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Abstract 
In this paper, we consider the influence of Gibson's affordance theory on the design of 
robotic agents. Affordance theory (and the ecological approach to agent design in gen-
eral) has in many cases contributed to the development of successful robotic systems; 
we provide a brief survey of AI research in this area. However, there remain signifi-
cant issues that complicate discussions on this topic, particularly in the exchange of 
ideas between researchers in artificial intelligence and ecological psychology. We 
identify some of these issues, specifically the lack of a generally accepted definition of 
"affordance" and fundamental differences in the current approaches taken in AI and 
ecological psychology. While we consider reconciliation between these fields to be 
possible and mutually beneficial, it will require some flexibility on the issue of direct 
perception. 
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1. Introduction 

An ecological approach to the design of robotic agents can hold significant appeal for 
researchers in the area of artificial intelligence (AI). Embodied agents situated in a 
physical environment have access to a wealth of information, simply by perceiving the 
world around them. By exploiting the relationship between the agent and its envi-
ronment, designers can reduce the need for an agent to construct and maintain com-
plex internal representations; designers can instead focus on the details of how the 
agent interacts directly with the environment around it. The result is more flexible 
agents that are better able to respond to the dynamic, real world conditions. The eco-
logical approach thus appears well suited to the design of embodied agents, such as 
mobile autonomous robots, where the agent may be required to operate in complex, 
unstable, and real-time environments. 
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First proposed by psychologist J.J. Gibson (1966), the concept of affordances serves as a 
basis for his theories of ecological psychology. Though “affordance” is often informally 
described as “an opportunity for action,” there is as yet no commonly accepted formal 
definition of the term. In The Ecological Approach to Visual Perception, Gibson writes: 

 The affordances of the environment are what it offers the animal, what it provides 
or furnishes, either for good or il l. The verb to afford is found in the dictionary, but 
the noun affordance is not. I have made it up. I mean by it something that refers to 
both the environment and the animal in a way that no existing term does. It im-
plies the complementarity of the animal and the environment. (Gibson 1979: 127) 

 Despite a lack of agreement on what exactly an affordance is, a number of attempts 
have been made to apply ecological concepts to the design of artificial agents. In many 
cases, researchers in AI have drawn direct inspiration from ecological psychology, 
while in other cases, they have independently arrived at approaches that, though they 
may differ in some respects, are in many ways compatible with Gibson’s proposals. 

 Often, however, it is apparent that psychologists and AI researchers have very differ-
ent approaches to the problem of understanding what affordances are and how they 
are utilized by agents, whether organic or artificial. Thus, the purpose of this article is 
twofold. Our first goal is to provide a brief survey of existing work in the area of artifi-
cial intelligence, for the benefit of researchers in both fields. This survey is presented 
in section 2. Our second goal, addressed in section 3, is to identify some of the main 
issues that can complicate attempts to reconcile the approaches of ecological psychol-
ogy and of AI, and that may inhibit communication across the two domains – in par-
ticular, the role of Gibson’s theory of direct perception. In section 4, we conclude with 
some speculation as to the future of affordance-based approaches in AI.  

 

2. The ecological approach in AI 

In designing artificial agents, several successful patterns for control and coordination 
of perception and action have emerged. Some of these approaches share an important 
characteristic - a clear emphasis on utilizing the environment, and the agent’s interac-
tion with it, to reduce the complexity of representation and reasoning. This characte-
ristic is founded on an ecological view of the agent - an entity embodied in a world 
rich with observable cues that can help guide the agent’s behavior. As summarized by 
Brooks, “the world is its own best model” (Brooks 1990: 5). 

We begin with a brief overview of the AI literature, focusing on agent design para-
digms that incorporate elements of the ecological approach. While researchers in AI 
may not always make exactly the same choices Gibson might have, there is much here 
that will be familiar to a reader with a background in ecological psychology.  

 

 



A Remedy called Affordance 
 

72

 

2.1. Agent design paradigms 

Sensing, planning (or reasoning), and acting are three major processes that an agent 
needs to carry out. In traditional deliberative systems (Maes 1991), these are modeled 
as distinct components, typically activated in cycles with a linear sense-plan-act se-
quence (Gat 1998). This methodology has allowed for fairly independent development 
of the three components, especially domain-independent planners that have been able 
to exploit advances in general problem-solving and formal logical reasoning (Fikes et 
al. 1972; Newell & Simon 1963; Sacerdoti 1974). 

But such an organization has two significant implications. Firstly, decoupling of the 
processes creates the need for an abstracted internal representation of the environ-
ment (partial or complete) to pass information from the perceptual component to the 
planning system; this intermediate ‘buffer’ can potentially become a disconnect be-
tween the real state of the environment and the agent’s beliefs. Secondly, plan failure 
is treated as an exception that is usually handled by explicit re-planning. With the 
uncertainty and unpredictability inherent in the real world, these aspects can limit 
the versatility of physical robots. These challenges have been addressed by research-
ers through refinements such as modeling uncertainty and nondeterminism (Bacchus 
et al. 1999), and dynamic planning (Stentz 1995; Zilberstein & Russell 1993). 

The ecological view presents a fundamentally different approach to agent design, rely-
ing heavily on simple, efficient perceptual components (as opposed to complex mental 
constructs) and common underlying mechanisms for sensing, reasoning, and acting 
(Brooks 1986). Planning and execution in such systems is usually a tightly coupled 
process, with the agent constantly recomputing the best course of short-term action, 
simultaneous with the execution of the current task. This reduces dependence on a 
control state that keeps track of the agent’s progress in a sequence of actions that 
might rely on potentially out-of-date information. 

An ecologically-aware agent can demonstrate flexibility in the face of changing condi-
tions, while still performing complex behaviors. Chapman (1991) demonstrates, using 
a simulated environment, how ecological principles can help an agent abort a routine 
that is no longer appropriate, re-attempt a failed action, temporarily suspend one task 
in favor of another, interleave tasks, and combine tasks to simultaneously achieve mul-
tiple goals. Similar characteristics have emerged in a number of physical robotic sys-
tems that follow different methodologies and design patterns, yet embody principles 
compatible with the ecological perspective. 

Action-oriented or task-driven perception (Arkin 1990) is one approach roboticists 
have used to deal with inherent uncertainty in the real world. Knowledge of a robot’s 
current situation, intended activity, and expected percepts can help introduce enough 
constraints to make perception tractable and accurate. Furthering this approach, Bal-
lard (1991) argues with the Animate Vision paradigm that the ability to control visual 
input (specifically, gaze) enables the use of environmental context to simplify tasks 
such as object recognition and visual servoing. This has been reiterated by Brooks and 
Stein (1994) and validated by some later systems (Gould et al. 2007; Kuniyoshi et al. 
1996; Scassellati, 1999). 
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The task-driven methodology can be generalized to include other aspects of the 
agent’s current situation. Chapman (1991) and Agre (1987) illustrate how the affor-
dances of an environment can be characterized within an overall theory of situated 
activity, which is one way of conceptualizing ecological elements. They also demon-
strate how instructions given to artificial systems can refer to indexical functional 
entities, i.e. pointers to real-world objects specified directly in terms of their characte-
ristics as relevant in the current situational context, instead of absolute identifiers. 
Properties of candidate objects, including their affordances, help disambiguate refer-
ences present in such instructions, e.g. "it" in  "pick it up" can only refer to objects that 
can be picked up. 

Other ecological elements have also received attention in robotics. In their work on 
the humanoid robot Cog, Brooks et al. (1997) emphasize the need to consider bodily 
form when building representation and reasoning systems to control robots. In beha-
vior-based robotics, Matarić (1994, 1997) emphasizes the learning aspect of behavior 
selection, and notes that this amounts to learning the preconditions for a behavior. In 
addition, reasoning about behaviors – especially in the context of planning – requires 
that behaviors be associated with properties or states of the environment. This kind of 
reasoning enables robots to “think the way they act” (Matarić 2002). 

A number of researchers have even applied Gibson’s concept of optic flow to auto-
nomous robotic agents. For example, Duchon et al. (1998) describe the design of mo-
bile robots that utilize optic flow techniques not only for obstacle avoidance, but to 
also implement predator-prey behaviors that allow one agent to chase after another as 
it attempts to escape. 

 

2.2. Affordance-based approaches 

Most of the research cited up to this point does not make direct reference to Gibsonian 
affordances. In this section, however, we consider examples from the AI literature 
where the focus is specifically on agents designed to utilize affordances. While there 
may be some disagreement as to how compatible the results are with the Gibsonian 
approach, generally speaking, the goal has been to apply concepts from ecological psy-
chology to develop better agents. 

 Recent work in AI has led to the development of robots capable of exploiting affor-
dances in support of a range of behaviors, including traversal and object avoidance 
(Çakmak et al. 2007; Erdemir et al. 2008a, 2008b; Murphy 1999; Şahin et al. 2007; Sun et 
al. 2010; Ugur et al. 2009, 2010), grasping (Cos-Aguilera et al. 2003a, 2003b, 2004; Detry 
et al. 2009, 2010, 2011; Kraft et al. 2009; Yürüten et al. 2012), and object manipulation, 
such as poking, pushing, pulling, rotating, and lifting actions (Atil et al. 2010; Dag et al. 
2010; Fitzpatrick et al. 2003; Fritz et al. 2006a, 2006b; Rome et al. 2008; Ugur et al. 2011, 
Sun et al. 2010; Yürüten et al. 2012). 
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 Our own interests relate primarily to the design of agents capable of utilizing the af-
fordances of tools. Tool use is briefly considered by Gibson (1979) and by Michaels 
(2003), and has recently been studied by Jacquet et al. (2012), but it has received rela-
tively little attention from ecological psychology. There is, however, a small but grow-
ing body of work on tool-related affordances in AI (e.g. Guerin et al. 2012), including 
studies of the affordances of tools used for remote manipulation of targets (Jain & In-
amura 2011; Sinapov & Stoytchev 2007, 2008; Stoytchev 2005, 2008; Wood et al. 2005) 
and the use of external objects for containment (Griffith et al. 2012a, 2012b). Recent 
work in our own lab has focused on systems for identifying the low-level affordances 
that support more complex tool-using behaviors, such as the physical couplings be-
tween a screwdriver and the slot of a screw and between a wrench and the head of a 
bolt (Horton et al. 2008, 2011). 

 While most of these affordance-based systems utilize embodied agents in control of 
physical robots, others employ simulation environments or use simulation in addition 
to physical interaction (Cos-Aguilera et al. 2003a, 2003b, 2004; Erdemir et al. 2008a, 
2008b; Fritz et al. 2006a, 2006b; Jain & Inamura 2011; Rome et al. 2008; Şahin et al. 
2007; Sinapov & Stoytchev 2007, 2008; Ugur 2011). 

 As with much of the work in ecological psychology, the majority of these systems fo-
cus on visual perception, through either physical or simulated cameras. A few systems 
employ additional forms of input, however. For example, Atil et al. (2010), Griffith 
(2012a, 2012b), Murphy (1999), Şahin et al. (2007), and Ugur et al. (2009, 2010, 2011) 
utilize range finders for depth estimation, and the system described by Griffith 
(2012a, 2012b) also makes use of acoustic feedback. And in Atil et al. (2010) and 
Yürüten et al. (2012), the systems take labels assigned by humans to objects and ac-
tions as additional input. 

 Whether physical or simulated, many of these systems share a common approach in 
the utilization of exploratory behaviors, or "babbling" stages, in which the agent simp-
ly tests out an action without a specific goal, in order to observe the result (if any) on 
its environment. Through exploratory interactions, the agent is able learn the affor-
dances of its environment largely independently. However, the affordances the agent 
can discover will be dependent not only on its physical and perceptual capabilities, 
but also on the types of exploratory behaviors with which it has been programmed 
(Stoytchev 2005). 

 Perhaps the feature most relevant in the context of this document is the almost un-
iversally shared view of affordances as internal relations between external objects 
and the agent’s own actions. This perspective conflicts with the approach advocated 
by Gibson. For example, Vera and Simon (1993) suggest an interpretation of affor-
dances that is very different from the view commonly held in ecological psychology, 
based on an approach of the sort Chemero and Turvey (2007) classify as “representa-
tionalist” (as opposed to “Gibsonian”). Responding to proponents of situated action, an 
approach to cognition and artificial intelligence with similarities to ecological psy-
chology, Vera and Simon argue that advocates of such approaches greatly underesti-
mate the complexity of perception. Rather, they suggest that the apparent simplicity of 
perception is the result of complex mechanisms for encoding complicated patterns of 
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stimuli in the environment. In this view, affordances are the internal functional re-
presentations that result from this encoding process; affordances are “in the head” 
(Vera & Simon 1993: 21). 

 A more recent formalization of this viewpoint is formulated by Şahin et al. (2007) and 
Ugur et al. (2009). They begin their formalization of affordances by observing that a 
specific interaction with the environment can be represented by a relation of the form 
(effect, (entity, behavior)), where the “entity” is the state of the environment, the “be-
havior” is some activity carried out by an agent in the environment, and the “effect” is 
the result. A single interaction leads to an instance of this relation. Multiple interac-
tions can be generalized such that the agent becomes able to predict the effects of its 
behaviors on different environment entities. Thus, affordances can be considered to 
be generic relations with predictive abilities. 

 Additionally, we note that some of the systems we have mentioned are designed to 
explicitly assign objects and actions to categories (e.g. Sun et al. 2010). As the rejection 
of the need for categorization in the perception of affordances is a point emphasized 
by Gibson (1979), this, along with the view of affordances as internal relations, is 
another area that may cause conflict between the AI and ecological psychology com-
munities. 

 As the research cited here illustrates, affordance-based approaches have been suc-
cessfully applied to a number of problems in artificial intelligence. In doing so, how-
ever, AI researchers have often employed their own interpretations of ecological con-
cepts like affordances – interpretations that sometimes differ significantly from those 
of ecological psychology. 

 Many possibilities remain for applying affordance-based approaches to the design of 
artificial agents. Thus far, many of the studied applications have been relatively basic, 
e.g. focusing on obstacle avoidance and pushing objects around on a surface. As more 
capable robotic agents are developed, able to employ tool use and other increasingly 
complex behaviors, we anticipate new opportunities for further exploring these ap-
proaches. 

 

3. Open issues 

In this section, we begin with a brief discussion of one of the first problems encoun-
tered by researchers in AI when studying the concept of affordances. Specifically, 
what do ecological psychologists mean by “affordance”? We then identify some of the 
additional issues that can arise when trying to reconcile the ecological approach with 
the demands of implementing an artificial agent. 
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3.1. Defining “affordance” 

Informally, affordances are often described as “opportunities for action.” However, 
even within the ecological psychology community, there seems to be little consensus 
on how this concept can be understood more formally. Gibson’s own ideas on the sub-
ject evolved over the course of decades. For example, Jones (2003) traces the origins of 
the concept back to the work Gibson did in the 1930’s, and argues that Gibson’s think-
ing on the subject was still evolving at the time of his death in 1979. 

 Gibson’s most extensive writing on the topic of affordances comes from The Ecological 
Approach to Visual Perception (1979). Here, Gibson outlines the origins of the concept 
and proposes multiple examples, yet fails to provide a concrete definition; rather, his 
explanations are often quite vague. For example, in addition to the description in-
cluded in the introduction at the start of this paper, Gibson also writes: 

 An important fact about the affordances of the environment is that they are in a 
sense objective, real, and physical, unlike values and meanings, which are often 
supposed to be subjective, phenomenal, and mental. But actually, an affordance is 
neither an objective property nor a subjective property; or it is both if you like. An 
affordance cuts across the dichotomy of subjective-objective and helps us to un-
derstand its inadequacy. It is equally a fact of the environment and a fact of beha-
vior. It is both physical and psychical, yet neither. An affordance points both ways, 
to the environment and to the observer. (Gibson 1979: 129). 

 Despite the lack of a single clear, unifying statement, however, Gibson does make cer-
tain points that help to reveal his thinking. As summarized by McGrenere and Ho 
(2000), Gibson specifies three fundamental properties of an affordance: an affordance 
exists relative to the capabilities of a particular actor; the existence of an affordance is 
independent of the actor’s ability to perceive it; an affordance does not change as the 
needs and goals of the actor change. While this summary does help to clarify Gibson’s 
position, it still leaves much open to interpretation. 

 Additionally, Gibson’s descriptions of affordances tend to be very broad, including 
such examples as food affording nutrition and cliffs affording danger, as well as more 
concrete and familiar examples such as a hammer affording striking. While such a 
general approach may be desirable in some cases (Stoffregen 2004), it makes it difficult 
to evaluate the concept empirically. Gibson’s descriptions lack predictive power; they 
say little about how affordances arise from physical properties, or about how an or-
ganism might recognize affordances in order to utilize them - key issues in the devel-
opment of an artificial agent that is guided by affordances. 

 In the decades since Gibson’s death, a debate within the field of ecological psychology 
has been held over how best to define the concept of affordance. This debate is often 
complex, with different authors proposing multiple interpretations and definitions, 
giving rise to several major points of disagreement, such as whether affordances are 
properties of the environment or aspects of a combined animal-environment system, 
whether affordances are dispositional properties or relations, and whether affor-
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dances relate to complementary “effectivities” of the organism or to its body scale. 
There is insufficient space here to go into detail, but see, for example, Chemero’s (2003) 
analysis.  

Additionally, Şahin et al. (2007) suggest that a further source of confusion has been 
the fact that affordances can be viewed from three different perspectives: the agent, 
the environment, or an outside observer, further complicating attempts to agree on a 
definition. 

 Unfortunately, a single, uniformly accepted formal definition of “affordance” is still 
missing. Attempts at a formal definition have been made (e.g. Chemero 2003; Heft 
2003; Jones 2003; Michaels 2003; Stoffregen 2003), but these have only added to the 
debate, while consensus has remained elusive. And often, these attempts at definition 
suffer from the same problems as Gibson’s original descriptions, being very broad and 
lacking in heuristic guidance (Kirlik 2004). 

 

3.2. Are psychological and computational approaches compatible? 

Perhaps in part due to the lack of a single accepted definition of affordance, when eco-
logical psychologists and AI researchers talk about affordances, they may often be re-
ferring to very different things (Şahin et al. 2007). This disconnect may be the result of 
the differing goals between the two communities, with psychologists focusing on de-
scribing behavior and AI engineers focusing on implementing systems.28 

 There seems to be a general agreement that affordances are “relations,” but here, too, 
psychologists and AI researchers may use the term very differently. In general, re-
searchers in both fields seem comfortable with the notion that affordances are, in 
some way, relations between physical properties of the agent and the environment. 
Viewed this way, affordances are external relations, as opposed to internal mental 
constructs, and the key question is whether or not an affordance physically exists; i.e., 
does the environment allow the agent to act in a certain way? 

 In addition to the view of affordances as external relations, AI researchers also have a 
tendency to refer to affordances as internal mental representations (e.g. Vera & Simon 
1993). This is where discussions between the two fields can become contentious. From 
this viewpoint, the key question is not whether or not an affordance exists in the envi-
ronment, but the mechanism by which it is perceived by the agent. A physical affor-
dance consists of a property or set of properties that can be sensed. From the common 
AI perspective, these percepts are associated by the agent with a particular course of 
action, possibly mediated by the agent’s current state (e.g. its set of goals). Thus, AI 
researchers often refer to affordances as being the relation between the identification 
of a physical property and the associated response. Ecological psychologists, however, 
may object to the use of the word “affordance” to describe such internal representa-
tions, which were rejected by Gibson (e.g. Chemero & Turvey 2007, responding to 

                                                             
28 In addition, there are other usages of the term “affordance” in the areas of human factors and human 
computer interaction (Norman 1988, 1999), which differ significantly from the usage in both ecological 
psychology and AI, reflecting the priorities of practitioners in these fields. 
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Şahin et al. 2007). We note that this viewpoint does not necessarily conflict with the 
view of affordances as physical relations; rather, it is an additional application of the 
term “affordance,” where perhaps another choice of word might be less contentious. 

 

3.3. The role of direct perception 

The issue of the perception of affordances leads to another, closely related, point of 
controversy, the role of direct perception. Chemero and Turvey (2007) refer to affor-
dances and direct perception as the two components that define the ecological ap-
proach. 

 In direct perception, affordances are perceived via “invariants” picked up directly 
from the optic array. Proponents of direct perception argue that there is no need for 
internal mental representations to mediate the process of perception. Thus, examples 
from AI that refer to affordances as internal representations (as above), by being in-
compatible with notions of direct perception, can be contentious. 

 A frequently cited example of direct perception is the use of optic flow for navigation. 
Indeed, there is strong evidence to suggest that biological organisms make use of optic 
flow (e.g. Srinivasan & Zhang, 2004). Additionally, there have been successful applica-
tions of optic flow to the design of artificial agents (e.g. Duchon et al. 1998). 

 There is, however, a significant case made in the literature that direct perception is 
an oversimplification of the issue. For example, Marr (1982), while praising Gibson’s 
overall approach, argues that there are two main shortcomings to Gibson’s focus on 
the direct perception of invariants. First, that contrary to Gibson’s assertions, the de-
tection of physical invariants is an information-processing problem, and second, that 
Gibson significantly underestimated the difficulty of such detection (Marr 1982: 29-
30). 

 Ullman (1980) provides a lengthy critique of the theory underlying direct perception 
from a cognitive science perspective, arguing that the processes Gibson considers to be 
direct can instead be further decomposed into simpler perceptual processes, and con-
cluding that direct explanations should be considered a “last resort.” Gyr (1972) sum-
marizes a number of empirical studies that cast doubt on direct perception’s claims, 
emphasizing that the state of the agent plays a key role in perception, by determining 
what part of the optic array is relevant at a given moment and how it will be inter-
preted. Fodor and Pylyshyn (1981) argue that the properties available in the optic ar-
ray that could potentially be directly picked up are insufficient on their own to fully 
explain perception without mediation by memory, inference, or some other psycho-
logical processes depending on representations. The conclusion drawn from sources 
such as these is that the act of perception is highly dependent upon internal mental 
states, representations, and computations. 
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 This does not mean that we should abandon the goal of simplifying agent design by 
attempting to minimize the need for complex representations, but suggests that at-
tempts to eliminate them entirely are unlikely to succeed. Certainly, from a practical 
perspective, there seems to be no obvious way to implement more complex behaviors 
(e.g. tool use) that does not involve some sort of representation. 

 It is also important to note that our goal as AI researchers is often to reproduce beha-
vior, which may or may not emphasize detailed modeling of the underlying mechan-
isms utilized by biological systems. That is, even if biological organisms employ a form 
of direct perception, it may not be practical or even desirable for artificial agents to 
duplicate those mechanisms (consider that the underlying “hardware” differs enorm-
ously between the neurons in a biological brain and the transistors on a microchip). 
Ease of implementation, speed of execution, and the final performance of the system 
must all be considered when deciding what models to apply to the design of an artifi-
cial agent. Thus, the fidelity of the model used will depend on several factors, includ-
ing how well the biological mechanisms are understood, how easily they can be repli-
cated with the available hardware and software, and the specific goals of the research. 

 Nevertheless, direct perception does remain a key element of the ecological psycholo-
gy perspective. Thus, the issue of direct perception may be the single most contentious 
point in discussions between the two fields. For example, Chemero and Turvey (2007) 
assert in their response to Şahin et al. (2007) that despite debates about the nature of 
affordances, ecological psychologists all “insist on understanding affordances so that 
the other main component of Gibsonian ecological psychology [direct perception] is 
respected” (Chemero & Turvey 2007: 474). Michaels and Carello (1981) also seem to 
reject any reconciliation between direct and computational/representational ap-
proaches. Indeed, at times, the ecological psychology literature can appear almost hos-
tile to any approach that questions the role of direct perception. 

 

4. Conclusion 

In principle, an ecological approach frees agents from the need to maintain complex 
representations of the world. The agent can instead interact with the world as it is, 
allowing for more flexible and timelier responses in a dynamic environment, with the 
agent able learn to the affordances of its surroundings through first-hand exploration. 

 A significant body of research now exists in which ecological and affordance-based 
approaches have been successfully applied to solve problems faced by robotic agents. 
While psychologists and AI researchers may not always agree on the details of the im-
plementations, they share the goal of better understanding agent-environment sys-
tems. 

 Even so, there remain significant differences that we would like to see addressed. In 
particular, if the issue of direct perception cannot be resolved, we believe that it may 
be necessary to abandon attempts to reconcile strictly Gibsonian approaches with 
much of the current work in AI and robotics, which depends on internal representa-
tions. In such a case, either affordances would have to be defined so narrowly as to 
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only permit behaviors that can be based on very simple mechanisms, such as optic 
flow, or defined so generally as to provide little practical guidance to researchers. De-
spite such issues, however, we remain hopeful that the ecological approach will con-
tinue to inform the design of artificial agents, and that increased dialog between psy-
chologists and AI engineers may contribute to progress in both fields. 

 We are encouraged by the appearance of an increased interest in affordance-based 
robotics in the recent years. Further, many of the agents being developed are moving 
beyond the issues of basic navigation and obstacle avoidance, with ecological ap-
proaches being applied to the design of robots capable of modifying the environment 
with which they interact. We anticipate that the use of affordance-based design will 
continue to grow alongside the development of robotic agents capable of increasingly 
more complex behaviors.  
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