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In the beginning there was nothing, which exploded.

–Terry Pratchett, Lords and Ladies

1 Motivation for inflationary theory

Before the inflationary theory, the standard cosmological model had three im-

portant unsolved issues, with no answer on the horizon. The first problem is

the horizon problem: why is the universe so uniform, looking from the aspect

of large-scale structures? The second question poses the flatness problem: why

is the geometry of the universe almost flat, i.e. Euclidean? Finally, the third

question – the perturbations of density problem – asks a seemingly philosophical

question – where did the large-scale fluctuations, which gave rise to stars and

galaxies, come from?1

“The biggest blunder of his life”, Einstein’s cosmological constant, was intro-

duced since his static space would have collapsed, so he added it to his equation

in order to hold back gravity and achieve a static universe. After Hubble’s dis-

covery of the expansion of the universe, Einstein’s cosmological constant was

forgotten until modern times, when inflation used the option that gravity could

be a repulsive force. To allow for the repulsive gravity, we require negative

pressure, thus a small part of repulsive gravitational material existed in the

early universe, and led to the creation of everything. Even though Einstein did

∗To appear in: Physics and Philosophy II (ed. Luka Bořsić, Dragan Poljak, Ivana Skuhala
Karasman, Franjo Sokolić), Institute of Philosophy, Zagreb, 2020

1Another important problem – the magnetic monopole problem – will not be discussed
here, since it carries little weight for the topic of the paper.
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not offer a physical explanation of the cosmological constant, the modern in-

terpretation in terms of vacuum energy and pressure was introduced by George

Lemâıtre [10, p. 19]. Therefore, the attractional gravitational force of the mat-

ter was balanced by the repulsive gravity of the vacuum. In this false vacuum,

every part of the universe was of huge and constant density, and the gravita-

tionally repulsive material, being unstable, turned into non-repulsive one. Thus

the particles were produced, and afterwards the universe grew exponentially.

Alan Guth, and later Andrew Linde, proposed the theory of inflation as

the exponential expansion of the early universe, which lasted somewhere from

10-35 to 10-32 seconds, when the universe expanded for 1025 times. Guth’s

theory aimed to resolve the conditions that led to the Big Bang. The expo-

nential expansion of the universe – the inflation – commences when a patch of

the primeval chaotic quantum fluctuations happens to expand, and the density

within it drops to a point where the local energy density is dominated by the

potential energy of the field, usually called inflaton2 [7, p. 397]. The energy

that has been stored in the field produced high-energy particles, which collided

and created other particles at high temperature, providing us with a starting

point for the standard hot Big Bang cosmology [4, p. 176].

The inflationary theory helped cosmology to have a valid explanation for the

mentioned important issues, by postulating the existence of pre-Big Bang quan-

tum fluctuations that gave rise to an exponential expansion of the universe. To

continue, regarding the horizon problem, usually different objects have similar

properties if they have been in contact at some time, but according to stan-

dard cosmology, the most distant regions were not. Inflation states that these

regions, which are separated today, have been in contact before the exponential

growth of the universe. Even though they are at huge distances today, when

they were in contact before the exponential expansion, there had been time for

these regions to thermalize and reach exactly the same temperature and other

physical properties [5, p. 97].

The inflationary solution to the flatness problem3 concerns Ω, the ratio be-

2This field was considered to be the Higgs field, however, recent discoveries are skeptical
about this scenario, even though Guth himself had talked about the Higgs field (cf. [4, p.
175]).

3While having flat geometry means that the geometry of the universe is of Euclidean
type, this does not propose a flat universe in the literal sense. It means that the shortest path
between two points is a straight line, the sum of angles in a triangle is 180 degrees, and parallel
lines never meet. The other two geometries have different properties: in spherical geometry,
the sum of angles in a triangle is greater than 180 degrees, and parallel lines intersect; while
in hyperbolic geometry (saddle-like), the sum of angles in a triangle is less than 180 degrees,
and parallel lines are non-intersecting and move away from each other.
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tween the actual mass density of the universe and critical density.4 Recent

measurement suggest a value really close to 1,5 which means that it started

close to the value of 1, for which the standard Big Bang cosmology does not

offer an explanation. Inflation reverses the problem: instead of Ω being driven

away from 1, it is driven towards one exponentially, the same way as if you in-

flate a balloon exponentially, its surface would even out. As the inflation drives

the geometry of the universe towards flatness, the value of Ω is driven to the

value of 1 [4, p. 177].

Finally, as for the problem of perturbations of density, the inflation empha-

sizes the initial quantum fluctuations as seeds of today’s large-scale structures:

stars, galaxies, galaxy clusters, and galaxy super-clusters. The exponential ex-

pansion increased the existing quantum vacuum fluctuations, and the initial rare
1

100000
uniformity had grown exponentially. The question that is immediately

asked is, of course, if the inflation is here to explain the conditions that led to

the Big Bang, whence do these quantum fluctuations come from?

2 Quantum fluctuations and vacuum

The inflationary cosmology tries to explain what happened and what “existed”

before the Big Bang using quantum fluctuations. In quantum physics, these are

temporary changes in the amount of energy in a certain point in space. The

uncertainty principle allows for the temporary appearance of virtual particles

out of empty space6 [1]. Since there is not a precise determination of position

and momentum, or energy and time, a particle pair may pop out of the vacuum

in a short interval. Therefore, it is possible for a particle and its antiparticle –

say, an electron and a positron – to materialize from the vacuum, exist briefly,

and disappear. In this case, the separation between the electron and the positron

is typically no larger than 10-10 cm, and the fluctuation typically lasts around

10-21 seconds, so even though they cannot be observed directly, it can be done

indirectly. For example, atomic physicists can usually calculate the magnetic

strength of an electron up to ten decimal places, and if the influence of the

4Critical density is the density that puts the universe on the borderline – regarding its
ultimate fate – between eternal expansion and eventual collapse.

5Current WMAP value is 1.0023 (+0.0056/–0.0054). Current data: NASA. 2020. “Wilkin-
son Microwave Anisotropy Probe”. [https://map.gsfc.nasa.gov]

6This does not violate the conservation of energy, since the particle number operator, that
counts the number of particles in systems where the total amount of particles may not be
preserved, lacks the commutative property with a field’s Hamiltonian operator – the lowest
energy state or the vacuum state.
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materialization of the electron-positron pairs is left out, the answer agrees with

the experiment only for the first five decimal places, while the next five turn

out wrong [4, p. 272].

In the core of inflationary theory lie the mentioned quantum fluctuations.

Since the Big Bang marks the creation of everything: space, time, and matter,

the question that is immediately posed is: what exactly did fluctuate? If infla-

tionary theory resolves cosmological issues by stating that there were quantum

fluctuations and virtual particles, this would imply that there was a certain

something, not at all nothing before the Big Bang.7

3 Universe as an inflated quantum fluctuation

According to the first law of thermodynamics, nothing in the universe cannot

pop into existence out of nothing. The question can the universe itself do that

was posed by Edward Tryon in 1970,8 considering the universe as a quantum

fluctuation [8]. In principle any object might materialize briefly in the vacuum,9

but the probability, of course, significantly decreases if the object is more massive

and more complex. However, it is still a probabilistic issue, end even though it

is highly improbable we should get anything other than a virtual particle pair,

it could be possible that whole universes might materialize from the vacuum,

including ours.

The problem is: the lifetime of the fluctuation depends on its mass, and

the lifespan is shortened as the mass increases, so for a quantum fluctuation to

survive for more than ten billion years, the mass of it should be less than 10-65

grams [4, p. 272]. However, in a closed universe, the negative gravitational

energy cancels the energy of matter, and the total mass is equal to zero, so the

lifetime of a such quantum fluctuation can be infinite. This scenario presupposes

quantum fields in some kind of space (and the standard model attributes the

creation of space and time to the Big Bang itself), so the question is how to

reformulate this idea without spacetime.

Vilenkin [9] took an empty geometry, not a closed one, and the concept

of quantum tunneling10 to conceive the idea that the universe started from

7This is common criticism against Lawrence Krauss [5].
8Tryon was at Dennis Sciama’s lecture at the Columbia University when he proposed this,

but everyone thought it was a joke [10, p. 183].
9Guth [4, p. 272] jokingly mentions a refrigerator or a pocket calculator. Caveat : the

conservation laws cannot be violated, and if the object is positively charged, then it can
materialize only if the equal amount of negative charge is produced.

10Quantum tunneling is a quantum mechanical phenomenon in which a particle tunnels
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an empty geometry, containing no points, and then tunneled into a non-empty

state. That way, the problem of where the fluctuations happened conceptually

disappears, and we can use the theory of inflation to increase the fluctuations

to today’s size.

Thus, we use inflationary theory to explain how the universe appeared out of

nothing, starting from quantum fluctuations that tunneled from an empty state

to a non-empty one, and this subatomic universe thus created was enlarged

accordingly by the exponential expansion. The problem is that we still start

with something, since the particles that can jump or tunnel through an energy

barrier must still initially exist – even for a brief flash of time – in order to do so.

From a philosophical point of view, declaring the initial condition to be an empty

geometry still presupposes something having the no-points properties. So, if the

universe owes its origin to the quantum theory combined with the cosmological

model of inflation, it seems that the quantum laws must have existed before the

creation of the universe, which again motivates us to ask the question what led

to these quantum fluctuations.

4 Anthropic limitations

One of philosophically interesting principles that can be used to clarify this issue

is the anthropic principle (proposed by Barrow and Tipler [3]): the universe

is how it is since it allows for us to observe it, i.e. only the universe that

is capable of supporting life will have beings capable of reflecting on its fine

tuning. Combined with the possibility of creation of more than one universe –

no matter how statistically improbable – there would be some universes that

could tunnel and inflate to a larger size.11

The issues with all theories that presuppose various fluctuations and energy

levels, combined with inflation in order to achieve the current state, is that

they have to presuppose some properties and entities such as particles, energy,

tunneling etc. in order to explain the creation of the universe. If one takes

into account the anthropic principle, one could describe our need to explain

the notions of nothingness, vacuum fluctuations, quantum chaos as a way of

through a barrier that it should not be able to move through in classical terms, i.e. it does
not have enough energy to move over it. However, in quantum mechanics, particles behave as
waves as well, so if the barrier is thin enough, the probability function describing a wave may
extend to the next region over the barrier.

11The most likely to be created would be Planck-sized universes which would instantly
recollapse, and the observers could not be involved in these.
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observing our current universe from the only aspect we know: the aspect of

something. One possibility is that physics could never thoroughly explain the

nature of quantum fluctuations, even if we did know that our universe happened

to be one of the possible inflated fluctuations, because our observing apparatus is

necessarily linked to the universe made out of matter, presupposing something to

exist, without a possible existence of an empty region devoid of matter, energy,

and quantum fluctuations.

5 Computational limitations

One of the biggest issues in cosmology is the problem of experiments that can-

not be repeated – such as the creation of the universe – and the problem of

verifying events that have happened out of our reach. Even if we did have a

complete theory of everything, it may still not be able to give us the correct

answer, but it could give us the underlying principle. Recent tries of simulating

virtual particles have established that we could simulate high-energy physics,

showing how they could behave at energy levels too high to easily generate

them in reality. Martinez et al. [6] used a quantum computer built using four

electromagnetically trapped calcium ions, whose spins were used as qubits, and

were controlled by laser pulses to perform logic operations. A pair of qubits12

represented a pair of virtual particles, and the resulting quantum fluctuations in

energy allowed them to read off whether particles and their anti-particle pairs

were created in a simulation.

The question of could we simulate the quantum fluctuations before the Big

Bang seems to be connected with the rising complexity, since interactions be-

tween boundary particles cause an explosive growth in the complexity of their

collective quantum state. Computational complexity observes how much re-

sources we need in order to perform a certain operation, and for some problems,

we would need resources larger than the entire universe has to offer [2, p. 264].

In computational complexity, there are NP problems, for whose resolution we

would need more resources that the universe can handle, but are easily verifi-

able.13 If there is a link between the growth of the computational complexity

12In quantum computing, a qubit is a unit of quantum information, which differs from the
classical bit that has to be in one state or the other since quantum mechanics allows it to be
in a superposition of both states simultaneously.

13For example, it is easy to use a password for a certain login, but it is not as easy to crack
one. The most famous question today is the P versus NP problem that asks can we reduce
the quickly verifiable problems (NP) to those that are quickly solved (P) by a computer. The
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and the expansion of the universe, the computational complexity may have a

key role in the complete theory of quantum gravity and the beginning of the

universe.

If the simulation of the pre-Big Bang conditions would be shown to be ver-

ifiable, but unsolvable, that gives us hope for the future simulations of these

initial conditions, since we could test the complete theory and see whether the

answer checks out. That way, the problem of verification and refutation in this

aspect of cosmology should disappear.

Unfortunately, if we do not develop a theory of everything, the answer should

forever stay out of our reach, where one could pose a link between the anthropic

principle and our ability to produce such a computational power. If we are not

able to simulate the initial conditions, since the resources we need should ask

for more than this universe can provide us with, and there is no way to reach

the other possible universes14 – maybe the computational limit itself is a part

of our anthropic reasoning condition, and the universe itself puts a constraint

to explain its beginning. Thus, we can use quantum mechanics and inflation

to hypothesize about their development, including the creation of the universe

as a result. However, the creation itself could have closed the door to the

understanding of the essence of the nothingness in the beginning.
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J. Copeland, C. J. Posy, and O. Shagrir, Eds. The MIT Press, Cambridge,

MA, 2013, pp. 261–327.

[3] Barrow, J. D., and Tipler, F. J. The Anthropic Cosmological Princi-

ple. Oxford University Press, Oxford, 1988.

problems is still unresolved, but the majority of researchers believe that NP problems cannot
be reduced to P problems.

14Some inflationary theories presuppose various inflated bubbles that lead to the creation of
various universes. However, since these expand at the speed of light, and particles of our type
cannot exist in these universes, such regions will always stay out of our observing capabilities.

7



[4] Guth, A. The Inflationary Universe. Vintage, London, 1997.

[5] Krauss, L. A Universe from Nothing: Why There Is Something Rather

Than Nothing. Free Press, New York, 1997.

[6] Martinez, E. A., Muschik, C. A., Schindler, P., Nigg, D., Erhard,

A., Heyl, M., Hauke, P., Dalmonte, M., Monz, T., Zoller, P.,

and Blatt, R. Real-time dynamics of lattice gauge theories with a few-

qubit quantum computer. Nature 534 (2016), 516–519.

[7] Peebles, P. Principles of Physical Cosmology. Princeton University Press,

New Jersey, 1993.

[8] Tryon, E. P. Is the universe a vacuum fluctuation? Nature 246 (1973),

396–397.

[9] Vilenkin, A. Creation of universes from nothing. Physics Letters 117B

(1982), 25–28.

[10] Vilenkin, A. Many Worlds In One. Hill and Wang, New York, 2006.

8


	1 Motivation for inflationary theory
	2 Quantum fluctuations and vacuum
	3 Universe as an inflated quantum fluctuation
	4 Anthropic limitations
	5 Computational limitations

