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Abstract

We outline an unsupervised language acquisition
algorithm and offer some psycholinguistic support
for a model based on it. Our approach resem-
bles the Construction Grammar in its general phi-
losophy, and the Tree Adjoining Grammar in its
computational characteristics. The model is trained
on a corpus of transcribed child-directed speech
(CHILDES). The model’s ability to process novel
inputs makes it capable of taking various standard
tests of English that rely on forced-choice judgment
and on magnitude estimation of linguistic accept-
ability. We report encouraging results from several
such tests, and discuss the limitations revealed by
other tests in our present method of dealing with
novel stimuli.

1 The empirical problem of language
acquisition

The largely unsupervised, amazingly fast and al-
most invariably successful learning stint that is lan-
guage acquisition by children has long been the
envy of computer scientists (Bod, 1998; Clark,
2001; Roberts and Atwell, 2002) and a daunting
enigma for linguists (Chomsky, 1986; Elman et al.,
1996). Computational models of language acqui-
sition or “grammar induction” are usually divided
into two categories, depending on whether they sub-
scribe to the classical generative theory of syn-
tax, or invoke “general-purpose” statistical learning
mechanisms. We believe that polarization between
classical and statistical approaches to syntax ham-
pers the integration of the stronger aspects of each
method into a common powerful framework. On
the one hand, the statistical approach is geared to
take advantage of the considerable progress made
to date in the areas of distributed representation
and probabilistic learning, yet generic “connection-
ist” architectures are ill-suited to the abstraction
and processing of symbolic information. On the
other hand, classical rule-based systems excel in
just those tasks, yet are brittle and difficult to train.

We are developing an approach to the acquisi-
tion of distributional information from raw input
(e.g., transcribed speech corpora) that also supports
the distillation of structural regularities comparable
to those captured by Context Sensitive Grammars
out of the accrued statistical knowledge. In think-
ing about such regularities, we adopt Langacker’s
notion of grammar as “simply an inventory of lin-
guistic units” ((Langacker, 1987), p.63). To de-
tect potentially useful units, we identify and pro-
cess partially redundant sentences that share the
same word sequences. We note that the detection
of paradigmatic variation within a slot in a set of
otherwise identical aligned sequences (syntagms) is
the basis for the classical distributional theory of
language (Harris, 1954), as well as for some mod-
ern work (van Zaanen, 2000). Likewise, thepat-
tern — the syntagm and theequivalence classof
complementary-distribution symbols that may ap-
pear in its open slot — is the main representational
building block of our system,ADIOS (for Automatic
DIstillation Of Structure).

Our goal in the present short paper is to illus-
trate some of the capabilities of the representa-
tions learned by our method vis a vis standard tests
used by developmental psychologists, by second-
language instructors, and by linguists. Thus, the
main computational principles behind theADIOS

model are outlined here only briefly. The algo-
rithmic details of our approach and accounts of its
learning from CHILDES corpora appear elsewhere
(Solan et al., 2003a; Solan et al., 2003b; Solan et al.,
2004; Edelman et al., 2004).

2 The principles behind theADIOS
algorithm

The representational power ofADIOS and its capac-
ity for unsupervised learning rest on three princi-
ples: (1) probabilistic inference of pattern signifi-
cance, (2) context-sensitive generalization, and (3)
recursive construction of complex patterns. Each of
these is described briefly below.



P84 that P58 P63
E63 E64 P48
E64 Beth | Cindy | George | Jim | Joe | Pam | P49 | P51
P48 , doesn't it
P51 the E50
P49 a E50
E50 bird | cat | cow | dog | horse | rabbit
P61 who E62
E62 adores | loves | scolds | worships
E53 Beth | Cindy | George | Jim | Joe | Pam
E85 annoyes | bothers | disturbes | worries
P58 E60 E64
E60 flies | jumps | laughs
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Joe thinks that George thinks that Cindy believes that George thinks that Pam thinks that ...

that the bird jumps disturbes Jim who adores the cat, doesn't it?
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Joe thinks that George thinks that Cindy believes that George thinks that Pam thinks that ...

that the bird jumps disturbes Jim who adores the cat, doesn't it?

P84 "that" P58 P63
E63 E64 P48
E64 "Beth" | "Cindy" | "George" | "Jim" | "Joe" | "Pam" | P49 | P51
P48 "," "doesn't" "it"
P51 "the" E50
P49 "a" E50
E50 "bird" | "cat" | "cow" | "dog" | "horse" | "rabbit"
P61 "who" E62
E62 "adores" | "loves" | "scolds" | "worships"
E53 "Beth" | "Cindy" | "George" | "Jim" | "Joe" | "Pam"
E85 "annoyes" | "bothers" | "disturbes" | "worries"
P58 E60 E64
E60 "flies" | "jumps" | "laughs"

Long Range Dependency

Figure 1:Left: a pattern (presented in a tree form), capturing a long range dependency (equivalence class
labels are underscored). This and other examples here were distilled from a 400-sentence corpus generated
by a 40-rule Context Free Grammar.Right: the same pattern recast as a set of rewriting rules that can be
seen as a Context Free Grammar fragment.
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P210 P55 P84
BEGIN P55 P84 BEGIN E56 "thinks" "that" P84
P55 P84 P178 P55 E75 "thinks" "that" P178

Agreement

Pam Beth and Jim think that Joe thinks that George
thinks that Cindy believes that Jim  who adores a
cat meows and the bird flies  , don't they?

that Pam laughs worries a dog , doesn't it?

that a cow jumps disturbs Jim who loves a horse ,
doesn't it?

Joe and Beth think that Jim believes that  the rabb it
meows and Pam  who scolds the dog laughs  , don't
they?

that Joe is eager to please disturbs the bird.

Cindy thinks that Jim believes that  to read is tough .

Beth thinks that Jim believes that  Beth  who loves a
horse meows and the horse jumps  , doesn't  sh e?

that Pam is tough to please worries the cat.
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P210 P55 P84
BEGIN P55 P84 BEGIN E56 "thinks" "that" P84
P55 P84 P178 P55 E75 "thinks" "that" P178

Agreement

Pam Beth and Jim think that Joe thinks that George
thinks that Cindy believes that Jim  who adores a
cat meows and the bird flies  , don't they?

that Pam laughs worries a dog , doesn't it?

that a cow jumps disturbs Jim who loves a horse ,
doesn't it?

Joe and Beth think that Jim believes that  the rabb it
meows and Pam  who scolds the dog laughs  , don't
they?

that Joe is eager to please disturbs the bird.

Cindy thinks that Jim believes that  to read is tough .

Beth thinks that Jim believes that  Beth  who loves a
horse meows and the horse jumps  , doesn't  sh e?

that Pam is tough to please worries the cat.
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Figure 2:Left: becauseADIOS does not rewire all the occurrences of a specific pattern, but only those that
share the same context, its power is comparable to that of Context Sensitive Grammars. In this example,
equivalence class #75 is not extended to subsume the subject position, because that position appears in
a different context (e.g., immediately to the right of the symbol BEGIN). Thus, long-range agreement is
enforced and over-generalization prevented.Right: the context-sensitive “rules” corresponding to pattern
#210.

Probabilistic inference of pattern significance.
ADIOS represents a corpus of sentences as an ini-
tially highly redundant directed graph, which can be
informally visualized as a tangle of strands that are
partially segregated intobundles. Each of these con-
sists of some strands clumped together; a bundle is
formed when two or more strands join together and
run in parallel and is dissolved when more strands
leave the bundle than stay in. In a given corpus,
there will be many bundles, with each strand (sen-
tence) possibly participating in several. Our algo-
rithm, described in detail in (Solan et al., 2004),
identifies significant bundles that balance high com-
pression (small size of the bundle “lexicon”) against
good generalization (the ability to generate new
grammatical sentences by splicing together various
strand fragments each of which belongs to a differ-
ent bundle).

Context sensitivity of patterns. A pattern is an
abstraction of a bundle of sentences that are identi-
cal up to variation in one place, where one of several
symbols — the members of the equivalence class
associated with the pattern — may appear (Fig-

ure 1). Because this variation is only allowed in
the context specified by the pattern, the generaliza-
tion afforded by a set of patterns is inherently safer
than in approaches that posit globally valid cate-
gories (“parts of speech”) and rules (“grammar”).
The reliance ofADIOS on many context-sensitive
patterns rather than on traditional rules can be com-
pared both to the Construction Grammar (discussed
later) and to Langacker’s concept of the grammar as
a collection of “patterns of all intermediate degrees
of generality” ((Langacker, 1987), p.46).

Hierarchical structure of patterns. The ADIOS

graph is rewired every time a new pattern is de-
tected, so that a bundle of strings subsumed by it
is represented by a single new edge. Following the
rewiring, which is context-specific, potentially far-
apart symbols that used to straddle the newly ab-
stracted pattern become close neighbors. Patterns
thus become hierarchically structured in that their
elements may be either terminals (i.e., fully speci-
fied strings) or other patterns. Moreover, patterns
may refer to themselves, which opens the door for
recursion.



3 Related computational and linguistic
formalisms and psycholinguistic findings

Unlike ADIOS, very few existing algorithms for un-
supervised language acquisition use raw, unanno-
tated corpus data (as opposed, say, to sentences con-
verted into sequences of POS tags). The only work
described in a recent review (Roberts and Atwell,
2002) as completely unsupervised — the GraSp
model (Henrichsen, 2002) — does attempt to in-
duce syntax from raw transcribed speech, yet it is
not completely data-driven in that it makes a prior
commitment to a particular theory of syntax (Cate-
gorial Grammar, complete with a pre-specified set
of allowed categories). Because of the unique na-
ture of our chosen challenge — finding structure
in language rather than imposing it — the follow-
ing brief survey of grammar induction focuses on
contrasts and comparisons to approaches that gen-
erally stop short of attempting to do what our al-
gorithm does. We distinguish between approaches
that are motivated computationally (Local Grammar
and Variable Order Markov models, and Tree Ad-
joining Grammar, discussed elsewhere (Edelman et
al., 2004), and those whose main motivation is lin-
guistic and cognitive psychological (Cognitive and
Construction grammars, discussed below).

Local Grammar and Markov models. In cap-
turing the regularities inherent in multiple criss-
crossing paths through a corpus,ADIOS su-
perficially resembles finite-state Local Grammars
(Gross, 1997) and Variable Order Markov (VOM)
models (Guyon and Pereira, 1995). The VOM ap-
proach starts by postulating a maximum-n struc-
ture, which is then fitted to the data by maximizing
the likelihood of the training corpus. TheADIOS

philosophy differs from the VOM approach in sev-
eral key respects.First, rather than fitting a model
to the data, we use the data to construct a (recur-
sively structured) graph. Thus, our algorithm nat-
urally addresses the inference of the graph’s struc-
ture, a task that is more difficult than the estima-
tion of parameters for a given configuration.Sec-
ond, becauseADIOS works from the bottom up in a
recursive, data-driven fashion, it is less susceptible
to complexity issues. It can be used on huge graphs,
and may yield very large patterns, which in a VOM
model would correspond to an unmanageably high
ordern. Third, ADIOS transcends the idea of VOM
structure, in the following sense. Consider a set of
patterns of the formb1[c1]b2[c2]b3, etc. The equiv-
alence classes[·] may include vertices of the graph
(both words and word patterns turned into nodes),
wild cards (i.e., any node), as well as ambivalent
cards (any node or no node). This means that the

terminal-level length of the string represented by
a pattern does not have to be of a fixed length.
This goes conceptually beyond the variable order
Markov structure:b2[c2]b3 do not have to appear in
a Markov chain of a finite order||b2||+ ||c2||+ ||b3||
because the size of[c2] is ill-defined, as explained
above. Fourth, as we showed earlier (Figure 2),
ADIOS incorporates both context-sensitive substitu-
tion and recursion.

Tree Adjoining Grammar. The proper place in
the Chomsky hierarchy for the class of strings ac-
cepted by our model is between Context Free and
Context Sensitive Languages. The pattern-based
representations employed byADIOS have counter-
parts for each of the two composition operations,
substitution and adjoining, that characterize a Tree
Adjoining Grammar, or TAG, developed by Joshi
and others (Joshi and Schabes, 1997). Specifically,
both substitution and adjoining are subsumed in the
relationships that hold amongADIOS patterns, such
as the membership of one pattern in another. Con-
sider a patternPi and its equivalence classE(Pi);
any other patternPj ∈ E(Pi) can be seen as substi-
tutable inPi. Likewise, ifPj ∈ E(Pi), Pk ∈ E(Pi)
andPk ∈ E(Pj), then the patternPj can be seen
as adjoinable toPi. Because of this correspon-
dence between the TAG operations and theADIOS

patterns, we believe that the latter represent regu-
larities that are best described by Mildly Context-
Sensitive Language formalism (Joshi and Schabes,
1997). Importantly, because theADIOS patterns
are learned from data, they already incorporate the
constraints on substitution and adjoining that in the
original TAG framework must be specified manu-
ally.

Psychological and linguistic evidence for pattern-
based representations. Recent advances in un-
derstanding the psychological role of representa-
tions based on what we call patterns, orconstruc-
tions (Goldberg, 2003), focus on the use of statis-
tical cues such as conditional probabilities in pat-
tern learning (Saffran et al., 1996; Gómez, 2002),
and on the importance of exemplars and construc-
tions in children’s language acquisition (Cameron-
Faulkner et al., 2003). Converging evidence for the
centrality of pattern-like structures is provided by
corpus-based studies ofprefabs— sequences, con-
tinuous or discontinuous, of words that appear to
be prefabricated, that is, stored and retrieved as a
whole, rather than being subject to syntactic pro-
cessing (Wray, 2002). Similar ideas concerning the
ubiquity in syntax of structural peculiarities hitherto
marginalized as “exceptions” are now being voiced
by linguists (Culicover, 1999; Croft, 2001).



Cognitive Grammar; Construction Grammar.
The main methodological tenets ofADIOS — pop-
ulating the lexicon with “units” of varying com-
plexity and degree of entrenchment, and using
cognition-general mechanisms for learning and rep-
resentation — fit the spirit of the foundations of
Cognitive Grammar (Langacker, 1987). At the
same time, whereas the cognitive grammarians typ-
ically face the chore of hand-crafting structures that
would reflect the logic of language as they per-
ceive it, ADIOS discovers the primitives of gram-
mar empirically and autonomously. The same is
true also for the comparison betweenADIOS and the
various Construction Grammars (Goldberg, 2003;
Croft, 2001), which are all hand-crafted. A con-
struction grammar consists of elements that differ
in their complexity and in the degree to which they
are specified: an idiom such as “big deal” is a fully
specified, immutable construction, whereas the ex-
pression “the X, the Y” – as in “the more, the bet-
ter” (Kay and Fillmore, 1999) – is a partially spec-
ified template. The patterns learned byADIOS like-
wise vary along the dimensions of complexity and
specificity (e.g., not every pattern has an equiva-
lence class).

4 ADIOS: a psycholinguistic evaluation
To illustrate the applicability of our method to real
data, we first describe briefly the outcome of run-
ning it on a subset of the CHILDES collection
(MacWhinney and Snow, 1985), consisting of tran-
scribed speech directed at children. The corpus we
selected contained300, 000 sentences (1.3 million
tokens) produced by parents. After 14 real-time
days, the algorithm (version 7.3) identified 3400
patterns and 3200 equivalence classes. The outcome
was encouraging: the algorithm found intuitively
significant patterns and produced semantically ad-
equate corresponding equivalence sets. The algo-
rithm’s ability to recombine and reuse the acquired
patterns is exemplified in the legend of Figure 3,
which lists some of the novel sentences it generated.

The input module. The ADIOS system’s input
moduleallows it to process a novel sentence by
forming its distributed representation in terms of ac-
tivities of existing patterns.We stress that this mod-
ule plays a crucial role in the tests described below,
all of which require dealing with novel inputs.Fig-
ure 4 shows the activation of two patterns (#141 and
#120) by a phrase that contains a word in a novel
context (stay), as well as another word never before
encountered in any context (5pm).

Acceptability of correct and perturbed novel sen-
tences. To test the quality of the representations
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Figure 3: a typical pattern extracted from the
CHILDES collection (MacWhinney and Snow,
1985). Hundreds of such patterns and equivalence
classes (underscored) together constitute a concise
representation of the raw data. Some of the phrases
that can be described/generated by these patterns
are: let’s change her. . . ; I thought you were
gonna change her. . . ; I was going to change
your. . . ; none of these appear in the training data,
illustrating the ability ofADIOS to generalize. The
generation process operates as a depth-first search
of the tree corresponding to a pattern. For details
see (Solan et al., 2003a; Solan et al., 2004).

(patterns and their associated equivalence classes)
acquired byADIOS, we have examined their abil-
ity to support various kinds of grammaticality judg-
ments. The first experiment we report sought to
make a distinction between a set of (presumably
grammatical) CHILDES sentences not seen by the
algorithm during training, and the same sentences
in which the word order has been perturbed. We
first trained the model on10, 000 sentences from
CHILDES, then compared its performance on (1)
1000 previously unseen sentences and (2) the same
sentences in each of which a single random word
order switch has been carried out. The results,
shown in Figure 5, indicate a substantial sensitiv-
ity of the ADIOS input module to simple deviations
from grammaticality in novel data, even after a very
brief training.

Learnability of nonadjacent dependencies
Within the ADIOS framework, the “nonadjacent
dependencies” that characterize the artificial lan-
guages used by (Ǵomez, 2002) translate, simply,
into patterns with embedded equivalence classes.



W
ed

ne
sd

ay

B
E

G
IN

B
et

h

C
in

dy

G
eo

rg
e

Jo
e

Ji
m

P
aman

d

ar
e liv

w
or

k

in
g

141... activation level: 0.972

74

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

W8=1.0

W0=1.0

C14 C15 C16 C17 C18

pl
ay

B
et

h

C
in

dy

G
eo

rg
e

Jo
e

Ji
m

P
am

86

112

113

W15=0.8

un
til

to
m

or
ro

w

Fr
id

ay

M
on

da
y

S
at

ur
da

y

S
un

da
y

Th
ur

sd
ay

Tu
es

da
y

W
ed

ne
sd

ay

ne
xt

m
on

th

w
ee

k

w
in

te
r

E
N

D

120... activation level: 0.667

100

93
89

119

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

W13=1.0W0=1.0

W2..8=εW1=ε

Figure 4: The two most active patterns responding to the partially novel inputJoe and Beth are staying
until 5pm. Leaf activation, which is proportional to the mutual information between input words and various
members of the equivalence classes, is propagated upward by taking the average at each junction (Solan et
al., 2003a).
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Figure 5: Grammaticality of perturbed sentences
(CHILDES data). The figure shows a histogram
of the input module output values for two kinds of
stimuli: novel grammatical sentences (dark/blue),
and sentences obtained from these by a single word-
order permutation (light/red).

Gómez showed that the ability of subjects to learn
a language L1 of the form{aXd, bXe, cXf}1,
as measured by their ability to distinguish it
implicitly from L2={aXe, bXf, cXd}, depends
on the amount of variation introduced atX. We
replicated this experiment by trainingADIOS on
432 strings from L1, with|X| = 2, 6, 12, 24. The
stimuli were the same strings as in the original
experiment, with the individual letters serving as
the basic symbols. A subsequent test resulted in

1Symbolsa−f here stand for nonce words such as pel, vot,
or dak, whereasX denotes a slot in which a subset of 24 other
nonce words may appear.

a perfect acceptance of L1 and a perfect rejection
of L2. Training with the original words (rather
than letters) as the basic symbols resulted in L2
rejection rates of0%, 55%, 100%, and 100%,
respectively, for|X| = 2, 6, 12, 24. Thus, the
ADIOS performance both mirrors that of the human
subjects and suggests a potentially interesting new
effect (of the granularity of the input stimuli) that
may be explored in further psycholinguistic studies.

A developmental test. The CASL test (Compre-
hensive Assessment of Spoken Language) is widely
used in the USA to assess language comprehen-
sion in children (Carrow-Woolfolk, 1999). One of
its many components is a grammaticality judgment
test, which consists of 57 sentences and is admin-
istered as follows: a sentence is read to the child,
who then has to decide whether or not it is correct.
If not, the child has to suggest a correct version of
the sentence. For every incorrect sentence, the test
lists 2-3 acceptable correct ones. The present ver-
sion of theADIOS algorithm can compare sentences
but cannot score single sentences. We therefore ig-
nored 11 out of the 57 sentences, which were correct
to begin with. The remaining 46 incorrect sentences
and their corrected versions were scored byADIOS

(which for this test had been trained on a 300,000-
sentence corpus from the CHILDES database); the
highest scoring sentence in each trial was inter-
preted as the model’s choice. The model labeled
17 of the test sentences correctly, yielding a score
of 108 (100 = norm) for the age interval 7-0 through
7-2. This score is the norm for the age interval 8-3
through 8-5.2

2ADIOS was undecided about the majority of the other sen-
tences on which it did not score correctly.



Figure 6: The results of several grammaticality tests
(the G̈oteborg ESL test is described in the text).

ESL test (forced choice). We next used a stan-
dard test developed for English as Second Lan-
guage (ESL) classes, which has been administered
in Göteborg (Sweden) to more than10, 000 upper
secondary levels students (that is, children who typ-
ically had 9 years of school, but only 6-7 years of
English). The test consists of100 three-choice ques-
tions, such asShe asked me at once (choices:
come, to come, coming) and The tickets have
been paid for, so you not worry (choices:may,
dare, need); the average score for the population
mentioned is65%. As before, the choice given the
highest score by the algorithm won; if two choices
received the same top score, the answer was “don’t
know”. The algorithm’s performance in this and
several other tests is summarized in Figure 6 (these
tests have been conducted with an earlier version of
the algorithm (Solan et al., 2003a)). In the ESL test,
ADIOS scored at just under60%; compare this to
the45% precision (with20% recall) achieved by a
straightforward bi-gram benchmark.3

ESL test (magnitude estimation). In this exper-
iment, six subjects were asked to provide magni-
tude estimates of linguistic acceptability (Gurman-
Bard et al., 1996) for all the3 × 100 sentences in
the G̈oteborg ESL test. The test was paper based
and included the instructions from (Keller, 2000).
No measures were taken to randomize the order of
the sentences or otherwise control the experiment.
The same 300 sentences were processed byADIOS,
whose responses were normalized by dividing the
output by the sum of each triplet’s score. The re-
sults indicate a significant correlation (R2 = 6.3%,
p < 0.001) between the scores produced by the sub-
jects and byADIOS. In some cases the scores of

3Chance performance in this test is33%. We note that the
corpus used here was too small to train ann-gram model for
n > 2; thus, our algorithm effectively overcomes the problem
of sparse data by putting the available data to a better use.

ADIOS are equal, which usually indicates that there
are too many unfamiliar words. Omitting these sen-
tences yields a significantR2 = 9.7%, p < 0.001;
removing sentences for which the choices score al-
most equally (within10%) results inR2 = 12.7%,
p < 0.001.4

Figure 7: Magnitude estimation study from Keller,
plotted against theADIOS score on the same sen-
tences (R2 = 0.53, p < 0.05). The sentences
(ranked by increasing score) are:
How many men did you destroy the picture of?
How many men did you destroy a picture of?
How many men did you take the picture of?
How many men did you take a picture of?
Which man did you destroy the picture of?
Which man did you destroy a picture of?
Which man did you take the picture of?
Which man did you take a picture of?

Modeling Keller’s data. A manuscript by Frank
Keller lists magnitude estimation data for eight sen-
tences.5 We compared these to the scores pro-
duced byADIOS, and obtained a significant corre-
lation (Figure 7). The input module seems capa-
ble of dealing with the substitution ofa with the
or of take with destroy, and it does reasonably
well on the substitution ofHow many men with
Which man. We conjecture that this performance
can be improved by a more sophisticated normal-
ization of the score produced by the input module,
which should do a better job quantifying thecover
(Edelman, 2004) of a novel sentence by the stored
patterns. The limitations of the present version of
the model became apparent when we tested it on the

4Four of the subjects only filled out the test partially (the
numbers of responses were 300, 300, 186, 159, 96, 60), but the
correlation was highly significant despite the missing data.

5http://elib.uni-stuttgart.de/opus/volltexte/1999/81/pdf/81.pdf



52 sentences from Keller’s dissertation, using his
magnitude estimation method (Keller, 2000).6 For
these sentences, no correlation was found between
the human and the model scores. One of the more
challenging aspects of this set is the central role of
pronoun binding in many of the sentences, e.g.,The
woman/Each woman saw Peter’s photograph
of her/herself/him/himself. Moreover, this test set
contains examples of context effects, where infor-
mation in an earlier sentence can help resolve a later
ambiguity. Thus, many of the grammatical contrasts
that appear in Keller’s test sentences are too subtle
for the present version of theADIOS input module
to handle.

Acceptability of correct and perturbed artifi-
cial sentences. In this experiment 64 random sen-
tences was produced with a CFG. For uniformity the
sentence length was kept within 15-20 words. 16 of
the sentences had two adjacent words switched and
another 16 had two random words switched. The 64
sentences were presented to 17 subjects, who placed
each on a computer screen at a lateral position re-
flecting the perceived acceptability. As expected,
the perturbed sentences were rated as less accept-
able than the non-perturbed ones (R2 = 50.3% with
p < 0.01). We controlled for sentence number, for
how high on the screen the sentence was placed, for
the reaction time and for sentence length; only the
latter had a significant contribution to the correla-
tion. The random permutations scored significantly
(p < 0.01) lower than the adjacent permutations.
Furthermore, the variance in the scores of the ran-
domly permuted sentences was significantly larger
(p < 0.005), suggesting that this kind of permu-
tation violates the sentence structure more severely,
but may also sometimes create acceptable sentences
by chance. Previous tests showed thatADIOS is very
good at recognizing perturbed CFG-generated sen-
tences as such, but it remains to be seen whether or
not ADIOS also exhibits differential behavior on the
adjacent and non-adjacent permutations.

Acceptability of ADIOS-generated sentences.
ADIOS was trained on 12,700 sentences (out of a
total of 12,966 sentences) in the ATIS (Air Travel
Information System) corpus; the remaining 226 sen-
tences were used for precision/recall tests. Because

6We remark that this methodology is not without its prob-
lems. As one of our linguistically naive subjects remarked,
“The instructions were (purposefully?) vague about what I
was supposed to judge — understandability, grammar, correct
use of language, or getting the point through. . . ”. Indeed, the
scores in a magnitude experiment must be composites of sev-
eral factors — at the very least, well-formedness and meaning-
fulness. We are presently exploring various means of acquiring
and dealing with such multidimensional “acceptability” data.

ADIOS is sensitive to the presentation order of the
training sentences, 30 instances were trained on ran-
domized versions of the training set. Eight hu-
man subjects were then asked to estimate accept-
ability of 20 sentences from the original corpus, in-
termixed randomly with 20 sentences generated by
the trained versions ofADIOS. The precision, calcu-
lated as the average number of sentences accepted
by the subjects divided by the total number of sen-
tences in the set (20), was0.73 ± 0.2 for sentences
from the original corpus and0.67 ± 0.07 for the
sentences generated byADIOS. Thus, theADIOS-
generated sentences are, on the average, as accept-
able to human subjects as the original ones.

5 Concluding remarks

The ADIOS approach to the representation of
linguistic knowledge resembles the Construction
Grammar in its general philosophy (e.g., in its re-
liance on structural generalizations rather than on
syntax projected by the lexicon), and the Tree Ad-
joining Grammar in its computational capacity (e.g.,
in its apparent ability to accept Mildly Context Sen-
sitive Languages). The representations learned by
the ADIOS algorithm are truly emergent from the
(unannotated) corpus data. Previous studies focused
on the algorithm that makes such learning possible
(Solan et al., 2004; Edelman et al., 2004). In the
present paper, we concentrated on testing the input
module that allows the acquired patterns to be used
in processing novel stimuli.

The results of the tests we described here are en-
couraging, but there is clearly room for improve-
ment. We believe that the most pressing issue in
this regard is developing a conceptually and com-
putationally well-founded approach to the notion of
cover (that is, a distributed representation of a novel
sentence in terms of the existing patterns). Intu-
itively, the best case, which should receive the top
score, is when there is a single pattern that precisely
covers the entire input, possibly in addition to other
evoked patterns that are only partially active. We are
currently investigating various approaches to scor-
ing distributed representations in which several pat-
terns are highly active. A crucial constraint that ap-
plies to such cases is that a good cover should give a
proper expression to the subtleties of long-range de-
pendencies and binding, many of which are already
captured by theADIOS learning algorithm.
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