Skip to main content
Log in

Status of the Asymptotic Safety Paradigm for Quantum Gravity and Matter

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the asymptotic safety paradigm, a quantum field theory reaches a regime with quantum scale invariance in the ultraviolet, which is described by an interacting fixed point of the Renormalization Group. Compelling hints for the viability of asymptotic safety in quantum gravity exist, mainly obtained from applications of the functional Renormalization Group. The impact of asymptotically safe quantum fluctuations of gravity at and beyond the Planck scale could at the same time induce an ultraviolet completion for the Standard Model of particle physics with high predictive power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In approaches to quantum gravity that focus on a “pre-geometric” phase, where a continuum spacetime is yet to emerge from underlying discrete building blocks, the RG can be set up in a more abstract way, by coarse-graining from many to few degrees of freedom, but this typically also appears to imply the breaking of a symmetry of the model, see, e.g., [53].

  2. The fixed point in \(d=4\) might of course not be smoothly connected to that in \(d=2+\epsilon \), but a smooth connection to a perturbative regime provides another powerful tool to characterize the fixed point. Moreover, for a fixed point in \(d=4\) that smoothly connects to one in \(d=2\), the scaling exponents are given by canonical scaling dimensions plus terms which go to zero as \(\epsilon \rightarrow 2\). These additional terms might be quantitatively small in \(d=4\), and the fixed point could inherit a close-to-canonical scaling behavior. This is an excellent basis to set up truncations that show apparent convergence.

References

  1. ’t Hooft, G., Veltman, M.J.G.: One loop divergencies in the theory of gravitation. Ann. Poincare Phys. Theor. A 20, 69 (1974)

    ADS  MathSciNet  Google Scholar 

  2. Deser, S., Nieuwenhuizen, Pv: Nonrenormalizability of quantized fermion gravitation interactions. Lett. Nuovo Cim. 2, 218 (1974)

    Google Scholar 

  3. Deser, S., Nieuwenhuizen, Pv: Nonrenormalizability of the quantized Einstein–Maxwell system. Phys. Rev. Lett 32, 245 (1974)

    Article  ADS  Google Scholar 

  4. Goroff, M.H., Sagnotti, A.: The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266, 709 (1986)

    Article  ADS  Google Scholar 

  5. van de Ven, A.E.M.: Two loop quantum gravity. Nucl. Phys. B 378, 309 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  6. Donoghue, J.F.: Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 72, 2996 (1994)

    Article  ADS  Google Scholar 

  7. Frohlich, J.: On the triviality of lambda (phi**4) in D-dimensions theories and the approach to the critical point in \(\text{ D } >=\) four-dimensions. Nucl. Phys. B 200, 281 (1982)

    Article  ADS  Google Scholar 

  8. Callaway, D.J.E.: Triviality pursuit: can elementary scalar particles exist? Phys. Rep. 167, 241 (1988)

    Article  ADS  Google Scholar 

  9. Maiani, L., Parisi, G., Petronzio, R.: Bounds on the number and masses of quarks and leptons. Nucl. Phys. B 136, 115 (1978)

    Article  ADS  Google Scholar 

  10. Cabibbo, N., Maiani, L., Parisi, G., Petronzio, R.: Bounds on the fermions and Higgs Boson masses in grand unified theories. Nucl. Phys. B 158, 295 (1979)

    Article  ADS  Google Scholar 

  11. Dashen, R.F., Neuberger, H.: How to get an upper bound on the Higgs mass. Phys. Rev. Lett. 50, 1897 (1983)

    Article  ADS  Google Scholar 

  12. Callaway, D.J.E.: Nontriviality of gauge theories with elementary scalars and upper bounds on Higgs masses. Nucl. Phys. B 233, 189 (1984)

    Article  ADS  Google Scholar 

  13. Beg, M.A.B., Panagiotakopoulos, C., Sirlin, A.: Mass of the Higgs Boson in the canonical realization of the Weinberg–Salam theory. Phys. Rev. Lett. 52, 883 (1984)

    Article  ADS  Google Scholar 

  14. Lindner, M.: Implications of triviality for the standard model. Z. Phys. C 31, 295 (1986)

    Article  ADS  Google Scholar 

  15. Kuti, J., Lin, L., Shen, Y.: Upper bound on the Higgs mass in the standard model. Phys. Rev. Lett. 61, 678 (1988)

    Article  ADS  Google Scholar 

  16. Hambye, T., Riesselmann, K.: Matching conditions and Higgs mass upper bounds revisited. Phys. Rev. D 55, 7255 (1997)

    Article  ADS  Google Scholar 

  17. Gell-Mann, M., Low, F.E.: Quantum electrodynamics at small distances. Phys. Rev. 95, 1300 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gockeler, M., Horsley, R., Linke, V., Rakow, P.E.L., Schierholz, G., Stuben, H.: Is there a Landau pole problem in QED? Phys. Rev. Lett. 80, 4119 (1998)

    Article  ADS  Google Scholar 

  19. Gockeler, M., Horsley, R., Linke, V., Rakow, P.E.L., Schierholz, G., Stuben, H.: Resolution of the Landau pole problem in QED. Nucl. Phys. Proc. Suppl. 63, 694 (1998)

    Article  ADS  Google Scholar 

  20. Gies, H., Jaeckel, J.: Renormalization flow of QED. Phys. Rev. Lett. 93, 110405 (2004)

    Article  ADS  Google Scholar 

  21. Weinberg, S.: UV divergences in quantum theories of gravitation. In: Hawking, S.W., Israel, W. (eds.) General Relativity, pp. 790–831. Cambridge University Press, Cambridge (1980)

    Google Scholar 

  22. Wilson, K.G., Fisher, M.E.: Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28, 240 (1972)

    Article  ADS  Google Scholar 

  23. Reuter, M., Wetterich, C.: Indications for gluon condensation for nonperturbative flow equations. arXiv:9411227 [hep-th]

  24. Reuter, M., Wetterich, C.: Gluon condensation in nonperturbative flow equations. Phys. Rev. D 56, 7893 (1997)

    Article  ADS  Google Scholar 

  25. Eichhorn, A., Gies, H., Pawlowski, J.M.: Gluon condensation and scaling exponents for the propagators in Yang–Mills theory. Phys. Rev. D 83, 045014 (2011). Erratum: Phys. Rev. D 83, 069903 (2011)

  26. Shaposhnikov, M., Wetterich, C.: Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 683, 196 (2010)

    Article  ADS  Google Scholar 

  27. Harst, U., Reuter, M.: QED coupled to QEG. J. High Energy Phys. 1105, 119 (2011)

    Article  ADS  MATH  Google Scholar 

  28. Eichhorn, A., Held, A.: Top mass from asymptotic safety. Phys. Lett. B 777, 217 (2018). https://doi.org/10.1016/j.physletb.2017.12.040

    Article  ADS  Google Scholar 

  29. Eichhorn, A., Versteegen, F.: Upper bound on the Abelian gauge coupling from asymptotic safety. JHEP 1801, 030 (2018). https://doi.org/10.1007/JHEP01(2018)030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Wetterich, C.: Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  31. Morris, T.R.: The exact renormalization group and approximate solutions. Int. J. Mod. Phys. A 9, 2411 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Berges, J., Tetradis, N., Wetterich, C.: Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Polonyi, J.: Lectures on the functional renormalization group method. Cent. Eur. J. Phys. 1, 1 (2003)

    Article  Google Scholar 

  34. Pawlowski, J.M.: Aspects of the functional renormalisation group. Ann. Phys. 322, 2831 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Delamotte, B.: An Introduction to the Nonperturbative Renormalization Group. Lecture Notes in Physics, vol. 852, pp. 49–132. Springer, Heidelberg (2012)

    Chapter  MATH  Google Scholar 

  36. Rosten, O.J.: Fundamentals of the Exact Renormalization Group. arXiv:1003.1366 [hep-th]

  37. Braun, J.: Fermion interactions and universal behavior in strongly interacting theories. J. Phys. G 39, 033001 (2012)

    Article  ADS  Google Scholar 

  38. Gies, H.: Introduction to the Functional RG and Applications to Gauge Theories. Lecture Notes in Physics, vol. 852, pp. 287–348. Springer, Berlin (2012)

    Chapter  MATH  Google Scholar 

  39. Litim, D.F.: Optimized renormalization group flows. Phys. Rev. D 64, 105007 (2001)

    Article  ADS  Google Scholar 

  40. Manrique, E., Reuter, M.: Bare action and regularized functional integral of asymptotically safe quantum gravity. Phys. Rev. D 79, 025008 (2009)

    Article  ADS  Google Scholar 

  41. Morris, T.R., Slade, Z.H.: Solutions to the reconstruction problem in asymptotic safety. J. High Energy Phys. 1511, 094 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. Canet, L., Delamotte, B., Mouhanna, D., Vidal, J.: Nonperturbative renormalization group approach to the Ising model: a derivative expansion at order partial**4. Phys. Rev. B 68, 064421 (2003)

    Article  ADS  Google Scholar 

  43. Litim, D.F., Zappala, D.: Ising exponents from the functional renormalisation group. Phys. Rev. D 83, 085009 (2011)

    Article  ADS  Google Scholar 

  44. Eichhorn, A., Mesterhzy, D., Scherer, M.M.: Multicritical behavior in models with two competing order parameters. Phys. Rev. E 88, 042141 (2013)

    Article  ADS  Google Scholar 

  45. Knorr, B.: Ising and Gross–Neveu model in next-to-leading order. Phys. Rev. B 94(24), 245102 (2016)

    Article  ADS  Google Scholar 

  46. Jüttner, A., Litim, D.F., Marchais, E.: Global Wilson–Fisher fixed points. Nucl. Phys. B 921, 769 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Eichhorn, A.: On unimodular quantum gravity. Class. Quant. Gravity 30, 115016 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Benedetti, D.: Essential nature of Newton?s constant in unimodular gravity. Gen. Relat. Gravit. 48(5), 68 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Eichhorn, A.: The Renormalization Group flow of unimodular f(R) gravity. J. High Energy Phys. 1504, 096 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  50. Gies, H., Knorr, B., Lippoldt, S.: Generalized parametrization dependence in quantum gravity. Phys. Rev. D 92(8), 084020 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  51. Ohta, N., Percacci, R., Pereira, A.D.: Gauges and functional measures in quantum gravity I: Einstein theory. J. High Energy Phys. 1606, 115 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Reuter, M.: Non-perturbative evolution equation for quantum gravity. Phys. Rev. D 57, 971 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  53. Eichhorn, A., Koslowski, T.: Towards phase transitions between discrete and continuum quantum spacetime from the Renormalization Group. Phys. Rev. D 90(10), 104039 (2014). arXiv:1701.03029

    Article  ADS  Google Scholar 

  54. Manrique, E., Reuter, M.: Bimetric truncations for quantum Einstein gravity and asymptotic safety. Ann. Phys. 325, 785 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Manrique, E., Reuter, M., Saueressig, F.: Matter induced bimetric actions for gravity. Ann. Phys. 326, 440 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Manrique, E., Reuter, M., Saueressig, F.: Bimetric renormalization group flows in quantum Einstein gravity. Ann. Phys. 326, 463 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Becker, D., Reuter, M.: En route to background independence: broken split-symmetry, and how to restore it with bi-metric average actions. Ann. Phys. 350, 225 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Christiansen, N., Litim, D.F., Pawlowski, J.M., Rodigast, A.: Fixed points and infrared completion of quantum gravity. Phys. Lett. B 728, 114 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Litim, D.F., Pawlowski, J.M.: Renormalization group flows for gauge theories in axial gauges. J. High Energy Phys. 0209, 049 (2002). https://doi.org/10.1088/1126-6708/2002/09/049. [hep-th/0203005]

    Article  ADS  Google Scholar 

  60. Dietz, J.A., Morris, T.R.: Background independent exact renormalization group for conformally reduced gravity. J. High Energy Phys. 1504, 118 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Labus, P., Morris, T.R., Slade, Z.H.: Background independence in a background dependent renormalization group. Phys. Rev. D 94(2), 024007 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  62. Morris, T.R.: Large curvature and background scale independence in single-metric approximations to asymptotic safety. J. High Energy Phys. 1611, 160 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Percacci, R., Vacca, G.P.: The background scale Ward identity in quantum gravity. Eur. Phys. J. C 77(1), 52 (2017)

    Article  ADS  Google Scholar 

  64. Nieto, C.M., Percacci, R., Skrinjar, V.: Split Weyl transformations in quantum gravity. arXiv:1708.09760 [gr-qc]

  65. Gies, H.: Renormalizability of gauge theories in extra dimensions. Phys. Rev. D 68, 085015 (2003)

    Article  ADS  Google Scholar 

  66. Morris, T.R.: Renormalizable extra-dimensional models. J. High Energy Phys. 0501, 002 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  67. Knechtli, F., Rinaldi, E.: Extra-dimensional models on the lattice. Int. J. Mod. Phys. A 31(22), 1643002 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Gastmans, R., Kallosh, R., Truffin, C.: Quantum gravity near two-dimensions. Nucl. Phys. B 133, 417 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  69. Christensen, S.M., Duff, M.J.: Quantum gravity in two + \(\epsilon \) dimensions. Phys. Lett. 79B, 213 (1978)

    Article  ADS  Google Scholar 

  70. Kawai, H., Ninomiya, M.: Renormalization group and quantum gravity. Nucl. Phys. B 336, 115 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  71. Nink, A.: Field parametrization dependence in asymptotically safe quantum gravity. Phys. Rev. D 91(4), 044030 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  72. Falls, K.: Physical renormalisation schemes and asymptotic safety in quantum gravity. arXiv:1702.03577 [hep-th]

  73. Codello, A., Percacci, R., Rahmede, C.: Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation. Ann. Phys. 324, 414 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Reuter, M., Saueressig, F.: Renormalization group flow of quantum gravity in the Einstein–Hilbert truncation. Phys. Rev. D 65, 065016 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  75. Lauscher, O., Reuter, M.: UV fixed point and generalized flow equation of quantum gravity. Phys. Rev. D 65, 025013 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  76. Litim, D.F.: Fixed points of quantum gravity. Phys. Rev. Lett. 92, 201301 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  77. Lauscher, O., Reuter, M.: Flow equation of quantum Einstein gravity in a higher derivative truncation. Phys. Rev. D 66, 025026 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  78. Machado, P.F., Saueressig, F.: On the renormalization group flow of f(R)-gravity. Phys. Rev. D 77, 124045 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  79. Falls, K., Litim, D.F., Nikolakopoulos, K., Rahmede, C.: A bootstrap towards asymptotic safety. arXiv:1301.4191 [hep-th]

  80. Falls, K., Litim, D.F., Nikolakopoulos, K., Rahmede, C.: Further evidence for asymptotic safety of quantum gravity. Phys. Rev. D 93(10), 104022 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  81. Benedetti, D., Machado, P.F., Saueressig, F.: Asymptotic safety in higher-derivative gravity. Mod. Phys. Lett. A 24, 2233 (2009)

    Article  ADS  MATH  Google Scholar 

  82. Benedetti, D., Machado, P.F., Saueressig, F.: Taming perturbative divergences in asymptotically safe gravity. Nucl. Phys. B 824, 168 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Stelle, K.S.: Classical gravity with higher derivatives. Gen. Relat. Gravit. 9, 353 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  84. Bonanno, A., Reuter, M.: Modulated ground state of gravity theories with stabilized conformal factor. Phys. Rev. D 87(8), 084019 (2013)

    Article  ADS  Google Scholar 

  85. Barnaby, N., Kamran, N.: Dynamics with infinitely many derivatives: the initial value problem. J. High Energy Phys. 0802, 008 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  86. Gies, H., Knorr, B., Lippoldt, S., Saueressig, F.: Gravitational two-loop counterterm is asymptotically safe. Phys. Rev. Lett 116(21), 211302 (2016)

    Article  ADS  Google Scholar 

  87. Benedetti, D., Caravelli, F.: The Local potential approximation in quantum gravity. J. High Energy Phys. 1206, 017 (2012). Erratum: J. High Energy Phys. 1210, 157 (2012)

  88. Dietz, J.A., Morris, T.R.: Asymptotic safety in the f(R) approximation. J. High Energy Phys. 1301, 108 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Dietz, J.A., Morris, T.R.: Redundant operators in the exact renormalisation group and in the f(R) approximation to asymptotic safety. J. High Energy Phys. 1307, 064 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Demmel, M., Saueressig, F., Zanusso, O.: A proper fixed functional for four-dimensional quantum Einstein gravity. J. High Energy Phys. 1508, 113 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Ohta, N., Percacci, R., Vacca, G.P.: Renormalization Group Equation and scaling solutions for f(R) gravity in exponential parametrization. Eur. Phys. J. C 76(2), 46 (2016)

    Article  ADS  Google Scholar 

  92. Gonzalez-Martin, S., Morris, T.R., Slade, Z.H.: Asymptotic solutions in asymptotic safety. Phys. Rev. D 95(10), 106010 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  93. Codello, A., D’Odorico, G., Pagani, C.: Consistent closure of renormalization group flow equations in quantum gravity. Phys. Rev. D 89(8), 081701 (2014)

    Article  ADS  Google Scholar 

  94. Christiansen, N., Knorr, B., Pawlowski, J.M., Rodigast, A.: Global flows in quantum gravity. Phys. Rev. D 93(4), 044036 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  95. Christiansen, N., Knorr, B., Meibohm, J., Pawlowski, J.M., Reichert, M.: Local Quantum Gravity. Phys. Rev. D 92(12), 121501 (2015)

    Article  ADS  Google Scholar 

  96. Christiansen, N.: Four-Derivative Quantum Gravity Beyond Perturbation Theory. arXiv:1612.06223 [hep-th]

  97. Denz, T., Pawlowski, J. M., Reichert, M.: Towards apparent convergence in asymptotically safe quantum gravity. arXiv:1612.07315 [hep-th]

  98. Knorr, B., Lippoldt, S.: Correlation functions on a curved background. arXiv:1707.01397 [hep-th]

  99. Manrique, E., Rechenberger, S., Saueressig, F.: Asymptotically safe Lorentzian gravity. Phys. Rev. Lett. 106, 251302 (2011)

    Article  ADS  Google Scholar 

  100. Rechenberger, S., Saueressig, F.: A functional renormalization group equation for foliated spacetimes. J. High Energy Phys. 1303, 010 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Houthoff, W.B., Kurov, A., Saueressig, F.: Impact of topology in foliated Quantum Einstein Gravity. arXiv:1705.01848 [hep-th]

  102. Lauscher, O., Reuter, M.: Fractal spacetime structure in asymptotically safe gravity. JHEP 0510, 050 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  103. Reuter, M., Saueressig, F.: Fractal space-times under the microscope: A Renormalization Group view on Monte Carlo data. JHEP 1112, 012 (2011)

    Article  ADS  MATH  Google Scholar 

  104. Calcagni, G., Eichhorn, A., Saueressig, F.: Probing the quantum nature of spacetime by diffusion. Phys. Rev. D 87(12), 124028 (2013)

    Article  ADS  Google Scholar 

  105. Bonanno, A., Reuter, M.: Renormalization group improved black hole space-times. Phys. Rev. D 62, 043008 (2000)

    Article  ADS  Google Scholar 

  106. Bonanno, A., Reuter, M.: Spacetime structure of an evaporating black hole in quantum gravity. Phys. Rev. D 73, 083005 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  107. Bonanno, A., Contillo, A., Percacci, R.: Inflationary solutions in asymptotically safe f(R) theories. Class. Quant. Grav. 28, 145026 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. Falls, K., Litim, D.F.: Black hole thermodynamics under the microscope. Phys. Rev. D 89, 084002 (2014)

    Article  ADS  Google Scholar 

  109. Koch, B., Saueressig, F.: Structural aspects of asymptotically safe black holes. Class. Quant. Grav. 31, 015006 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  110. Koch, B., Saueressig, F.: Black holes within asymptotic safety. Int. J. Mod. Phys. A 29(8), 1430011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. Koch, B., Rioseco, P., Contreras, C.: Scale setting for self-consistent backgrounds. Phys. Rev. D 91(2), 025009 (2015)

    Article  ADS  Google Scholar 

  112. Bonanno, A., Platania, A.: Asymptotically safe inflation from quadratic gravity. Phys. Lett. B 750, 638 (2015)

    Article  ADS  Google Scholar 

  113. Bonanno, A., Koch, B., Platania, A.: Cosmic censorship in quantum Einstein gravity. arXiv:1610.05299

  114. Bonanno, A., Saueressig, F.: Asymptotically safe cosmology—a status report. arXiv:1702.04137

  115. Tronconi, A.: Asymptotically safe non-minimal inflation. J. Cosmol. Astropart. Phys. 1707(07), 015 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  116. Wetterich, C.: Graviton fluctuations erase the cosmological constant. Phys. Lett. B 773, 6 (2017)

    Article  ADS  MATH  Google Scholar 

  117. Donà, P., Eichhorn, A., Percacci, R.: Matter matters in asymptotically safe quantum gravity. Phys. Rev. D 89(8), 084035 (2014)

    Article  ADS  Google Scholar 

  118. Donà, P., Eichhorn, A., Percacci, R.: Consistency of matter models with asymptotically safe quantum gravity. Can. J. Phys. 93(9), 988 (2015)

    Article  ADS  Google Scholar 

  119. Donà, P., Percacci, R.: Functional renormalization with fermions and tetrads. Phys. Rev. D 87(4), 045002 (2013)

    Article  ADS  Google Scholar 

  120. Eichhorn, A., Lippoldt, S.: Quantum gravity and standard-model-like fermions. Phys. Lett. B 767, 142 (2017)

    Article  ADS  Google Scholar 

  121. Biemans, J., Platania, A., Saueressig, F.: Renormalization group fixed points of foliated gravity-matter systems. J. High Energy Phys. 1705, 093 (2017). https://doi.org/10.1007/JHEP05(2017)093. [arXiv:1702.06539 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. Meibohm, J., Pawlowski, J.M., Reichert, M.: Asymptotic safety of gravity-matter systems. Phys. Rev. D 93(8), 084035 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  123. Donà, P., Eichhorn, A., Labus, P., Percacci, R.: Asymptotic safety in an interacting system of gravity and scalar matter. Phys. Rev. D 93(4), 044049 (2016). Erratum: Phys. Rev. D 93, no. 12, 129904 (2016)

  124. Bezrukov, F., Kalmykov, M.Y., Kniehl, B.A., Shaposhnikov, M.: Higgs boson mass and new physics. J. High Energy Phys. 1210, 140 (2012)

    Article  ADS  Google Scholar 

  125. Buttazzo, D., Degrassi, G., Giardino, P.P., Giudice, G.F., Sala, F., Salvio, A., Strumia, A.: Investigating the near-criticality of the Higgs boson. J. High Energy Phys. 1312, 089 (2013)

    Article  ADS  Google Scholar 

  126. Pietrykowski, A.R.: Gauge dependence of gravitational correction to running of gauge couplings. Phys. Rev. Lett. 98, 061801 (2007)

    Article  ADS  Google Scholar 

  127. Ellis, J., Mavromatos, N.E.: On the interpretation of gravitational corrections to gauge couplings. Phys. Lett. B 711, 139 (2012)

    Article  ADS  Google Scholar 

  128. Anber, M.M., Donoghue, J.F., El-Houssieny, M.: Running couplings and operator mixing in the gravitational corrections to coupling constants. Phys. Rev. D 83, 124003 (2011)

    Article  ADS  Google Scholar 

  129. Gonzalez-Martin, S., Martin, C.P.: Do the gravitational corrections to the beta functions of the quartic and Yukawa couplings have an intrinsic physical meaning? arXiv:1707.06667

  130. Antoniadis, I., Iliopoulos, J., Tomaras, T.N.: Gauge invariance in quantum gravity. Nucl. Phys. B 267, 497 (1986). https://doi.org/10.1016/0550-3213(86)90402-5

    Article  ADS  Google Scholar 

  131. Carlip, S.: Spontaneous dimensional reduction in quantum gravity. Int. J. Mod. Phys. D 25(12), 1643003 (2016)

    Article  ADS  Google Scholar 

  132. Daum, J.E., Harst, U., Reuter, M.: Running gauge coupling in asymptotically safe quantum gravity. J. High Energy Phys. 1001, 084 (2010)

    Article  ADS  MATH  Google Scholar 

  133. Folkerts, S., Litim, D.F., Pawlowski, J.M.: Asymptotic freedom of Yang–Mills theory with gravity. Phys. Lett. B 709, 234 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  134. Christiansen, N., Eichhorn, A.: An asymptotically safe solution to the U(1) triviality problem. Phys. Lett. B 770, 154 (2017)

    Article  ADS  Google Scholar 

  135. Zanusso, O., Zambelli, L., Vacca, G.P., Percacci, R.: Gravitational corrections to Yukawa systems. Phys. Lett. B 689, 90 (2010)

    Article  ADS  Google Scholar 

  136. Vacca, G.P., Zanusso, O.: Asymptotic safety in Einstein gravity and scalar-fermion matter. Phys. Rev. Lett. 105, 231601 (2010)

    Article  ADS  Google Scholar 

  137. Oda, Ky, Yamada, M.: Non-minimal coupling in Higgs–Yukawa model with asymptotically safe gravity. Class. Quant. Gravity 33(12), 125011 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  138. Hamada, Y., Yamada, M.: Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system. arXiv:1703.09033 [hep-th]

  139. Eichhorn, A., Held, A., Pawlowski, J.M.: Quantum-gravity effects on a Higgs–Yukawa model. Phys. Rev. D 94(10), 104027 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  140. Eichhorn, A., Held, A.: Viability of quantum-gravity induced ultraviolet completions for matter. arXiv:1705.02342 [gr-qc]

  141. Eichhorn, A., Gies, H.: Light fermions in quantum gravity. New J. Phys. 13, 125012 (2011)

    Article  ADS  Google Scholar 

  142. Meibohm, J., Pawlowski, J.M.: Chiral fermions in asymptotically safe quantum gravity. Eur. Phys. J. C 76(5), 285 (2016)

    Article  ADS  Google Scholar 

  143. Eichhorn, A.: Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario. Phys. Rev. D 86, 105021 (2012)

    Article  ADS  Google Scholar 

  144. Eichhorn, A.: Faddeev–Popov ghosts in quantum gravity beyond perturbation theory. Phys. Rev. D 87(12), 124016 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I thank the organizers of the workshop on Black Holes, Gravitational Waves and Spacetime Singularities for the invitation to a particularly inspiring workshop. It is a pleasure to thank N. Christiansen, P. Donà, H. Gies, A. Held, P. Labus, S. Lippoldt, J. Pawlowski, R. Percacci, M. Reichert and F. Versteegen for enjoyable and fruitful collaborations on gravity-matter systems, some part of which is reflected in these notes. I am indebted to A. Held and F. Versteegen for help in making this summary (hopefully) more understandable. I acknowledge funding by the DFG within the Emmy–Noether-program under grant no. Ei-1037-1 and support by the Perimeter Institute for Theoretical Physics through the Emmy–Noether-visiting fellow program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eichhorn, A. Status of the Asymptotic Safety Paradigm for Quantum Gravity and Matter. Found Phys 48, 1407–1429 (2018). https://doi.org/10.1007/s10701-018-0196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0196-6

Keywords

Navigation