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Abstract. Learning to recognizevisual objects from examplesrequiresthe ability to find
meaningful patterns in spacesof very high dimensionality. We present a method for
dimensionalityreductionwhich effectively biasesthe learning systemby combining multiple
constraintsvia theuseof classlabels.Theuseof extensiveclasslabelssteersthe resultinglow-
dimensionalrepresentationto becomeinvariantto thosedirectionsof variationin theinput space
that are irrelevantto classification;this is donemerely by making classlabels independentof
thesedirections.We alsoshowthat prior knowledgeof the properdimensionalityof the target
representationcan be imposedby training a multi-layer bottlenecknetwork. Computational
experimentsinvolving non-trivial categorizationof parameterizedfractal imagesandof human
facesindicatethatthelow-dimensionalrepresentationextractedby ourmethodleadsto improved
generalizationin the learnedtasksandis likely to preservethe topologyof the original space.

1. Introduction

Learningto recognizevisualobjectsin images—representedascollectionsof pixel values—
requirestheability to find meaningfulpatternsin spacesof tensor hundredsof thousandsof
dimensions.The resultingneedfor modelswith an extremelylarge numberof parameters
raisesthe problemof sparsedata: the numberof observedsamples(training patterns)is
smaller than or similar to the numberof model parametersthat must be estimated.Even
simpleandwidely usedmethods,suchaslineardiscriminantanalysis(Fisher1936),should
beadjustedto reflectthelow ratioof trainingsamplesto thenumberof parameters(Buckheit
and Donoho1995). Thus, it is clear that neuralnetwork learningmethodsrequirespecial
carewhenappliedto problemsarising in vision.

1.1. Generalapproachesto the facilitation of learning

A fundamentalassumptionfrequentlymadein anattemptto alleviatetheproblemof sparse
data,alsoknown asthe curseof dimensionality(Bellman1961), is the existenceof a low-
dimensionalrepresentation(LDR) of theproblemspace.Yet, postulatingthatanLDR exists
doesnot provideanefficient way to find it. To do so,onemay,for instance,furtherassume
that the dataareclustered.If datapointsbelongingto the sameclassare indeedclustered
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in the high-dimensionalspace,a usefulLDR canbe found by looking for projectionsthat
emphasizethe clusterstructure(Intrator 1993).

More generally,innovativeuseof thetrainingdatais needed.For example,methodsfor
datareuse,suchascross-validation(Stone1974)andbootstrap(Efron andTibshirani1993),
canhelpin obtainingconfidenceintervals(BaxtandWhite1995)andimprovedperformance
(Breiman1992,Breiman1994,LeBlancandTibshirani1994)of learningnetworks.Smooth
bootstrap(Efron andTibshirani1993)canalsoincreasethe independenceamongpredictors
for thepurposeof ensembleaveraging(Raviv andIntrator1996). Suchmethodsleadto a re-
ductionin thevarianceportionof theerror,with little or noeffecton thebiasof thepredictor.

Onecancontrol the varianceportion of the error alsoby imposingglobal assumptions
about the nature of the predictor that is to be learned. These include smoothness
(Wahba1990, Poggio and Girosi 1990) as well as assumptionsabout the distribution of
the parameters,e.g. favouring small weights via a weight decay processor favouring
particulardistributionssuchasmixturesof Gaussians(NowlanandHinton 1992). A general
frameworkfor imposingsuchconstraintsis presentedby Intrator (1993).

1.2. Specificassumptionsandprior knowledge

Unlike data,classlabelsarenot often reusedto facilitate learning(see,however,Grossman
andLapedes(1993)). In particular,few learningalgorithmscanaccommodatemultiple-class
labels,which are likely to containuseful information regardingthe structureof the data.
Furthermore,humansmake natural use of the knowledgethat objectsmay have several
classassociations(say,at differentcategorylevels). In contrast,in machinelearning,it is
not clearhow oneshouldproceedgiven multiple-classor hierarchicallabels,andwhether
such information can be usedeffectively or at all. We believe that through the use of
multiple-classassociations,learningcan be constrained(biased)towardsa bettersolution,
and that innovativeuseof multiple-classlabelsmay be a practicalway to introduceprior
knowledgeinto a high-capacitylearning machine. We presenta methodfor introducing
suchprior informationduring training, while avoiding the needto constructdifferent low-
level representationsfor different tasksdefinedon the samedata. This approachnaturally
facilitatesgeneralizationacrosstasks,alsoknownastransferof skill—a hallmarkof human
cognitive prowess(seesection1.1 of Intrator and Edelman(1996) for a review). It has
beenobservedin the pastthat training a classifieron multiple tasks(using the samedata)
may be an efficient way to introducedesirablebiasinto the solution(Caruana1993)andto
improvegeneralization(Caruana1995). We further argue that forcing the learningsystem
to usemultiple-classlabel information, and letting it ignore dimensionsof datavariation
with respectto which invarianceis required,leadsto theextractionof anLDR thatcaptures
the dimensionsrelevantto the task, and is orthogonalto the dimensionsalong which the
varianceis irrelevant(e.g.theorientationof anobjectin a visualrecognitiontask). Notethat
a complementaryapproachis to learn,insteadof a variety of labelling schemesfor a given
dataset,the transformationswhich leaveits membersinvariant(LandoandEdelman1995)
or the invariancesof theindividualdataitems(Simardetal 1992,ThrunandMitchell 1995).

1.3. Topology-preservingdimensionalityreduction

As we shallsee,generatinganLDR throughtheuseof multiple-classlabelsgenerallyresults
in the preservationof the topology of a low-dimensionalspacecontainingthe examples
(section4). As topology-preservingmappingis the ultimategoal of a numberof methods
of dimensionalityreduction,it is appropriateto mentionherethe typical approachestaken
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by thesemethods.The oldestamongtheseis multidimensionalscaling(MDS) (Youngand
Householder1938)which is discussedin the appendix.The main problemwith MDS, if it
is consideredasa methodfor massivedimensionalityreductionratherthanasa tool for the
explorationof experimentaldatain appliedsciences(Shepard1980,Siedleckiet al 1988),
is its poor scalingwith dimensionality.

In thecontextof learning,a numberof methodsfor topology-preservingdimensionality
reductionhave beenderived from the idea of a self-supervisedauto-associativenetwork
(ElmanandZipser1988,DeMersandCottrell 1993,LeenandKambhatla1994,Demartines
and Hérault 1996). Becausethesemethodsare unsupervised,they extract representations
that are not necessarilyorthogonalto the irrelevant dimensionsof the input space. An
interestingapproachthatcombinessupervisedfeatureextractionwith topologypreservation
was proposedby Koontz and Fukunaga(1972) and Webb (1995), whosedimensionality
reductionalgorithmsexplicitly optimize a joint measureof classseparationand (input-
space)distancepreservation. This approach,which resemblesMDS, suffers from the
samepoor scaling with the dimensionality. The performanceof a radial basis function
network as a topology-preservingdimensionalityreductionmethodhas beenstudiedby
Lowe and colleagues(Lowe 1993, Lowe and Tipping 1996) and comparedwith other
methodsincluding MDS andKohonenandSammonmapping.

1.4. Overviewof thepaper

In the presentpaper,we useobjectsbelongingto parametricallydefinedlow-dimensional
families to demonstratethat trainingwith a combinedobjectiveof (1) discriminationamong
labelled categoriesknown to residewithin the samedomain and (2) explicit collapseof
dimensionsover which discriminationis to be generalized,leadsto a reliable recoveryof
thetarget low-dimensionalmanifold. Our methodis effectiveevenwhenthemanifold to be
extractedfrom thedatais curved(i.e. whentheproblemis nonlinear),andis embeddedin a
measurementspaceof nearlya thousanddimensions.Furthermore,it allowstheconstruction
of classifiersof considerablylower complexity for other tasksinvolving the sameobjects,
comparedto what is possibleundertheusualapproachof learninga separaterepresentation
for each task. As a control, we show that neither principal componentanalysisof the
data,nor its nonlinearextension(implemented,respectively,by three-layerandby five-layer
‘bottleneck’autoencodernetworks)canextractameaningfulLDR from ourdata. In addition
we showthat if classlabelsarenot usedto specifytheinvariancedimensions(i.e. directions
that areorthogonalto the target LDR manifold), the extractionof the LDR alsofails.

The paperis structuredas follows. Section2 introducesthe fractal patternsand the
face images,andexplainsthe mannerin which thesedatasetsweregeneratedto facilitate
subsequentevaluationof the LDR extraction method. Section 3 explains in detail the
variationson the basicLDR extractionmethodthat we devised. Section4 then presents
the resultsobtainedfrom a computationalevaluationof the different methods. Finally,
section6 summarizesthe resultsandrelatesthemto somerecentevidenceof the relevance
of dimensionalityreductionto biological vision.

2. Data sets

To test the ability of a neuralnetwork to discoversimple structureembeddedin a high-
dimensionalmeasurementspace,we createdtwo datasets,in both of which the discovery
of the LDR requiresa highly nonlineartransformationon the measurementspace. In the
creationof eachdataset,we startedwith a two-dimensionalparametricrepresentationspace,
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in which we placed18 classesof objectson a regular3 × 6 grid; an additionalparametric
dimension,orthogonalto the first two, modelledthe within-classvariation (seefigure 1).
The first data set, FRACTALS, was computer-generated,while the secondset, FACES, was
derivedfrom naturalvisual stimuli (3D laser-scannedhumanheads).

dim 2

dim 1

dim 3

Figure 1. Left: the parametricrepresentationfrom which the high-dimensionaldatasetswere
created.dim 3 is the within-classdimensionof variation,usedin training the LDR extractors,
as explainedin section3 (seealso figure 6). Right: the dichotomyclassificationtask,usedin
testingthe LDR.

2.1. Fractals

The patternsin the FRACTALS data set were generatedusing publicly availablesoftware
(Xfractint 2.03). We chosethe quaternionJulia set (entry quatjul in the Xfractint pattern
menu), which is parametrizedby six variablesand thereforecan be usedfor generating
complicatedpatternsthat dependon up to six parameters.The quatjul iterationformula is

q(0) = (xpixel, ypixel, zj , zk)

q(n + 1) = q(n) ∗ q(n) + c

where both q and c = (c1, ci, cj , ck) are quaternions(for further details, see Pickover
(1990),chapter10). The threedimensionsshownin figure 2 correspondto the variationof
parametersc1, cj , andck, respectively.

Note that the transformationfrom the 3D parameterspaceto the imagespace,implied
by the aboveformula, is highly nonlinear. To quantify this characteristicof the dataset,
which bodessevereproblemsfor linear projectionmethodsfor dimensionalityreduction,
we have carried out a principal componentanalysis(PCA) of the data. We found that
projectionon the first 2, 5, and 13 eigenvectorsaccountedfor 16.8%, 31.8%, and 58.6%
of the variance,respectively(seefigure 3 (top); the dimensionalitiesspecifiedabovewill
featurein the reportsof the performanceof the differentLDR extractionmethods,listed in
section4).

To whatextentcouldthePCA-derivedLDR beregardedasa goodreplicaof theoriginal
2D parametricspacein which the data were embedded?We testedthe 13-dimensional
PCA-derivedprojectionof the datafor planarityusingmultidimensionalscaling(MDS)—a
proceduredesignedto embeddatapointsinto a metricspaceof specifieddimensionality(in
this case,2D), while preservingasmuchaspossiblethe distancesbetweenthe points (see
theappendixfor detailsandreferenceson MDS). We foundthat theresidualstressresulting
from embeddingthe 13-dimensionalPCA subspaceinto 2D was 0.25 (the stressvanishes
for point configurationsthat canbe embeddedinto the target spacewithout distortion,and
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Figure 2. Someof the imagesfrom the FRACTALS data set (section2.1). The 18 imagesin
the upperpart of the figure correspondto the 18 classesof fractal objects;only one member
of eachclass,correspondingto one value along the third dimensionof variation, is shown(cf
figure1). Thesevenimagesin the lower partof thefigurearethesevenexemplarsfrom classa.
Prior to classification,the images,originally of size256× 256,werereducedto 28× 28 = 784
dimensionsby correlationwith a bankof filters (section2.3).

approachesunity for poor embeddings). Furthermore,the 2D configurationof the data
points derived by MDS from the inter-point distancesin the 13 PCA dimensions(when
thesewereforcedinto a 2D space)boreno resemblanceto the3×6 parametricgrid pattern
built into the stimuli. Thus, we concludethat the LDR extractionproblemin the present
caseis indeedhighly nonlinear.

2.2. Faces

We chosehumanfacesas the basisfor our seconddataset, mainly to facilitate intuitive
understandingof the computationalexperimentsand their expectedresults. Of all natural
objects, facesare the categorywith which humanobserversare the most proficient; we
surmisedthat the orthogonalmanipulationsinvolved in the generationof the two between-
classesandonewithin-classdimensionsof imagevariationswould bemosteasilyperceived
if the imageswere thoseof faces.Sinceface imagespossessno inherentlow-dimensional
parameterization(unlike fractalpatternsgeneratedby a knownalgorithm)we hadto impose
sucha parametrizationon the data. We choseto do it by startingwith a set of nine 3D
laserscansof humanheads(seefigure4), andby embeddingthe3×6 grid in the2D space
spannedby the two leading‘eigenheads’obtainedfrom the databy PCA†.

† A similar approachto the generationof parametricallycontrolledheadstimuli hasrecentlybeenproposedby
Atick et al (1996).
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Figure 3. Cumulativepercentageof varianceplottedvs. thenumberof participatingeigenvector
projections,asobtainedby principal componentanalysis(PCA) on the FRACTALS dataset (top)
andof the FACES dataset (bottom).

Eachof the 18 headsderivedby PCA from the original scannedheaddatawas piped
through a graphicsprogram, which renderedthe head from sevenviewpoints, obtained
by steppingthe (simulated)camerain 3◦ rotation stepsaroundthe midsagittalaxis. The
renderingprogramassumeda semi-glossyreflectancemodel for the headsurface;because
of that,andbecauseof thetrigonometricfunctionsinvolvedin theviewpointtransformation,
we expecteda nonlinearrelationshipbetweentheplanar2D configurationformedby the18
headsin theparameterspaceandthespacespannedby the renderedimagesof theseheads.
As with the FRACTALS dataset,we quantifiedthe degreeof nonlinearityby subjectingthe
image data to PCA and to MDS analysis. For the FACES data set, the nonlinearity was
somewhatmoremoderatethanfor FRACTALS, but still considerable:projectionontothefirst
two andthefirst 13 eigenfacesaccountedfor 73.1% and99.2% of thevariance,respectively;
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Figure 4. The nine 3D laserscansof humanheadsusedto generatethe face imagesshownin
figure5. Threearedistributedwith Silicon GraphicsInc. systems,andtheothersix areavailable
via anonymousftp, courtesyof CyberwareInc., aspart of their demonstrationsoftware.

thesubspacespannedby thefirst 13eigenfaceswasstill significantlynon-planar,asindicated
by the residualstressof MDS, which wasequalto 0.16.

2.3. Preprocessing

The imagesgeneratedby the two methodsdescribedabovewere importedinto MatlabTM ,
and were preprocessedprior to LDR extraction. The FRACTALS data were subjectedto
histogramequalization,thenconvolvedwith abankof 28×28 = 784receptivefields(Matlab
ImageProcessingtoolbox; Laplacianof Gaussian,kernel size 9, σ = 0.6). Imagesin the
FACESdataset,originally of size400×400,werereducedto 49×16 dimensionsby cropping
thebackgroundandby correlationwith a bankof filters (Matlab ImageProcessingtoolbox;
Laplacianof Gaussian,kernelsize11, σ = 0.9). In both cases,the preprocessingreduced
the dimensionalityof the datafrom 65536to 784, andservedasa crudeapproximationof
the transformationsthat a stimulusundergoeson its way to the primary cortical visual area
in the mammalianbrain.
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Figure 5. Someof the imagesfrom the FACES dataset (seesection2.2). Top: the 18 heads
obtainedby placing a 3 × 6 grid in the spaceof the two leadingprincipal componentsof the
original nine heads. Bottom: the sevenviews of the rightmost headin the top row above;
the views differ by 3◦ stepsof rotation in depth,summingup to a total differenceof 18◦. It
shouldbenotedthatorientationdifferencesof up to 20◦ go unnoticedby humanviewers(Busey
et al 1990),while presentingnon-trivial problemsfor neuralnetworks,which must be trained
explicitly to compensatefor or to toleratethe misorientation.Prior to classification,the images,
originally of size400× 400, werereducedto 784 dimensionsby croppingthe backgroundand
by correlationwith a 49× 16 bankof Gaussian-profilefilters (section2.3).

3. Methods

All our computationalexperimentsconsistedof two phases:trainingtheLDR extractor,and
evaluatingits performance(seefigure 6). We now describethesetwo proceduresin detail
(the resultsof the experimentsarereportedin section4).

3.1. Derivationof theLDR

As we arguedin theintroduction,a faithful low-dimensionalrepresentationof thedataspace
shouldserveasagoodbasisfor efficientclassificationof thedata;theaimof theexperiments
we describeherewasto determinewhethera classifier,facedsolelywith thetaskof learning
to label a selectionof datapoints, is likely to do so by deriving an LDR that would help
it in the classificationprocess.Note that the extractionof an LDR was madepossible,at
least in principle, by the designof the datasets,into which we built a low-dimensional
structure. At the sametime, the embeddingof this structurein a high-dimensionalimage
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Figure 6. The low-dimensionalrepresentation(LDR) extractionscheme(seesection3). The
LDR extractionnetwork appearson the left, underthe label Train. Following preprocessing
(seesection2.3),a learningmodule— a multi-layer (here,3-layer)perceptron(MLP), a 5-layer
‘bottleneck’ MLP or a radial basisfunction interpolator(RBF) — is trainedto producea unary
encodingof the classlabelsassociatedwith the input image(i.e. an 18-dimensionalvector in
which the valueof only onedimensionis nonzerofor any given input). The testingprocedure
(illustratedon the right, underthe label Test) is describedin detail in the text.

space,which, moreover,wasnonlinearlyrelatedto theoriginal parametricrepresentationof
the data,madethe extractionof LDR a highly non-trivial task.

3.1.1. One hidden layer (1-HL) MLP classifier. Researchershave explored in the past
the ability of multilayer perceptrons,trained as autoencoders,to form low-dimensional
representationsof the data in the hidden layer (DeMers and Cottrell 1993). In the
autoencoderapproach,thedataareforcedto passthrougha low-dimensional‘bottleneck’—
the hiddenlayer of an MLP. The network is taughtto reconstructthe input patternsfrom
the LDR formed at the hiddenlayer. A major disadvantageof this approachis that it is
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inherently oblivious to any regularitiesthat may be presentin the data†. For example,
face imagesdependnot only on the identity of the person,but also (sometimesin an
overwhelmingfashion)on the viewing conditions;a resourcefulLDR extractorattempting
to recovera low-dimensional‘face space’from a batch of face imagesshould take this
into accountand discountthe ‘irrelevant’ dimensions(in this example,variationsdue to
viewpoint andillumination), while preservingthe relevantones.

Oneway to biastheLDR extractorto do that is by training it asa classifier,ratherthan
asan autoencoder,and,in particular,to introducedimensionsto which the LDR shouldbe
orthogonal. Specifically,we proposeto look for the LDR in the hiddenlayer of an MLP
trainedto classify the input imagesinto a relatively large numberof classes(striving for
adequatecoverageof thepostulatedlow-dimensionalpatternspace),while ignoringwithin-
classvariationdueto extraneousfactors. In thepresentcase,thedatasetswerebrokeninto
18 distinct classes,placedon a grid in two parametricdimensions;the exemplarswithin
eachclassdifferedalonga third dimension,which the MLP had to learn to ignore (in the
FACES dataset,this wasthe faceorientationdimension).

3.1.2.Threehiddenlayer(3-HL) bottleneckMLP classifier. Becausetheregularthree-layer
(1-HL) MLP, if trainedas an autoencoder,is known to carry out an approximatePCA of
the data (Cottrell et al 1987, Baldi and Hornik 1989, Oja 1989), we could not expectit
to perform too well on our nonlineardatasets. A naturalmodificationof the 1-HL MLP
architecture,which may be bettersuitedto nonlinearLDR extraction,is the threehidden
layer (3-HL) MLP (LeenandKambhatla1994). We have,therefore,chosento explorethis
approach,but, following the considerationsstatedabove,the 3-HL MLP wasto be trained
asa classifier,andnot asan autoencoder.

The resultsobtainedfrom the 3-HL experimentsfurther indicatethat it is the specific
training task (which includeda specificgeneralizationsubtask)that led to a useful LDR,
while a similar and evenmore powerful architecturewithout the generalizationtask was
unableto recovera usefulLDR.

3.1.3. RBFclassifiers. The third LDR extractionmethodthat we havechosento examine
is projection into a spacespannedby the responsesof a numberof ‘prototype detectors’
(Edelman1995b,Edelmanetal 1996). Eachdetector,whichcanberealizedasa radialbasis
function(RBF)classifier,is trainedto outputaconstantvaluefor asetof instancesof agiven
class(e.g. imagesof a given face takenfrom a seriesof viewpoints). If the RBF module
successfullygeneralizesto other instancesof the sameclassby maintaininga relatively
unperturbedresponselevel for thoseinputs, and if its responsedrops off monotonically
with increasingdistancebetweenthe input andthe optimal stimulus(the prototypefor that
module),a collectionof modulestunedto differentclassesformsa distributedrepresentation
of the input that is likely to capture the low-dimensionalstructureof the input space
(EdelmanandDuvdevani-Bar1997b).

For the present purpose, we trained a single RBF network to output a unary
representationof theclassmembership,aswe did with theMLP classifiersdescribedabove
(this is equivalent,of course,to training 18 separateRBFs, sharingthe same‘hidden’ or
basisfunction layer). Training was confinedto the computationof the optimal hiddento
output weights(the basisfunctionsbeing centredon a subsetof the input examples),and
could be carriedout, therefore,by simple pseudoinverse(Poggioand Girosi 1990). As a

† Autoencodertraining is also especiallycostly, becauseof the large size of the required network in image
processingapplications.



Learninglow-dimensionalrepresentations 269

result,this LDR extractionmethodwasmuchfasterthanthe two methodsinvolving MLPs
(which were trained by back-propagation).As we shall see, this rapid LDR extraction
producedrepresentationsnearlyasgoodasthoseobtainedby MLP.

3.2. Evaluationof theLDR

In the secondtraining phase(as seenin figure 6) we usedonly LDRs which had been
successfulat the first stagein the multiple-labelclassificationtask involving the training
set. Specifically,after training for a fixed numberof epochs,if classificationperformance
(on the training dataset),wasabove80% or 90% (dependingon the difficulty of the task),
the LDR wasapprovedfor useat the secondstage,involving the two-classdichotomy. If
the performancein a given trial was satisfactoryaccordingto this criterion, the LDR was
evaluatedusingthreedifferentmethods,asdescribedbelow. Note that thedataat this point
consistedof 54 vectors(18 classestimes3 exemplars),of dimensionalitythat dependedon
theLDR extractionmethod,andvariedbetween2 (for the3-HL bottleneckMLP classifier)
and13 (for the RBF classifier).

3.2.1. RBF performancein the dichotomytask. The first methodwas designedto assess
the utility of the LDR for supportinga representativeclassificationtasknot directly related
to the one-out-of-18classificationusedto train the LDR extractor. For that purpose,the
recoveredLDR was usedto train an RBF classifieron a nonlineartwo-class(dichotomy)
problem(seefigure 1, right). The generalizationperformanceof this classifierwas then
comparedwith thatof an identicalclassifiertrainedon theraw 784-dimensionalfilter-space
representationof the imageset,on the samedichotomyproblem.

3.2.2. MDS. The secondmethodwasdesignedto allow visualizationof the configuration
formedby the 18 classesin the LDR space.Becausein generalthis spacehadmore than
two dimensions(except in the caseof the 3-HL bottleneckMLP), the points had to be
embeddedin two dimensionsfor easy plotting and visualization. This embeddingwas
carriedout by multidimensionalscaling(MDS), which accepteda 54× 54 table of mean
inter-point distancesand producedan embeddingof the 54 points (each corresponding
to a single test instance)into two dimensions. The mean-distancetable was computed
by element-wiseaveragingof a numberof tablesarising from repeatedtrials; the LDR
extractionexperimentwas run repeatedlyto reducethe dependenceof the resultson the
randomizedinitial conditions,to which MLP training is known to be sensitive.

3.2.3. 3-HL bottleneckMLP. As mentioned above, the LDR derived by the 3-HL
bottleneckMLP with two units in the middle hidden layer is two-dimensional,and thus
canbe visualizeddirectly, without the mediationof MDS (cf. figure 8). Note that in this
casethe resultsof repeatedrunscannotbe simply averaged(unlessthey arefirst converted
into the distance-tableformat, which would necessitatesubsequentapplicationof MDS).
To combinethe resultsof a numberof runswe usedProcrustestransformations(Borg and
Lingoes1987) to normalize(scale,rotateand translate)all the LDR configurationsto the
configurationobtainedin the first run†. As a direct control of the outcomeof MDS-based
visualization,wealsoranthe3-HL bottleneckMLP on theLDRsobtainedby othermethods,

† Procrustes,or similarity, transformations,by definition,leavetheshapeof a setof pointsunchanged—aproperty
that is usefulfor comparinga numberof configurationsthathavesimilar shapes,but maydiffer in size,orientation,
andlocationrelativeto a coordinatesystem.
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as a kind of post-processing.In the next session,the LDR configurationsderivedby the
differentmethodsareplottedalongsideeachother,whereappropriate.

4. Results

We now proceedto describethe resultsof thecomputationalexperimentsin dimensionality
reductionthatweperformedontheFRACTALS andtheFACESdatasets.Thesameexperiments
werecarriedout in both cases;the reportedresultsinclude:

(i) evaluationof the threemethodsof LDR extractionlisted in section3.1;
(ii) acontrolcomparisonbetweentheLDR obtainedwith 18-classtrainingwith thatobtained

with two-classtraining;
(iii) A plot of the 2D configurationderivedfrom the raw 784-dimensionaldataby MDS.

We alsoperformedsomeadditionalexperimentswith theFRACTALS dataset,which explored
theeffect of imposingcategoricalstructureon theLDR andarereportedin thenextsection.
Information regardingother experimentswith the FRACTALS data(namely,a study of the
effect of thenumberof baseson thequality of theLDR extractedby anRBF network,anda
comparisonof LDRs derivedfrom severalversionsof FRACTALS dataof varying difficulty)
canbe found in Intrator andEdelman(1996).

4.1. TheFRACTALS dataset

TheLDR configurationobtainedon the FRACTALS databy the1-HL MLP methodis shown
in figure 7 (left). The first striking featureof this configurationis its mandala-likegeneral
structure:theMLP networkdid agoodjob of spreadingthe18classesasfar apartaspossible
from eachother, while preservingthe groupingof the triplets of points correspondingto
differentexemplarsof the sameclass.The secondnotablefeatureemergesfrom a scrutiny
of the relative locationsof the classesbelongingto the samesix-classrow (seefigure 1,
left). Eachof the threerows is markedby a differentsymbol(◦, +, and∗); thesix clusters
in a row arelabelledconsecutively(1–6, A–F, a–f). Note that eachrow curvesuponitself;
e.g.clusters2, 3 and4 areprogressivelyfartherawayfrom cluster1, while clusters5 and6
are progressivelycloser to cluster 1. An intuitive explanationof this patternmay lie in
the non-monotonic(cyclical) dependenceof the appearanceof fractal imagesproducedby
the quatjul procedureunderprogressivelylarger parametricchangeon the parameter-space
distanceto somereferenceimage.

Figure7 (right) showstheconfigurationderivedby a1-HL MLP trainedonadichotomy.
Even thoughthe resultingLDR is aboutasgood for supportingthis dichotomyas the one
obtainedfollowing 18-classtraining, it is much worseas far as the faithful representation
of the original parameterspaceis concerned:the 18-clusterstructureis lost in this LDR.

The performanceof the 3-HL bottleneck MLP in LDR recovery is illustrated in
figure 9. Note that in this casethe LDR can be read off the middle hidden layer of
the MLP (which containedtwo hiddenunits) andplotteddirectly, without post-processing
by multidimensionalscaling.

The recoveryof LDR by anRBF classifier(the third methodwe explored)is illustrated
in figure 10. Note that the mandala-likestructurein this plot prevailsover the preservation
of thewithin-row orderof clusters(cf figure7). Thus,the representationsderivedby MLP-
basedmethodsaremore faithful thanthoseobtainedby RBFsto the true low-dimensional
parametricvariationbuilt into the data.



Learninglow-dimensionalrepresentations 271

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

1  

2  

3  

4  

5 
 

6  

A
 

 

B  

C  

D
  

E  

F
  

a
 

 

b  

c  

d  

e  

f
  

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

Figure 7. FRACTALS data, LDR by 1-HL MLP with five hidden units (section3.1.1), MDS
visualization(section3.2.2). Left: MLP trainedon 18 classes;hereandin thesubsequentplots,
the threedifferent symbols(◦, + and ∗) correspondto points belongingto the different rows
of figure 1. Note the goodseparationof the 54 points into 18 classes;the threepoints in each
class(correspondingto the three test imagesper class)are usually clusteredtogether. Right:
MLP trained on a dichotomy; two rather than 18 clustersare apparent. The test dichotomy
classificationerror (section3.2.1)wastypically about0.05 in bothcases,comparedto about0.3
on the raw data.
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Figure 8. FRACTALS data,LDR by 1-HL MLP with five hiddenunits. Left: MDS visualization.
Right: 3-HL bottleneck MLP visualization. The two visualization methodsyield similar
configurations,although they rely on entirely different embeddingalgorithms. This adds
credibility to the use of distance(or distancerank) preservingmethodsfor embeddingdata
in points in two dimensionsfor the purposeof visualization(cf Sammon(1969)andSiedlecki
et al (1988)).

We next illustrate the ability of the MLP-basedLDR extractionmethodto assimilate
hierarchicalcategoryknowledgein a naturalmanner.In the first experimentthat examined
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Figure 9. FRACTALS data,LDR by 3-HL bottleneckMLP (section3.1.2),Procrustesvisualization
(section3.2.3). Left: resultsfor 3-HL bottleneckMLP with two hiddenunits, trainedwith class
labelson the filter data. The testdichotomyerror ratewas0.03, comparedto 0.41 on the raw
data. Right: resultsfor 3-HL bottleneckMLP, trainedas an autoencoderon the LDR derived
from the middle HL of the previous3-HL MLP.
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Figure 10. FRACTALS data, LDR by RBF (section3.1.3), MDS visualization. Left: resultsfor
a 72-centreRBF; test dichotomyerror 0.0, comparedto 0.24 on the raw data;Right: control
resultsobtainedby a 72-centreRBF trainedon a dichotomy; test dichotomyerrorsas above.
A parametricstudy of the performanceof this methodon the numberof centresof the RBF
networkcanbe found in Intrator andEdelman(1996).

this issue,threehigher-levelclasslabelswereaddedto the setof 18 labelsnormally used
in the training stage.For eachdatapoint, the higher-levellabel indicatedthe row to which
it belonged(seefigure 1). In the resultingconfiguration,the 18 clusterswere separated,
on a coarserlevel, into threegroups,correspondingto the threehigher-levelclasslabels
(see figure 11). In the secondexperiment,the LDR extractor was taught three labels
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Figure 11. FRACTALS data,LDR by 1-HL MLP, MDS visualization. This figure illustratesthe
incorporationof prior hierarchicalcategoryknowledgeinto theLDR extractionprocess.Topleft:
LDR derivedby a 1-HL MLP with 5 hiddenunits, trainedto producea unaryencodingof the
18-waylabel set,to which a coarsersetof 3-wayclasslabels,correspondingto the row number
in figure1, hasbeenappended(alsoin a unaryformat). The row variablesweregivena weight
of wc = 0.1 relative to the identity variables. The test dichotomyerror rate on the resulting
LDR was 0.056. Top right: resultsfor an MLP trainedto producea unary encodingof the 3
row and the 6 columnnumbersof the stimulus. The testdichotomyerror rateon the resulting
LDR was 0.056. The relative weightsof the row and the column variableswere wr = 1.0,
wc = 0.75. Bottom: same3×6 classstructureasbefore,but therelativeweightsof therow and
the columnvariableswerewr = 0.05, wc = 1.0. The testdichotomyerror rateon the resulting
LDR was0.20. The testdichotomyerror rateon the raw datain all threecaseswas0.28.

correspondingto the rows and six labelscorrespondingto the columnsof the parameter-
spaceconfiguration. The resulting configurationdependedto a significant degreeon the
relativeweightsgivento therow andcolumnlabels.Undernearlyequalweights,thepoints
were separatedinto three clustersby the row label (seefigure 11, top right); when the
column weight predominated,the separationwas into six clusters(i.e. by column), with
someadditionalstructurewithin eachcluster(seefigure 11, bottom).

A naturalextrapolationof this strategywould be to teachthe network many possible
dichotomies,in the hopethat the structureof the underlyingLDR can be recoveredfrom
the multiple two-way classifications(Priceet al 1995). The advantageof operatingat the
level of 18 classes(or of threeclasses,with six subclasseseach)is in the much shorter
training procedure. On the other hand, training on multiple dichotomiesmay have the
advantageof forcing the LDR extractor to considermultiple, hopefully disjoint, setsof
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Figure 12. Left: FRACTALS data;the patternrecoveredby MDS from the raw 784-dimensional
dataset. No separationof the 18 classesis apparent;mostof the pointsareconcentratedin the
middle of the plot (cf figure 7, left). Right: FACES data; the patternrecoveredby MDS from
the raw 784-dimensionaldataset. Although the generallayout of the 18 classesrelativeto one
anotheris preserved,thepointsbelongingto differentclassesarenot separated(cf figure4, left).
Indeed,MDS by itself hadno reasonto separatethe classes,unlike the MLP, which hasbeen
explicitly trainedto do so (but not necessarilyto preservethe 2D metric layout of the classes
relativeto eachother,which it did, just like MDS!).

featuresrelevantto the collectionof tasks,andnot letting it zero in on distinctive features
specificfor eachone-versus-alldiscrimination. We leavefor future researchthe questfor
an optimal compromisebetweentheseconsiderations.

4.2. TheFACES dataset

LDR extractionfrom the FACES dataset was easierthan from the FRACTALS, as could be
expectedfrom the comparisonof the degreeof nonlinearity of the two sets, described
in section 2. This expectationwas supportedby another comparison—betweenthe
configurationsderivedby MDS from the raw 784-dimensionalFRACTALS and FACES data
(seefigure 12)—andwasconfirmedby the resultsof the experimentsinvolving the FACES

dataset,which we describenext.
Good results were obtained on the FACES data using all three methodsfor LDR

extraction: 1-HL MLP, 3-HL bottleneckMLP and RBF. The performanceof the MLP-
basedmethodsin recoveringthe topology of the row/columnparametricstructureof the
18 classesseemsto be especiallyamazing(comparee.g. figure 13 (left) with the labels
in figure 5 (top); seealso figures 14–16). Importantly, this recoverywas possibleeven
whenthenetworkwastrainedon half of the18 classes,thentestedon the full dataset(see
figure 16). The implicationsof this andthe otherresultsarediscussedin section6.

5. Control experiments

The difficulty of LDR extraction in the presentcaseis demonstratedby a comparison
to the resultsobtainedby more conventionalneural network methodsfor dimensionality
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Figure 13. FACES data,MDS visualization(section3.2.2). Left: LDR by 1-HL MLP with 13
hiddenunits (section3.1.1),trainedfor 20000 epochson the 18-classtask. The testdichotomy
error ratewas0.02, comparedto 0.07 on the raw data. Right: control resultsfor a 1-HL MLP
with 13 hiddenunits, trainedfor 20000 epochson a dichotomytask. The testdichotomyerror
ratewas0.04, comparedto 0.07 on the raw data.
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Figure 14. FACES data,LDR by 3-HL bottleneckMLP, MDS visualization. Left: resultsfor
3-HL bottleneckMLP with two hiddenunits, trainedon the 18-classtask. The testdichotomy
error ratewas0.1, comparedto 0.29 on the raw data.Right: resultsfor 3-HL bottleneckMLP,
trainedasanautoencoderon theLDR derivedfrom themiddleHL of theprevious3-HL MLP.

reduction. The best-knownsuchmethodsemploy self-supervisedbottleneckautoencoder
training. While theimpositionof a low-dimensionalbottleneckis commonto thesemethods
and to our approach,thereis a crucial difference: an autoencoderis trainedto reproduce
the datawhile our networksare trainedto assignthe dataa certaincategorystructure.To
characterizetheimportanceof this featureof our approachto theextractionof usefulLDRs,
we conductedseveralexperiments.
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Figure 15. FACES data,MDS visualization. Left: an 18-centreRBF (section3.1.3), trainedon
the 18-classtask. The test dichotomyerror rate was 0.04, comparedto 0.07 on the raw data.
Recallthateachpoint correspondsto onetestview; the threeviewsbelongingto eachof the18
test facesareusuallygroupedtogether.The labelsshouldbe comparedwith thosein figure 4.
Right: an 18-centreRBF, trainedon the dichotomy. The test dichotomyerror rate was 0.11,
worsethanthe error rateof 0.07 on the raw data.
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Figure 16. FACES dataset,LDR by a 1-HL multilayer
perceptron(MLP), trainedon everysecondclass;MDS
visualization. Theseresultswere obtainedwith a 1-
HL MLP network with nine hidden units, trained on
half of the 18 classesthat comprisethe problemspace
(the nine classesusedfor training andthe nine omitted
classesformeda checkerboardpattern).Notethatall 18
classes—bothfamiliar onesand thosenot seenby the
system—arein a topology-preservingformation. The
test dichotomyerror rate was 0.14, comparedto 0.28
on the raw data.

First, we askedwhethera self-supervisedthree-layerMLP autoencoder,which aimsat
thebestreconstructionof the inputs,canrevealthecorrectlow-dimensionalstructurein our
data.Although in the linear casesuchnetworksdo quite well, essentiallyby extractingthe
principal componentsof the data(ElmanandZipser1988), the performanceon the FACES

datawas poor. Specifically,the autoencodernetwork consistentlyconverged to the mean
of the data,presumablydueto the nonlinearityintroducedby the imagingstep.

Second,we experimentedwith a five-layernonlinearbottleneckautoencoder(Leenand
Kambhatla1994). This training scheme,likewise, performedpoorly on our dataset. The
outcomeof this experimentshowedthat self-superviseddimensionalityreductioncannot
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recovera good LDR in the presentcase,illustrating the importanceof guidanceprovided
by the classlabels.

A bottleneckautoencoderemployedasa dimensionalityreducingdeviceis requiredto
map a high-dimensionalspace(in our case,a spaceof 784 dimensions)to itself, whereas
the outputspacein our training schemewas18-dimensional.Onemay askherewhethera
certainreductionin thedimensionalityof theoutputspace,combinedwith an impositionof
certaincategorystructureon thatspace,would enablethenetworkto learntheproperLDR.
To addressthis question,we testeda modifiedversionof our method,in which theclassifier
wasnot trainedto ignorethe directionorthogonalto the target manifold (cf figure 17; this
was done by training on the 72 face-view labels, insteadof the 18 face identity labels).
Thus,the network’soutputspacewas72-dimensional,with eachdimensioncorresponding
to a conjunctionof face identity and face orientationlabels. This manipulation,however,
did not help: the LDR extractedby the modified autoencoderwas poor, underscoringthe
importanceof guidanceprovidedby anexplicit specificationof thedimensionto becollapsed
(in this case,the dimensionof the viewpoint-relatedvariation).

dimension to be used
for the discrimination

dimensions to be ignored

dimension to be
generalized over

Figure 17. A schematicillustration of a problemspacewhoseefficient representationrequires
nonlineardimensionalityreduction.The instancesof the two classescling to a low-dimensional
manifold, embeddedin a measurementspace,whosedimensionalitymay run in the tens of
thousands.Seesection6 for a discussionof this example.

6. Conclusions

We haveshownthat combiningmultiple constraintsvia the useof multiple-classlabelsis
an effective way to imposebias on a learningsystemwhosegoal is to find a good LDR.
In particular,theuseof multiple-classlabelssteersthesystemto becomeinvariant to those
directionsof variation in the input spacethat play no role in the classificationtasks. This
is donemerelyby usingclasslabelsthat are independentof thesedirections: in the Fractal

images,the imagelabelsare invariant to the third dimensionof variation (figure 1, left);
similarly, the identity labels of the FACES are independentof their orientation(figure 5,
bottom panel). We havealso shownthat prior knowledgeof the ‘proper’ dimensionality
of the target LDR can be imposedby training a multi-layer bottlenecknetwork (figure 6,
bottom right). Both thesefeaturesof our approachlead to improvedgeneralizationin the
learnedtasks.

A useful intuition concerningthe effectivenessof our methodcan be developedby
consideringan analogywith discriminantanalysis,a well-known techniquefor projecting
dataonto dimensionsimportantfor a particularclassificationtask(seefigure 17). Assume
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that somedimensionsof a set of measurementsperformedon the world are crucial for
distinguishingbetweenthe categories,while other dimensionsmust be downplayed,or
collapsed;in the contextof objectrecognition,the former may be the dimensionsof object
identity, and the latter thoseof objectorientation. Whereasstandarddiscriminantanalysis
methodsin multidimensionalspacesareplaguedby the presenceof irrelevantdimensions,
in this paperwe haveshownthat training with a combinedobjectiveof (1) discrimination
amonglabelledcategoriesknown to residewithin the manifold,and(2) explicit collapseof
dimensionsoverwhichdiscriminationis to begeneralized,leadsto animprovedperformance
in otherdiscriminationtasksinvolving thesameobjects,andto a reliablerecoveryof a low-
dimensionalmanifoldcontainingtheobjects,evenwhenit is curved(i.e. whentheproblem
is nonlinear)and is embeddedin a measurementspaceof nearly a thousanddimensions.
This approachcan be comparedwith a recent suggestionto convert poor featuresinto
supervisors(Caruanaand de Sa 1997); in contrastto that idea, we show that there is a
limit to the utility of classlabels,and that invarianceconstraintswe imposeare equally
important.

An important featureof the LDR computedby our methodis the preservationof the
topology of the parameterspaceunderlying the data. The clusterscorrespondingto the
labels we imposedduring training were both separatedfrom eachother (as dictatedby
the training procedure),and arrangedin the resulting low-dimensionalspacein a pattern
that reflectedtheir arrangementin the parameterspaceusedto createthe data. This latter
propertyof the representationwasobtainedevenwhen the networkhadbeentrainedonly
on half of the objectsover which topologypreservationwasevaluated.

Topology preservationis useful becauseit allows the representationalsystem to
categorizenovel instancesof familiar objectclasses,aswell asmakesenseof novelclasses
(EdelmanandDuvdevani-Bar1997b).Specifically,if proximitiesin therepresentationspace
reflectsimilaritiesamongobjects‘out there’ in the world, the following two operationscan
be carriedout safely: (1) a new instanceof a classcan be categorizedby finding, in the
representationspace,theclusterto which thecurrentstimulusis theclosest;(2) a newclass
can be definedby its representation-spacedistancesto the familiar classes(Edelmanand
Duvdevani-Bar1997a)†.

We remark that topology preservationappearsto be true of representationformed by
humansubjectsin a varietyof perceptualtasks.Studiesin experimentalpsychologyindicate
that a low-dimensionalpatternbuilt into complex2D shapes(by arrangingtheseshapesin
a conspicuousconfigurationin an underlyingparameterspace)is recoveredby the visual
systemof subjectsrequiredto judgesimilaritiesbetweenthe shapes(ShepardandCermak
1973,CorteseandDyre1996). Recently,similarfindingshavebeenachievedin experiments
that involved3D objects,arrangedin a varietyof planarconfigurationsin a parameterspace
of severaldozendimensions(Edelman1995a,Cutzu and Edelman1996). The upshotof
thesefindings is that the humanvisual systemis capableof recoveringthe proper low-
dimensionalrepresentationof the stimuli from a million-dimensionalmeasurementspace
(dictatedby thenumberof axonsleadingfrom the retinato thebrain),while preservingthe
topologyof theoriginal space(andin manycasestheexactrelativeplacementof thestimuli
in that space). The conditionson the LDR extractionprocessthat makessuch recovery
possible,and the wider philosophicalimplications of this phenomenon,are discussedin
(Edelman1997).

† In the contextof figure 16, this operationcorrespondsto the definition of a novel face(say,faceB, which was
not includedin the training set) in termsof its similaritiesto familiar faces(e.g.definingB asthe stimulusthat is
halfway betweenA andC, aswell asbetween2 andb).
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Appendix: Multidimensional scaling (MDS)

MDS was originally developedin psychometrics,as a method for the recovery of the
coordinatesof a set of points from measurementsof the pairwisedistancesbetweenthose
points (Young and Householder1938). In a typical application,the experimenterwould
attemptto characterizea subject’sperformanceby placing a point correspondingto each
stimulusperceivedby the subjectin a coordinatespace,derivedfrom subjectivesimilarity
ratings of pairs of stimuli. The power of MDS as a tool for the study of internal
representations(of humansubjects)was revealedwhen Sheparddiscoveredin 1962 that
fixing the relative distancesof a set of points effectively determinestheir coordinates
(Shepard1966). This discoveryled to the developmentof the non-metricMDS algorithm
(Kruskal1964),whichemploysgradientdescentto seekamonotonictransformationbetween
measureddistancesand distancescomputedfrom the hypothesizedpoint configuration,
which would minimizestress(definedasthediscrepancybetweentheranksof themeasured
andthecomputeddistances).In thepresentwork, weusedamodernimplementationof non-
metric MDS, availablein version6 of the SAS statisticalanalysissoftware(SAS 1989),
to allow the visualizationof high-dimensionaldatasets. The points in a given set were
embeddedinto a 2D metric spacereflectingascloselyaspossiblethe patternof inter-point
distances,thenplottedandsubjectedto inspection.
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