Skip to main content
Log in

Primitive ontology and quantum state in the GRW matter density theory

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The paper explains in what sense the GRW matter density theory (GRWm) is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The prominence of the GRW theory may be somewhat surprising, because the physics literature features collapse theories which are better developed and generally regarded as more realistic, such as the Continuous Spontaneous Localization (CSL) theory. These latter theories are, however, mathematically more demanding, whereas they do not seem to differ significantly from the GRW theory on the conceptual and ontological level. For this reason, the philosophical debate has tended to focus on GRW instead of CSL; we will discuss the justification for this move in Sect. 3. For a comprehensive review of different collapse models, see Bassi and Ghirardi (2003).

  2. For further criticism of the claim that the low-density worlds are structurally equivalent to the high-density world, see Albert (forthcoming, chap. 7).

  3. An anonymous referee has pointed out to us that there are variants of the GRW theory which can deal with identical particles. See Tumulka (2006b) for details.

  4. There are, of course, other ways to understand causality in physics, but this debate is beyond the scope of the present paper. All we need to claim here is that the Blondeau/Ghins proposal is a reasonable way to spell out the causal character of BM.

References

  • Albert, D. Z. (forthcoming). After physics. Cambridge (MA): Harvard University Press.

  • Albert, D. Z., & Loewer, B. (1996). Tails of Schrödinger’s cat. In R. K. Clifton (Ed.), Perspectives on quantum reality (pp. 81–91). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. British Journal for the Philosophy of Science, 59, 353–389.

    Article  Google Scholar 

  • Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2014). Predictions and primitive ontology in quantum foundations: A study of examples. British Journal for the Philosophy of Science, 65, 323–352.

    Article  Google Scholar 

  • Bacciagaluppi, G. (2010). Collapse theories as beable theories. Manuscrito, 33, 19–54. http://philsci-archive.pitt.edu/8876/

  • Bassi, A., & Ghirardi, G. C. (2003). Dynamical reduction models. Physics Reports, 379, 257–426.

    Article  Google Scholar 

  • Bedingham, D. (2011). Relativistic state reduction dynamics. Foundations of Physics, 41, 686–704.

    Article  Google Scholar 

  • Bedingham, D., Dürr, D., Ghirardi, G. C., Goldstein, S., Tumulka, R., & Zanghì, N. (2014). Matter density and relativistic models of wave function collapse. Journal of Statistical Physics, 154, 623–631.

    Article  Google Scholar 

  • Bell, J. S. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Belot, G. (2012). Quantum states for primitive ontologists. A case study. European Journal for Philosophy of Science, 2, 67–83.

    Article  Google Scholar 

  • Bird, A. (2007). Nature’s metaphysics. Laws and properties. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Blondeau, J., & Ghins, M. (2012). Is there an intrinsic criterion for causal lawlike statements? International Studies in the Philosophy of Science, 26, 381–401.

    Article  Google Scholar 

  • Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. Physical Review, 85, 166–193.

    Article  Google Scholar 

  • Callender, C. (2014). One world, one beable. http://philsci-archive.pitt.edu/11098/.

  • de Broglie, L. (1928). La nouvelle dynamique des quanta. In Electrons et photons. Rapports et discussions du cinquième Conseil de physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l’Institut international de physique Solvay (pp. 105–132). Paris: Gauthier-Villars. (English translation from Quantum theory at the crossroads. Reconsidering the 1927 Solvay conference, pp. 341–371, G. Bacciagaluppi & A. Valentini, Ed., 2009, Cambridge: Cambridge University Press.)

  • Dickson, M. (2000). Are there material objects in Bohm’s theory? Philosophy of Science, 67, 704–710.

    Article  Google Scholar 

  • Dorato, M., & Esfeld, M. (2010). GRW as an ontology of dispositions. Studies in History and Philosophy of Modern Physics, 41, 41–49.

    Article  Google Scholar 

  • Dowker, F., & Herbauts, I. (2005). The status of the wave function in dynamical collapse models. Foundations of Physics Letters, 18, 499–518.

    Article  Google Scholar 

  • Dürr, D., Goldstein, S., & Zanghì, N. (2013). Quantum physics without quantum philosophy. Berlin: Springer.

    Book  Google Scholar 

  • Egg, M., & Esfeld, M. (2014). Non-local common cause explanations for EPR. European Journal for Philosophy of Science, 4, 181–196.

    Article  Google Scholar 

  • Esfeld, M. (2014). Quantum Humeanism, or physicalism without properties. The Philosophical Quarterly, 64, 453–470.

    Article  Google Scholar 

  • Esfeld, M., & Gisin, N. (2014). The GRW flash theory: A relativistic quantum ontology of matter in space-time? Philosophy of Science, 81, 248–264.

    Article  Google Scholar 

  • Esfeld, M., Lazarovici, D., Hubert, M. and Dürr, D. (2014). The ontology of Bohmian mechanics. Forthcoming in the British Journal for the Philosophy of Science. doi:10.1093/bjps/axt019.

  • Frigg, R., & Hoefer, C. (2007). Probability in GRW theory. Studies in History and Philosophy of Modern Physics, 38B, 371–389.

    Article  Google Scholar 

  • Ghirardi, G.C. (2002): Collapse theories. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2002 edition). http://plato.stanford.edu/archives/spr2002/entries/qm-collapse/.

  • Ghirardi, G. C., Grassi, R., & Benatti, F. (1995). Describing the macroscopic world: Closing the circle within the dynamical reduction program. Foundations of Physics, 25, 5–38.

    Article  Google Scholar 

  • Ghirardi, G. C., Pearle, P., & Rimini, A. (1990). Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Physical Review A, 42, 78–89.

    Article  Google Scholar 

  • Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 470–491.

    Article  Google Scholar 

  • Gisin, N. (1989). Stochastic quantum dynamics and relativity. Helvetica Physica Acta, 62, 363–371.

    Google Scholar 

  • Goldstein, S. (1987). Stochastic mechanics and quantum theory. Journal of Statistical Physics, 47, 645–667.

    Article  Google Scholar 

  • Goldstein, S., Tumulka, R., & Zanghì, N. (2012). The quantum formalism and the GRW formalism. Journal of Statistical Physics, 149, 142–201.

    Article  Google Scholar 

  • Lewis, P. J. (1997). Quantum mechanics, orthogonality, and counting. British Journal for the Philosophy of Science, 48, 313–328.

    Article  Google Scholar 

  • Maudlin, T. (2007). The metaphysics within physics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Maudlin, T. (2010). Can the world be only wavefunction? In S. Saunders, J. Barrett, A. Kent, & D. Wallace (Eds.), Many worlds? Everett, quantum theory, and reality (pp. 121–143). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Maudlin, T. (2013). The nature of the quantum state. In Ney and Albert (2013) (pp. 126–153).

  • Miller, E. (2014). Quantum entanglement, Bohmian mechanics, and Humean supervenience. Australasian Journal of Philosophy, 92, 567–583.

    Article  Google Scholar 

  • Monton, B. (2004). The problem of ontology for spontaneous collapse theories. Studies in History and Philosophy of Modern Physics, 35, 407–421.

    Article  Google Scholar 

  • Nelson, E. (1966). Derivation of the Schrödinger equation from Newtonian mechanics. Physical Review, 150, 1079–1085.

    Article  Google Scholar 

  • Nelson, E. (1985). Quantum fluctuations. Princeton: Princeton University Press.

    Google Scholar 

  • Nicrosini, O., & Rimini, A. (1990). On the relationship between continuous and discontinuous stochastic processes in Hilbert space. Foundations of Physics, 20, 1317–1327.

    Article  Google Scholar 

  • Ney, A., & Phillips, K. (2013). Does an adequate physical theory demand a primitive ontology? Philosophy of Science, 80, 454–474.

    Article  Google Scholar 

  • Ney, A., & Albert, D. Z. (2013). The wave function: Essays on the metaphysics of quantum mechanics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Okon, E., & Sudarsky, D. (2014). Benefits of objective collapse models for cosmology and quantum gravity. Foundations of Physics, 44, 114–143.

    Article  Google Scholar 

  • Suárez, M. (2007). Quantum propensities. Studies in History and Philosophy of Modern Physics, 38B, 418–438.

    Article  Google Scholar 

  • Suárez, M. (2014). A critique of empiricist propensity theories. European Journal for Philosophy of Science, 4, 215–231.

    Article  Google Scholar 

  • Tumulka, R. (2006a). A relativistic version of the Ghirardi–Rimini–Weber model. Journal of Statistical Physics, 125, 825–844.

    Article  Google Scholar 

  • Tumulka, R. (2006b). On spontaneous wave function collapse and quantum field theory. Proceedings of the Royal Society A, 462, 1897–1908.

    Article  Google Scholar 

  • Tumulka, R. (2011). Paradoxes and primitive ontology in collapse theories of quantum mechanics. http://arxiv.org/abs/1102.5767 [quant-ph].

  • Wallace, D. (2008). Philosophy of quantum mechanics. In D. Rickles (Ed.), The Ashgate companion to contemporary philosophy of physics (pp. 16–98). Aldershot: Ashgate Publishing.

    Google Scholar 

  • Wallace, D. (2014): Life and death in the tails of the GRW wave function. http://arxiv.org/abs/1407.4746 [quant-ph]

Download references

Acknowledgments

Earlier versions of this paper were presented at the spring meeting of the German Physical Society (Berlin, March 2014), the CROSS workshop on the quantum state (Lausanne, May 2014) and the II PERSP workshop on space-time and the wavefunction (Barcelona, May 2014). We thank the participants of these events, especially Wayne Myrvold, Nino Zanghì, Guido Bacciagaluppi and Jeremy Butterfield, for many helpful remarks. We are also indebted to Albert Solé, Carl Hoefer and two anonymous referees for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Egg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egg, M., Esfeld, M. Primitive ontology and quantum state in the GRW matter density theory. Synthese 192, 3229–3245 (2015). https://doi.org/10.1007/s11229-014-0590-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-014-0590-3

Keywords

Navigation