
Generalization to Novel Images in Upright andInverted FacesYael Moses Shimon UllmanShimon EdelmanDepartment of Applied Mathematics and Computer Science,The Weizmann Institute of Science,Rehovot 76100,Israel.November 29, 1994AbstractAn image of a face depends not only on its shape, but also on the viewpoint,illumination conditions, and facial expression. A face recognition system mustovercome the changes in face appearance induced by these factors. This paperinvestigate two related questions: the capacity of the human visual system togeneralize the recognition of faces to novel images, and the level at which thisgeneralization occurs. We approach this problems by comparing the identi�cationand generalization capacity for upright and inverted faces. For upright faces, wefound remarkably good generalization to novel conditions. For inverted faces, thegeneralization to novel views was signi�cantly worse for both new illumination andviewpoint, although the performance on the training images was similar to theupright condition.Our results indicate that at least some of the processes that support generaliza-tion across viewpoint and illumination are neither universal (because subjects didnot generalize as easily for inverted faces as for upright ones), nor strictly object-speci�c (because in upright faces nearly perfect generalization was possible from asingle view, by itself insu�cient for building a complete object-speci�c model). Wepropose that generalization in face recognition occurs at an intermediate level thatis applicable to a class of objects, and that at this level upright and inverted facesinitially constitute distinct object classes.0



1 IntroductionThe human visual system can easily recognize the identity of a familiar face from itsimage. However, recognizing faces is a di�cult problem from a computational point ofview, because all faces have a generally similar shape and at the same time di�erent im-ages of the same face can vary considerably. There are several sources for the variationsbetween images of the same face, such as changes of facial expression, age, viewpoint,illumination, noise, etc. The task of a face recognition system, whether natural or arti�-cial, is to recognize a face in a manner that is insensitive to these variations. The basicissue we study here is how the human visual system can identify a face in novel images,in particular under changes of illumination direction and viewpoint.We consider two aspects of the problem. The �rst is how well humans in fact rec-ognize faces in novel images. The second is the level at which the generalization of faceidenti�cation to novel images takes place. Recognition systems can use di�erent typesof information for overcoming image variations. We distinguish between three basic gen-eralization levels: universal, class based, and object speci�c. Roughly speaking, at theuniversal level, no restrictive assumptions are made about the objects that may appearin the image. At the object-speci�c level knowledge about a speci�c face may be used(e.g., the three dimensional shape of a speci�c face); the class-based level is an intermedi-ate level, where knowledge about faces in general (the class to which a candidate objectbelongs), but not about a speci�c face may be used (e.g., the general shape of faces).These generalization levels will be discussed further in the last section of the paper.Face processing was previous studied by comparing the recognition of faces to otherobject classes such as houses, landscapes, and dogs (Valentine, 1988). One of the mainproblems with such a comparison is the di�erence in complexity between faces and otherobjects. To overcome this problem and to characterize the computational level at whichthe generalization of face recognition takes place, we compared the recognition of uprightand inverted faces. From an objective standpoint, they have the same complexity, how-ever, perceptually inverted faces are more di�cult to recognize. We did not compare thedi�culty of recognition per se. Instead, we studied the di�erences in the generalizationof recognition from one image of a face to other images of the same face in the sameorientation (upright/inverted).It should be noted here, that one objective di�erence that often occurs between up-right and inverted faces is that under natural conditions upright faces are illuminatedfrom above while the faces in inverted images are illuminated from below. Since objectsare often illuminated from above, Johnson et al. (1992) suggested this di�erence as asource for di�culty in recognizing inverted faces. We avoided this problem in our studyby placing the illuminating at the face level. Consequencely the faces were illuminatedfrom the same directions in the upright and inverted images.1



In the experiments, subjects �rst learned to recognize single image of each of threedistinct unfamiliar faces. Then, each subject was tested with 20 di�erent images of eachof the three faces, taken under novel illumination conditions and from novel viewpoints.The same experiment was repeated for inverted images of other faces. In this case, thesubject learned to recognize images of inverted faces and was then tested on novel imagesof inverted faces.We found that the recognition of novel views of upright faces was remarkably good(see section 2.2.2). In contrast, the performance on novel images of inverted faces wassigni�cantly worse than for the upright faces (although the subjects had no problemin recognizing the training images of inverted faces). Our results indicate that at leastsome of the processes that support generalization across viewpoint and illumination areneither universal nor strictly object-speci�c. They are not universal because subjectsdid not generalize as easily for inverted faces as for upright ones. They are not object-speci�c because in upright faces nearly perfect generalization was possible from a singleview, by itself insu�cient for building a complete object-speci�c model. We propose thatgeneralization in face recognition occurs at an intermediate level that is applicable to aclass of objects, in this case, a class of upright faces. A discussion of these conclusions ispresented in section 3.Before describing the experiments in details, we briey review previous studies of facerecognition from novel views and from inverted images, and relate them to our study.Several studies have addressed the problem of generalization of face memory to novelimages taken from new viewpoints, but without changing the illumination conditions(Patterson and Baddeley, 1977; Davies et al., 1978; Bruce, 1982). In these experiments,a set of faces (unfamiliar or familiar) was briey presented once to the subject during atraining phase. In the testing phase, the subject determined whether a given face hadappeared previously in the training phase. Two viewpoints were used: frontal, and 3=4pro�le. The results showed that the recognition of a previously seen face in the novel viewwas reliable. Bruce (1982) compared the memory of familiar and unfamiliar faces in suchan experiment, and found that familiar faces were recognized faster and more accuratelythan unfamiliar faces. Our experiments were di�erent in several respects. First, oursubjects were tested on face identi�cation, in a three-alternative forced-choice setup.Second, our subjects were initially unfamiliar with the face stimuli, but one image of eachface was made familiar by repeated exposure during the training stage (this can explainthe di�erences between our results and those of Bruce (1982) regarding the recognition ofunfamiliar faces). Third, the set of images that we considered for each face was larger (20compared to two). Fourth, the images in our experiments varied not only due to pose,but also due to illumination. Finally, our set of images was precisely controlled, so thateach parameter (e.g., viewpoint or illumination) was varied independently of the others,while images of all faces were normalized to the same size and location. In previous2



studies (Patterson and Baddeley, 1977; Davies et al., 1978; Bruce, 1982) the control overviewpoint, location, size, illumination, background, and in many cases familiarity of thefaces to the subject, was not completely speci�ed.Recognition of inverted faces is known to be a di�cult perceptual task (K�ohler, 1947;Hochberg and Galper, 1967; Attneave, 1967; Yin, 1969; Scapinello and Yarmey, 1970;Yarmey, 1971; Carey and Diamond, 1977; Valentine and Bruce, 1986). A review of re-search concerned with the recognition of inverted faces can be found in Valentine (1988).Generally, the memory for faces was shown to be impaired when inverted images wereinvolved (in the training or in the testing phases or in both). Inverted faces were also usedin attempts to discover out whether features or con�guration information are requiredfor face recognition. Carey and Diamond (1977) proposed that the di�culty in recogniz-ing inverted faces results from an inability to access the con�guration information of thefacial features from inverted faces. The cue saliency in arti�cial inverted faces (schematicor thresholded to black and white) was addressed by several investigators (Endo, 1982;Endo, 1986; Kemp et al., 1990). The results of these experiments indicated certain di�er-ences in the memory for upright and inverted faces. In our study, the relative di�cultiesof recognizing inverted faces was not of primary concern. Inverted faces were used tostudy certain aspects of the e�ects of illumination and viewpoint on face identi�cation.2 The experimentsThe basic experimental paradigm was a three-alternative forced-choice recognition task.The subject was �rst trained on a single image of each of three faces taken under identicalviewing conditions. She or he was then tested on 20 images of each of the three faces,taken under all combinations of four di�erent illumination positions and �ve di�erentcamera locations. Our main objective was to test the degree of generalization to newviewpoint and illumination for both upright and inverted face images. The locationsof the camera and the light sources were identical for all faces. The same experimentwas repeated for several sessions with a number of di�erent triplets of faces. Some of thetriplets were shown always upright, others always inverted. The assignment of orientationand triplet identity was balanced across subjects, so that the faces in each triplet wereseen upright by half of the subjects, inverted by the other half. The orientation of thestimuli was �xed throughout an experimental session.3



2.1 Method2.1.1 SubjectsEight subjects (3 females, 5 males, ages 16-35) participated in the experiment. All hadnormal or corrected to normal acuity, and all but one were paid for their participation.All subjects had some prior experience in psychophysical experiments.2.1.2 Materials
Figure 1: Each face was normalized before taking the picture so that the face's symmetry axis, theexternal corners of the eyes, and the bottom of the nose located on the reference lines as shown.Twenty images (Figure 2) of each of 18 di�erent faces were used as stimuli. All faces wereof males without distinctive features (no glasses, beard, mustache, etc.). All images weretaken by the same camera under precisely controlled illumination and viewpoint. Thefrontal view of all faces were normalized by �xing the location of the face's symmetry axis,the external corners of the eyes, and the bottom of the nose, before taking the pictures (seeFigure 1).1 The camera (Pulnix TM-560 with Canon lens V 6� 1616 � 100mm F1 : 1:9)was attached to a robot arm (Adept I) to control its precise position. A Symbolics LispMachine controlled the camera positioning to: �34�, �17�, 0�, 17� and 34� with respectto the frontal view, in the horizontal plane. The distance of the face from the camera was1The position of three points on an image of a three dimensional object determines uniquely thelocation of the object with respect to the camera. 4



�xed at 110cm. Four distinct illumination conditions at the same height of the face werecreated by turning on and o� three �xed light sources: left (IL=0), center (IL=1), right(IL=2) and the combination of left and right (IL=3). The subjects were asked to assumea neutral expression and to remain still. To reduce the inuence of the background, thefaces during the experiments were clipped by an elliptical mask that occluded most ofthe hair and the neck areas. Each image consisted of 512 � 352 points, 8 bits per point.The subjects viewed the images on the screen of a Silicon Graphics Personal Iris4D35/TG workstation, at an approximate distance of 50cm. At that distance, an imagesubtended approximately 6:8 degrees of visual angle.The 18 di�erent faces were divided into six di�erent sets, three faces in each set. Eachset consisted of the 20 images of each of the three faces. The triplets were chosen thatthe faces within a set were judges by the experimenters to be similar to one another. Thesets were denoted by the letters A through E (see Figures 3).2.1.3 ProcedureAn experimental session started with a training phase following by a testing phase. Anygiven session involved one �xed set of faces. In the training phase the subject was trainedto recognize a single image of each of the three faces of the set. The same view of the face(VP=17o, and IL=0) was used for all the images of the training phase (as in Figure 3).The subject was shown repeatedly each of the three images in a pseudo-random order. Inthe �rst 15 trials of the training phase, the subject was given a graphical indication of thecorrect response. This indication was provided by a diagram at the bottom of the screen,showing the correct response buttons (\1", \2", or \3" a numeric). Subsequently, theindication was provided (and an audible signal was given) only if the subject's responsewas erroneous. Once the subject identi�ed correctly 18 out of the last 20 appearancesof the training image of each face, a special signal was sounded and the testing phasestarted.In the testing phase, the subject was tested on all images of the three faces of the set.For each face, the test image included all combinations of the four di�erent illuminationlocations and �ve di�erent camera positions. Altogether, there were 20 � 3 di�erentimages. Each image was presented six times in the testing phase. In each trial of theexperiment, the stimulus image was shown for 600msec followed by a mask (a jumbledface image) that remained visible until the subject responded. The subjects were requiredto make a three-alternative forced-choice decision regarding the identity of the displayedface image. The subjects were forewarned that di�erent images of the same face couldappear in the testing phase, and that no feedback would be given for incorrect responses.They were asked to respond as quickly and as accurately as possible. An experimental5



�34o �17o 0o 17o 34oLeftMiddleRightLeft+rightFigure 2: An example of 20 images of one of the faces (all combinations of �ve di�erent viewing positionand four di�erent illumination). 6



AB CD EFFigure 3: The triplets of images used in the experiment, one image of each face. These images wereused in the training phase (VP=17 and IL =0). 7



session included a minimum of 105 training trials (or as many as were necessary for thesubject to achieve a 90% correct rate on each face),2 followed by 360 testing trials (5levels of VP � 4 levels of IL � 3 faces � 6 replications).The experiment consisted of four sessions of six sets (in all, 24 sessions) for each ofthe eight subjects. In a given session, the faces were either all upright or all inverted inboth the learning and the testing phases. For a given subject, half of the face sets wereupright images, the other half inverted. For the �rst four subjects, the sets C, B, E werealways upright, sets A, D, F always inverted. The other four subjects saw sets C, B,and E inverted, and sets A, D, F , upright. The assignment of the set variable to a givensubject and session was done in such a manner that Subject/Set combinations tended tooccur in pairs (that is, the same set was shown to a given subject during two successivesessions). This made it easier for the subjects to remember what the target faces in agiven session were. Otherwise, this assignment was randomized across subjects.2.2 ResultsWe �rst present the summary statistics of the data (section 2.2.1). We then analyzeseparately the generalization across viewpoint and illumination in the �rst exposure ofa subject to a set of upright and inverted faces (section 2.2.2). Finally, we analyze twolearning e�ects: improvement in generalization within and across sets (section 2.2.3).2.2.1 Preliminary analysisAltogether, the experiment yielded nearly 70; 000 responses. The data from a session wereincluded in the subsequent analysis if the following criterion was satis�ed: the subjecthad to identify correctly 5 out of 6 appearances of each of the three training imagesin the testing phase (VP=17�, and IL=0). This criterion was satis�ed in 86 out of 96upright sessions and in 76 out of 96 inverted sessions. The other sessions were omittedfrom the analysis since we were interested in the generalization process of recognizingcorrectly novel face images after learning to recognize a single image of the same face. Insessions were this criterion was not satis�ed, the subjects were unable to recognize wellenough the training image. A separate analysis of the sessions that were dropped here,showed the same e�ects of generalization as will be described below. We also discardedrecords of trials in which response times were shorter than 250msec or longer than 3sec(these constituted 1:5% of the total number of trials). The �nal data set included 57; 9762If the subject did not reach this level of performance in 250 trials, the session was aborted, and wasrestarted from the beginning after a short break. This happened in 6 sessions, or about 3% of the totalnumber of sessions. 8



responses (about 84% of the original volume of data; we discarded all sessions of onesubject due to his generally poor performance, that was statistically di�erent from therest of the subjects).Pass Statistic Up/Inv Mean Train VP di�. IL di�. VP&IL di�.1 CR, % upright 97.3� 0.2 99.1� 0.5 97.0� 0.5 97.8� 0.5 97.1� 0.3inverted 87.2� 0.6 98.6� 0.7 86.5� 1.5 90.1� 1.6 85.9� 0.8RT, ms upright 904� 6 860� 22 916� 13 900� 15 905� 8inverted 1034� 7 940� 25 1066� 17 1000� 15 1040� 94 CR, % upright 97.5� 0.2 97.4� 0.8 97.7� 0.4 96.5� 0.7 97.6� 0.2inverted 94.6� 0.4 99.1� 0.5 95.0� 0.9 95.0� 1.0 94.1� 0.6RT, ms upright 832� 6 812� 27 823� 12 825� 16 834� 8inverted 909� 6 862� 21 916� 12 887� 14 916� 8Table 1: Means and standard errors of the mean of correct rate (CR), and response time (RT) averagedover all subjects and �rst pass of all sets (pass-number = 1) and the last pass of all sets (passs-number= 4). The �ve means in each row are: the grand mean over all conditions; TRAIN: the training view(VP= 17o and IL=0); VP di�: average over all new viewing position with the training illumination(VP6= 17o and IL=0); IL di�: average over all new illumination with the training viewing position(VP=17o and IL6= 0); VP&IL di�: averaged over all combination of new illumination and new viewingposition (VP6= 17o and IL6= 0).The variables that we consider are the percentage of correct rate responses (CR)and the average response time (RT) over the six appearances of a given image in thetesting phase of each session. Since there was no interaction between subjects, set offaces, and the generalization to new images (see appendix B), we averaged separately forupright and inverted faces across subjects and sets of faces for each image condition. Theaveraged values of CR and RT in the upright and inverted conditions over all sets andsubjects on their �rst and last exposure to each set are presented in Table 1. A correlationanalysis revealed no speed-accuracy tradeo� (the correlation between CR and RT wasnever positive). Our subsequent analysis, presented below, concentrated on the CR datasince this is the parameter that the subjects were trained to rich the high performanceon; the results concerning response times are summarized in Appendix E.2.2.2 VP and IL e�ects for inverted facesAs mentioned above the same set of images was repeated four times for each subject.We begin by considering the �rst pass of each of the sets for all subjects. The averagedperformance of all subjects is plotted in Figure 4, separately for upright and inverted9



VP -34 -17 0 17 34IL0 78 83 93 99 911 79 80 83 89 842 79 90 91 89 873 84 90 92 92 90Table 2: Each entry represents the average correct response (CR) over all subjects and sets for a givenviewing position (VP) and illumination position (IL) for inverted faces. Only the �rst pass number isconsidered. The training view was VP= 17o and IL=0sets. Each point in the 2D graphs represents the average percentage of correct responses(CR) over all subjects for one of the 20 views of a face (4 illuminations � 5 viewpoints).The results for the inverted images are also summarized in Table 2.
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bFigure 4: Plots of percent correct (CR) for all viewing positions (VP) and illumination positions (IL).We consider only the �rst session of each subject on each set. Each point in the graph represents theaverage CR over all subjects for upright stimuli (a) and inverted stimuli (b). The training view (VP= 17oand IL=0) is marked by a star.We considered sessions in which the subjects had similar performance on the trainingimages for upright (99:1 � 0:5% correct) and inverted (98:6 + 0:7% correct) faces. Thegeneralization for novel views of upright faces was remarkably good (above 97% correct).The generalization for novel views of inverted faces was considerably worse (average CR10



was 86:5�1:5% for novel viewpoint and 90:1�1:6% for novel illumination direction). Forthe inverted faces, the performance for novel viewpoint decreased monotonically with themisorientation relative to the training view. Statistical analysis (reported in appendices Band C) revealed no e�ects of either VP or IL for upright faces, for inverted faces bothVP and IL had a signi�cant e�ect on generalization: performance decreased.2.2.3 LearningIn the previous section we considered only the �rst session (�rst pass) of all subjects oneach of the sets. In this section we consider the e�ect of learning. In the following analysis,we distinguished between face-speci�c learning (within a set), and general learning (acrosssets). Learning within a set is due to better performance of the subject after having seenthe same set of faces over and over again. In comparison, learning across sets is due toimprovement in performance when the subject becomes more familiar with the task orthe class (in this case of inverted faces), rather than with a speci�c stimulus set.To study the e�ect of learning across sets, we considered only the �rst exposure(�rst pass) of each subject to each set, since this precludes of learning within a set.Figure 5(a) presents the mean performance of all subjects on the �rst pass of each setvs. the presentation order of appearance of the sets to a given subject (Set-order). Theresults do not indicate any learning across sets (see Appendix D). That is, the VP andIL e�ects were not reduced due to repeated exposure to sets of inverted faces.To study the e�ect of learning within a set, we considered the change in performanceof each subject with the number of repeated exposure (pass-number) to the �rst set offaces that the subject saw. Figure 5(b) presents the mean performance of all subjectsand all sets vs. pass number. The improvement with the number of passes is manifest inthe increase of mean CR and in the near disappearance of the e�ects of VP and IL (seeAppendix D).We can therefore conclude that the learning exhibited by the subjects was mostlyset-speci�c. For each set of faces, this learning was apparent in the improvement ofgeneralization performance with repeated exposure to that set. Learning across sets(that is, learning to perform better on the entire class of inverted faces) did not show upsigni�cantly in the data. The statistical analysis supporting these conclusions is presentedin appendix D.2.3 Summary of resultsOur results indicate that subjects could be trained to discriminate between di�erent facesin both upright and inverted faces when the same images are used in the training and in11



a bFigure 5: (a) Learning across sets: plots of CR vs. number of di�erent inverted sets that a givensubject saw (set number) for inverted stimuli, the average is taken on the �rst exposure of a subjectto each of the sets. (b) Learning witnin a set: plots of CR vs. pass number, the average is taken onthe �rst set that each subject saw. The four bars in each group correspond, from left to right, to thefollowing four di�erent conditions. TRAIN: the training view (VP= 17o and IL=0); VP di�: averageover all new viewing position with the training illumination (VP6= 17o and IL=0); IL di�: average overall new illumination with the training viewing position (VP=17o and IL6= 0); VP&IL di�: averaged overall combination of new illumination and new viewing position (VP6= 17o and IL6= 0).the testing stage. However, the generalization to views obtained under novel viewpointand illumination conditions is signi�cantly worse for inverted faces compared with uprightfaces.We also found that the subjects were capable of non-supervised learning (improvementin generalization for novel views). This learning was speci�c for the face sets they saw,rather than the class of inverted faces in general: following repeated exposure to the sameset of faces, the VP and IL e�ects nearly vanished, only to reappear when a new set offaces was introduced.3 Conclusions and DiscussionThe ability to generalize the recognition of a given face to novel images is a fundamentalissue in face perception. Two natural parameters that vary between images are the illu-mination and viewpoint. The �rst question addressed in this paper was how well humanscan recognize faces in novel images. The novel views we considered were taken from �vedi�erent viewpoints and under four di�erent illumination directions. The largest angularseparation between novel and familiar viewpoints was 51�, and the largest separation in12



illumination direction was about 50� away from the direction used in the training im-age. We found that for upright faces the subjects that were trained to recognize well thetraining image, responded correctly to over 97% of the test stimuli. We conclude that thehuman visual system generalizes well the identi�cation of upright faces to novel imageswithin the range of viewpoint and illumination changes we tested.How this impressive invariance for large discrepancy in viewpoint and illuminationobtained? The comparison between upright and inverted faces allows us to draw a numberof plausible conclusions regarding the probable level at which the human visual systemovercomes variations between images of the same face. In the discussion below, wedraw a distinction between the universal, class and object levels of achieving invariantrecognition.Consider �rst the universal level. At this level, the system attempts to compensatefor the variability among images of a the same face in the same manner for all objects.An example of a universal process of this kind, widely used in computer vision, is theextraction of intensity edges from the image. A major goal of this process is to forman intermediate representation based on image features that are relatively insensitive toillumination. Similarly, for biological visual systems, there is physiological evidence forneurons that are sensitive to both orientation and spatial frequency in the primary visualcortex (Hubel and Wiesel, 1962; Hubel and Wiesel, 1968). This stage of processing wasmodeled as the application of a set of local �lters to the incoming image (Daugman, 1984;Mercelja, 1980; Marr and Hildreth, 1980; Pollen and Ronner, 1983). Presumably, thisprocessing is applied uniformly to any input image, and, in particular, to upright as wellas inverted images of faces. Di�erences between the processing of upright and invertedfaces are therefore unlikely to arise from this level of processing. More generally, thedi�erence between the performance of the visual system in generalizing across viewpointand illumination changes in upright and inverted faces suggests that universal processing,such as edge detection, is not su�cient by itself to compensate for these image variations.The extreme opposite to universal processing is the object-speci�c approach. Here,when an image is compared with stored object model, processes that depend on theparticular object in question are utilized. These processes can therefore speci�cally dealwith the e�ects of viewpoint and illumination for the object in question. For example,for familiar objects the system may store detailed 3-D models acquired through past ex-perience. Such a model can then be used in compensating for viewpoint and illuminatione�ects of the object in question, but not to compensate for viewpoint and illuminatione�ects in general (for other objects). Some of the object-speci�c approaches overcomethe di�erences between images due to changes in viewpoint by using multiple images of agiven object as reference. There are two di�erent ways in which multiple images can beused: the independent and the interdependent approaches. The independent approachis straightforward: the system stores a su�ciently large set of images, so that each novel13



face image is bound to be close to one of the images in the set, considered independently.The interdependent approach uses several images of the same face together, to extract(either directly or indirectly) information about the three dimensional shape of the face(Fischler and Bolles, 1981; Ullman, 1986; Huttenlocher and Ullman, 1987; Lowe, 1987;Basri and Ullman, 1988; Grimson, 1990; Poggio and Edelman, 1990). Because in ourexperiments only a single image was available to the system in the learning phase, object-speci�c approaches that rely on several images of the same face cannot account for ourexperimental results. Another method for constructing the 3-D shape of the object isby using the shading information from a single image(Horn and Brooks, 1989). In thisapproach, computing the shape of the object is performed at the universal level (that is,no speci�c assumptions on faces in general or speci�c faces are used to compute the 3-Dshape). This approach is therefore also insu�cient to explain the di�erences between thegeneralization of upright and inverted faces.In between the universal and object-speci�c levels lie the class-based level. At thislevel, the processing depends on the class to which the object in the image is assumed tobelong. For example, class-level processing may include the extraction of facial featuressuch as the location of the eyes, mouth and nose (Kanade, 1977; Craw et al., 1987; Yuilleet al., 1989). Such a process is applicable to face images in general, but not to otherobjects. In general, classi�cation can be hierarchical, that is, a given class of objectscan belong to a more inclusive class as well. For example, the face of an individualbelongs to the class of human faces, which, in turn, belongs to the class of animal faces,which belongs to the class of approximately bilaterally symmetric objects. Therefore,class-based processing can consist of several levels of processing.The use of such class-based processing means that the system uses general propertiesof faces to compensate for the e�ects of illumination and viewing conditions of an indi-vidual face. Our experiments revealed di�erences in generalization performance betweenupright and inverted faces. This strongly suggests that generalization is not entirelyuniversal in nature. Although universal process may have a contribution, class-basedprocesses are likely to play an important role in compensating for both illumination anviewpoint. Our results also show substantial recognition ability from a single (upright)face image. This again is consistent with the use of class-based processing. The use ofgeneral face property could help to explain how generalization is obtained on the basisof a single novel image, and why this generalization is more e�ective for familiar faces.Class-based processing can be used in several manners. For example, the 3D shapeof the object can be easier to recover from a single image if one assumes that the objectis indeed a face (the recovery of general shape from shading from a single image isimpossible without assumptions on the light source position, the reectance properties,etc.). Moreover, because faces belong to the class of bilaterally symmetric objects, thesymmetry assumption can be used, for example, for dealing with the viewpoint variation,14



as described in Moses and Ullman (1992a) .In conclusion, our results show a remarkably good generalization from a single im-age to novel views of upright faces, along with reduced generalization performance forinverted faces. We suggest that the di�erence in generalization performance is relatedto class-level processing, and that for the visual system upright and inverted faces aredi�erent classes of objects. In other words, the visual system uses general face propertiesto compensate for new viewing conditions of a speci�c face. To investigate further thepossibility that class-based processing plays an important role in generalization acrosspose and illumination changes, the experiments reported here could be repeated withother classes of objects. Speci�cally, generalization over controlled viewpoint, illumina-tion, and other imaging parameters could be compared for di�erent classes of objects.Furthermore, it would be interesting to determine whether performance for a given classimproves with repeated exposure to di�erent objects from this class. As an example,consider the class of inverted faces, which are rarely seen in daily life. Our experimentsrevealed virtually no improvement in the generalization process for one set of invertedfaces after repeated exposure to another set of inverted faces. It is possible, however,that a longer exposure to inverted faces would result in the learning of inverted faces asa class, leading to improved generalization from a single view of an inverted unfamiliarface.
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Appendix A: the independent variablesThe independent variables that were involved in the analysis are listed in Table 3.Variable Levels RemarksInvert 0, 1 0=upright, or "; 0=inverted or #VP -34, 17, 0, 17, 34 Training: VP=17�IL 0, 1, 2, 3 IL=0 for left, IL=1 for center,IL=2 for right, and IL=3 for leftand right together.Training: IL=0Set A, B, C, D, E, F Each set consisted of images of 3facesSubject EST,OR1,TAL,ARN Sets [A,D,F]", [B,C,E]#.JUD,NUR,MOR,OR2 Sets [A,D,F]#, [B,C,E]".Pass-number 1, 2, 3, 4 The number of times a Subjectwas exposed to a given Set.Session [1..24] counted separately for each SubjectSet-order 1, 2, 3 The sets were numbered in theanalysis for each subject accord-ing to their chronological order ofappearance. The upright sets andthe inverted sets were numberedseparately.Table 3: The independent variables involved in the analysis.Appendix B: e�ects of Subject and SetWe �rst tested the interaction of the variables Subject and Set with the e�ects of VP andIL, to determine whether the inuence of subject and stimulus variability (Set) wouldhave to be taken into account explicitly in the subsequent analyses. To that end, weperformed a mixed-model GLM (General Linear Models) analysis, in which the e�ectsof VP, IL, Subject, Set, and all the two-way interactions were tested, with Subject andSet declared as random e�ects. The analysis was carried out separately for uprightand inverted conditions, and also separately for each value of Pass-number (becausethe performance changed with Pass-number, and the rate of this change di�ered amongsubjects). 16



The results yielded interactions between Subject, Set, and the e�ects of VP and IL,in both orientation conditions, for most of the values of Pass-number. A look at thedata showed, however, that the source of these interactions may have been the poorperformance of a single subject, ARN (see Table 4); this subject was also responsible for18 out of the 30 sessions that were omitted from the analysis because of the lack oflearning of the training con�guration). Indeed, without this subject, there was virtuallyno interaction of Subject and Set with VP and IL.3 Consequently, in all further analyses,we used only the data from the seven remaining subjects, and treated the variation overthe Subject and Set degrees of freedom as error terms.Appendix C: e�ects of VP and IL, and their interac-tion with InvertTo �nd out how the inversion of the stimuli a�ected generalization across changes inviewpoint and illumination, we performed a 3-way (VP�IL�Invert) GLM analysis ofvariance. The analysis was done separately for the �rst (Pass-number=1) and the last(Pass-number=4) exposure of a subject to a set. All the main e�ects and all the two-way interactions were signi�cant (see Table 5). The prominence of the VP*Invert andIL*Invert interactions clearly demonstrates that generalization across VP and IL de-pended strongly on whether the stimuli faces were inverted or not (see also Figure 4).We next carried out four separate GLM analyses: for the upright and the inverted con-ditions, for Pass-number=1 and Pass-number=4. For upright stimuli at Pass-number=1,the illumination IL had no e�ect on CR (F < 1), and there was a marginal e�ect ofVP (F (4; 1120) = 2:1, p < 0:07). No e�ects of IL or VP remained for upright stimuliat Pass-number=4. In contrast, for inverted stimuli at Pass-number=1 we found strongmain e�ects of IL (F (3; 940) = 5:4, p < 0:0012) and of VP (F (4; 940) = 10:3, p < 0:0001),and no interaction; at Pass-number=4 both these e�ects were reduced but still present(IL: F (3; 1120) = 3:4, p < 0:02; VP: F (4; 1120) = 5:7, p < 0:0002).A direct impression of the e�ects of viewpoint and illumination on generalizationperformance may be obtained by considering the means of CR for the di�erent valuesof VP and IL. At Pass-number=4, the adjusted marginal mean correct rate for VP=17�(the training viewpoint) was CR=96.0%, and for VP=0 it was CR=90.7% (di�erencesigni�cant at p < 0:0001; most of the other di�erences between the marginal meansof CR were also signi�cant). For IL=0 (the training illumination), the marginal mean3The only marginally signi�cant interactions were: IL*Subject for Invert=0, Pass-number=2(F (3; 1091) = 1:93, p < 0:02); IL*Set for Invert=1, Pass-number=1 and Pass-number=2 (F (12; 855) =1:90, p < 0:03, and F (12; 1032) = 2:39, p < 0:005, respectively).17



---------------------------------- Invert=0----------------------------------Duncan Grouping Mean N SubjectA 99.3264 720 NURAB A 99.2130 720 ESTB AB A 99.1204 720 OR2B AB A 98.3460 660 OR1BB 98.1296 720 TALC 95.5370 540 JUDD 93.8500 600 MORE 77.2722 300 ARN---------------------------------- Invert=1 ----------------------------------Duncan Grouping Mean N SubjectA 94.968 660 ESTAA 94.942 660 OR1AB A 93.181 720 NURBB 91.566 660 MORBB 91.250 600 OR2C 88.503 540 TALCC 87.272 540 JUDD 73.389 180 ARNTable 4: Results of Duncan's Multiple Range test of the di�erences between mean valuesof CR for the eight subjects, in the upright and the inverted conditions. Note the greatdi�erence between the performance of ARN and that of other subjects (in response time,ARN was ranked third in both conditions). ARN's data were subsequently omitted fromthe analysis. 18



correct rate was CR=95.8%, compared to CR=92.4% for IL=1 (di�erence signi�cant atp < 0:004; di�erences among other levels of IL were not signi�cant).Appendix D: learningDespite there being no feedback indicating incorrect responses during the testing stage ofeach experimental session, the subjects' performance improved with repeated exposureThis improvement with Pass-number was manifest in the increase of mean CR, and,more interestingly, in the diminution of the e�ects of VP and IL (see the description ofthe e�ect of Pass-number in section 3). To determine whether this improvement wasa non-speci�c practice e�ect, or an indication of stimulus-speci�c learning, we obtaineda quantitative measure of the relative importance of Set-order and Pass-number by afour-way (VP�IL�Pass-number�Set-order) analysis of covariance (with Pass-numberand Set-order treated as continuous variables).The results are summarized in Figure 5 and in Table 6. In the upright condition, wefound no e�ects of interest. In the inverted condition, the analysis showed, as expected,all the e�ects of VP and IL we saw before. In addition, there was a signi�cant maine�ect of Pass-number (F (1; 4343) = 29:37, p < 0:0001), but not of Set-order (F < 1).Interestingly, familiarity (that is, Pass-number) a�ected generalization: the interactionof VP with Pass-number was marginally signi�cant (at p < 0:11).Appendix E: analysis of response time (RT)Because the main conclusions made in this paper are based on the analysis of the CRdata, our primary concern was to assure that the subjects did not trade recognition ratefor response time. Indeed, we found no positive correlation between CR and RT in anyof the sessions or conditions. We found di�erence in mean RT between upright andinverted conditions (see Table 1). Because we found no session by session speed-accuracytradeo�, this di�erence in RT between upright and inverted faces does not change ourinterpretation of the CR results. In fact, inverted faces took longer to respond to andwere more di�cult to recognize | the opposite of what happens when speed is tradedo� for accuracy.E�ects of VP, IL, and InvertTo �nd out how the inversion of the stimuli a�ected the response time RT across changesin viewpoint and illumination, we performed a 3-way (VP�IL�Invert) GLM analysis of19



variance. As in the section on CR, the analysis was done separately for Pass-number=1,and for Pass-number=4. At Pass-number=1, the main e�ect on RT of illumination IL wasweak, and its interactions with the other variables were not signi�cant (see Table 7). Incomparison, RT did depend strongly on viewpoint VP, and this dependence was a�ectedby the inversion of the faces (see the VP*Invert interaction in Table 7, top, and Figure 6).
Upright; Pass=1

0

1

2

3

IL

0

1

2

3

4

VP

0.6

0.7

0.8

0.9

1

1.1

1.2

RT, sec

0

1

2

3

IL

0

1

2

3

4

VP

0.6

0.7

0.8

0.9

1

1.1

1.2

Inverted; Pass=1

0

1

2

3

IL

0

1

2

3

4

VP

0.6

0.7

0.8

0.9

1

1.1

1.2

RT, sec

0

1

2

3

IL

0

1

2

3

4

VP

0.6

0.7

0.8

0.9

1

1.1

1.2

Figure 6: Plots of RT vs. VP and IL, for upright stimuli (left) and inverted stimuli (right).The data in this plot are for Pass-number=1.
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-------------------PASS NUMBER=1------------------------Source DF F Value Pr > FVP 4 13.88 0.0001IL 3 6.30 0.0003VP* IL 12 1.80 0.0425Invert 1 258.99 0.0001VP* Invert 4 7.66 0.0001IL* Invert 3 4.66 0.0030VP* IL* Invert 12 1.04 0.4106-------------------PASS NUMBER=4------------------------Source DF F Value Pr > FVP 4 4.77 0.0008IL 3 2.26 0.0793VP* IL 12 0.77 0.6846Invert 1 36.51 0.0001VP* Invert 4 4.82 0.0007IL* Invert 3 3.44 0.0162VP* IL* Invert 12 0.45 0.9428Table 5: Results of GLM analyses of variance that tested the e�ects of VP, IL, andInvert on CR for Pass-number=1 and Pass-number=4. The number of error DFs was2060 and 2240, respectively, in the two cases. Note the diminishing inuence of Inverton the e�ects of VP and IL at Pass-number=4, compared to Pass-number=1.21



Source DF F Value Pr > FVP 4 10.31 0.0001IL 3 4.62 0.0031VP*IL 12 3.19 0.0001Set-order 1 0.23 0.6349Set-order*VP 4 1.37 0.2426Set-order*IL 3 1.21 0.3038Pass-number 1 29.37 0.0001Pass-number*VP 4 1.88 0.1115Pass-number*IL 3 1.50 0.2115Set-order*Pass-number 1 3.20 0.0737Table 6: Results of the analysis of covariance that tested the inuence of learning onthe e�ects of VP and IL. Only the inverted condition is shown (in the upright conditionthere were no signi�cant e�ects). The number of error DFs was 4343.
22



-------------------Pass-number=1------------------------Source DF F Value Pr > FVP 4 8.34 0.0001IL 3 2.92 0.0329VP*IL 12 1.70 0.0605Invert 1 199.90 0.0001VP*Invert 4 2.64 0.0322IL*Invert 3 0.31 0.8180VP*IL*Invert 12 0.42 0.9549-------------------Pass-number=4------------------------Source DF F Value Pr > FVP 4 5.56 0.0002IL 3 1.29 0.2750VP*IL 12 0.24 0.9966Invert 1 84.72 0.0001VP*Invert 4 0.97 0.4233IL*Invert 3 0.96 0.4119VP*IL*Invert 12 0.31 0.9887Table 7: Results of GLM analyses of variance that tested the e�ects of VP, IL, andInvert on RT for Pass-number=1 and Pass-number=4. The number of error DFs was2060 and 2240, respectively, in the two cases. The interaction of Invert with the e�ect ofVP, present at Pass-number=1, disappeared at Pass-number=4. Note that the e�ect ofviewpoint VP on RT is still very strong at Pass-number=4.23
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