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Abstract. Learningto recognizevisual objects from examplesrequiresthe ability to find
meaningful patternsin spacesof very high dimensionality. We presenta method for
dimensionalityreductionwhich effectively biasesthe learning systemby combining multiple
constraintsvia the useof classlabels. The useof extensiveclasslabelssteershe resultinglow-
dimensionafepresentatioto becomenvariantto thosedirectionsof variationin theinput space
that are irrelevantto classification;this is donemerely by making classlabelsindependentbf
thesedirections. We also showthat prior knowledgeof the properdimensionalityof the target
representatiorcan be imposedby training a multi-layer bottlenecknetwork. Computational
experimentsnvolving non-trivial categorizatiorof parameterizedractal imagesand of human
facesindicatethatthe low-dimensionatepresentatioextractedy our methodleadsto improved
generalizatiorin the learnedtasksandis likely to preservethe topology of the original space.

1. Introduction

Learningto recognizevisual objectsin images—representeaxscollectionsof pixel values—
requiresthe ability to find meaningfulpatternsn spacef tensor hundredf thousand®f
dimensions.The resultingneedfor modelswith an extremelylarge numberof parameters
raisesthe problem of sparsedata: the numberof observedsamples(training patterns)is
smallerthan or similar to the numberof model parameterghat must be estimated.Even
simpleandwidely usedmethods suchaslinear discriminantanalysis(Fisher1936),should
beadjustedo reflectthelow ratio of trainingsamplego the numberof parameter¢Buckheit
and Donoho1995). Thus, it is clearthat neuralnetwork learningmethodsrequire special
carewhenappliedto problemsarisingin vision.

1.1. Generalapproachesto the facilitation of learning

A fundamentabssumptiorfrequentlymadein an attemptto alleviatethe problemof sparse
data,also known asthe curseof dimensionality(Bellman 1961),is the existenceof a low-

dimensionafepresentatiofLDR) of the problemspace.Yet, postulatingthatan LDR exists
doesnot providean efficient way to find it. To do so,onemay,for instancefurtherassume
that the dataare clustered.If datapointsbelongingto the sameclassare indeedclustered

§ E-mail: nin@cns.brown.eduOn leavefrom Schoolof MathematicalSciences Tel-Aviv University, Israel.
| E-mail: edelman@ai.mit.edu.

0954-898X/97/030259+2%39.50 (© 1997I10P PublishingLtd 259



260 N Intrator and S Edelman

in the high-dimensionabkpace,a useful LDR can be found by looking for projectionsthat
emphasizehe clusterstructure(Intrator 1993).

More generally innovativeuseof the training datais needed.For example methodgor
datareuse suchascross-validatior{(Stonel974)andbootstrap(Efron and Tibshirani1993),
canhelpin obtainingconfidenceantervals(Baxt andWhite 1995)andimprovedperformance
(Breiman1992,Breiman1994,LeBlancandTibshirani1994)of learningnetworks. Smooth
bootstrap(Efron and Tibshirani1993)canalsoincreasehe independencamongpredictors
for the purposeof ensemblaveraging Raviv andintrator 1996). Suchmethoddeadto are-
ductionin thevarianceportionof theerror,with little or no effect onthebiasof the predictor.

One can control the varianceportion of the error also by imposingglobal assumptions
about the nature of the predictor that is to be learned. These include smoothness
(Wahba1990, Poggio and Girosi 1990) as well as assumptionsaboutthe distribution of
the parameterse.g. favouring small weights via a weight decay processor favouring
particulardistributionssuchasmixturesof GaussiangNowlanandHinton 1992). A general
frameworkfor imposingsuchconstraintss presentedy Intrator (1993).

1.2. Specificassumptionsnd prior knowledge

Unlike data,classlabelsare not often reusedo facilitate learning(see,however,Grossman
andLapedeg1993)). In particular,few learningalgorithmscanaccommodatenultiple-class
labels,which are likely to containuseful information regardingthe structureof the data.
Furthermore humansmake natural use of the knowledgethat objects may have several
classassociationgsay, at different categorylevels). In contrast,in machinelearning, it is
not clear how one should proceedgiven multiple-classor hierarchicallabels,and whether
suchinformation can be used effectively or at all. We believe that through the use of
multiple-classassociationslearning can be constrainedbiased)towardsa bettersolution,
and that innovative use of multiple-classlabelsmay be a practicalway to introduceprior
knowledgeinto a high-capacitylearning machine. We presenta methodfor introducing
suchprior information during training, while avoiding the needto constructdifferentlow-
level representationfor differenttasksdefinedon the samedata. This approachnaturally
facilitatesgeneralizatioracrosstasks,alsoknown astransferof skill—a hallmarkof human
cognitive prowess(seesection1.1 of Intrator and Edelman(1996) for a review). It has
beenobservedn the pastthat training a classifieron multiple tasks(using the samedata)
may be an efficient way to introducedesirablebiasinto the solution (Caruanal993)andto
improve generalization(Caruanal995). We further argue that forcing the learningsystem
to use multiple-classlabel information, and letting it ignore dimensionsof datavariation
with respecto which invarianceis required,leadsto the extractionof anLDR that captures
the dimensionsrelevantto the task, andis orthogonalto the dimensionsalong which the
varianceis irrelevant(e.g.the orientationof anobjectin avisualrecognitiontask). Notethat
a complementanapproachs to learn,insteadof a variety of labelling schemedor a given
dataset,the transformationswvhich leaveits membersnvariant(Landoand Edelman1995)
or theinvariancesof theindividual dataitems(Simardetal 1992, ThrunandMitchell 1995).

1.3. Topology-peservingdimensionalityreduction

As we shallsee generatingan LDR throughthe useof multiple-clasdabelsgenerallyresults
in the preservationof the topology of a low-dimensionalspacecontainingthe examples
(section4). As topology-preservingnappingis the ultimate goal of a numberof methods
of dimensionalityreduction,it is appropriateto mentionherethe typical approachesaken
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by thesemethods.The oldestamongtheseis multidimensionalkcaling(MDS) (Youngand
Householdel938)which is discussedn the appendix.The main problemwith MDS, if it
is consideredasa methodfor massivedimensionalityreductionratherthanasatool for the
explorationof experimentaldatain appliedscienceqShepardl980, Siedleckietal 1988),
is its poor scalingwith dimensionality.

In the contextof learning,a numberof methodsfor topology-preservinglimensionality
reductionhave beenderived from the idea of a self-supervisedauto-associativenetwork
(ElmanandZipser1988,DeMersandCottrell 1993,LeenandKambhatlal994,Demartines
and Hérault 1996). Becausethesemethodsare unsupervisedthey extractrepresentations
that are not necessarilyorthogonalto the irrelevantdimensionsof the input space. An
interestingapproactthat combinessupervisedeatureextractionwith topologypreservation
was proposedby Koontz and Fukunaga(1972) and Webb (1995), whose dimensionality
reduction algorithms explicitly optimize a joint measureof class separationand (input-
space)distancepreservation. This approach,which resemblesMDS, suffers from the
samepoor scaling with the dimensionality. The performanceof a radial basisfunction
network as a topology-preservingdimensionalityreduction method has been studied by
Lowe and colleagues(Lowe 1993, Lowe and Tipping 1996) and comparedwith other
methodsincluding MDS and Kohonenand Sammonmapping.

1.4. Overviewof the paper

In the presentpaper,we use objectsbelongingto parametricallydefinedlow-dimensional
familiesto demonstrat¢hattraining with a combinedobjectiveof (1) discriminationamong
labelled categoriesknown to residewithin the samedomain and (2) explicit collapseof
dimensionsover which discriminationis to be generalized)eadsto a reliable recoveryof
the tagetlow-dimensionalmanifold. Our methodis effective evenwhenthe manifoldto be
extractedrom the datais curved(i.e. whenthe problemis nonlinear),andis embeddedn a
measuremerdpaceof nearlyathousandlimensions.Furthermoreit allowstheconstruction
of classifiersof considerablylower complexity for othertasksinvolving the sameobjects,
comparedo whatis possibleunderthe usualapproactof learninga separateepresentation
for eachtask. As a control, we show that neither principal componentanalysisof the
data,nor its nonlinearextensionimplementedrespectivelypy three-layerandby five-layer
‘bottleneck’autoencodenetworks)canextracta meaningfulLDR from our data. In addition
we showthatif classlabelsarenotusedto specifytheinvariancedimensiongi.e. directions
that are orthogonalto the taget LDR manifold), the extractionof the LDR alsofails.

The paperis structuredas follows. Section2 introducesthe fractal patternsand the
face images,and explainsthe mannerin which thesedatasetswere generatedo facilitate
subsequentvaluationof the LDR extraction method. Section3 explainsin detail the
variationson the basic LDR extractionmethodthat we devised. Section4 then presents
the resultsobtainedfrom a computationalevaluationof the different methods. Finally,
section6 summarizeghe resultsandrelatesthemto somerecentevidenceof the relevance
of dimensionalityreductionto biological vision.

2. Data sets

To testthe ability of a neuralnetwork to discoversimple structureembeddedn a high-
dimensionalmeasuremengpace we createdtwo datasets,in both of which the discovery
of the LDR requiresa highly nonlineartransformationon the measuremensgpace. In the
creationof eachdataset,we startedwith atwo-dimensionaparametriaepresentatiospace,
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in which we placed18 classef objectson a regular3 x 6 grid; an additionalparametric
dimension,orthogonalto the first two, modelledthe within-classvariation (seefigure 1).

The first data set, FRACTALS, was computer-generatedyhile the secondset, FACES, was
derivedfrom naturalvisual stimuli (3D laser-scannetiumanheads).

édimz

Figure 1. Left: the parametricrepresentatiofirom which the high-dimensionatatasetswere
created.dim 3 is the within-classdimensionof variation, usedin training the LDR extractors,
asexplainedin section3 (seealsofigure 6). Right: the dichotomy classificationtask, usedin

testingthe LDR.

2.1. Fractals

The patternsin the FRACTALS data set were generatedusing publicly available software
(Xfractint 2.03). We chosethe quaternionJulia set (entry quatjul in the Xfractint pattern
menu), which is parametrizedby six variablesand thereforecan be usedfor generating
complicatedpatternsthat dependon up to six parametersThe quatjul iterationformulais

q(0) = (xpixel, ypixel, zj, zx)
gin+1)=qn)*xqn) +c

where both ¢ and ¢ = (c1, ¢i, ¢j, k) are quaternions(for further details, see Pickover
(1990),chapterl0). The threedimensionsshownin figure 2 correspondo the variation of
parametersy, c;, andcy, respectively.

Note that the transformatiorfrom the 3D parameteispaceto the imagespace,mplied
by the aboveformula, is highly nonlinear. To quantify this characteristiof the dataset,
which bodessevereproblemsfor linear projection methodsfor dimensionalityreduction,
we have carried out a principal componentanalysis(PCA) of the data. We found that
projectionon the first 2, 5, and 13 eigenvectorsaccountedor 16.8%, 31.8%, and 58.6%
of the variance,respectively(seefigure 3 (top); the dimensionalitiesspecifiedabovewill
featurein the reportsof the performanceof the differentLDR extractionmethodsisted in
section4).

To whatextentcouldthe PCA-derived_DR beregardedasa goodreplicaof the original
2D parametricspacein which the data were embedded?We testedthe 13-dimensional
PCA-derivedprojectionof the datafor planarity usingmultidimensionalkcaling(MDS)—a
proceduredesignedo embeddatapointsinto a metric spaceof specifieddimensionality(in
this case,2D), while preservingas much as possiblethe distancesetweenthe points (see
the appendixfor detailsandreference®n MDS). We found thatthe residualstressresulting
from embeddingthe 13-dimensionaPCA subspacento 2D was 0.25 (the stressvanishes
for point configurationsthat canbe embeddednto the target spacewithout distortion,and
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Figure 2. Someof the imagesfrom the FRACTALS dataset (section2.1). The 18 imagesin

the upperpart of the figure correspondo the 18 classesof fractal objects;only one member
of eachclass,correspondingo one value along the third dimensionof variation, is shown (cf

figure 1). The sevenimagesin the lower partof the figure arethe sevenexemplardrom classa.

Prior to classificationthe images,originally of size 256 x 256, werereducedto 28 x 28 = 784
dimensionsby correlationwith a bankof filters (section2.3).

approachesunity for poor embeddings). Furthermore,the 2D configurationof the data
points derived by MDS from the inter-point distancesin the 13 PCA dimensions(when
thesewereforcedinto a 2D spaceporeno resemblancéo the 3 x 6 parametriagrid pattern
built into the stimuli. Thus, we concludethat the LDR extractionproblemin the present
caseis indeedhighly nonlinear.

2.2. Faces

We chosehumanfacesas the basisfor our seconddataset, mainly to facilitate intuitive

understandingf the computationalexperimentsand their expectedresults. Of all natural
objects, facesare the categorywith which humanobserversare the most proficient; we

surmisedthat the orthogonalmanipulationsnvolved in the generatiorof the two between-
classesaandonewithin-classdimensionf imagevariationswould be mosteasilyperceived
if the imageswerethoseof faces. Sinceface imagespossesso inherentlow-dimensional
parameterizatiofunlike fractal patternggeneratedy a known algorithm)we hadto impose
sucha parametrizatioron the data. We choseto do it by startingwith a set of nine 3D

laserscansof humanheadg(seefigure 4), andby embeddinghe 3 x 6 grid in the 2D space
spanneddy the two leading‘eigenheadsbbtainedfrom the databy PCA;.

1 A similar approachto the generationof parametricallycontrolled headstimuli hasrecentlybeenproposedby
Atick etal (1996).



264 N Intrator and S Edelman

100 T T ——

i / |
80 y : ‘ 1
Va
70+ 1
,/

g o/ :

E “ /

x 50 “;"“ i
40/ |
30/ |
20f/ .
1 0 ! L L L L L L

0 20 40 60 80 100 120 140
eigenvalue #
100 // ——
/
90} | , ‘ ,
|
|
|
80r| : 1
|

o |

s |

©

s 70 7‘ : 4

>

*
60| 1
50 J‘ .
40 L L L L L L

0 20 40 60 80 100 120 140
eigenvalue #

Figure 3. Cumulativepercentagef varianceplottedvs. the numberof participatingeigenvector
projections,as obtainedby principal componentanalysis(PCA) on the FrRacTaLs dataset (top)
andof the Faces dataset (bottom).

Eachof the 18 headsderivedby PCA from the original scannecheaddatawas piped
through a graphicsprogram, which renderedthe head from sevenviewpoints, obtained
by steppingthe (simulated)camerain 3° rotation stepsaroundthe midsagittalaxis. The
renderingprogramassumed semi-glossyreflectancemodel for the headsurface;because
of that,andbecausef thetrigonometricfunctionsinvolvedin theviewpointtransformation,
we expecteda nonlinearrelationshipbetweerthe planar2D configurationformedby the 18
headsin the parametespaceandthe spacespannedy the renderedmagesof theseheads.
As with the FRACTALS dataset, we quantifiedthe degreeof nonlinearityby subjectingthe
image datato PCA and to MDS analysis. For the FACES data set, the nonlinearity was
somewhatmoremoderatghanfor FRACTALS, but still considerableprojectionontothefirst
two andthefirst 13 eigenfacesccountedor 73.1% and99.2% of thevariance respectively;
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Figure 4. The nine 3D laserscansof humanheadsusedto generatehe faceimagesshownin
figure5. Threearedistributedwith Silicon Graphicsinc. systemsandthe othersix areavailable
via anonymousdtp, courtesyof Cyberwarelnc., aspart of their demonstratiorsoftware.

thesubspacspannedy thefirst 13 eigenfacesvasstill significantlynon-planarasindicated
by the residualstressof MDS, which wasequalto 0.16.

2.3. Preprocessing

The imagesgeneratedy the two methodsdescribedabovewere importedinto Matlab™,

and were preprocessegbrior to LDR extraction. The FRACTALS data were subjectedto

histogramequalizationthenconvolvedwith abankof 28x 28 = 784receptivefields(Matlab
Image Processingoolbox; Laplacianof Gaussiankernelsize 9, o = 0.6). Imagesin the

FACES dataset,originally of size400x 400, werereducedo 49x 16 dimensionsy cropping
the backgroundandby correlationwith a bankof filters (Matlab ImageProcessingoolbox;

Laplacianof Gaussiankernelsize11, ¢ = 0.9). In both casesthe preprocessingeduced
the dimensionalityof the datafrom 65536to 784, and servedas a crudeapproximationof

the transformationghat a stimulusundegoeson its way to the primary cortical visual area
in the mammalianbrain.
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Figure 5. Someof the imagesfrom the Faces dataset (seesection2.2). Top: the 18 heads
obtainedby placinga 3 x 6 grid in the spaceof the two leadingprincipal componentof the
original nine heads. Bottom: the sevenviews of the rightmostheadin the top row above;
the views differ by 3° stepsof rotationin depth,summingup to a total differenceof 18°. It

shouldbe notedthat orientationdifferencesf up to 20° go unnoticedby humanviewers(Busey
etal 1990),while presentingnon-trivial problemsfor neuralnetworks,which mustbe trained
explicitly to compensatéor or to toleratethe misorientation.Prior to classificationthe images,
originally of size 400 x 400, werereducedto 784 dimensionsby croppingthe backgroundand
by correlationwith a 49 x 16 bankof Gaussian-profildilters (section2.3).

3. Methods

All our computationakxperimentgonsistedf two phasestrainingthe LDR extractor,and
evaluatingits performanceseefigure 6). We now describethesetwo proceduresn detail
(theresultsof the experimentsare reportedin section4).

3.1. Derivationof the LDR

As we arguedin theintroduction,afaithful low-dimensionatepresentationf the dataspace
shouldserveasa goodbasisfor efficient classificatiorof the data;theaim of theexperiments
we describeherewasto determinewhethera classifier facedsolelywith thetaskof learning
to label a selectionof datapoints,is likely to do so by deriving an LDR that would help
it in the classificationprocess.Note that the extractionof an LDR was madepossible,at
leastin principle, by the designof the datasets,into which we built a low-dimensional
structure. At the sametime, the embeddingof this structurein a high-dimensionaimage
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Figure 6. The low-dimensionalrepresentatioffLDR) extractionscheme(seesection3). The
LDR extractionnetwork appearson the left, underthe label Train. Following preprocessing
(seesection2.3), a learningmodule— a multi-layer (here,3-layer) perceptron(MLP), a 5-layer
‘bottleneck’ MLP or a radial basisfunction interpolator(RBF) — is trainedto producea unary
encodingof the classlabelsassociatedvith the input image (i.e. an 18-dimensionalectorin
which the value of only one dimensionis nonzerofor any given input). The testingprocedure
(illustratedon the right, underthe label Test) is describedn detail in the text.

spacewhich, moreoverwasnonlinearlyrelatedto the original parametriaepresentationf
the data,madethe extractionof LDR a highly non-trivial task.

3.1.1. One hiddenlayer (1-HL) MLP classifier. Researcherfiave exploredin the past
the ability of multilayer perceptronstrained as autoencodersto form low-dimensional
representation®of the data in the hidden layer (DeMers and Cottrell 1993). In the
autoencodeapproachthe dataareforcedto passthrougha low-dimensionatbottleneck’'—
the hiddenlayer of an MLP. The network is taughtto reconstructthe input patternsfrom
the LDR formed at the hiddenlayer. A major disadvantagef this approachis that it is
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inherently oblivious to any regularitiesthat may be presentin the datg. For example,
face imagesdependnot only on the identity of the person,but also (sometimesin an
overwhelmingfashion)on the viewing conditions;a resourcefulLDR extractorattempting
to recovera low-dimensional‘face space’from a batch of face imagesshouldtake this
into accountand discountthe ‘irrelevant’ dimensions(in this example,variationsdue to
viewpoint andillumination), while preservingthe relevantones.

Oneway to biasthe LDR extractorto do thatis by trainingit asa classifier,ratherthan
asan autoencoderand,in particular,to introducedimensiongo which the LDR shouldbe
orthogonal. Specifically, we proposeto look for the LDR in the hiddenlayer of an MLP
trainedto classify the input imagesinto a relatively large numberof classegstriving for
adequateoverageof the postulatedow-dimensionapatternspace)while ignoring within-
classvariationdueto extraneougactors. In the presentase the datasetswere brokeninto
18 distinct classesplacedon a grid in two parametricdimensions;the exemplarswithin
eachclassdiffered along a third dimension,which the MLP hadto learnto ignore (in the
FACES dataset, this wasthe face orientationdimension).

3.1.2. Threehiddenlayer (3-HL) bottleneckVLP classifier. Becausdheregularthree-layer
(1-HL) MLP, if trainedas an autoencoderis known to carry out an approximatePCA of

the data (Cottrell et al 1987, Baldi and Hornik 1989, Oja 1989), we could not expectit

to performtoo well on our nonlineardatasets. A naturalmodificationof the 1-HL MLP

architecture which may be bettersuitedto nonlinearLDR extraction,is the three hidden
layer (3-HL) MLP (LeenandKambhatlal994). We have,therefore,chosento explorethis

approachhut, following the considerationstatedabove,the 3-HL MLP wasto be trained
asa classifier,andnot asan autoencoder.

The resultsobtainedfrom the 3-HL experimentdurther indicatethat it is the specific
training task (which includeda specificgeneralizationsubtask)that led to a useful LDR,
while a similar and even more powerful architecturewithout the generalizationtask was
unableto recovera usefulLDR.

3.1.3.RBFclassifiers. Thethird LDR extractionmethodthat we havechosento examine
is projectioninto a spacespannedby the response®f a numberof ‘prototype detectors’
(Edelman1995b,Edelmanetal 1996). Eachdetectorwhich canberealizedasaradialbasis

function (RBF) classifier s trainedto outputa constantaluefor a setof instance®f agiven

class(e.g.imagesof a given face takenfrom a seriesof viewpoints). If the RBF module

successfullygeneralizego other instancesof the sameclassby maintaininga relatively

unperturbedresponsdevel for thoseinputs, and if its responsedrops off monotonically
with increasingdistancebetweenthe input andthe optimal stimulus(the prototypefor that

module),a collectionof modulestunedto differentclassegormsadistributedrepresentation
of the input that is likely to capturethe low-dimensionalstructure of the input space
(Edelmanand Duvdevani-Barl997h).

For the presentpurpose, we trained a single RBF network to output a unary
representationf the classmembershipaswe did with the MLP classifiersdescribedabove
(this is equivalent,of course,to training 18 separateRBFs, sharingthe same‘hidden’ or
basisfunction layer). Training was confinedto the computationof the optimal hiddento
output weights (the basisfunctionsbeing centredon a subsetof the input examples)and
could be carriedout, therefore,by simple pseudoinvers€Poggioand Girosi 1990). As a

1 Autoencodertraining is also especiallycostly, becauseof the large size of the required network in image
processingapplications.
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result,this LDR extractionmethodwas muchfasterthanthe two methodsinvolving MLPs
(which were trained by back-propagation).As we shall see, this rapid LDR extraction
producedrepresentationaearly as good asthoseobtainedby MLP.

3.2. Evaluationof the LDR

In the secondtraining phase(as seenin figure 6) we usedonly LDRs which had been
successfult the first stagein the multiple-label classificationtask involving the training
set. Specifically,after training for a fixed numberof epochsif classificationperformance
(on the training dataset), was above80% or 90% (dependingon the difficulty of the task),
the LDR was approvedfor useat the secondstage,involving the two-classdichotomy. If
the performancedn a given trial was satisfactoryaccordingto this criterion, the LDR was
evaluatedusingthreedifferentmethodsasdescribedelow. Note thatthe dataat this point
consistedof 54 vectors(18 classedimes3 exemplars)pf dimensionalitythat dependedn
the LDR extractionmethod,andvariedbetweer? (for the 3-HL bottleneckMLP classifier)
and 13 (for the RBF classifier).

3.2.1. RBF performancein the dichotomytask. The first methodwas designedto assess
the utility of the LDR for supportinga representativelassificationtask not directly related

to the one-out-of-18classificationusedto train the LDR extractor. For that purpose,the

recoveredLDR was usedto train an RBF classifieron a nonlineartwo-class(dichotomy)

problem (seefigure 1, right). The generalizationperformanceof this classifierwas then

comparedvith thatof anidentical classifiertrainedon the raw 784-dimensiondfilter-space
representatiof the imageset,on the samedichotomyproblem.

3.2.2.MDS. The secondmethodwasdesignedo allow visualizationof the configuration
formed by the 18 classesn the LDR space.Becausdn generalthis spacehad more than
two dimensions(exceptin the caseof the 3-HL bottleneckMLP), the points had to be

embeddedn two dimensionsfor easy plotting and visualization. This embeddingwas
carried out by multidimensionalscaling (MDS), which accepteda 54 x 54 table of mean
inter-point distancesand producedan embeddingof the 54 points (each corresponding
to a single test instance)into two dimensions. The mean-distancdable was computed
by element-wiseaveragingof a numberof tablesarising from repeatedtrials; the LDR

extractionexperimentwas run repeatediyto reducethe dependencef the resultson the

randomizednitial conditions,to which MLP training is known to be sensitive.

3.2.3. 3-HL bottleneckMLP. As mentioned above, the LDR derived by the 3-HL
bottleneckMLP with two units in the middle hidden layer is two-dimensional,and thus
canbe visualizeddirectly, without the mediationof MDS (cf. figure 8). Note thatin this
casethe resultsof repeateduns cannotbe simply averagedunlessthey arefirst converted
into the distance-tabldormat, which would necessitatessubsequenapplicationof MDS).
To combinethe resultsof a numberof runswe usedProcrustegransformationgBorg and
Lingoes1987)to normalize(scale,rotate and translate)all the LDR configurationsto the
configurationobtainedin the first runf. As a direct control of the outcomeof MDS-based
visualizationwe alsoranthe 3-HL bottleneckMLP onthe LDRs obtainedoy othermethods,

1 Procrustesor similarity, transformationsby definition, leavethe shapeof a setof pointsunchanged—aroperty
thatis usefulfor comparinga numberof configurationghathavesimilar shapesbut may differ in size,orientation,
andlocationrelativeto a coordinatesystem.
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as a kind of post-processingln the next sessionthe LDR configurationsderived by the
differentmethodsare plotted alongsideeachother, whereappropriate.

4. Results

We now proceedo describethe resultsof the computationakbxperimentsn dimensionality
reductionthatwe performedontheFRACTALS andthe FACES datasets. Thesameexperiments
were carriedout in both casesthe reportedresultsinclude:

() evaluationof the threemethodsof LDR extractionlisted in section3.1;

(i) acontrolcomparisorbetweertheLDR obtainedwith 18-clasdrainingwith thatobtained
with two-classtraining;

(iii) A plot of the 2D configurationderivedfrom the raw 784-dimensionatiataby MDS.

We alsoperformedsomeadditionalexperimentsvith the FRACTALS dataset,which explored
the effect of imposingcategoricaktructureon the LDR andarereportedin the nextsection.
Information regardingother experimentswith the FRACTALS data (hamely,a study of the
effect of the numberof baseson the quality of the LDR extractedby an RBF network,anda
comparisorof LDRs derivedfrom severalversionsof FRACTALS dataof varying difficulty)

canbe foundin Intrator and Edelman(1996).

4.1. TheFRACTALS dataset

The LDR configurationobtainedon the FRACTALS databy the 1-HL MLP methodis shown
in figure 7 (left). The first striking featureof this configurationis its mandala-likegeneral
structure:the MLP networkdid agoodjob of spreadinghe 18 classessfar apartaspossible
from eachother, while preservingthe grouping of the triplets of points correspondingo
differentexemplarsof the sameclass. The secondnotablefeatureemegesfrom a scrutiny
of the relative locationsof the classesbelongingto the samesix-classrow (seefigure 1,
left). Eachof thethreerowsis markedby a differentsymbol (o, +, andx); the six clusters
in arow arelabelledconsecutively(1-6, A—F, a—f). Notethateachrow curvesuponitself;
e.g.clusters?, 3 and4 areprogressivelyfartherawayfrom clusterl, while clusterss and6
are progressivelycloserto cluster1l. An intuitive explanationof this patternmay lie in
the non-monotonigcyclical) dependencef the appearancef fractal imagesproducedby
the quatjul procedureunderprogressivelylarger parametricchangeon the parameter-space
distanceto somereferenceémage.

Figure7 (right) showsthe configurationderivedby a1-HL MLP trainedon adichotomy.
Eventhoughthe resultingLDR is aboutas goodfor supportingthis dichotomyasthe one
obtainedfollowing 18-classtraining, it is muchworseasfar asthe faithful representation
of the original parametespaceis concernedithe 18-clusterstructureis lostin this LDR.

The performanceof the 3-HL bottleneck MLP in LDR recovery is illustrated in
figure 9. Note that in this casethe LDR can be read off the middle hidden layer of
the MLP (which containedtwo hiddenunits) and plotted directly, without post-processing
by multidimensionalscaling.

Therecoveryof LDR by an RBF classifier(the third methodwe explored)is illustrated
in figure 10. Note thatthe mandala-likestructurein this plot prevailsoverthe preservation
of thewithin-row orderof clusters(cf figure 7). Thus,the representationderivedby MLP-
basedmethodsare more faithful thanthoseobtainedby RBFsto the true low-dimensional
parametricvariation built into the data.
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Figure 7. FrRACTALS data, LDR by 1-HL MLP with five hidden units (section3.1.1), MDS
visualization(section3.2.2). Left: MLP trainedon 18 classeshereandin the subsequenplots,
the threedifferent symbols(o, + and ) correspondo points belongingto the different rows
of figure 1. Note the good separatiorof the 54 pointsinto 18 classesthe threepointsin each
class(correspondingo the threetestimagesper class)are usually clusteredtogether. Right:
MLP trained on a dichotomy; two ratherthan 18 clustersare apparent. The test dichotomy
classificationerror (section3.2.1)wastypically about0.05 in both casescomparedo about0.3
on the raw data.
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Figure 8. FRACTALS data,LDR by 1-HL MLP with five hiddenunits. Left: MDS visualization.
Right: 3-HL bottleneck MLP visualization. The two visualization methodsyield similar
configurations, although they rely on entirely different embeddingalgorithms. This adds
credibility to the use of distance(or distancerank) preservingmethodsfor embeddingdata
in pointsin two dimensionsfor the purposeof visualization(cf Sammon(1969) and Siedlecki
etal (1988)).

We next illustrate the ability of the MLP-basedLDR extractionmethodto assimilate
hierarchicalcategoryknowledgein a naturalmanner.In the first experimentthat examined
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Figure 9. FRAacTALS data,LDR by 3-HL bottleneckMLP (section3.1.2),Procrustevisualization
(section3.2.3). Left: resultsfor 3-HL bottleneckMLP with two hiddenunits, trainedwith class
labelson the filter data. The testdichotomyerror rate was 0.03, comparedo 0.41 on the raw
data. Right: resultsfor 3-HL bottleneckMLP, trainedas an autoencodepn the LDR derived
from the middle HL of the previous3-HL MLP.
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Figure 10. FRACTALS data LDR by RBF (section3.1.3), MDS visualization. Left: resultsfor
a 72-centreRBF; testdichotomyerror 0.0, comparedto 0.24 on the raw data; Right: control
resultsobtainedby a 72-centreRBF trained on a dichotomy; test dichotomy errors as above.
A parametricstudy of the performanceof this methodon the numberof centresof the RBF
networkcanbe foundin Intrator and Edelman(1996).

this issue,three higher-levelclasslabelswere addedto the setof 18 labelsnormally used
in the training stage.For eachdatapoint, the higher-levellabel indicatedthe row to which

it belonged(seefigure 1). In the resulting configuration,the 18 clusterswere separated,
on a coarserlevel, into three groups,correspondingo the three higher-levelclasslabels
(seefigure 11). In the secondexperiment,the LDR extractor was taught three labels
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Figure 11. FrRAcTALs data,LDR by 1-HL MLP, MDS visualization. This figure illustratesthe
incorporationof prior hierarchicalcategoryknowledgeinto the LDR extractionprocess.Top left:

LDR derivedby a 1-HL MLP with 5 hiddenunits, trainedto producea unary encodingof the
18-waylabel set,to which a coarsersetof 3-way classlabels,correspondindo the row number
in figure 1, hasbeenappendedalsoin a unaryformat). The row variablesweregiven a weight
of w. = 0.1 relative to the identity variables. The test dichotomy error rate on the resulting
LDR was 0.056. Top right: resultsfor an MLP trainedto producea unary encodingof the 3

row andthe 6 columnnumbersof the stimulus. The testdichotomyerror rate on the resulting
LDR was 0.056. The relative weights of the row and the column variableswere w, = 1.0,

w, = 0.75. Bottom: same3 x 6 classstructureasbefore,but the relativeweightsof the row and
the columnvariableswere w, = 0.05, w, = 1.0. The testdichotomyerror rate on the resulting
LDR was0.20. The testdichotomyerror rate on the raw datain all threecaseswvas0.28.

correspondingo the rows and six labels correspondingo the columnsof the parameter-
spaceconfiguration. The resulting configurationdependedo a significantdegreeon the
relativeweightsgivento the row andcolumnlabels. Undernearlyequalweights,the points
were separatednto three clustersby the row label (seefigure 11, top right); when the
column weight predominatedthe separationwas into six clusters(i.e. by column), with
someadditionalstructurewithin eachcluster(seefigure 11, bottom).

A naturalextrapolationof this strategywould be to teachthe network many possible

dichotomies,in the hopethat the structureof the underlyingLDR can be recoveredfrom
the multiple two-way classificationgPrice et al 1995). The advantageof operatingat the
level of 18 classes(or of threeclasseswith six subclassegach)is in the much shorter
training procedure. On the other hand, training on multiple dichotomiesmay have the
advantageof forcing the LDR extractorto considermultiple, hopefully disjoint, setsof
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Figure 12. Left: FRACTALS data;the patternrecoveredoy MDS from the raw 784-dimensional
dataset. No separatiorof the 18 classess apparentmostof the pointsare concentratedn the
middle of the plot (cf figure 7, left). Right: Faces data;the patternrecoveredoy MDS from
the raw 784-dimensionatiataset. Although the generallayout of the 18 classegelativeto one
anotheris preservedthe pointsbelongingto differentclassesarenot separatedcf figure 4, left).
Indeed,MDS by itself had no reasonto separatehe classesunlike the MLP, which hasbeen
explicitly trainedto do so (but not necessarilyto preservethe 2D metric layout of the classes
relativeto eachother,which it did, just like MDS!).

featuresrelevantto the collection of tasks,andnot letting it zeroin on distinctive features
specificfor eachone-versus-altliscrimination. We leavefor future researclthe questfor
an optimal compromisebetweentheseconsiderations.

4.2. TheFACES data set

LDR extractionfrom the FACES datasetwas easierthan from the FRACTALS, as could be
expectedfrom the comparisonof the degreeof nonlinearity of the two sets, described
in section 2. This expectationwas supportedby another comparison—betweerthe
configurationsderivedby MDS from the raw 784-dimensionakFRACTALS and FACES data
(seefigure 12)—andwas confirmedby the resultsof the experimentsnvolving the FACES
dataset, which we describenext.

Good results were obtained on the FACES data using all three methodsfor LDR
extraction: 1-HL MLP, 3-HL bottleneckMLP and RBF. The performanceof the MLP-
basedmethodsin recoveringthe topology of the row/column parametricstructureof the
18 classesseemsto be especiallyamazing(comparee.g. figure 13 (left) with the labels
in figure 5 (top); seealso figures 14-16). Importantly, this recoverywas possibleeven
whenthe networkwastrainedon half of the 18 classesthentestedon the full dataset(see
figure 16). The implicationsof this andthe otherresultsare discussedn section®6.

5. Control experiments

The difficulty of LDR extractionin the presentcaseis demonstratedy a comparison
to the resultsobtainedby more conventionalneural network methodsfor dimensionality
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Figure 13. races data,MDS visualization(section3.2.2). Left: LDR by 1-HL MLP with 13
hiddenunits (section3.1.1),trainedfor 20000 epochson the 18-classtask. The testdichotomy
error ratewas 0.02, comparedo 0.07 on the raw data. Right: control resultsfor a 1-HL MLP
with 13 hiddenunits, trainedfor 20000 epochson a dichotomytask. The testdichotomyerror
ratewas 0.04, comparedo 0.07 on the raw data.
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Figure 14. races data,LDR by 3-HL bottleneckMLP, MDS visualization. Left: resultsfor
3-HL bottleneckMLP with two hiddenunits, trainedon the 18-classtask. The testdichotomy
errorratewas0.1, comparedo 0.29 on the raw data. Right: resultsfor 3-HL bottleneckMLP,
trainedasan autoencodeon the LDR derivedfrom the middle HL of the previous3-HL MLP.

reduction. The best-knownsuch methodsemploy self-superviseottleneckautoencoder
training. While theimpositionof alow-dimensionabottleneckis commonto thesemethods
andto our approachthereis a crucial difference: an autoencodeis trainedto reproduce
the datawhile our networksare trainedto assignthe dataa certaincategorystructure. To
characterizehe importanceof this featureof our approactto the extractionof usefulLDRS,
we conductedseveralexperiments.
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Figure 15. races data,MDS visualization. Left: an 18-centreRBF (section3.1.3),trainedon
the 18-classtask. The testdichotomyerror rate was 0.04, comparedto 0.07 on the raw data.
Recallthat eachpoint correspond$o onetestview; the threeviews belongingto eachof the 18
testfacesare usually groupedtogether. The labelsshouldbe comparedwith thosein figure 4.
Right: an 18-centreRBF, trained on the dichotomy. The test dichotomy error rate was 0.11,
worsethanthe error rate of 0.07 on the raw data.
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First, we askedwhethera self-supervisedhree-layemMLP autoencoderywhich aimsat
the bestreconstructiorof the inputs,canrevealthe correctlow-dimensionaktructurein our
data. Althoughin the linear casesuchnetworksdo quite well, essentiallyby extractingthe
principal componentof the data(Elmanand Zipser 1988), the performanceon the FACES
datawas poor. Specifically,the autoencodenetwork consistentlyconveged to the mean
of the data,presumablydueto the nonlinearityintroducedby the imaging step.

Secondwe experimentedvith a five-layernonlinearbottleneckautoencodefLeenand
Kambhatla1994). This training schemeikewise, performedpoorly on our dataset. The
outcomeof this experimentshowedthat self-superviseddimensionalityreduction cannot



Learninglow-dimensionatepresentations 277

recovera good LDR in the presentcase,illustrating the importanceof guidanceprovided
by the classlabels.

A bottleneckautoencodeemployedas a dimensionalityreducingdeviceis requiredto
map a high-dimensionakpace(in our case,a spaceof 784 dimensions)}o itself, whereas
the outputspacein our training schemewas 18-dimensional One may ask herewhethera
certainreductionin the dimensionalityof the outputspace combinedwith animpositionof
certaincategorystructureon that space would enablethe networkto learnthe properLDR.
To addresghis questionwe testeda modifiedversionof our method,in which the classifier
was not trainedto ignorethe direction orthogonalto the target manifold (cf figure 17; this
was done by training on the 72 face-viewlabels, insteadof the 18 face identity labels).
Thus, the network’s outputspacewas 72-dimensionalwith eachdimensioncorresponding
to a conjunctionof face identity and face orientationlabels. This manipulation,however,
did not help: the LDR extractedby the modified autoencodewas poor, underscoringhe
importanceof guidanceprovidedby anexplicit specificatiorof the dimensiornto becollapsed
(in this case the dimensionof the viewpoint-relatedvariation).

di mension to be I
general ized over ® .o ’
o

di nension to be used
for the discrimnation

di nensions to be ignored

Figure 17. A schematidllustration of a problemspacewhoseefficient representatiomequires
nonlineardimensionalityreduction. The instancef the two classe<ling to a low-dimensional
manifold, embeddedn a measuremenspace,whose dimensionalitymay run in the tens of

thousands Seesection6 for a discussiorof this example.

6. Conclusions

We have shownthat combiningmultiple constraintsvia the use of multiple-classlabelsis
an effective way to imposebias on a learning systemwhosegoal is to find a good LDR.
In particular,the useof multiple-clasdabelssteerghe systemto becomeinvariant to those
directionsof variationin the input spacethat play no role in the classificationtasks. This
is donemerely by using classlabelsthat are independenbdf thesedirections:in the Fractal
images,the imagelabelsare invariant to the third dimensionof variation (figure 1, left);
similarly, the identity labels of the FACES are independenif their orientation (figure 5,
bottom panel). We have also shownthat prior knowledgeof the ‘proper’ dimensionality
of the tamget LDR can be imposedby training a multi-layer bottlenecknetwork (figure 6,
bottomright). Both thesefeaturesof our approacheadto improvedgeneralizatiorin the
learnedtasks.

A useful intuition concerningthe effectivenessof our method can be developedby
consideringan analogywith discriminantanalysis,a well-known techniquefor projecting
dataonto dimensionamportantfor a particularclassificationtask (seefigure 17). Assume
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that somedimensionsof a set of measurementperformedon the world are crucial for
distinguishing betweenthe categories,while other dimensionsmust be downplayed,or
collapsed;n the contextof objectrecognition,the former may be the dimensionsof object
identity, and the latter thoseof object orientation. Whereasstandarddiscriminantanalysis
methodsin multidimensionalspacesare plaguedby the presenceof irrelevantdimensions,
in this paperwe haveshownthat training with a combinedobjectiveof (1) discrimination
amonglabelledcategorieknown to residewithin the manifold, and (2) explicit collapseof
dimension®verwhich discriminationis to begeneralizedleadsto animprovedperformance
in otherdiscriminationtasksinvolving the sameobjects,andto a reliablerecoveryof a low-
dimensionalmanifold containingthe objects,evenwhenit is curved(i.e. whenthe problem
is nonlinear)and is embeddedn a measuremenspaceof nearly a thousanddimensions.
This approachcan be comparedwith a recentsuggestionto convert poor featuresinto
supervisors(Caruanaand de Sa 1997); in contrastto that idea, we show that thereis a
limit to the utility of classlabels, and that invarianceconstraintswe imposeare equally
important.

An importantfeatureof the LDR computedby our methodis the preservatiorof the
topology of the parameterspaceunderlying the data. The clusterscorrespondingo the
labels we imposedduring training were both separatedrom each other (as dictated by
the training procedure),and arrangedin the resulting low-dimensionalspacein a pattern
that reflectedtheir arrangemenin the parameteispaceusedto createthe data. This latter
propertyof the representationwvas obtainedevenwhen the network had beentrainedonly
on half of the objectsover which topology preservatiorwas evaluated.

Topology preservationis useful becauseit allows the representationakystem to
categorizenovelinstancesf familiar objectclassesaswell asmakesenseof novelclasses
(EdelmarandDuvdevani-Barl997b). Specifically,if proximitiesin therepresentatiospace
reflectsimilaritiesamongobjects‘out there’in the world, the following two operationscan
be carried out safely: (1) a new instanceof a classcan be categorizedby finding, in the
representatiospacethe clusterto which the currentstimulusis the closest;(2) a newclass
can be definedby its representation-spaddistancego the familiar classegEdelmanand
Duvdevani-Barl997a}.

We remarkthat topology preservationappeargo be true of representatioformed by
humansubjectsn avariety of perceptuatasks. Studiesin experimentapsychologyindicate
that a low-dimensionalpatternbuilt into complex2D shapegby arrangingtheseshapesn
a conspicuougonfigurationin an underlying parameterspace)is recoveredby the visual
systemof subjectsrequiredto judge similarities betweenthe shapeqShepardand Cermak
1973,CorteseandDyre 1996). Recently similar findingshavebeenachievedn experiments
thatinvolved 3D objects,arrangedn a variety of planarconfigurationsn a parametespace
of severaldozendimensions(Edelman1995a,Cutzu and Edelman1996). The upshotof
thesefindings is that the humanvisual systemis capableof recoveringthe proper low-
dimensionalrepresentatiorof the stimuli from a million-dimensionalmeasuremengpace
(dictatedby the numberof axonsleadingfrom the retinato the brain), while preservingthe
topologyof the original space(andin manycaseghe exactrelative placemenbf the stimuli
in that space). The conditionson the LDR extractionprocessthat makessuchrecovery
possible,and the wider philosophicalimplications of this phenomenonare discussedn
(Edelman1997).

1 In the contextof figure 16, this operationcorrespondso the definition of a novel face (say,faceB, which was
notincludedin the training set)in termsof its similaritiesto familiar faces(e.g.definingB asthe stimulusthatis
halfway betweenA andC, aswell asbetween2 andb).
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Appendix: Multidimensional scaling (MDS)

MDS was originally developedin psychometrics,as a method for the recovery of the

coordinatesf a setof pointsfrom measurementsf the pairwise distancesdbetweenthose
points (Young and Householderl938). In a typical application,the experimentemwould

attemptto characterizea subject’'sperformanceby placing a point correspondingo each
stimulusperceivedby the subjectin a coordinatespacederivedfrom subjectivesimilarity

ratings of pairs of stimuli. The power of MDS as a tool for the study of internal

representationgof humansubjects)was revealedwhen Sheparddiscoveredin 1962 that

fixing the relative distancesof a set of points effectively determinestheir coordinates
(Shepardl966). This discoveryled to the developmenbf the non-metricMDS algorithm

(Kruskal1964),which employsgradientdescento seeka monotonictransformatiorbetween
measureddistancesand distancescomputedfrom the hypothesizedpoint configuration,
which would minimize stresqdefinedasthe discrepancypetweerthe ranksof the measured
andthe computedlistances)In the preseniwork, we useda modernimplementatiorof non-

metric MDS, availablein version6 of the SAS statisticalanalysissoftware (SAS 1989),

to allow the visualizationof high-dimensionaldatasets. The pointsin a given setwere

embeddednto a 2D metric spacereflectingas closely as possiblethe patternof inter-point

distancesthen plotted and subjectedo inspection.
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