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Abstract

An image of a face depends not only on its shape, but also on the viewpoint,
illumination conditions, and facial expression. A face recognition system must
overcome the changes in face appearance induced by these factors. This paper
investigate two related questions: the capacity of the human visual system to
generalize the recognition of faces to novel images, and the level at which this
generalization occurs. We approach this problems by comparing the identification
and generalization capacity for upright and inverted faces. For upright faces, we
found remarkably good generalization to novel conditions. For inverted faces, the
generalization to novel views was significantly worse for both new illumination and
viewpoint, although the performance on the training images was similar to the
upright condition.

Our results indicate that at least some of the processes that support generaliza-
tion across viewpoint and illumination are neither universal (because subjects did
not generalize as easily for inverted faces as for upright ones), nor strictly object-
specific (because in upright faces nearly perfect generalization was possible from a
single view, by itself insufficient for building a complete object-specific model). We
propose that generalization in face recognition occurs at an intermediate level that
is applicable to a class of objects, and that at this level upright and inverted faces
initially constitute distinct object classes.



1 Introduction

The human visual system can easily recognize the identity of a familiar face from its
image. However, recognizing faces is a difficult problem from a computational point of
view, because all faces have a generally similar shape and at the same time different im-
ages of the same face can vary considerably. There are several sources for the variations
between images of the same face, such as changes of facial expression, age, viewpoint,
illumination, noise, etc. The task of a face recognition system, whether natural or artifi-
cial, is to recognize a face in a manner that is insensitive to these variations. The basic
issue we study here is how the human visual system can identify a face in novel images,
in particular under changes of illumination direction and viewpoint.

We consider two aspects of the problem. The first is how well humans in fact rec-
ognize faces in novel images. The second is the level at which the generalization of face
identification to novel images takes place. Recognition systems can use different types
of information for overcoming image variations. We distinguish between three basic gen-
eralization levels: universal, class based, and object specific. Roughly speaking, at the
universal level, no restrictive assumptions are made about the objects that may appear
in the image. At the object-specific level knowledge about a specific face may be used
(e.g., the three dimensional shape of a specific face); the class-based level is an intermedi-
ate level, where knowledge about faces in general (the class to which a candidate object
belongs), but not about a specific face may be used (e.g., the general shape of faces).
These generalization levels will be discussed further in the last section of the paper.

Face processing was previous studied by comparing the recognition of faces to other
object classes such as houses, landscapes, and dogs (Valentine, 1988). One of the main
problems with such a comparison is the difference in complexity between faces and other
objects. To overcome this problem and to characterize the computational level at which
the generalization of face recognition takes place, we compared the recognition of upright
and inverted faces. From an objective standpoint, they have the same complexity, how-
ever, perceptually inverted faces are more difficult to recognize. We did not compare the
difficulty of recognition per se. Instead, we studied the differences in the generalization
of recognition from one image of a face to other images of the same face in the same
orientation (upright/inverted).

It should be noted here, that one objective difference that often occurs between up-
right and inverted faces is that under natural conditions upright faces are illuminated
from above while the faces in inverted images are illuminated from below. Since objects
are often illuminated from above, Johnson et al. (1992) suggested this difference as a
source for difficulty in recognizing inverted faces. We avoided this problem in our study
by placing the illuminating at the face level. Consequencely the faces were illuminated
from the same directions in the upright and inverted images.



In the experiments, subjects first learned to recognize single image of each of three
distinct unfamiliar faces. Then, each subject was tested with 20 different images of each
of the three faces, taken under novel illumination conditions and from novel viewpoints.
The same experiment was repeated for inverted images of other faces. In this case, the
subject learned to recognize images of inverted faces and was then tested on novel images
of inverted faces.

We found that the recognition of novel views of upright faces was remarkably good
(see section 2.2.2). In contrast, the performance on novel images of inverted faces was
significantly worse than for the upright faces (although the subjects had no problem
in recognizing the training images of inverted faces). Our results indicate that at least
some of the processes that support generalization across viewpoint and illumination are
neither universal nor strictly object-specific. They are not universal because subjects
did not generalize as easily for inverted faces as for upright ones. They are not object-
specific because in upright faces nearly perfect generalization was possible from a single
view, by itself insufficient for building a complete object-specific model. We propose that
generalization in face recognition occurs at an intermediate level that is applicable to a
class of objects, in this case, a class of upright faces. A discussion of these conclusions is
presented in section 3.

Before describing the experiments in details, we briefly review previous studies of face
recognition from novel views and from inverted images, and relate them to our study.
Several studies have addressed the problem of generalization of face memory to novel
images taken from new viewpoints, but without changing the illumination conditions
(Patterson and Baddeley, 1977; Davies et al., 1978; Bruce, 1982). In these experiments,
a set of faces (unfamiliar or familiar) was briefly presented once to the subject during a
training phase. In the testing phase, the subject determined whether a given face had
appeared previously in the training phase. Two viewpoints were used: frontal, and 3/4
profile. The results showed that the recognition of a previously seen face in the novel view
was reliable. Bruce (1982) compared the memory of familiar and unfamiliar faces in such
an experiment, and found that familiar faces were recognized faster and more accurately
than unfamiliar faces. Our experiments were different in several respects. First, our
subjects were tested on face identification, in a three-alternative forced-choice setup.
Second, our subjects were initially unfamiliar with the face stimuli, but one image of each
face was made familiar by repeated exposure during the training stage (this can explain
the differences between our results and those of Bruce (1982) regarding the recognition of
unfamiliar faces). Third, the set of images that we considered for each face was larger (20
compared to two). Fourth, the images in our experiments varied not only due to pose,
but also due to illumination. Finally, our set of images was precisely controlled, so that
each parameter (e.g., viewpoint or illumination) was varied independently of the others,
while images of all faces were normalized to the same size and location. In previous



studies (Patterson and Baddeley, 1977; Davies et al., 1978; Bruce, 1982) the control over
viewpoint, location, size, illumination, background, and in many cases familiarity of the
faces to the subject, was not completely specified.

Recognition of inverted faces is known to be a difficult perceptual task (Kohler, 1947;
Hochberg and Galper, 1967; Attneave, 1967; Yin, 1969; Scapinello and Yarmey, 1970;
Yarmey, 1971; Carey and Diamond, 1977; Valentine and Bruce, 1986). A review of re-
search concerned with the recognition of inverted faces can be found in Valentine (1988).
Generally, the memory for faces was shown to be impaired when inverted images were
involved (in the training or in the testing phases or in both). Inverted faces were also used
in attempts to discover out whether features or configuration information are required
for face recognition. Carey and Diamond (1977) proposed that the difficulty in recogniz-
ing inverted faces results from an inability to access the configuration information of the
facial features from inverted faces. The cue saliency in artificial inverted faces (schematic
or thresholded to black and white) was addressed by several investigators (Endo, 1982;
Endo, 1986; Kemp et al., 1990). The results of these experiments indicated certain differ-
ences in the memory for upright and inverted faces. In our study, the relative difficulties
of recognizing inverted faces was not of primary concern. Inverted faces were used to
study certain aspects of the effects of illumination and viewpoint on face identification.

2 The experiments

The basic experimental paradigm was a three-alternative forced-choice recognition task.
The subject was first trained on a single image of each of three faces taken under identical
viewing conditions. She or he was then tested on 20 images of each of the three faces,
taken under all combinations of four different illumination positions and five different
camera locations. Our main objective was to test the degree of generalization to new
viewpoint and illumination for both upright and inverted face images. The locations
of the camera and the light sources were identical for all faces. The same experiment
was repeated for several sessions with a number of different triplets of faces. Some of the
triplets were shown always upright, others always inverted. The assignment of orientation
and triplet identity was balanced across subjects, so that the faces in each triplet were
seen upright by half of the subjects, inverted by the other half. The orientation of the
stimuli was fixed throughout an experimental session.



2.1 Method
2.1.1 Subjects

Eight subjects (3 females, 5 males, ages 16-35) participated in the experiment. All had
normal or corrected to normal acuity, and all but one were paid for their participation.
All subjects had some prior experience in psychophysical experiments.

2.1.2 Materials

Figure 1: Each face was normalized before taking the picture so that the face’s symmetry axis, the
external corners of the eyes, and the bottom of the nose located on the reference lines as shown.

Twenty images (Figure 2) of each of 18 different faces were used as stimuli. All faces were
of males without distinctive features (no glasses, beard, mustache, etc.). All images were
taken by the same camera under precisely controlled illumination and viewpoint. The
frontal view of all faces were normalized by fixing the location of the face’s symmetry axis,
the external corners of the eyes, and the bottom of the nose, before taking the pictures (see
Figure 1).! The camera (Pulnix TM-560 with Canon lens V6 x 1616 — 100mm F'1 : 1.9)
was attached to a robot arm (Adept I) to control its precise position. A Symbolics Lisp
Machine controlled the camera positioning to: —34°, —17°, 0°, 17° and 34° with respect
to the frontal view, in the horizontal plane. The distance of the face from the camera was

!The position of three points on an image of a three dimensional object determines uniquely the
location of the object with respect to the camera.



fixed at 110em. Four distinct illumination conditions at the same height of the face were
created by turning on and off three fixed light sources: left (IL=0), center (IL=1), right
(IL=2) and the combination of left and right (IL=3). The subjects were asked to assume
a neutral expression and to remain still. To reduce the influence of the background, the
faces during the experiments were clipped by an elliptical mask that occluded most of
the hair and the neck areas. Fach image consisted of 512 x 352 points, 8 bits per point.

The subjects viewed the images on the screen of a Silicon Graphics Personal Iris
4D35/TG workstation, at an approximate distance of 50cm. At that distance, an image
subtended approximately 6.8 degrees of visual angle.

The 18 different faces were divided into six different sets, three faces in each set. Each
set consisted of the 20 images of each of the three faces. The triplets were chosen that
the faces within a set were judges by the experimenters to be similar to one another. The
sets were denoted by the letters A through E (see Figures 3).

2.1.3 Procedure

An experimental session started with a training phase following by a testing phase. Any
given session involved one fixed set of faces. In the training phase the subject was trained
to recognize a single image of each of the three faces of the set. The same view of the face
(VP=17°, and IL=0) was used for all the images of the training phase (as in Figure 3).
The subject was shown repeatedly each of the three images in a pseudo-random order. In
the first 15 trials of the training phase, the subject was given a graphical indication of the
correct response. This indication was provided by a diagram at the bottom of the screen,
showing the correct response buttons (“17, “2”, or “3” a numeric). Subsequently, the
indication was provided (and an audible signal was given) only if the subject’s response
was erroneous. Once the subject identified correctly 18 out of the last 20 appearances
of the training image of each face, a special signal was sounded and the testing phase
started.

In the testing phase, the subject was tested on all images of the three faces of the set.
For each face, the test image included all combinations of the four different illumination
locations and five different camera positions. Altogether, there were 20 x 3 different
images. Fach image was presented six times in the testing phase. In each trial of the
experiment, the stimulus image was shown for 600msec followed by a mask (a jumbled
face image) that remained visible until the subject responded. The subjects were required
to make a three-alternative forced-choice decision regarding the identity of the displayed
face image. The subjects were forewarned that different images of the same face could
appear in the testing phase, and that no feedback would be given for incorrect responses.
They were asked to respond as quickly and as accurately as possible. An experimental
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Figure 2: An example of 20 images of one of the faces (all combinations of five different viewing position
and four different illumination).
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Figure 3: The triplets of images used in the experiment, one image of each face. These images were
used in the training phase (VP=17 and IL =0).



session included a minimum of 105 training trials (or as many as were necessary for the
subject to achieve a 90% correct rate on each face),? followed by 360 testing trials (5
levels of VP x 4 levels of II. x 3 faces x 6 replications).

The experiment consisted of four sessions of six sets (in all, 24 sessions) for each of
the eight subjects. In a given session, the faces were either all upright or all inverted in
both the learning and the testing phases. For a given subject, half of the face sets were
upright images, the other half inverted. For the first four subjects, the sets C', B, E were
always upright, sets A, D, F' always inverted. The other four subjects saw sets C', B,
and F inverted, and sets A, D, I, upright. The assignment of the set variable to a given
subject and session was done in such a manner that Subject/Set combinations tended to
occur in pairs (that is, the same set was shown to a given subject during two successive
sessions). This made it easier for the subjects to remember what the target faces in a
given session were. Otherwise, this assignment was randomized across subjects.

2.2 Results

We first present the summary statistics of the data (section 2.2.1). We then analyze
separately the generalization across viewpoint and illumination in the first exposure of
a subject to a set of upright and inverted faces (section 2.2.2). Finally, we analyze two
learning effects: improvement in generalization within and across sets (section 2.2.3).

2.2.1 Preliminary analysis

Altogether, the experiment yielded nearly 70, 000 responses. The data from a session were
included in the subsequent analysis if the following criterion was satisfied: the subject
had to identify correctly 5 out of 6 appearances of each of the three training images
in the testing phase (VP=17°, and IL=0). This criterion was satisfied in 86 out of 96
upright sessions and in 76 out of 96 inverted sessions. The other sessions were omitted
from the analysis since we were interested in the generalization process of recognizing
correctly novel face images after learning to recognize a single image of the same face. In
sessions were this criterion was not satisfied, the subjects were unable to recognize well
enough the training image. A separate analysis of the sessions that were dropped here,
showed the same effects of generalization as will be described below. We also discarded
records of trials in which response times were shorter than 250msec or longer than 3sec
(these constituted 1.5% of the total number of trials). The final data set included 57,976

2If the subject did not reach this level of performance in 250 trials, the session was aborted, and was
restarted from the beginning after a short break. This happened in 6 sessions, or about 3% of the total
number of sessions.



responses (about 84% of the original volume of data; we discarded all sessions of one

subject due to his generally poor performance, that was statistically different from the

rest of the subjects).

Pass | Statistic | Up/Inv Mean Train | VP diff. IL diff. | VP&IL diff.
1 CR, % | upright | 97.3+ 0.2 | 99.14+ 0.5 | 97.0+ 0.5 | 97.84+ 0.5 97.1£ 0.3
inverted | 87.2£ 0.6 | 98.6+ 0.7 | 86.5£ 1.5 | 90.14+ 1.6 85.9£ 0.8

RT, ms | upright 904+ 6 | 860+ 22 | 916+ 13 | 900+ 15 905+ 8
inverted | 1034+ 7| 940£ 25 | 1066+ 17 | 1000£ 15 1040+ 9

4 CR, % | upright | 97.54+ 0.2 | 97.4£ 0.8 | 97.7+ 0.4 | 96.54+ 0.7 97.6+ 0.2
inverted | 94.64+ 0.4 | 99.1+ 0.5 | 95.0£ 0.9 | 95.04+ 1.0 94.1+ 0.6

RT, ms | upright 832+ 6 | 8124 27 | 823+ 12| 825+ 16 834+ 8
inverted 909+ 6 | 8624 21 | 916+ 12 | 887+ 14 916+ 8

Table 1: Means and standard errors of the mean of correct rate (CR), and response time (RT) averaged
over all subjects and first pass of all sets (pass-number = 1) and the last pass of all sets (passs-number
= 4). The five means in each row are: the grand mean over all conditions; TRAIN: the training view
(VP= 17° and IL=0); VP diff: average over all new viewing position with the training illumination
(VP#£ 172 and IL=0); IL diff: average over all new illumination with the training viewing position
(VP=17° and IL# 0); VP&IL diff: averaged over all combination of new illumination and new viewing
position (VP# 17° and TL# 0).

The variables that we consider are the percentage of correct rate responses (CR)
and the average response time (RT) over the six appearances of a given image in the
testing phase of each session. Since there was no interaction between subjects, set of
faces, and the generalization to new images (see appendix B), we averaged separately for
upright and inverted faces across subjects and sets of faces for each image condition. The
averaged values of CR and RT in the upright and inverted conditions over all sets and
subjects on their first and last exposure to each set are presented in Table 1. A correlation
analysis revealed no speed-accuracy tradeoff (the correlation between CR and RT was
never positive). Our subsequent analysis, presented below, concentrated on the CR data
since this is the parameter that the subjects were trained to rich the high performance
on; the results concerning response times are summarized in Appendix E.

2.2.2 VP and IL effects for inverted faces

As mentioned above the same set of images was repeated four times for each subject.
We begin by considering the first pass of each of the sets for all subjects. The averaged
performance of all subjects is plotted in Figure 4, separately for upright and inverted
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VP | -34 | -17 | 0 | 17 | 34
IL
0 78 | 83 193199 |91
1 79 | 80 | 83|89 | 84
2 79 1 90 | 91|89 | 87
3 84 1 90 | 92|92 |90

Table 2: Each entry represents the average correct response (CR) over all subjects and sets for a given
viewing position (VP) and illumination position (IL) for inverted faces. Only the first pass number is
considered. The training view was VP= 17° and IL=0

sets. Each point in the 2D graphs represents the average percentage of correct responses
(CR) over all subjects for one of the 20 views of a face (4 illuminations X 5 viewpoints).
The results for the inverted images are also summarized in Table 2.

Upright; Pass=1 Inverted; Pass=1

Figure 4: Plots of percent correct (CR) for all viewing positions (VP) and illumination positions (IL).
We consider only the first session of each subject on each set. Each point in the graph represents the
average CR over all subjects for upright stimuli (a) and inverted stimuli (b). The training view (VP= 17°
and IL=0) is marked by a star.

We considered sessions in which the subjects had similar performance on the training
images for upright (99.1 £+ 0.5% correct) and inverted (98.6 4+ 0.7% correct) faces. The
generalization for novel views of upright faces was remarkably good (above 97% correct).
The generalization for novel views of inverted faces was considerably worse (average CR

10



was 86.5+1.5% for novel viewpoint and 90.141.6% for novel illumination direction). For
the inverted faces, the performance for novel viewpoint decreased monotonically with the
misorientation relative to the training view. Statistical analysis (reported in appendices B
and C) revealed no effects of either VP or IL for upright faces, for inverted faces both
VP and IL had a significant effect on generalization: performance decreased.

2.2.3 Learning

In the previous section we considered only the first session (first pass) of all subjects on
each of the sets. In this section we consider the effect of learning. In the following analysis,
we distinguished between face-specific learning (within a set), and general learning (across
sets). Learning within a set is due to better performance of the subject after having seen
the same set of faces over and over again. In comparison, learning across sets is due to
improvement in performance when the subject becomes more familiar with the task or
the class (in this case of inverted faces), rather than with a specific stimulus set.

To study the effect of learning across sets, we considered only the first exposure
(first pass) of each subject to each set, since this precludes of learning within a set.
Figure 5(a) presents the mean performance of all subjects on the first pass of each set
vs. the presentation order of appearance of the sets to a given subject (Set-order). The
results do not indicate any learning across sets (see Appendix D). That is, the VP and
IL effects were not reduced due to repeated exposure to sets of inverted faces.

To study the effect of learning within a set, we considered the change in performance
of each subject with the number of repeated exposure (pass-number) to the first set of
faces that the subject saw. Figure 5(b) presents the mean performance of all subjects
and all sets vs. pass number. The improvement with the number of passes is manifest in
the increase of mean CR and in the near disappearance of the effects of VP and IL (see

Appendix D).

We can therefore conclude that the learning exhibited by the subjects was mostly
set-specific. For each set of faces, this learning was apparent in the improvement of
generalization performance with repeated exposure to that set. Learning across sets
(that is, learning to perform better on the entire class of inverted faces) did not show up
significantly in the data. The statistical analysis supporting these conclusions is presented
in appendix D.

2.3 Summary of results

Our results indicate that subjects could be trained to discriminate between different faces
in both upright and inverted faces when the same images are used in the training and in
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Figure 5: (a) Learning across sets: plots of CR vs. number of different inverted sets that a given
subject saw (set number) for inverted stimuli, the average is taken on the first exposure of a subject
to each of the sets. (b) Learning witnin a set: plots of CR vs. pass number, the average is taken on
the first set that each subject saw. The four bars in each group correspond, from left to right, to the
following four different conditions. TRAIN: the training view (VP= 17° and IL=0); VP diff: average
over all new viewing position with the training illumination (VP#£ 17¢ and IL=0); IL diff: average over
all new illumination with the training viewing position (VP=17° and IL# 0); VP&IL diff: averaged over
all combination of new illumination and new viewing position (VP# 17° and IL# 0).

the testing stage. However, the generalization to views obtained under novel viewpoint
and illumination conditions is significantly worse for inverted faces compared with upright
faces.

We also found that the subjects were capable of non-supervised learning (improvement
in generalization for novel views). This learning was specific for the face sets they saw,
rather than the class of inverted faces in general: following repeated exposure to the same
set of faces, the VP and IL effects nearly vanished, only to reappear when a new set of
faces was introduced.

3 Conclusions and Discussion

The ability to generalize the recognition of a given face to novel images is a fundamental
issue in face perception. Two natural parameters that vary between images are the illu-
mination and viewpoint. The first question addressed in this paper was how well humans
can recognize faces in novel images. The novel views we considered were taken from five
different viewpoints and under four different illumination directions. The largest angular
separation between novel and familiar viewpoints was 51°, and the largest separation in
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illumination direction was about 50° away from the direction used in the training im-
age. We found that for upright faces the subjects that were trained to recognize well the
training image, responded correctly to over 97% of the test stimuli. We conclude that the
human visual system generalizes well the identification of upright faces to novel images
within the range of viewpoint and illumination changes we tested.

How this impressive invariance for large discrepancy in viewpoint and illumination
obtained? The comparison between upright and inverted faces allows us to draw a number
of plausible conclusions regarding the probable level at which the human visual system
overcomes variations between images of the same face. In the discussion below, we
draw a distinction between the universal, class and object levels of achieving invariant
recognition.

Consider first the universal level. At this level, the system attempts to compensate
for the variability among images of a the same face in the same manner for all objects.
An example of a universal process of this kind, widely used in computer vision, is the
extraction of intensity edges from the image. A major goal of this process is to form
an intermediate representation based on image features that are relatively insensitive to
illumination. Similarly, for biological visual systems, there is physiological evidence for
neurons that are sensitive to both orientation and spatial frequency in the primary visual
cortex (Hubel and Wiesel, 1962; Hubel and Wiesel, 1968). This stage of processing was
modeled as the application of a set of local filters to the incoming image (Daugman, 1984;
Mercelja, 1980; Marr and Hildreth, 1980; Pollen and Ronner, 1983). Presumably, this
processing is applied uniformly to any input image, and, in particular, to upright as well
as inverted images of faces. Differences between the processing of upright and inverted
faces are therefore unlikely to arise from this level of processing. More generally, the
difference between the performance of the visual system in generalizing across viewpoint
and illumination changes in upright and inverted faces suggests that universal processing,
such as edge detection, is not sufficient by itself to compensate for these image variations.

The extreme opposite to universal processing is the object-specific approach. Here,
when an image is compared with stored object model, processes that depend on the
particular object in question are utilized. These processes can therefore specifically deal
with the effects of viewpoint and illumination for the object in question. For example,
for familiar objects the system may store detailed 3-D models acquired through past ex-
perience. Such a model can then be used in compensating for viewpoint and illumination
effects of the object in question, but not to compensate for viewpoint and illumination
effects in general (for other objects). Some of the object-specific approaches overcome
the differences between images due to changes in viewpoint by using multiple images of a
given object as reference. There are two different ways in which multiple images can be
used: the independent and the interdependent approaches. The independent approach
is straightforward: the system stores a sufficiently large set of images, so that each novel
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face image is bound to be close to one of the images in the set, considered independently.
The interdependent approach uses several images of the same face together, to extract
(either directly or indirectly) information about the three dimensional shape of the face
(Fischler and Bolles, 1981; Ullman, 1986; Huttenlocher and Ullman, 1987; Lowe, 1987;
Basri and Ullman, 1988; Grimson, 1990; Poggio and Edelman, 1990). Because in our
experiments only a single image was available to the system in the learning phase, object-
specific approaches that rely on several images of the same face cannot account for our
experimental results. Another method for constructing the 3-D shape of the object is
by using the shading information from a single image(Horn and Brooks, 1989). In this
approach, computing the shape of the object is performed at the universal level (that is,
no specific assumptions on faces in general or specific faces are used to compute the 3-D
shape). This approach is therefore also insufficient to explain the differences between the
generalization of upright and inverted faces.

In between the universal and object-specific levels lie the class-based level. At this
level, the processing depends on the class to which the object in the image is assumed to
belong. For example, class-level processing may include the extraction of facial features
such as the location of the eyes, mouth and nose (Kanade, 1977; Craw et al., 1987; Yuille
et al., 1989). Such a process is applicable to face images in general, but not to other
objects. In general, classification can be hierarchical, that is, a given class of objects
can belong to a more inclusive class as well. For example, the face of an individual
belongs to the class of human faces, which, in turn, belongs to the class of animal faces,
which belongs to the class of approximately bilaterally symmetric objects. Therefore,
class-based processing can consist of several levels of processing.

The use of such class-based processing means that the system uses general properties
of faces to compensate for the effects of illumination and viewing conditions of an indi-
vidual face. Our experiments revealed differences in generalization performance between
upright and inverted faces. This strongly suggests that generalization is not entirely
universal in nature. Although universal process may have a contribution, class-based
processes are likely to play an important role in compensating for both illumination an
viewpoint. Our results also show substantial recognition ability from a single (upright)
face image. This again is consistent with the use of class-based processing. The use of
general face property could help to explain how generalization is obtained on the basis
of a single novel image, and why this generalization is more effective for familiar faces.

Class-based processing can be used in several manners. For example, the 3D shape
of the object can be easier to recover from a single image if one assumes that the object
is indeed a face (the recovery of general shape from shading from a single image is
impossible without assumptions on the light source position, the reflectance properties,
etc.). Moreover, because faces belong to the class of bilaterally symmetric objects, the
symmetry assumption can be used, for example, for dealing with the viewpoint variation,
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as described in Moses and Ullman (1992a) .

In conclusion, our results show a remarkably good generalization from a single im-
age to novel views of upright faces, along with reduced generalization performance for
inverted faces. We suggest that the difference in generalization performance is related
to class-level processing, and that for the visual system upright and inverted faces are
different classes of objects. In other words, the visual system uses general face properties
to compensate for new viewing conditions of a specific face. To investigate further the
possibility that class-based processing plays an important role in generalization across
pose and illumination changes, the experiments reported here could be repeated with
other classes of objects. Specifically, generalization over controlled viewpoint, illumina-
tion, and other imaging parameters could be compared for different classes of objects.
Furthermore, it would be interesting to determine whether performance for a given class
improves with repeated exposure to different objects from this class. As an example,
consider the class of inverted faces, which are rarely seen in daily life. Our experiments
revealed virtually no improvement in the generalization process for one set of inverted
faces after repeated exposure to another set of inverted faces. It is possible, however,
that a longer exposure to inverted faces would result in the learning of inverted faces as
a class, leading to improved generalization from a single view of an inverted unfamiliar
face.
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Appendix A: the independent variables

The independent variables that were involved in the analysis are listed in Table 3.

Variable Levels Remarks
Invert 0,1 O=upright, or T; O=inverted or |
VP -34, 17, 0, 17, 34 | Training: VP=17°

IL=0 for left, IL=1 for center,
IL=2 for right, and IL=3 for left

1L 0,1,2,3 and right together.
Training: /L=0

St A B,C, D, E,F f)ach set consisted of images of 3
aces

Subject EST,0R1,TAL, ARN Sets [A,D,F]T, [B,C,E]|.

JUD,NUR,MOR,OR2 Sets [A,D,FH, [B,C,E]T.

Pass-number | 1,2, 3, 4 The number of times a Subject

was exposed to a given Set.
Session [1..24] counted separately for each Subject
The sets were numbered in the

analysis for each subject accord-
Set-order 12,3 ing to their chronological order of
appearance. The upright sets and

the inverted sets were numbered

separately.

Table 3: The independent variables involved in the analysis.

Appendix B: effects of Subject and Set

We first tested the interaction of the variables Subject and Set with the effects of VP and
IL, to determine whether the influence of subject and stimulus variability (Set) would
have to be taken into account explicitly in the subsequent analyses. To that end, we
performed a mixed-model GLM (General Linear Models) analysis, in which the effects
of VP, IL, Subject, Set, and all the two-way interactions were tested, with Subject and
Set declared as random effects. The analysis was carried out separately for upright
and inverted conditions, and also separately for each value of Pass-number (because
the performance changed with Pass-number, and the rate of this change differed among
subjects).
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The results yielded interactions between Subject, Set, and the effects of VP and IL,
in both orientation conditions, for most of the values of Pass-number. A look at the
data showed, however, that the source of these interactions may have been the poor
performance of a single subject, arv (see Table 4); this subject was also responsible for
18 out of the 30 sessions that were omitted from the analysis because of the lack of
learning of the training configuration). Indeed, without this subject, there was virtually
no interaction of Subject and Set with VP and IL.> Consequently, in all further analyses,
we used only the data from the seven remaining subjects, and treated the variation over
the Subject and Set degrees of freedom as error terms.

Appendix C: effects of VP and IL, and their interac-
tion with Invert

To find out how the inversion of the stimuli affected generalization across changes in
viewpoint and illumination, we performed a 3-way (VPxILx Invert) GLM analysis of
variance. The analysis was done separately for the first (Pass-number=1) and the last
(Pass-number=4) exposure of a subject to a set. All the main effects and all the two-
way interactions were significant (see Table 5). The prominence of the VFP*Invert and
IL* Invert interactions clearly demonstrates that generalization across VP and IL de-
pended strongly on whether the stimuli faces were inverted or not (see also Figure 4).

We next carried out four separate GLM analyses: for the upright and the inverted con-
ditions, for Pass-number=1 and Pass-number=4. For upright stimuli at Pass-number=1,
the illumination /L had no effect on CR (F' < 1), and there was a marginal effect of
VP (F(4,1120) = 2.1, p < 0.07). No effects of IL or VP remained for upright stimuli
at Pass-number=4. In contrast, for inverted stimuli at Pass-number=1 we found strong
main effects of IL (F'(3,940) = 5.4, p < 0.0012) and of VP (F'(4,940) = 10.3, p < 0.0001),
and no interaction; at Pass-number=4 both these effects were reduced but still present

(IL: F(3,1120) = 3.4, p < 0.02; VP: F(4,1120) = 5.7, p < 0.0002).

A direct impression of the effects of viewpoint and illumination on generalization
performance may be obtained by considering the means of CR for the different values
of VP and IL. At Pass-number=4, the adjusted marginal mean correct rate for VP=17°
(the training viewpoint) was CR=96.0%, and for VP=0 it was CR=90.7% (difference
significant at p < 0.0001; most of the other differences between the marginal means
of CR were also significant). For IL=0 (the training illumination), the marginal mean

3The only marginally significant interactions were: IL*Subject for Invert=0, Pass-number=2
(F(3,1091) = 1.93, p < 0.02); IL*Set for Invert=1, Pass-number=1 and Pass-number=2 (F(12,855) =
1.90, p < 0.03, and F'(12,1032) = 2.39, p < 0.005, respectively).
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Duncan Grouping Mean N  Subject
A 99.3264 720  NUR
A
B A 99.2130 720  EST
B A
B A 99.1204 720  OR2
B A
B A 98.3460 660 OR1
B
B 98.1296 720  TAL
C 95.5370 540  JUD
D 93.8500 600 MOR
E 77.2722 300  ARN
—————————————————————————————————— Invert=1 ---------------------—
Duncan Grouping Mean N  Subject
A 94.968 660  EST
A
A 94.942 660 OR1
A
B A 93.181 720  NUR
B
B 91.566 660 MOR
B
B 91.250 600  OR2
C 88.503 540  TAL
C
C 87.272 540  JUD
D 73.389 180  ARN

Table 4: Results of Duncan’s Multiple Range test of the differences between mean values
of CR for the eight subjects, in the upright and the inverted conditions. Note the great
difference between the performance of ARN and that of other subjects (in response time,
ARN was ranked third in both conditions). ARN’s data were subsequently omitted from
the analysis. 18



correct rate was CR=95.8%, compared to CR=92.4% for IL=1 (difference significant at
p < 0.004; differences among other levels of IL were not significant).

Appendix D: learning

Despite there being no feedback indicating incorrect responses during the testing stage of
each experimental session, the subjects’ performance improved with repeated exposure
This improvement with Pass-number was manifest in the increase of mean CR, and,
more interestingly, in the diminution of the effects of VP and IL (see the description of
the effect of Pass-number in section 3). To determine whether this improvement was
a non-specific practice effect, or an indication of stimulus-specific learning, we obtained
a quantitative measure of the relative importance of Set-order and Pass-number by a
four-way (VPXILx Pass-numberx Set-order) analysis of covariance (with Pass-number
and Set-order treated as continuous variables).

The results are summarized in Figure 5 and in Table 6. In the upright condition, we
found no effects of interest. In the inverted condition, the analysis showed, as expected,
all the effects of VP and IL we saw before. In addition, there was a significant main
effect of Pass-number (F(1,4343) = 29.37, p < 0.0001), but not of Set-order (F < 1).
Interestingly, familiarity (that is, Pass-number) affected generalization: the interaction
of VP with Pass-number was marginally significant (at p < 0.11).

Appendix E: analysis of response time (RT)

Because the main conclusions made in this paper are based on the analysis of the CR
data, our primary concern was to assure that the subjects did not trade recognition rate
for response time. Indeed, we found no positive correlation between CR and RT in any
of the sessions or conditions. We found difference in mean RT between upright and
inverted conditions (see Table 1). Because we found no session by session speed-accuracy
tradeoff, this difference in RT between upright and inverted faces does not change our
interpretation of the CR results. In fact, inverted faces took longer to respond to and
were more difficult to recognize — the opposite of what happens when speed is traded
off for accuracy.

Effects of VP, IL, and Invert

To find out how the inversion of the stimuli affected the response time RT across changes
in viewpoint and illumination, we performed a 3-way ( VPx/ILx Invert) GLM analysis of
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variance. As in the section on CR, the analysis was done separately for Pass-number=1,
and for Pass-number=4. At Pass-number=1, the main effect on RT of illumination I was
weak, and its interactions with the other variables were not significant (see Table 7). In
comparison, RT did depend strongly on viewpoint VP, and this dependence was affected
by the inversion of the faces (see the VFP*Invert interaction in Table 7, top, and Figure 6).

Upright; Pass=1 Inverted; Pass=1

Figure 6: Plots of RT vs. VP and IL, for upright stimuli (left) and inverted stimuli (right).
The data in this plot are for Pass-number=1.
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Source DF F Value Pr > F
VP 4 13.88 0.0001
IL 3 6.30 0.0003
VP* IL 12 1.80 0.0425
Invert 1 258.99 0.0001
VP* Invert 4 7.66 0.0001
IL* Invert 3 4.66 0.0030
VP* IL* Invert 12 1.04 0.4106

Source DF F Value Pr > F
VP 4 4.77 0.0008
IL 3 2.26 0.0793
VP* IL 12 0.77 0.6846
Invert 1 36.51 0.0001
VP* Invert 4 4.82 0.0007
IL* Invert 3 3.44 0.0162
VP* IL* Invert 12 0.45 0.9428

Table 5: Results of GLM analyses of variance that tested the effects of VP, IL, and
Invert on CR for Pass-number=1 and Pass-number=4. The number of error DFs was
2060 and 2240, respectively, in the two cases. Note the diminishing influence of Invert
on the effects of VP and IL at Pass-number=4, compared to Pass-number=1.
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Source DF F Value Pr > F

VP 4 10.31 0.0001
IL 3 4.62 0.0031
VP*IL 12 3.19 0.0001
Set-order 1 0.23 0.6349
Set-order*VP 4 1.37 0.2426
Set-order*IL 3 1.21 0.3038
Pass-number 1 29.37 0.0001
Pass-number*VP 4 1.88 0.1115
Pass—-number*IL 3 1.50 0.2115
Set-order*Pass-number 1 3.20 0.0737

Table 6: Results of the analysis of covariance that tested the influence of learning on
the effects of VP and IL. Only the inverted condition is shown (in the upright condition
there were no significant effects). The number of error DFs was 4343.
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Source DF F Value Pr > F
VP 4 8.34 0.0001
IL 3 2.92 0.0329
VP*IL 12 1.70 0.0605
Invert 1 199.90 0.0001
VP*Invert 4 2.64 0.0322
IL*Invert 3 0.31 0.8180
VP*IL*Invert 12 0.42 0.9549

Source DF F Value Pr > F
VP 4 5.56 0.0002
IL 3 1.29 0.2750
VP*IL 12 0.24 0.9966
Invert 1 84.72 0.0001
VP*Invert 4 0.97 0.4233
IL*Invert 3 0.96 0.4119
VP*IL*Invert 12 0.31 0.9887

Table 7: Results of GLM analyses of variance that tested the effects of VP, IL, and
Invert on RT for Pass-number=1 and Pass-number=4. The number of error DFs was
2060 and 2240, respectively, in the two cases. The interaction of Invert with the effect of
VP, present at Pass-number=1, disappeared at Pass-number=4. Note that the effect of
viewpoint VP on RT is still very strong at Pass-number=4.
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