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1. Introduction 

The main goal of Karen Neander’s important book (2017) is to defend a particular version of 

teleosemantics, which holds that the norms necessary for the semantic evaluation of intentional 

mental states in cognitive science are grounded (at least in part) in the normal-proper functions 

of cognitive systems. The account aims to be naturalistic, explaining how intentionality is 

derived from non-intentional and non-semantic properties already recognized by the natural 

sciences. Its scope is restricted to low-level non-conceptual cognition, presuming – as is standard 

practice among naturalistic philosophers of cognition – that insight derived from studying simple 

cases will eventually help illuminate sophisticated human thought. The project is admirable in 

eschewing appeal to intuitions about toy cases, instead building a case on the basis of careful 

discussion of empirical work in cognitive science. My comments will focus on two central 

chapters – a general methodological argument for teleosemantics and a detailed discussion of 

prey-capture in the toad. I argue that while Neander’s work elucidating the toad case, in 

particular, is exemplary, she hasn’t succeeded in discovering what teleosemantics needs, namely, 

an explanatory role for the notion of normal-proper function in cognitive science.  

 

2. The Methodological Argument for Informational Teleosemantics 

 

In chapter 4 Neander offers a methodological argument for informational teleosemantics. It is 

intended to show that the view is supported by the explanations of cognition currently provided 

by cognitive science. Here is the argument: 
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P1        A notion of normal-proper function is central to the multilevel componential analyses 

(i.e. functional analyses) of the operation of bodies and brains that are currently provided 

by physiologists and neurophysiologists.  

P2        The brain’s normal-proper functions include cognitive functions. 

P3        The same notion of function (mentioned in P1) is central to the functional analyses of 

cognition that cognitive scientists provide. 

P4       An assumption in the mainstream branches of cognitive science is that cognition involves 

information processing. 

P5       The (relevant) notion of information involved in such talk of information processing in 

cognitive science is (not a semantically evaluable notion but instead) a notion of natural-

factive information. 

P6        Cognitive science posits “normative aboutness,” with the norms derived from the 

aforementioned normal-proper functions and the aboutness from the aforementioned 

natural-factive information. 

C         Informational teleosemantics is supported by the explanations of cognition that the mind 

and brain sciences currently provide.  

I shall challenge the argument at P3 and P6. 

 The notion of normal-proper function appealed to in P1 (and P2, P3, and P6), Neander 

argues (in chapter 3), is central to biology, and more specifically, to the analyses of bodily and 

brain processes provided by physiologists and neurophysiologists. The notion of N-P function 

has two important features: (i) it is the notion of function that underwrites talk of normal and 

abnormal functioning, as in, for example, talk of a normally functioning human immune system, 

and (ii) it supports a distinction between function and accident, which underwrites the idea that 
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an item is for something. Hearts, for example, are for pumping blood, not for making whooshing 

sounds, though they typically do both. Selected function – what an item was selected to do – is 

one species of normal-proper function, and it is this more specific notion that Neander in fact 

thinks plays a central role in both physiology and the cognitive sciences.  

 I think that feature (ii) – privileging one effect among the various things that an item 

typically does – presupposes some process of selection (typically by evolution in the case of 

biological systems, or by design in the case of artifacts). In any event, the methodological 

argument for teleosemantics appeals only to the more general notion of normal-proper function. I 

will challenge the claim (P3) that this notion plays a central role in cognitive science. 

 The branches of cognitive science at issue in the argument (see P4) are those that 

construe cognition as a species of information processing, in other words, computational 

cognitive psychology and computational neuroscience. The issue, then, is whether the notion of 

N-P function plays an explanatory role in these sciences. If we look at actual practice I think it is 

clear that it does not.1 Computational theorists aim to characterize the processes underlying 

cognition as a species of mathematical process. Observing that a physical system succeeds at 

some cognitive task – detecting significant boundaries in the scene, grasping nearby objects, 

understanding and producing speech, and so on – the theorist hypothesizes that the system 

computes a well-defined function (in the mathematical sense) and explains how computing this 

function constitutes (in the system’s normal environment) the exercise of the cognitive capacity 

that is the explanatory target of the theory.2 The strategy is pervasive in computational cognitive 

science; let me cite a few examples from various cognitive domains. Marr’s (1982) theory of 

 
1 See Egan 2014, 2017 for defense of the view described here.  
2 This mathematical sense of function is not to be confused with the various notions of function 

at issue in the present debate. 
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early vision purports to explain edge detection by positing the computation of the Laplacian of a 

Gaussian of the retinal array. The mechanism takes as input intensity values at points in the 

image and calculates the rate of intensity change over the image. In other words, it computes a 

particular smoothing function. Ullman (1979) hypothesizes that the visual system recovers the 

3D structure of moving objects by computing a function from three distinct views of four non-

coplanar points to the unique rigid configuration consistent with the points. Shadmehr and 

Wise’s (2005) computational account of motor control purports to explain how a subject is able 

to grasp an object in view by computing the displacement of the hand from its current location to 

the target location, i.e. by computing vector subtraction. In a well-known example from animal 

cognition, Gallistel (1990) purports to explain the Tunisian desert ant’s impressive navigational 

abilities by appeal to the computation of the displacement vector to its nest from any point along 

its foraging trajectory. Seung et al. (1996, 1998, 2000) hypothesize that the brain keeps track of 

eye movements by deploying an internal integrator. Theories employing the strategy explain a 

cognitive capacity by appeal to an independently well-understood mathematical function under 

which the physical system is subsumed. In other words, what gets computed, according to these 

computational models, is the value of a mathematical function (e.g., vector subtraction, the 

Laplacian of a Gaussian, a fast Fourier transform) for certain arguments for which the function is 

defined. A fully specified theory of a cognitive capacity will go on to propose an algorithm by 

which the computation of the value of the function(s) is effected, and describe the neural 

hardware that implements the computation.3 

 
3 The specification of the function computed, the specification of the algorithm, and the neural 

implementation correspond, roughly, to David Marr’s three levels of description—the 

computational, algorithmic, and implementation, respectively. The topmost, computational, level 

of theory also adverts to general environmental facts (‘constraints’) essential to the explanation 

of the cognitive capacity, as explained below. See Egan (1995) for elaboration and defense of 
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  The mathematical characterization provides a domain-general, environment-neutral 

characterization of a mechanism. It prescinds not only from the cognitive capacity that 

is the explanatory target of the theory (vision, motor control, etc.), but also from the 

environment in which the capacity is normally exercised. In fact, the abstract nature of 

the computational characterization—in particular, the fact that as an independently characterized 

mathematical object the function can be decoupled from both the environmental 

context and the cognitive domain that it subserves—accounts for an important explanatory virtue 

of computational characterization. The mathematical functions deployed in computational 

models are typically well understood independently of their use in such models. Laplacian of 

Gaussian filters, fast Fourier transforms, vector subtraction, and so on are standard items in the 

applied mathematician’s toolbox. To apply one of these tools to a biological system—to subsume 

the system under the mathematical description—makes sense of what might otherwise be a 

heterogeneous collection of input–output pairs. Since the computational characterization 

specifies the function intensionally, typically in terms of an algorithm for computing the 

function, it provides the basis for predicting the output of the device in a wide range of 

circumstances that go well beyond the observed data set. 

 Of course, the cognitive theorist must explain how computing the value of the 

specified function, in the subject’s normal environment, contributes to the exercise of 

the cognitive capacity that is the explanatory target of the theory. Only in some environments 

would computing the Laplacian of a Gaussian help an organism to see. In our environment this 

computation produces a smoothed output that facilitates the detection of sharp intensity gradients 

across the retina, which, when these intensity gradients co-occur at different scales, correspond 

 
this account of Marr’s computational level. 
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to physically significant boundaries—changes in depth, surface orientation, illumination, or 

reflectance—in the scene. Ullman’s structure-from-motion mechanism succeeds in recovering 

the 3D structure of a moving object by computing the unique rigid configuration consistent 

with three distinct views of four non-coplanar points on the object only because, in our world, 

most objects are rigid in translation (the rigidity assumption). Thus, to yield an explanation of the 

target cognitive capacity, the environment-neutral, domain-general characterization given by the 

computational description must be supplemented by environment-specific facts that explain how 

computing the value of the specified mathematical function, in the subject’s normal environment, 

contributes to the exercise of the target cognitive capacity. 

 Neander wants to find an explanatory role for normal-proper function in computational 

theorizing, but it is not at all clear that there is such. It is, however, possible to recover a notion 

of normal-proper function from a computational account of a cognitive capacity. On the 

plausible assumption that perceptual mechanisms are adaptations, detecting edges in the scene is 

likely to be what the Laplacian/Gaussian mechanism was selected for and so is likely to be the 

normal-proper function of the mechanism. But adaptationist assumptions play no role in 

computational theorizing itself, which takes no account of historical origins. In any event, it does 

not depend on or presuppose the notion on normal-proper function, as P3 requires. 

 Of course, ultimately the results of computational neuroscience and neurophysiology will 

have to be integrated – both theorists are engaged in explaining how the brain works – but it does 

not follow that notions of function essential to physiology (and biology more generally) play a 

central role in computational neuroscience. Moreover, it does not suffice for P3 that a 

computational model presupposes some notion of normal functioning. Computational theorists 

aim to explain manifest cognitive capacities, and, as noted above, they do so by positing 
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mathematical capacities. In attributing a mathematical capacity or competence to a physical 

system – to compute vector displacement, or a smoothing function – a computational model 

supports attributions of correctness and mistake. Just as the normal functioning of the system—

correctly computing the specified mathematical function—explains the subject’s success at a 

cognitive task in its normal environment, so a malfunction explains its occasional failure.  

 The notion of normal functioning central to computational theorizing arises in a 

distinctive way. A complete computational characterization of a physical system will specify a 

mapping from physical states of the system to the arguments and values of the computed 

(mathematical) function. The mapping interprets physical state transitions as computations. For 

ease of explication, let us suppose that the system under consideration is an adder. The mapping 

specifies that when the system goes into the physical state interpreted under the mapping as 57 

and goes into the physical state interpreted under the mapping as 43, then it will go into the 

physical state interpreted under the mapping as 100. In doing so it (correctly) computes the sum 

of 57 and 43. If instead it were to go into the physical state interpreted under the mapping as 99 it 

would miscompute or make a mistake. In some circumstances – if, say, the system suffers severe 

damage – it may go into a physical state not interpreted under the mapping at all, and we can say 

in this case that it doesn’t miscompute, it simply malfunctions. (A miscomputation may be seen 

as a special kind of malfunction. It is also, as all mistakes are, a partial exercise of a 

competence.) So the specification of the function computed (here, addition) and the 

interpretation (here, the mapping of physical states to addends and sums) provides all we need to 

partition the behavioral space into (i) correct computations, (ii) miscalculations or mistakes, and 

(iii) malfunctions (states that receive no interpretation under the mapping). The specification of 

the function computed and the interpretation together provide the norm necessary to underwrite 
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this three-fold distinction. Since a computational model is committed to the existence of a 

mapping of this sort, the model supports talk of ‘well-functioning’ even if (as is usually the case 

with natural computers) the mapping is not fully specified. Importantly, the norm is not grounded 

in the selection history of the organism or other historical facts.  

 In summary, the computational characterization does not make essential appeal to the 

notion of normal-proper function, as required by P3. As noted above, the notion can be 

recovered from a well-confirmed computational model of a cognitive capacity. A computational 

characterization will allow us to say that a system is for adding, or for detecting edges or for 

grasping objects in view, but the notion doesn’t play an essential role in the theorizing. 

 To return to the methodological argument, Premise 5 says that the relevant notion of 

“information” in information-processing accounts is akin to Grice’s “natural meaning”; it is 

factive. If smoke means fire (in this sense) then if there is smoke there must be fire. Natural-

factive information is not semantically evaluable; it is not content. 

 Premise 6 says that cognitive science (in particular, information-processing or 

computational accounts) posits “normative aboutness”, which is a semantically evaluable notion. 

Natural-factive information gets its normative boost, Neander claims, from the normal-proper 

functions of the items that carry it in cognitive systems. But I have argued that the notion of 

normal-proper function plays no role in the branches of cognitive science that treat cognition as 

information-processing. The norms that ground the distinction between well-functioning and 

malfunctioning in computational cognitive science are not the norms central to biology and 

physiology; rather they are grounded in the interpretation of the physical system as computing a 

well-defined function (in the mathematical sense). These are not teleological norms. Hence the 

explanations provided by computational cognitive science do not support informational 
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teleosemantics, as the conclusion of the methodological argument claims.4  

 

3. A Decisive Victory in the Teleosemantic Toad Wars, but…  

In chapter 5, entitled “Simple Minds”, Neander tackles the disputed case of the frog and fly, first 

discussed in Lettvin et al. (1959). As is well known, frogs snap at small items crossing their 

visual field; often enough, in their natural environment, the item is a fly or other type of edible 

insect. Teleosemanticists argue that the internal state responsible for engaging the frog’s tongue-

snapping behavior represents whatever it has the natural function of detecting, but they disagree 

about what that is. Among the candidate contents are bug, frog food, and small dark moving 

thing, Neander’s preferred content in her 1995 and 2006. Philosophical discussion rarely bothers 

with the empirical facts of the case, presuming that the matter can be settled without adverting to 

them. This chapter, which takes us through the specifics of toad prey-capture (very similar to 

what is known about frogs), supports Neander’s earlier proposal. In fact, the chapter is a triumph 

of careful, detailed argumentation which should, in my opinion, close the books on the in-house 

debate among teleosemanticists. But I shall argue, contrary to what all teleosemanticists assume, 

attention to the details of the theory makes clear that there is no explanatory role for the notion of 

N-P function. 

 In summarizing the account I gloss over much interesting detail. The behavioral facts are 

roughly as follows: Toads typically orient toward prey-like stimuli, in particular, toward “worm-

like” stimuli of constant width and varying length that move parallel to their longest axes. This is 

 
4 The norms implicit in the computational characterization are, in fact, sufficient to support a 

semantically evaluable notion of aboutness, though not a teleosemantic notion. The input states 

of the mechanism represent the arguments and the outputs states the values of the computed 

function. In the example described in the text the system misrepresents the sum of 43 and 57 as 

99. See Egan 2014, 2018 for further discussion of these mathematical contents. 
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the sign signal – the configuration of environmental features – that trigger the response. 

Investigation of the toad’s brain reveals that three kinds of retinal ganglion cells in the optic 

nerve, mediating between the retina and relevant mid-brain structures, respond differentially to 

moving stimuli, though their response patterns do not correspond to the toad’s behavioral 

responses; further processing is required. The optic tectum in the toad’s midbrain plays an 

especially important role. Adjacent retinal ganglion cells respond to adjacent retinal receptors, 

which are sensitive to light reflected from adjacent regions of the visual field, and they project to 

adjacent areas of the tectum. In effect, the optic tectum contains multiple maps of the visual 

field. The activation of a particular class of cells in the tectum – known as “T5-2” cells – produce 

directly, without further processing, the appropriate orienting response and are thought by neuro-

ethologists to correspond most closely to the recognition of prey-like stimuli. As Neander puts it, 

“… this is their candidate for the relevant representation, whose content is debated by 

philosophers.” (108)  

 The activation of T5-2 cells in the optic tectum is the most likely candidate for the 

representational vehicle. For convenience, Neander calls a T5-2 activation a “W” and then goes 

on to consider what the content of W-tokenings might be. There are at least two aspects to the 

content: what a target is represented as and where it is represented to be. T5-2 cells respond to 

stimuli in their specific receptive fields and so represent targets to be at the corresponding 

location in the visual field. Neander considers and decisively rebuts a suggestion in Dretske 1988 

that the content of a representation is the state of affairs with the highest probability, given a 

tokening of the representation-type, arguing that the suggestion would favor a location content 

for Ws much less specific than the discriminative ability of the toad merits. Along similar lines, 

she argues that what Ws represent is a configuration of visible features, in particular, a moving 
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worm-like stimulus. This content ascription best captures what T5-2 cells respond selectively to – 

a particular configuration of visible features that alternative content ascriptions such as prey or 

toad food capture only very loosely or not at all, since if prey or toad food do not present as 

moving worm-like stimuli they will not produce W-tokenings.5 

 In explaining the toad’s prey-recognition capacity, the theorist must (1) isolate the neural 

structures that play the appropriate role in mediating the prey-recognition process (T5-2 cells), 

and (2) specify precisely the conditions of their activation (a moving worm-like stimulus). These 

two tasks might be characterized, informally, in representational terms (but see below): (a), 

corresponding to (1), identifying the structures that serve as the representational vehicle, and (b), 

corresponding to (2), ascertaining their content. To support teleosemantics, the notion of normal 

proper function must play an essential explanatory role in theoretical tasks (1) and (2). To 

support the idea that representation is essential to the account, the characterization of T5-2 cell 

activation as carrying representational content must bear a substantial explanatory burden 

beyond that borne by (1) and (2), which do not advert to representational notions. I take up these 

two points in turn.  

 It is not at all obvious that the notion of normal-proper function plays a substantive role 

in either (1) or (2), though, as before, once the structures have been isolated and their activation 

conditions specified, and with plausible further assumptions about the selection history of the 

mechanism, its normal-proper function can be recovered from the account. In arguing against 

alternative content proposals Neander says:    

 
5 Moving worm-like stimulus is close enough to small dark moving thing to vindicate the earlier 

suggestion in Neander 1995 and 2006.  
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… an information-processing approach to explaining vision is not primarily concerned 

with the rational justification of behavior or with explaining why the visual capacity 

evolved. It is primarily concerned with explaining visual processing. (119) 

This is exactly right, but it should be noted that the explanation of the visual processing 

underlying the toad’s prey-capture capacity does not require appeal to selected functions; it 

requires appeal to the precise causal sensitivities of the cells, and to their role in processing – 

purely synchronic features of the mechanism – whatever the selection history of the mechanism 

might be. Neander points out that T5-2 cells are  

… tuned to respond to some things rather than others…. These pathways were adapted 

by phylogenetic natural selection and calibrated by ontogenetic maturational and learning 

processes to respond to certain specific types of stimuli in certain parts of the visual field. 

(114-115, emphasis in original) 

Again, this is almost certainly right, but it is hard to see, either from Neander’s excellent 

reconstruction of current theory about toad prey-capture, or from consideration of the 

information-processing approach to cognition in general, how these assumptions play a 

substantive role in the theory. Indeed, the normal-proper function of the T5-2 cells cannot be 

determined until after their response profiles have been mapped out, that is, until after the 

cognitive theorist has done the work required by tasks (1) and (2). At that point, the theorist’s job 

– specifying the mechanism underlying the toad’s manifest prey-recognition capacity – is 

essentially done. The account can be used to support further claims about the mechanism’s 

normal-proper function, but Neander, and teleosemanticists in general, have the order of 

explanation backwards. There is no explanatory role for N-P function in the information-

processing account. 
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 I turn briefly to the question of whether the notion of representation is doing any 

essential explanatory work in the account. I do not think it is. Characterizing the neural structures 

that play the appropriate role in mediating the prey-recognition process – that is, T5-2 cells – as 

representations with the content moving worm-like stimuli at location x is, I suggest, just a 

convenient way of describing their response profiles. Neander argues convincingly that 

alternative teleosemantic accounts of the content of the toad’s internal state – as representing bug 

or toad food – find no support from the science, because they are at odds with what it tells us 

about the toad’s actual recognitional capacity.6 They fail to capture the response profiles of T5-2 

cells. But once the cognitive theorist has fully specified the state’s causal role in the process the 

theoretical heavy lifting is done. Talk of the cell’s activation representing its distal stimulus 

conditions (its sign signal) is best construed as a gloss that adds nothing of theoretical 

significance.7 To be sure, characterizing the state in contentful terms supports attributions of 

misrepresentation in cases where, for some reason, the cell is activated by something other than 

a moving worm-like stimulus. I am not denying that there is some motivation for ‘going 

representational’ here. Conceptual thought processes are typically characterized in terms of their 

contents and so ascribing content to the non-conceptual processes described by cognitive 

scientists provides a common way of thinking about the two. Philosophers interested in cognition 

more generally will look for continuity with higher-level intentional thought. But the 

information-processing theorist tasked with explaining non-conceptual capacities has no such 

motivation. Everything she might want to say about toad prey-recognition, for example, can be 

 
6 This is not surprising, since Neander is alone among teleosemanticists in taking careful account 

of the empirical work on anuran prey-recognition. 
7 See Egan 2014, 2018 for the view that representational talk is best construed as a gloss serving 

various pragmatic purposes in computational models. 
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expressed more directly in straightforwardly causal terms.  
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