sets are most beneficial for con-
stituent structures that are typically considered obliga-
tory (e.g., direct objects) and are less so for those items
that are typically considered optional (e.g., prepositional
phrase adjuncts). Constituents that are obligatory in
some cases but that can also be omitted or not used in
others fall somewhere in the middle (e.g., subjects can
be omitted in commands or conjoined clauses; an entire
subordinate clause can be an adjunct or a complement

2The data mentioned here are a subset of a larger, unre-
lated, longitudinal study conducted by Goldin-Meadow, Hut-
tenlocher, & Levine, under NIH Grant # PO1 HD40605,
2002-2007.

3For some single word constituents (e.g. wh-items) and for
manipulations that occur within a constituent (e.g. manip-
ulation of a definite article within a noun phrase), variation
set use is not significantly correlated with production. For
a detailed explanation of why this might be the case, see
(Waterfall, 2006).

of the verb). We note that it may be possible to rephrase
“obligatory” in linguistic terminology as “there is a very
high probability that two elements will co-occur in the
data.” Thus, it may be the case that children use statis-
tical information when acquiring constituents — a notion
that is compatible with the computational approach of
Solan, Horn, Ruppin, and Edelman (2005).

Finding variation sets

The search for variation sets in a corpus can be easily au-
tomated. The program we wrote for that purpose scans
the corpus, opening a new variation set record when a
non-stoplisted* word appears for a second time on the
working set queue. The first sentence of the variation
set is the one in which the repeated word first occurs.
The variation set is closed with the last sentence that
contained a word also contained by any of the other sen-
tences in the candidate set, so long as the first penul-
timate occurrence of the repeating word is also on still
on the queue.® The simplest case results in a variation
set consisting of two sentences, both of which share at
least one word in common. Interleaved variation sets are
also possible — sentences sharing words with other, non-
adjacent sentences.® The variation sets detected in the
corpus are then displayed to the user, along with their
main computational characteristics, computed according
to methods explained below.

Diameter of variation sets

One key computational characteristic of a variation set
is its diameter, or equivalently the maximal dissimilar-
ity between utterances that comprise it. We define dis-
similarity between two strings of words in terms of the
Levenshtein (edit) distance: the smallest number of in-
dividually weighted elementary edit operations (inser-
tions, deletions, and substitutions on a per word basis)
that transform one string into another. The mean values
of variation set diameter for four corpora are shown in
Figure 1.

Prevalence of variation sets

How surprised should one be to find a variation set in
a corpus? To estimate the significance of a series of ut-
terances forming a variation set, we would need to know
the probability distribution over utterances, which is, of
course, unavailable. We can, however, try to approxi-
mate that distribution using a statistical language model
derived from the available corpus. Given a sequence

4Words that are to be excluded from consideration, such
as the or and, are put on a stop list.

5The working set queue is bounded by two limits: the
number of words and the number of lines. When either is
reached, words are taken off the head of the queue until nei-
ther limit is exceeded.

6 An example of an interleaved variation set addressed to a
14-month old: Piggies / You want to read that? / Oh
that is piggies. / You want to read this one?
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Figure 1: Mean edit-distance diameters of variation
sets from four sources: a 42,530-utterance corpus
of children-directed language (mean words per utter-
ance WPU=4.32) from Waterfall (2006), the 300, 000-
utterance English CHILDES collection (MacWhinney,
2000), and bi- and tri-gram level statistical models of the
CHILDES corpus, generated by an algorithm described
below.

of words that form a partial utterance wi,wo, ..., wg,
a language model (Goodman, 2001) assigns to each of

its m possible continuations w,(;jr)l — that is, to each of
the words that may appear in the next place in a well-
formed utterance in the given language — a probability
P(wgy1|wr, wa, ..., wg). Once “trained” on a corpus, a
language model can be used to estimate the probability
of given utterances, or to generate new ones according
to the probability distribution it embodies, the latter use
being related to the bootstrap methods in mathematical
statistics (Efron & Tibshirani, 1993).

We estimated the significance of variation sets in the
Waterfall (2006) and CHILDES data, by (1) generating
artificial corpora with simple bi- and trigram language
models,” and (2) comparing the prevalence of variation
sets in those corpora and in real data. Our stochastic
algorithm for reproducing n-gram distributions from the
training corpus while generating novel utterances uses
the ADIOS graph data structure (Solan et al., 2005), an-
notated with the probabilities of the various arcs (as
estimated from a training corpus). Given a new sen-
tence, the algorithm instantiates each word as a node in
a double-ended queue (deque), one per sentence. Each
deque is assigned a unique ID, which is added to its
node’s ID set. Because each distinct word has one and
only one node associated with it in the graph, the num-
ber of sentence IDs in the nodes’ ID sets increases during
training. The links between nodes are stored in a hash
table where the key is the sentence ID and the value
is the node. When generating sentences, an n-gram of
arbitrary length is used to produce an intersection of

"An n-gram language model conditions the probability of
a word on n preceding words in the utterance.

the sentence ID sets from every element in the n-gram.
Each sentence ID is then used to access the right-linked
list hash table. If a node is recovered, it is added to a
counted collection, from which a node is drawn at ran-
dom to produce the next element of the generated utter-
ance.®
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Figure 2: Percentage of words in variation sets in the
(Waterfall, 2006) and CHILDES data (left two bars)
and in artificial corpora generated by language models
matching the bi- and trigram statistics of the Waterfall
corpus (right two bars).

Figure 2 shows a comparison of the prevalence of vari-
ation sets in two natural corpora, and in two artificially
generated ones that match the bi- and trigram statistics
of (Waterfall, 2006). Variation sets are seen to occur
more often in natural corpora (where they also have a
lower raw Levenshtein-distance diameter and a higher
informational value; not plotted), indicating that this
hallmark of Motherese cannot be due simply to its bi- or
trigram statistics.

Informativeness of variation sets

How useful is a variation set for the learner? A pair of
utterances that have nothing in common (a fact repre-
sented by some arbitrary maximal value of edit distance)
is not informative, and neither is a pair of identical ut-
terances. An optimally informative pair would therefore
balance overlap and change; we denote the normalized
distance between members of such a pair by 0 < 8 < 1.
To compute the average informational value of an en-
tire variation set, every utterance in the variation set is
compared to every other utterance (pairs that are iden-
tical or share no non-stoplisted words are not compared;
this prevents interleaved variation sets from artificially
depressing the average informational content of the vari-
ation set sample; is also prevents highly repetitive vari-
ation sets from generating outliers).

Following this line of reasoning, we define the
information-theoretic similarity between two utterances

8This approach does not handle loops — recurring nodes
in the same path. This option will be added in the future.



within a variation set to be: 1 — %ﬁ, where L
takes two utterances (with stoplisted elements, such as
closed-class words, removed) and returns their Leven-
shtein distance normalized to lie between 0 and 1, and 3
is a baseline reference value between 0 and 1 which turns
the distance into an information-theoretic measure.

In a preliminary study, we found that the mean infor-
mational value of the maternal speech corpus (Waterfall,
2006) on a variation set by variation set basis correlates
with the child’s vocabulary size (Figure 3). A value of g3
(“bias” or baseline, explained above) of 0.487 yields the
strongest correlation (R? = 0.21). These data suggest
that a fine balance between change and overlap between
sentences in variation sets (about 50% overlap and 50%
new material, with a slight preference towards the latter)
may be the most conducive to vocabulary growth.
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Figure 3: Information value of variation sets in the cor-
pus of Waterfall (2006). The mean information value
of the maternal variation sets is most correlated with
the size of child’s productive vocabulary (R? = 0.21) for
[ = 0.487. For points with vocabulary size > 25, the
regression is more pronounced (R? = 0.40).

Language acquisition from Motherese

Very little work has been carried out to date on the
acquisition of a generative grammar from real child-
directed language (Solan et al., 2005; in comparison, the
CHILDES data are often used to test algorithms that ad-
dress specific problems in language acquisition, such as
word segmentation or auxiliary fronting in forming po-
lar interrogatives in English). In this section, we report
the first quantitative results on learning a highly pro-
ductive construction-like grammar from the CHILDES

corpora, using ADIOS (Automatic DIstillation Of Struc-
ture), a batch algorithm that learns phrase structure
rules from raw corpus data by recursively aligning utter-
ances while abstracting any patterns (Solan et al., 2005).
As customary in computational linguistics, we describe
the performance of the learned grammar in terms of re-
call (defined as the proportion of the sentences in a with-
held test corpus that can be generated by the grammar),
and precision (the proportion of the sentences generated
by it that are acceptable).

Recall and precision on CHILDES

Because of the greedy nature of the ADIOS algorithm,
the learned grammar depends on the order of the sen-
tences in the corpus, which is why the results from sev-
eral learners trained on permuted versions of the corpus
are usually pooled. We have trained 30 learners on per-
mutations of most of the English portion of CHILDES
(approximately 300,000 sentences), reserving 500 sen-
tences for testing recall performance; the recall level was
0.50. To test precision, we had each of 10 learners gener-
ate 100 sentences, which were then manually judged as
grammatical or not; the precision level was 0.63.°

These levels of recall and precision are much higher
than those achieved by the ADIOS algorithm on the Wall
Street Journal corpus used, e.g., by Pullum and Scholz
(2002) in their assessment of the “poverty of the stimu-
lus” argument. This, of course, merely confirms that the
language of CHILDES is structurally simpler than that
of the WSJ. More generally, the present results exceed
the performance of other unsupervised algorithms that
can learn from raw text, but fall somewhat short of the
parsing performance achieved by algorithms that work
with hand-tagged part of speech data (Klein & Manning,
2002).

It should be noted that no other method has to our
knowledge been tested extensively on CHILDES. More-
over, grammars learned by the algorithms that rely on
POS tags tend to result in low precision when the POS
symbols in the generated sentences are substituted with
actual words. In comparison, the level of precision at-
tained by ADIOS (0.63) can be safely taken at face value.
Some examples of incorrect and correct sentences it gen-
erates appear below:

I doesn’t notice it if that’s in your eye.
Out jump the tomato.
Mumma break it.

9We also tested the algorithm on the adult speech portions
of the only two Hanja/Mandarin corpora from CHILDES:
Chang and Zhou (2,000 and 8,000 sentences; in each case,
500 were reserved for testing). Single-learner recall was 0.31
and 0.32, respectively (comparable to that obtained for the
much larger pooled English CHILDES corpus of 300, 000 sen-
tences). Five native speakers rated a sample of Zhou sen-
tences at 0.93 precision, compared to 0.54 for novel ADIOS-
generated sentences.



Wanna put some on your dress?
Shall we add another one like this?
It didn’t make any noise.

A new method for estimating precision

The development of generative language models capable
of learning from large, complex, real-life corpora such as
CHILDES is hampered by the difficulty of estimating the
precision of the models. To calculate precision — that is,
the proportion of generated sentences that are acceptable
— one needs either a reliable parser for the target gram-
mar (which does not exist for realistic natural language
data) or access to human subjects who would judge the
acceptability of the generated sentences (an infeasible
requirement in the development of large-scale learning
models, where precision needs to be assessed repeatedly
for thousands of sentences in each cycle).

We describe a novel method for estimating recall and
precision, which bypasses these limitations. It relies
on the observation that two highly constrained models
trained on disjoint corpora are very unlikely to agree co-
incidentally about the acceptability of a given test sen-
tence (operationalized as its probability given the gram-
mar). Thus, any such agreement supports the hypothe-
sis that the score given to a sentence is indeed valid. A
precision-testing scheme based on this observation (see
Figure 4) requires:

1. A language model, called the processor, which is
trained on a part of the available corpus, and for which
the precision needs to be estimated;

2. An auxiliary language model, called the generator,
which is trained on another part of the corpus, and
then used to generate sentences that have a high like-
lihood of being ill-formed.

1
L Testing
Training
A B!C ie—
Uniquing  Training Output

l Processor ' Generator

Figure 4: A scheme for testing precision without a parser
or a human evaluator (see text for explanation).

The training corpus must be large enough so that less
than half of it suffices to train both the processor and
the generator. This corpus is split into two parts, A and
B. The generator is trained on part B, and is used to
produce sentences that follow the WPU distribution of

that part. Every generated sentence that matches an
utterance in either part A or part B is discarded; only
novel (unique) sentences are retained. We note that the
proportion of sentences produced by the generator that
are found in part A is a pessimistic estimate of the gener-
ator’s precision. For part A to be effective in “catching”
most well-formed generated sentences, it is important
that it be much larger than part B. When the number
of unique sentences generated is equal to the number of
sentences in part B (or when no new sentences can be
created), the process is halted and the novel sentences,
which for the above reason are more likely than the av-
erage generated sentence to be ill-formed, are placed in
part C.

The processor is trained on part A; given a new sen-
tence, it returns a score between 0 and 1 indicating its
normalized probability. Computing the average score
for sentences in part B would yield the processor’s re-
call. However, by testing it on both parts B and C
as described below, we can also estimate its precision.
For every sentence in the union of B and C, the score
is binned; a value of 0 is placed in the bin if the sen-
tence comes from part C, and a value of 1 if it is from
part B. The processor’s precision is high insofar as the
average score for sentences from part C (which, as ex-
plained above, are likely to be ill-formed) is low, and
in particular significantly lower than that for sentences
from part B. Figure 5 shows that this is indeed the case
for two models trained on CHILDES: ADIOS interpolated
with a bigram model (shaded bars) and a trigram model
(open bars). A Fisher Exact test indicated that the dif-
ference between B and C average scores was highly sig-
nificant for both models: ¢ = 1158.2 (p = 0.0000) and
t = 136.8 (p = 0.0000) respectively. A Friedman test
of the difference between the distributions of scores gen-
erated by the two models showed the ADIOS+bigrams
model to be significantly better: y* = 17.8 (p < 0.001).

It is important to note that the generator and the
processor are not trained on the same or even overlap-
ping parts of the corpus. Training the generator on the
same segment as the processor would create doubt as to
whether the outcome is characteristic of the corpus in
general or is specific to the common segment. By us-
ing disjoint training sets, we ensure that the only path
to agreement between the two models is via the more
abstract, general characteristics of the corpus. A large-
scale Monte Carlo simulation study designed to validate
this approach to precision estimation is currently under
way. It involves artificial corpora generated by context-
free grammars (allowing us to obtain the ground truth
for precision using parsers for those grammars).

Conclusions

In this short paper, we described an initial quantita-
tive investigation of a key characteristic of child-directed
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Figure 5: A large-scale estimate of the precision of two
language models trained on the English CHILDES cor-
pus. The plot shows the probabilities assigned by an
interpolation of an ADIOS model with a bigram model
(shaded bars) and a trigram model (open bars) to ill-
formed test sentences newly generated by an auxiliary
mechanism (left), and to withheld test sentences (right).
As explained in the text, this result indicates that it
is possible to estimate precision without recourse to a
parser (which is not available for real natural language)
or to human acceptability judgments.

language — its variation set structure — and demon-
strated that our current algorithm for language acquisi-
tion, ADIOS, can learn a precise, relatively high-coverage
generative grammar from the CHILDES corpus. We
are presently working on developing a next version of
the ADIOS algorithm, which will incorporate the insights
from variation set studies, and thereby serve as a better
model of human performance in language acquisition.
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