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Abstract:  

With increasing publication and data production, scientific knowledge stands not 

simply as an achievement but also as a challenge. Scientific publications and data are 

increasingly treated as resources that need to be digitally ‘managed.’ This gives rise to 

scientific Knowledge Management (KM): second-order scientific work aiming to 

systematically collect, take care of and mobilise first-hand disciplinary knowledge and data in 

order to provide new first-order scientific knowledge. We follow the work of Leonelli (2014, 

2016), Efstathiou (2012, 2016) and Hislop (2013) in our analysis of the use of KM in 

semantic systems biology. Through an empirical philosophical account of KM-enabled 

biological research, we argue that KM helps produce new first-order biological knowledge 

that did not exist before, and which could not have been produced by traditional means. KM 

work is enabled by conceiving of ‘knowledge’ as an object for computational science: as 

explicated in the text of biological articles and computable via appropriate data and metadata. 

However, the founded concepts enabling computational KM risk focusing on only 

computationally tractable data as knowledge, underestimating practice-based knowing and its 

significance in ensuring the validity of ‘manageable’ knowledge as knowledge.  

 

Introduction:  

Scientific knowledge in the 21st century is not only an achievement but increasingly a 

challenge. What looks like a great resource -so many publications, so much data- is only a 

resource if one can manage to manage it –or so scientific Knowledge Management practices 

propose. The last few decades have witnessed the growth of a meta-level of scientific work: 

“Knowledge Management” (KM) develops second-order scientific work, geared to collect, 

take care of and discover first-order scientific knowledge and data, by computational means. 

How does current second-order KM shape first order scientific knowledge? We answer by 

considering the case of KM-enabled systems biology.   

We expand on the work of Sabina Leonelli on data-centric biology (2014, 2016), 

Sophia Efstathiou on technical, founded concepts (2012, 2016) and Donald Hislop on 

organisational Knowledge Management (2013) to argue that, in the case of systems biology, 

scientific KM is helping to produce new first-order biological knowledge that did not exist 

before, and which could not have been produced by traditional means. This happens by 
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conceiving of ‘knowledge’1 as an object for computational science: as explicated in written 

text and rendered computable via data and appropriate metadata. However, the founded 

concepts enabling computational KM come at a cost. They risk focusing on only 

computationally tractable data as knowledge, underestimating practice-based knowing and its 

significance in ensuring the validity of ‘manageable’ knowledge. We conclude by reflecting 

on what a practice-based epistemology in KM would imply, looking to organisational 

Knowledge Management theory as a guide. 

Our thesis derives from joint work among philosophers, biologists and 

bioinformaticians at the Norwegian University of Science and Technology (NTNU). Our 

work was funded as an “integrated” interdisciplinary project to investigate Ethical, Legal and 

Social Aspects of systems biology (cf. similar work in Stegmaier 2009; Rabinow and Bennett 

2009; Leonelli 2010. Our own approach is outlined in Nydal et al. 2012). From September 

2011 to December 2014, the co-authors worked through monthly meetings, the 18-month 

embedded research of Efstathiou in the lab of Lægreid, co-authorship, text-based reflection 

and discussion, joint international research trips and conference organisation. Philosophical 

research used empirical qualitative methods including participant observation, in-depth 

interviews with fourteen scientists, six of which directly inform this paper, as well as several 

informal interviews, analyses of scientific texts and of our own co-authored texts (cf. 

Wagenknecht et al. 2015; Van der Burg and Swierstra 2013). While accepting that some 

critical interests of socio-humanists can become troubled and trouble the frame of a shared 

research project (Balmer et al. 2015), we argue in form and message for practice-based, 

integrated work as a means to understand scientific knowledge production in the 21st century.  

Our paper has three main sections. Section 1 outlines scientific KM and its tools, as 

second-order scientific work in biology, operating on first-order biological knowledge. 

Section 2 illustrates the development of new first-order biological knowledge through second-

order KM tools: building a “knowledge assembly” model within the field of systems biology. 

We reflect on the founded knowledge concepts and epistemologies that drive computational 

KM in Section 3. 

 

1. Knowledge as a Challenge: Second-order computational Knowledge Management in 
the life sciences  
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 We use double quotes to mark “words”, single for ‘concepts’ and no quotes for the things they refer to/pick out. 
Double quotes can also function as “scare-quotes” to mark concepts in need of further analysis.   
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Derek J. de Solla Price –famous for his idea of ‘big’ science – reached his conclusion 

using the rate of scientific publication as a proxy for the growth of science (Price 1961, 1963). 

The growth of scientific publication is today emerging as a scientific challenge itself. 

Publication is growing at exponential rates across traditional outlets, like journals, and new 

outlets like open archives, proceedings and home pages, with databases archiving this 

information struggling to keep up (Larsen and von Ins 2010, 576-600). Digital data has now 

inherited the sceptre of ‘bigness’ from science: in 2013, 90% of the world’s data had been 

produced in the last two years (SINTEF 2013). Big data includes data produced by scientific 

activities, such as high-energy (big) physics, but also and importantly the digital footprints of 

personal and professional lives lived online. Data science is an emerging catch field devising 

new ways to learn from such digital data (cf. the term’s first usage by Cleveland 2001). These 

new approaches to knowing through publications and data are heavily reliant on 

computational, quantitative methods and statistical analysis. However, the study of 

knowledge as a usable resource developed first as a field in the social sciences, as a part of 

business management and organisation studies.  

Knowledge Management (KM) became a focus for organisation studies roughly in the 

mid 1990s, at the same time as the Internet was becoming popularised and computers cheaper 

(Hislop 2013). The general focus of organisational KM was how to take care of the 

knowledge of a corporation: this included developing theoretical understandings of what 

‘knowledge’ is for/in organisations and ways to cultivate, share or otherwise capitalise on this 

kind of resource. Organisational KM thus spanned epistemological theoretical work, 

qualitative social science methods such as organisational ethnography, and technically 

oriented sub-fields, such as utilising Information and Communication Technologies to retain, 

analyse or share employees’ knowledge, in their absence. Though Organisational KM is not a 

standalone discipline, it is pursued using different disciplinary approaches.  

In life science, KM is synonymous to this last type of computational or digital KM. Its 

methods are more akin to computer science and informatics ones than to social science ones, 

focusing on the computational management of scientific knowledge. Humans are crucial 

participants in KM, yet the recruitment of computers is an organising goal. Consider some 

standard tools developed for second-order KM work on bioscience knowledge (Antezana et 

al. 2009, 393-394).   

• Knowledge Representation (KR) languages: These are formalisms aimed to represent 

real-world entities and the relationships between them through abstraction, in the form 
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of logical statements that are computationally comprehensible. KR languages provide 

“commitments” for how to observe a domain and how to reason over it. Formal KR 

helps structure communications between different computer systems to avoid 

ambiguity, for instance when collecting and sharing data. For such “interoperability”, 

systems need to adopt a shared syntax (a way of parsing entities) and a means of 

understanding semantics (the assigned meaning) associated with the syntax. 

• Ontologies: Ontologies can be imagined as taxonomies of what “exists” –really, if one 

is a realist, or specifically for a particular domain following more pragmatic, pluralist 

or anti-realist approaches2 (Chalmers 2009; Lord and Stevens 2010). In biology, 

“bioontologies” are built to be amenable to computational usage: they are structured 

through prescribed relations between entities, for example “is_a” or “part_of”, using 

KR languages. They may be understood as vocabularies with a specification of 

intended meaning, or as “controlled vocabularies” plus relations. Ontologies may be 

formal, using description logics, or non-formal, when describing meaning in ‘natural’ 

language.  

• Ontologies are populated with information through curation or biocuration. Curation 

involves “extracting knowledge” from text and is done usually “manually”, i.e. by 

people (Antezana et al. 2009, 394). Biocurators are biology experts, engaged in 

reading the published biological literature and to translate key findings in the scientific 

literature to annotations of biological entities using expressions composed of terms 

provided by controlled vocabularies and ontologies, which can then be handled by KR 

models. Biocurators currently do most of the difficult and uncertain “interpretation” of 

text (Efstathiou field notes, European Bioinformatics Institute visit -February 6-8, 

2013; Leonelli 2014). Biocurators are also often female, employed temporarily, and 

undervalued (cf. Gabrielsen 2018). Even though demand for biocuration is huge, 

biologists are not motivated to pursue this work as it is considered less innovative3. 

KM tools are being developed for biocurators to semi-automate information-mining 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Barry Smith has been an influential philosopher, producing a realist Aristotelian ontology. Nicholson and 
Dupré (2018) collect views on a process-based understanding of biology, including how this may impact 
bioontologies.  
3 Goble and Stevens (2008) report that John Quackenbush describes standards as ‘‘blue collar science” 
adding that “No-one will win a Nobel Prize for defining a workable format standard” (688). See also 
the compelling piece of Goble and Wroe (2004), comparing life scientists’ and computer scientists’ 
‘feud’ to the Montagues and the Capulets in Romeo and Juliet, blocking a great romance. 
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and information-entry –though the prospects of fully replacing humans here is highly 

unlikely.  

• The Semantic Web is envisioned as a next generation web that will help computers 

“interpret” online content. This interpretation will happen, roughly speaking, through 

extra layers of information. For instance, while reading a Wikipedia article on “cells” 

you will know from the discursive context whether these are prison cells or eukaryotic 

cells. A layer of meta-data can make this distinction clear to a computer, for instance 

by identifying terms through Internationalised Resource Identifiers (IRIs). This is like 

teaching someone a language by pointing: prison “cell” would be hooked onto a 

different IRI than biological “cell”; and so too with terms for relations, processes, 

conjunctions, etc. Standard information exchange languages HTML and XML have 

already been extended to support semantics within scientific domains, e.g. the Systems 

Biology Markup Language SBML (Hucka et al. 2003). The simplest semantic KR 

language for information exchange is the Resource Description Framework (RDF), 

which uses triples, of the form “(subject, predicate, object)”, to represent information 

(Antezana et al. 2009, 397). Ontology languages can structure RDF further, and enable 

operations on them (cf. RDF Schema RDFS, or Web Ontology Language OWL)4.  

Scientific KM infrastructures are being developed through work upstream –by authors 

sharing “knowledge” through standardised formats, downstream –by curators and database 

managers who extract and store “knowledge” using KM tools, and midstream -by scientists 

sourcing and analysing “knowledge” from online resources. Imposing standards on scientific 

knowledge production aims to align second-order KM infrastructures with first-order 

knowledge production to “enhance” -make more precise, faster, larger-scale- the production 

of knowledge on the first-order (cf. recently Wilkinson et al. 2016; Edwards et al. 2007).  

Why not just see KM as a tool for science, instead of a scientific research field itself? 

Scientific KM deserves the name ‘science’, as it promises to enable new first-order 

knowledge: it combines knowledge from information science and statistics with knowledge of 

a target epistemic domain’s native epistemic standards to ensure that first-order knowledge 

and data are managed in ways that can ensure their validity, relevance and ethos. Certainly, 

second-order KM relies on first-order knowledge for its existence –there must be some kind 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 Such digital KM tools are also being developed for other fields, such as archaeology and the 
humanities, but our focus here is bioscience. 
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of ‘knowledge’ there to manage. Yet scientific KM is developing science (biology, history, 

economics, …) on a meta-level, through codifying and managing its ‘own’ scientific activity 

explicitly and systematically. In this mode, KM-enabled science is like a snake biting its own 

tail, seeking to grow by re-sourcing its ‘own’ scientific activity in new, scientific, digitally 

mediated ways.  

But is scientific growth possible this way? How can second-order KM add to first-

order knowledge? We explore this question through a case and example. 

2. Scientific Knowledge Management producing first-order biological knowledge 

To illustrate the work of scientific KM and its impact we examine KM in the field of 

systems biology. As mentioned, our work is based on empirical, philosophical research.  

Over the course of January 2012 to September 2013 Efstathiou participated daily in 

the work environment of Lægreid’s lab, sharing office space with project members, attending 

and presenting in lab meetings, and following computational modeling work while also 

observing animal modeling in another lab (cf. Efstathiou 2018). Participation included 

observing people in their work environment and interviewing them, formally and informally, 

that is, using structured and unstructured interview formats. For this article we draw on six in-

depth interviews pursued by Efstathiou, including with Lægreid and Kuiper and completed in 

the Spring and Fall of 2012, three of which are quoted here. Besides co-authors, one of our 

interviewees, ‘Luke’, has been a key informant, offering opportunities for several informal 

interviews in the period of the project.  

Our qualitative analysis of interview material focused on the use of the term 

“knowledge”, and “knowing”. We coded for different uses of this term, identifying manifest 

and operative concepts of knowledge in these domains (Haslanger 2005), i.e. definitions of 

knowledge in KM textbooks, and what conceptions of knowledge are “founded” and 

operative in getting KM work done (Haslanger 2005; Efstathiou 2012). Our focus was the 

practical wielding of the word “knowledge”: How do KM researchers apply in practice, in 

bodily practice, the term “knowledge”? We put special attention on whether usage varied 

across disciplines.  

In articulating a logic in the social practice of computational KM we claim that 

researchers operate with a sense of “knowledge” that locates it in the actual text of articles, as 

explicated facts and information, and further as arising from appropriately annotated data and 

metadata. This practice provides a way of working with knowledge as a thing, a resource to 

be extracted and organized from texts via the help of computers making new results possible. 
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What our method does not support is a claim about what all or most KM researchers think. 

Rather, what we are communicating to the reader is one kind of social practice of knowledge 

and new conceptions of knowledge that emerge from this material, and which may apply 

elsewhere. Finally we choose to illustrate these ideas through our empirical material and 

organizational KM theory instead of starting with epistemological discussions in philosophy, 

as our focus are situated linguistic-embodied practices specific to KM.  

We dub the group led by Lægreid the GAstrin BIology group, or GABI, and the group 

led by Kuiper as the SEmantic Systems Biology group, or SEB. The size of the groups is 

comparable, and has varied in this period between 5 to 10 members. GABI members are 

primarily trained in molecular biology, and lab-bench science. SEB members rely primarily 

on computational training, though several have a mixed background including biology. We 

use gendered acronyms to signal the gender balance in these groups. At the time of writing 

GABI is led by and includes a majority of scientists who identify as female, while SEB is led 

by and includes almost exclusively scientists who identify as male, with women in junior 

positions – profiles typical of respectively molecular biology and computer science work. 

Both groups include international members, though SEB is significantly more international. 

Using KM capabilities, GABI and SEB members are working to understand how mammalian 

cells respond to stimulation by the hormone gastrin. They are doing so within the frame of 

systems biology.  

2.1 Systems biology and KM 
 

Systems biology is a bioscience approach that has flourished in the paradigm of 

genomics (Powell et al. 2009; Keller 2005). The completion of the Human Genome Project in 

the early 2000s both made clear that genes cannot account for biological complexity5, and 

produced tools for sourcing more and more –omics data in need of accounting for (Blake and 

Bult 2006). From a field of experimental science purporting itself to be too complex to admit 

mathematical formalisation, biology is now arguably too complex not to try (Green 2017). 

Systems biology factors into the study of biology some of the complexity, multi-layeredness 

and multi-causality that biological systems seem to have by combining molecular biology 

with methods from mathematics, physics and computer science. It negotiates contrasting 

commitments to abstraction among these epistemic communities (Keller 2002) to help 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5 A typical human-centric and gene-centric way to capture missing information is to compare the HGP 
findings on the genome of humans estimated at 30K genes with the weed Arabidopsis that counts 26K 
genes.  
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understand biological systems as multi-composed and dynamic (Calvert 2010; Calvert and 

Fujimura 2011).  

Computational tools are becoming crucial for the study of multi-component biological 

systems. The systems biology of a few components has been pursued for decades (Keller 

2002; Peter and Davidson 2012) but approaches building on large-scale –omics data emerged 

only in the new century (Boogerd et al. 2007; Green and Wolkenhauer 2013). Computation is 

considered crucial for mathematical simulation and reasoning about large-scale systems, and 

for managing knowledge about hundreds of components at the same time.  

But how is “knowledge” understood within KM-enabled biological practice? We 

cannot answer that question in general, but we consider some accounts by SEB researchers.  

2.2 “Knowledge” in a semantic systems biology context 

The review used earlier to map key tools in the field of scientific KM is co-authored 

by SEB members. Here is how the authors manifestly define knowledge: 

The concept of data came into prominence relatively recently, mainly due to the 

widespread use of the information and communication technologies (ICT) and the 

advent of modern empirical technologies that outpour huge amounts of data. Data 

should not be confused with knowledge –the former is just a collection of facts that 

require interpretation in order to be converted into knowledge. Thus, knowledge is 
data plus an interpretation of its meaning (Antezana et al. 2009, 392; emphasis 

added).  

“Knowledge” is here juxtaposed to “data” and readers are warned against confusing the two. 

Knowledge can only be derived from an “interpretation” of the meaning of data. What does 

this involve? Not any interpretation goes! 

We often need to specify the meaning of a word by attending to its use-context. If data 

are numbers or labels, knowledge is similarly described as possible to obtain by 

supplementing data with context.  

To give an example, consider the output of a microarray experiment. This is pure 

data, a matrix of labels and numbers that conveys no meaning to the human mind. A 

subsequent analysis of the data may reveal that a certain group of genes is over-

expressed under certain conditions; if this finding would be based on experimental 

evidence obtained through accepted analysis approaches and have statistical 

significance, this would comply with the conditions above and constitute a piece of 

knowledge. Obviously, the same set of data may afford many alternative 

interpretations. Therefore, the concept of ‘provenance’, keeping track of how pieces 
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of knowledge came to be, is crucial for KM. (Antezana et al. 2009, 392-393; emphasis 

added) 

Providing context happens by specifying data provenance. This is an epistemologically thick 

concept as it is meant to keep track of the experimental analysis approaches used to derive the 

data. Data provenance is understood to provide evidence and thus to help choose a valid data 

interpretation and to convert data into “pieces of knowledge” –note the metaphorical parsing 

of knowledge into bits. This in effect involves handling extra data about the data, or 

‘metadata’, for instance when the data in question were obtained, by what experimental 

procedure, on what material:  

Numbers themselves [data] are meaningless, but knowing that the column with 

numbers depicts quantified fluorescence from a microarray experiment done on a 

breast tumour RNA extract allows one to interpret these as proxies for gene activity, 

if one also knows that each row represents one specific gene. (Comment on text, 

12.10.14; emphasis added) 

Knowledge is conceived as interpreted, or contextualised data (numbers or facts), where the 

contextualisation happens via the provision of metadata that help specify the provenance of 

these data to convert them into knowledge. How particular is this understanding of knowledge 

to SEB members? 

In 2007 Chaim Zins published a Critical Delphi study of 150 information scientists 

specifically to analyze their definition of “three key concepts” (497): data, information and 

knowledge. Zins (2007) reports that in their majority responses conceived of “knowledge” as 

‘nonmetaphysical’, i.e. as accessible to epistemic scrutiny, as ‘cognitive-based’, i.e. 

concerning states of mind, or meaning and intention, as ‘propositional’, i.e. as distinct from 

practical knowledge or knowledge by acquaintance, and last as ‘human-centered’, i.e. as 

pertaining to humans as opposed to other systems (487-488). The majority of respondents 

further agreed that data, information and knowledge are part of a continuum, where “data are 

the raw material for information, and information is the raw material for knowledge” (Zins 

2007, 497; the existence of a Wikipedia entry on the “DIKW ‘pyramid’ of Data, Information, 

Knowledge and Wisdom” further indicates the typicality of this notion).  

The manifest concept of knowledge defined among SEB members seems to agree with 

results in Zins (2007): knowledge is perceived as accessible to epistemic scrutiny, delivered 

by epistemic work, such as providing context to data, and as cognitive-based, “the 

interpretation of meaning”, instead of by smelling, touching or being with data. Even if 

bioinformaticians tacitly know how to handle data, the definition of knowledge they work 
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with is of it as a cognitive, intellectual output. However there is a point at which SEB 

members diverge from the results of Zins (2007).  

SEB develop computational, semantic approaches to KM, using the developing 

Semantic Web. In this context, “knowledge” is not understood as human-centered, as Zins 

(2007) claims, but as accessible by and communicable among computers.  

Traditionally, the interpretation [of the meaning of data] was carried out by a human 

being; however, today the interpretation of large-scale data sets is typically only 
possible with the help of computers because of the sheer volume of data. … KM is 

the process of systematically capturing, structuring, retaining and reusing information 

to develop an understanding of how a particular system (e.g. an organelle or a 

pathway) works, and subsequently to convey this information meaningfully to other 

information systems (knowledge distribution). (Antezana et al. 2009, 392, 393; 

emphasis added). 

In this case, knowledge derived from large-scale data is described as “only possible with the 

help of computers”, and further, as possible to “distribute” to other information systems. 

Knowledge is thus not understood as “human-centered” but as possible and exchangeable, at 

times only, via computational means. This could be a matter of SEB’s research focus, it may 

track changing perceptions in information science, or it might be that everyday and technical 

concepts of knowledge are not well kept apart in the inquiry.  

2.3. Founded knowledge concepts  
 

Ideas about knowledge appear here as “founded” in the epistemic practice of 

computational KM. Founded concepts are defined by Sophia Efstathiou as “transfigurations” 

of everyday ideas, following operations that gear them to work as technical, scientific 

concepts (2012, 2016). Founding a concept in a scientific domain happens through actions 

that can seem natural to practitioners, like (Efstathiou 2016, 53):  

• focusing the concept on an ontological domain of interest 

• expressing a concept in terms ‘native’ to a scientific domain  

• operationalizing or devising ways to measure a concept  

• discussing or publishing about this concept with colleagues.  

Founding is “done” when the original idea is possible to find within the scientific domain as a 

scientific concept. Efstathiou calls the result “found science” by analogy to found art.  
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It appears that “knowledge” operates as a technical, founded concept in KM work: it 

re-articulates an everyday idea of knowledge to fit the epistemic cultures of computational 

science. To track how founding could happen here consider a manifest definition of an 

everyday idea of knowledge sourced from the Oxford English Dictionary6. Two main 

meanings of ‘knowledge’, ordinarily understood, are specified there:  

• Facts, information and skills acquired through experience or education; the 

theoretical or practical understanding of a subject – e.g. I have good knowledge 

of grammar.  

• Awareness or familiarity gained by experience –e.g. Sílvia’s knowledge of 

human nature is remarkable –she can always read people.  

Following this definition we can say that, manifestly, knowledge is ordinarily understood to 

involve learning facts, information or skills through education, or developing familiarity and 

awareness through personal experience. 

We here propose that founding “knowledge” as a technical idea within KM happens 

by focusing on the ontological domain of facts and information, i.e. on knowledge as a 

phenomenon concerning the theoretical and practical understanding of a topic. This narrows 

the ontological scope of the everyday idea, to exclude informal, experiential and personal 

dimensions of knowledge.  The concept becomes honed into those aspects of knowledge that 

are relevant for information science: knowledge then is, in this domain, facts and information. 

This specification allows a concept of knowledge to be further founded within computational 

KM by translating ‘facts and information’ in terms native to computer science like ‘data’, 

‘metadata’ and ‘provenance’, which allows the concept to be further operationalized via 

appropriate Knowledge Representations, ontologies and relevant syntax/semantics.  

These two founded technical concepts: explicated knowledge (facts and information in 

the scientific literature) and computable knowledge (appropriately derived data and metadata) 

allow KM researchers to approach knowledge as (always already) a computational 

phenomenon. What power can founded concepts of knowledge afford working biologists? 

Consider a perspective from collaborators in SEB.  

SEB member ‘Ari’ worked in conservation biology in India before his Masters in 

Bioinformatics (Interview, 3.10.12). Ari realised how important “handling data” is, while in 

the field. He worked with big fruit-eating bats, a specialist population feeding and living in 

only specific habitats, (like he is, he jokes, as a vegetarian in Scandinavia), and was also 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 The definition is available at: http://oxforddictionaries.com/definition/english/knowledge 
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involved in a behavioural study of arachnids (spiders) “as big as my palm” (Interview, 

3.10.12). Ari recalls that different research groups in the same research community often used 

different guidelines making it difficult for data from one institute to fit another’s standards. 

He recalls how challenging it was to get from local to national data on the same species, 

especially to combine data from the North and South of India: “The North-South divide in 

India is sharp -in culture.” (Interview, 3.10.12). Coming to his current work in semantic 

systems biology Ari explains: 

It is part of human nature: we are ambiguous in the way we say things. Semantic Web 

connects data unambiguously and meaningfully, with meaning attached to context 

so that they can be changed or agreed upon. (Interview, 3.10.12; emphasis added) 

How can Semantic Web technologies help humans communicate, “unambiguously” and 

“meaningfully” here? 

The larger mission of Semantic Web is to convert stuff to entity-based content. So 

for example, when you say “Sophia”, it should present YOU. “Sophia is—a person”, 

“is—a biological entity”, “is—a woman”, “is-part-of-the Crossover Research group”; 

these would be different relations built into the knowledgebase to identify YOU. 

(Interview, 3.10.12; emphases added) 

Changing data and agreeing on data, as biologists need to do, is to be mediated and facilitated 

by making data unambiguous and ‘known’ first for computers and networks of computers. 

The context where biological data would be given meaning is, in this case, a mixed biological 

and semantic web context, where “knowing” involves properly identifying things and relating 

them to other identified things, through identified relations.  

This is a founded concept of knowledge as computable, from data plus appropriate 

metadata, which is markedly foreign to biological practice. The concept seems possible to 

smuggle into first-order biological practice, through a prior founding of ‘knowledge’ as facts 

and information explicated in published texts.  

The next section illustrates how founded technical concepts of knowledge as 

explicated and computable facilitate KM practices: they aid KM in deriving new first-order 

biological knowledge, in new ways.  

2.4 KM impacting first-order biological knowledge: Assembling “knowledge” into a 
model  

 
Consider a central question in GABI research:  

• What happens to a cell when it is stimulated by the hormone gastrin?  
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Gastrin is released in the gastric mucosa, the lining of digestive organs, and it contributes to 

physiological processes like digestion, appetite control and body weight regulation. It is also 

associated with several diseases including cancer. GABI researchers are interested in how the 

CholeCystoKinin 2 cellular Receptor (referred to as “CCKR” among researchers) mediates 

these responses from inside the body to cell nuclei and genomes. GABI have pursued wet-lab 

and increasingly KM-based research to answer their central question.  

 
To better understand what happens inside mammalian cells stimulated by gastrin 

(Figure 1), the molecular biologist and GABI member ‘Luke’ collected “published 

knowledge” about all cellular components (genes, proteins, RNAs, metabolites) described to 

respond to gastrin in different experimental systems (different mammalian cell lines, from 

different organisms, at different conditions) (field notes, September 2012). Luke created a 

“knowledge assembly” model, operating with assumptions about the extractability and 

compose-ability of biological “knowledge”, across experimental contexts (Tripathi et al. 

2015). In publications the model is referred to as a “signalling network” and “signalling map” 

primarily, instead of a “knowledge assembly” model, which was how the model was 

described in conversation. The epithet “knowledge-assembly” makes clear the second-order 

application of KM tools in building the model. Calling the model a “signalling network” or 

“map” points instead to the first-order biological target under model representation: cellular 

signalling processes.  

Figure 1: Drawing developed by GABI 
members to represent gastrin-mediated 
signalling and regulation of gene 
expression. The hormone gastrin interacts 
with its specific CCK2 receptor, which 
transduces the gastrin signal through the cell 
membrane (orange curved line), and via 
signalling pathways (red diamonds on green 
rectangles) and gene expression regulators 
(yellow hexagons) down to gene activities 
(pink ovals). [Pulled from Lægreid’s 
presentation slides.] 
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Figure 2: CellDesigner model on screen (left), and in print (right). The model 
encompasses a total of 530 proteins and genes (various shapes) linked by 413 interactions 
(lines). The entity names are hyperlinked to standard bioontologies and databases, and causal 
regulatory information is connected to PubMed IDs of the scientific articles from which the 
information was collected (Tripathi et al. 2015).   

 

Central to representing this “knowledge” is the pathway-editing software 

CellDesignerTM (Funahashi et al. 2003; Kitano 2003) (Figure 2). CellDesigner was created in 

Hiroaki Kitano’s laboratory at Tokyo University (Available online at http://celldesigner.org/). 

Kitano is one of the people leading the current computationally heavy and semantically 

integrated vision of systems biology (cf. Kitano 2002). Why should biologists use this tool? 

Kitano expresses the need to have computationally ‘structured’ visual representations for 

molecular, gene or protein networks and interactions as follows (2003): 

Currently knowledge on molecular interactions is mostly described either by written 

text or by traditional cartoon-like diagrams. Written text is inherently ambiguous, and 

results have had to be re-interpreted by each reader of the article. Most authors of 

biological papers use arrow-headed lines to indicate activation and inhibition, 

respectively, with mixed and often inconsistent semantics. However, traditional 

diagrams are informal, often confusing, and much information is lost. Thus the urgent 

task is to provide a set of notations that have powerful expression capability and are 

highly readable for biochemical and gene regulatory networks (169, emphasis added). 

Kitano’s argument echoes Ari’s remarks: standard biological communication through text and 

diagrams is “ambiguous”. How is published knowledge “disambiguated” by CellDesigner? 

By providing standardised formats for its representation and by thereby fixing rules for its 

interpretation. The shapes, or “glyphs” used by CellDesigner are generally accepted as a 

standard for the visual representation of biological networks, known as Systems Biology 

Graphical Notation (SBGN –Le Novère et al. 2009). CellDesigner enables a computational 
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simulation of biological ‘knowledge’, understood here as facts and information described by 

written text and diagrams in the literature. CellDesigner uses the KR language generally 

accepted for such simulations, Systems Biology Markup Language (SBML –Hucka et al. 

2003). The representational choices offered by CellDesigner look similar to how biologists 

would “anyway” draw diagrams, yet CellDesigner enables the computational comparison, 

compilation and sharing of these models, and the further interpretation of ‘knowledge’ 

explicated and made computable in them.  

CellDesigner helps manage textually explicated knowledge by hosting it in 

computationally manageable, standardised, computable formats. But computational tools are 

also needed to feed knowledge into the model. Luke searched scientific publications for 

combinations of the hormones “cholecystokinin (CCK)” and its receptor “CCK1R” and of  

“gastrin (G-17)” and its receptor “CCK2R”, through PubMed and various literature-mining 

tools, e.g. LitInspector and iHOP (Tripathi et al. 2015, 2). First-order biological knowledge 

developed by training and practical experience with standard wet-lab work is crucial for 

adequately curating data resources and for model building. More than 250 of circa 1200 

articles were selected as useful references, by Luke, because they contained what was 

deemed, by curator judgment call, as “good evidence” that the reported signalling event is 

mediated by the interaction of gastrin with its receptor, and provided sufficient signalling 

information allowing for linkage of a new model component to its upstream and/or 

downstream regulators and effectors (Tripathi et al. 2015, 2).  

Not any knowledge claim explicated in scientific text will do. References selected here 

were “extracted” by a team of five trained biologists from GABI and SEB who read the 

literature, and represented the information and facts explicated in this literature appropriately 

via the CellDesigner platform. The five team members individually read and ranked claims in 

the final selection in terms of their confidence in these claims as “OK, DISCUSSION, 

INCORRECT”, and they further critically discussed how to represent reactions, components 

and cellular localisations through the software (cf. Tripathi et al. 2015, 3). This scale of 

parallel curation is rather uncommon in large-scale biocuration, given how limited current 

resources for biocurators are. The protocol followed here is thus atypically rigorous and very 

much reliant on the biological expertise of the curators in adequately translating between 

explicated and computable knowledge. 
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.  
Figure 3: Collaborative model-construction on the PAYAO platform. On the left hand 
panel we see colours coding map “points” tagging model components that group members 
discussed: the tagsets used are ‘OK’ (green),‘DISCUSSION’ (yellow), ‘INCORRECT’ (red) 
and ‘IMPLEMENTED’ (blue). (Reproduced with permission, Tripathi et al. 2015, figure 1) 
 

2.5 KM as epistemically productive and practice-dependent 

Sabina Leonelli (2014) argues that the prospects of fully automating and replacing the 

capacities of scientists to assess and interpret data are highly doubtful but that computational 

tools facilitate collaborative thinking among working teams of scientists (399-400). 

Collaborative model-construction by GABI and SEB members was indeed a crucial outcome 

of using the community-curation platform associated with CellDesigner, PAYAO (Figure 3). 

Still, and though we agree with Leonelli that full automation is highly unlikely, these 

computational tools are not epistemically inert.  

Miles MacLeod and Nancy Nersessian have analysed building dynamic network 

models within Integrative Systems Biology as “modelling from the ground up” (2013). The 

model they focus on is similar to the CCKR model but with added work by engineers to 

model these interactions dynamically. In their analysis, this type of model-building involves 

approximating the causal structure of a phenomenon by assembling existing information 

about its components –as opposed to generating the phenomenon from simpler theoretical 

rules. This approach can be theory “light”, following pragmatic constraints (see also Leonelli 

et al. 2012). But in the case of MacLeod and Nersessian (2013), constructing such models 

involved engineers with no biological knowledge performing similar literature searches as 

Luke did in our case. For example, describing the construction of dynamic models of such 

pathways by an engineer, MacLeod and Nersessian (2013) say: “In each case, the pathway 

given to her by her collaborators was insufficient given her modelling goals, and she was 

forced to pull in whatever pieces of information she could find from literature searches and 

databases about similar systems or the molecules involved, in order to generate a pathway that 

mapped the dominant dynamic elements” (541). Lacking an adequate knowledge about 
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biology could mean that when selecting what references to include in a pathway model, all 

one can rely on is KM resources. 

Further scientific inferences were made ‘automatically’ also in our case study. Once 

explicated biological knowledge was curated and represented in CellDesigner, the map was 

analysed using computational tools, in this case Cytoscape and the BiNoM plugin (Shannon et 

al. 2003). Decomposing the map into sub-networks using a “pruning” software function 

“revealed” 18 modules that were “higher-level structures” of the signalling map (Tripathi et 

al. 2015). The software helped to analyse what happens in a cell stimulated by gastrin by 

isolating different signalling pathways linked to particular outcomes, like proliferation, 

migration and apoptosis. And still further data, besides the explicated literature-curated and 

computationally analysed knowledge, was brought in to explore these interactions.  

Large-scale Protein-Protein Interaction (PPI) data was downloaded from databases 

using the webservice Proteomics Standard Initiative Common QUery InterfaCe, PSICQUIC. 

The selection was filtered using controlled vocabulary terms to just include binary physical 

interactions, and the data was added to the literature-based map, to enable the further 

biological interpretation of the interactions represented there. Combining interaction data with 

topological network analysis, and using their biological expertise, GABI and SEB researchers 

identified seventy proteins, which “represent experimentally testable hypotheses for gaining 

new knowledge on gastrin- and cholecystokinin receptor signalling” (Tripathi et al. 2015, 1). 

Seventy proteins may seem like a lot of proteins to ask biologists to run individual 

experiments on, but in a field seeking to explore thousands of biological interactions it is a 

small number.  

In sum, computer-based scientific KM enables sourcing, representing and analysing 

the biological literature and it informs hypotheses to test in the lab. Visual communication 

and representation practices are key both for information sharing and for building communal 

vision, especially in multi-disciplinary teams (Carusi 2011; Coopmans et al. 2014). And they 

are epistemologically productive. A biologist may be capable of mentally picturing molecular 

interactions in small-scale models, but this is challenging for large-scale models. Processing 

and depicting biological knowledge about molecular interactions through CellDesigner or 

Cytoscape transforms practices of network construction and analysis in biology. It develops 

the know-how of biologists as users of these tools, while transforming what was originally 

sourced as first-order knowledge explicated in the literature, into data of computational value, 

for the purposes of assembling and analysing this knowledge from a higher-level in a way that 

can feed it back into biological inquiry.  
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This type of work is seen as especially crucial for the field of systems biology. The 

result is computationally accessible data (the model itself) and further explicated knowledge 

(the accompanying article). Note that the epistemic validity of KM-enabled systems biology 

still depends on experimental knowledge of biology: this informs first, creating KM 

infrastructures through adequately aligning the standards, languages and structures required 

by computational tools with what gives meaning to working biologists, and second 

developing epistemically adequate protocols for using KM tools within biological research.  

3. Overcoming limitations of KM knowledge concepts and epistemologies  

Second-order scientific KM is transforming first-order biological knowledge practices. 

But there is a cost to these tools, we caution. The concepts enabling KM researchers to think 

of knowledge as possible to source, “extract” from the literature and to “assemble” and 

“distribute” in computational, semi-automated ways prime an understanding of knowledge as 

an objective object. Computational KM thus risks losing track of the context-sensitivity and 

contestability of scientific knowing unless practice-based biological knowledge is openly 

appreciated as intrinsic to the validity and validation of these tools.  

3.1 Scientific KM and collaborative labour 
How will 21st century biology make appropriate use of ‘its’ knowledge? KM work 

mixes biological and computational expertise, at different levels of visibility and importance. 

Manifestly biological knowledge is the key epistemic resource offered by network models. 

Yet this knowledge is already processed in computational formats: ‘marked’ and ‘marked-up’ 

as computer comprehensible.  

Kitano assumes that biological knowledge formatted in CellDesigner is possible to 

comprehend by biologists. But pointing to a space in a “knowledge assembly” model is not by 

default meaningful to a molecular biologist –at least not when compared to experimental 

observation. When asked about people’s responses to the CCKR model, Luke answers that 

people are sometimes “amused” (Interview, 31.5.12). Sometimes they find the model “scary”: 

as “the very simplified” version of the pathways is the usual picture they have (Interview, 

31.5.12). Luke adds: 

Everyone knows that cell machinery is very complicated, that wiring inside 

the cell is very complicated. So people [molecular biologists] want to focus 

on their own domain [and say]: “If I’m working on this component why care 

about the rest?” (Interview, 31.5.12).  
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The value of computationally founded knowledge of a cellular space is contrasted with the 

value of knowing components one is familiar with, experimentally. The vision of systems 

biology is that of knowing a whole system. But perhaps a “cellular signalling map” is 

frightening for a molecular biologist who does not feel lost (or who is happy to work with 

tunnel vision)! 

GABI member ‘Silja’ was trained in mathematics and computer science but switched 

to biology and biochemistry. Silja worked with mathematicians in the early days of 

microarray experiments to distinguish signal from noise. She recalls the real need for such 

tools, emphasising the risk of making computer scientists’ labour invisible in biology. 

At first we were asking them to work for us, but then we had a project together.... I 

keep saying: “If you need someone to work for you, you need an engineer”. But it is 

not possible to collaborate and keep asking them [bioinformaticians] to work for you – 

we cannot always be leading. They can be main authors, supervisors.  (Interview, 

10.10.12) 

Silja was involved in extensive microarray time-series experiments, producing temporal data 

coveted by both experimentalists and computational biologists. GABI research with this data 

has shown that gastrin upregulates genes that may be involved in different physiological 

processes, including tumorigenesis, proliferation, endoplasmic reticulum stress, anti-

apoptosis, differentiation and migration. In our conversation Silja shared her future plans to 

use the data to further explore protein expression and cell fates in in vitro and in vivo models.  

Why not use the time-series results in silico, to develop KM tools? Silja reports that 

she was invited to reanalyze the data and “get more knowledge” together with SEB 

researchers. She adds: 

But I am more interested in using the data. That is why I am now working with 

‘Tanja’ and ‘Hannah’ [biologists], trying to understand the data more… I like 

experimental (wet-lab) work as well, and I am not so eager about spending 

considerable more time on generating bioinformatics tools. (Interview, 10.10.12; 

emphasis added) 

Silja juxtaposes “understanding the data” with using the data to get more “knowledge”. The 

term “knowledge” here specifies an outcome of computational processing, indicating that the 

founded concept is operating in the lab and also in the work of biologists. This “knowledge” 

is contrasted in the next sentence with what, in Silja’s view, offers an “understanding” of the 

data: “using” the data to do further experimental –wet lab– work. This could indicate a 

contrast between the founded knowledge that results from computational work with (really) 
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understanding the data, through experimental molecular biology. And note also the shift in the 

labour dynamics here: at this moment in time, a biologist could also feel that the ownership of 

her labour is at stake, as computational biologists are ‘using’ biological data7. 

It need not be that Silja is critical to KM development; simply the joy and familiarity 

that experimental work provide may be what drive experimental biologists to continue their 

work. But it certainly seems that practices and values are not smoothly shared across 

computational and experimental domains, posing a choice: How can biology best manage its 

knowledge? Is computational KM enhancing or compromising traditional, first-order 

knowledge production?  

We reflect on these questions in the next section. Our suggestion is that KM may 

enhance first-order knowledge production if it embraces and acknowledges that practice-

based epistemological approaches are part of its practice.  

3.2 Organisational KM: Towards a practice-based epistemology for scientific KM 
Donald Hislop’s account of organisational KM distinguishes two theories of 

knowledge (2013, Chapters 2 and 3). “Objectivist” epistemologies consider knowledge as an 

object: some thing that can be separated from the knowers, codified, stored and trafficked, 

objectively. “Practice-based” epistemologies instead consider knowledge as embedded in and 

inseparable from people’s practices, bodies and cultures and as intrinsically social and 

negotiated. This overlaps with philosophical distinctions between ‘explicit’ and ‘tacit’ 

knowledge (Polanyi 1967), and between propositional and non-propositional or embodied 

knowledge, what Gilbert Ryle called “knowing that” versus “knowing how” (Ryle 1949). The 

importance of practice-based knowledge is highlighted by history and philosophy of biology –

most notably in Keller’s discussion of Barbara McClintock’s “feeling for” her corn plants 

(Keller 1983), but also specifically in the context of biocuration (Leonelli 2014). Here we are 

interested in situating this distinction instead as a part of the theoretical tradition of 

organisational KM which is closer to our informants’ work practice.  

Life science KM, at its word, seems to imply an objectivist epistemology. According 

to Hislop (2013) objectivist epistemologies assume/enforce four claims: 1. knowledge is an 

object, 2. knowledge is objective, 3. explicit knowledge is better than tacit knowledge, 4. 

knowledge is cognitive (18-19). SEB members and their GABI partners involved in our study 

refer to knowledge as a thing, considered possible to separate from those who have it, to 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Different cultures of ownership among knowledge managers/informaticians and experimentalists are 
discussed by Bruno Strasser e.g. 2011. 
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“extract”, codify and analyse it. Semantic web tools seem to promise ‘objectivity’ as 

knowledge is to be “disambiguated”, and thus possible to share among scientists beyond 

particular (idiosyncratic, subjective) terminologies, national/cultural contexts or work 

cultures. Assembling and representing explicated knowledge is seen as ‘presenting the facts’ 

and thus knowledge-assembly models can become synonymous to “maps” of actual cellular 

spaces. There is no doubt that biological knowledge and computer science knowledge can be 

tacit and that both are crucial for epistemically adequate KM. KM scientists would not deny 

this. Yet another type of knowledge takes the spotlight as valuable here.  

Efforts are put into further ‘automating’ quality assessments, explicating and codifying 

practice-based knowledge via “evidence codes”, and other metadata, for biology experts to be 

able to “interpret” data into knowledge faster, using computational tools to help reason to an 

outcome which is considered cognitive as opposed to embodied. Overall, and despite the 

importance of experimentation, KM purports to be able to manage experimentally produced 

knowledge, “better”.  

What would KM look like instead from the perspective of a “practice-based 

epistemology”?  Would a practice-based epistemology even be possible, given how KM tools 

have been developed? Practice-based epistemology highlights aspects of knowledge and 

knowing that are tacit and embodied, and that cohere with the values of feminist epistemology 

(e.g. Anderson 1995). In this view: 1. knowledge is a process, 2. Explicating knowledge is 

incomplete, 3. Knowledge is multidimensional, 4. Knowledge is socially produced, uncertain 

and political (Hislop 2013, 32-41). From this epistemological perspective, there can be many 

frames for understanding biological knowledge. First, biological knowledge could show up as 

embedded in biological practices, occurring in on-going human-non-human laboratory 

activities whereby knowing and doing are hard to dichotomise, and where objects and 

classifications are made and remade depending on the interests at hand (cf. Dupré 1993). In 

this approach, KM tool creation would need to be seen as intrinsically revise-able, and 

durational, if not using process-based ontologies. Further, a practice-based epistemology 

challenges the assumption that biological knowledge can be fully explicated and codified, 

implying that knowledge possible to manage via current computational KM tools would be by 

default incomplete. Following a practice-based epistemology, developing KM tools involves 

inherently ambiguity, uncertainty, and the exercise of judgement on the part of those pursuing 

knowledge –professionals as well as the technologies they relegate decisions to. Third, in this 

view, knowledge is multidimensional both embodied and intellectual, tacit and explicit, 

collective and individual, developing and static. Managing to ‘know’ biology within 
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biological institutions would need to recognise the multiple expressions, “ambiguity”, and 

inconsistencies, also as part of getting better knowledge. Fourth, a practice-based 

understanding of knowledge views it as socially constituted, pursued in communities and 

varying across disciplinary and national cultures for legitimate, indeed unavoidable, reasons. 

National and cultural factors impact how biological knowledge is developed, on what topics, 

for how much funding, with what expectations, on whose bodies. In this frame, knowledge is 

visible as political, meaning that differentiations between knowing and not knowing groups or 

people, humans and nonhumans, come with polarisation, inequalities, conflict and 

negotiations of power.  

As already stated, our material indicates that knowledge practices within current 

computational KM rely on objectivist epistemologies: understanding knowledge as cognitive, 

and objective and of added value when explicated. But perhaps KM need not operate with this 

view. The work of experimentalists, and biocurators to produce KM knowledge structures is 

very much embodied and situated and intrinsic to the quality assurance of KM utilisation 

protocols. In our case, Luke’s and his four collaborators’ labour to read and rank literature 

claims was intrinsic in sourcing “well-evidenced” ”knowledge’ to be further, semi-

automatically, managed. Computational KM practices could openly appreciate themselves as 

part of an ecology of knowing that intrinsically involves practice-based, biological knowing 

and experimentation in its uncertainty, corporeality and context. In this frame, collaborations 

between experimental and computational biologists would become an essential lifeline and 

quality assurer for KM, which could in return help manage knowledge better (Figure 4). 

 

 

           
 

 

 

Figure 4: Drawing developed by SEB members to represent the semantic systems 
biology work-cycle (Left). Semantic systems biology operates on knowledge extracted 
from literature and databases, processing it computationally to develop new hypotheses 
that can be tested in biological experimental practice (Left). Our analysis here flags the 
bits of ‘yin’ in the ‘yang’, and ‘yang’ in the ‘yin’ for this work to be properly balanced 
(right): practice-based knowledge is needed to support computational conclusions -- 
theoretical work is also operative in facilitating experimental work. [Reproduced from 
Kuiper’s presentation slides; see also figure 2 Antezana et al. 2009, 401.] 
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Conclusion  
We have argued for one main point in this article. Computationally enabled 

knowledge management practices offer second-order scientific ways to derive new, first-order 

biological knowledge. We specified two founded concepts of knowledge enabling this work: 

a. knowledge conceived as facts and information explicated in published scientific texts, and 

b. knowledge conceived as computable via appropriately derived data and metadata. KM 

practices help transform biological knowledge into explicated knowledge with computational 

value, for instance structured as “signalling networks” that enable novel clustering and other 

graph analysis operations. This knowledge, though manageable, seems remote from 

traditional experimental knowing, but it should not. Experimental expertise, practice-based 

knowing though processual, uncertain, embodied and contestable are intrinsic to securing the 

validity of manageable knowledge as knowledge.  

 Jim Grey, researcher and software designer in IBM and Microsoft, infamously 

heralded a new, “fourth paradigm” for scientific research: following theory-based, 

experiment-based and computation-based science we were entering an informatics-based 

science –a simplistic but powerful statement (Hey et al. 2009, xviii). Karl Popper, a man of 

clear physicalist and materialist persuasion also considered the move from ‘subjective’ 

knowledge to published theories in libraries as an evolutionary step in human development 

(1972). Yet he argued that the growth of knowledge must be in principle unpredictable: If one 

could predict how knowledge would grow and obtain the knowledge of tomorrow today, there 

would be no more growth to it (Popper 1972, 296-300). Perhaps then, KM visions such as 

those that Jim Gray pose for 21st century knowledge can be seen in these terms: automating 

scientific knowledge discovery were it to be possible would run the risk of killing –or at least 

stunting the growth– of knowledge.  

To finish with the poetry of a.rawlings (2006, 42):  

specify comma, question mark? dissect comma? intersect question mark, comma? 

Collect, sort and frame text.  

How does a text fall asleep? 

Pinch meaning between morpheme and phoneme.  

How does text eat itself? 

Slide meaning into envelope; store in box with semanticide. 
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comma, question mark specimen? comma dissection? question mark, comma cross-

section? 
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