
COMPACT DOMINATION FOR GROUPS DEFINABLE IN
LINEAR O-MINIMAL STRUCTURES

PANTELIS E. ELEFTHERIOU

Abstract. We prove the Compact Domination Conjecture for groups defin-
able in linear o-minimal structures. Namely, we show that every definably
compact group G definable in a saturated linear o-minimal expansion of an
ordered group is compactly dominated by (G/G00,m, π), where m is the Haar
measure on G/G00 and π : G → G/G00 is the canonical group homomorphism.

1. Introduction

The notion of compact domination arose in [HPP] in connection with Pillay’s
conjecture ([Pi2]) for groups definable in saturated o-minimal structures. Pillay’s
conjecture was proved in [HPP] for the case where the ambient o-minimal structure
M expands an ordered field, in [ElSt] and [Ons] for the case where M is an ordered
vector space over an ordered division ring, and in [Pet] for the intermediate case
where M is semi-bounded. We state it here as a principle:

Pillay’s Principle. Every definably compact group G of dimension n, definable
in a saturated o-minimal expansion M of an ordered group, has a smallest type-
definable subgroup G00 of bounded index, and G/G00, when equipped with the logic
topology, is a compact Lie group of dimension n.

Compact domination is then intended to formalize the intuition that the canonical
homomorphism π : G → G/G00 is a kind of intrinsic ‘standard part map’. Recall the
following definitions: A set A ⊆ G/G00 is closed in the logic topology if π−1(A) ⊆ G
is type-definable ([LaPi]). A subgroup H of G has bounded index if |G/H| < |M |.

When working over a saturated o-minimal expansion M of an ordered field,
standard part maps have already appeared in the following two situations, among
others. In [BO2, Definition 4.1], a standard part map is defined from the ‘finite
part’ Fin(Mn) of Mn onto Rn, for n ∈ N+. In [PePi, Section 4], if G(R) is a
compact group of dimension n definable in an o-minimal expansion M0 of R, and
G is the realization of G(R) in a saturated elementary extension M of M0, then
a standard part map is defined from G onto G(R). In both cases, the standard
part map st has the desired properties so that a notion of measure can be defined
for the definable subsets of Fin(Mn) and G, respectively. Namely, if λ denotes
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the Lebesgue measure on Rn, or the Haar measure on G(R), respectively, then a
definable set X ⊆ Fin(Mn), or X ⊆ G, respectively, is given measure λ

(
st(X)

)
.

We next recall some terminology from [HPP] and give the definition of compact
domination.

Let M be a saturated structure. Unless specified otherwise, definability is meant
in M with parameters. By a small set or a set of bounded cardinality we mean a
set of cardinality less than |M |. By a type-definable set we mean an intersection
of a small collection of definable sets. For a type-definable set X, by Def(X) we
denote the set of all definable subsets of X.

Let X be a set type-definable over A, and C a compact Hausdorff space of
bounded cardinality. A map f : X → C is called A-definable if for every closed set
C1 ⊆ C, f−1(C1) ⊆ X is type-definable over A. We say that f is definable if it is
A-definable for some set A.

A Keisler measure on X is a finitely additive probability measure on Def(X),
that is, a map µ : Def(X) → [0, 1] such that µ(∅) = 0, µ(X) = 1, and for
Y,Z ∈ Def(X), µ(Y ∪ Z) = µ(Y ) + µ(Z)− µ(Y ∩ Z).

Definition 1.1 ([HPP]). Suppose X is a type-definable set, C is a compact Haus-
dorff space of bounded cardinality equipped with a probability measure µ, and
σ : X → C is a definable surjective map. We say that X is compactly dominated
by (C, µ, σ) if for all Y ∈ Def(X),

µ
({c ∈ C : σ−1(c) ∩ Y 6= ∅ and σ−1(c) ∩ (X \ Y ) 6= ∅}) = 0.

Let G be a type-definable group. We say that G is compactly dominated (as a
group) if G is compactly dominated by (H,m, σ), where H is a compact Hausdorff
group, m is the unique normalized

(
m(H) = 1

)
Haar measure on H, and σ is a

group homomorphism.
When we work with a type-definable group, we always refer to compact domi-

nation in the group sense.

Fact 1.2 ([HPP], Proposition 9.3, Theorem 9.5). Let G be a type-definable group
which is compactly dominated by (H,m, σ). Then

(i) G00 exists and equals ker(σ).
(ii) G has a unique left (and right) invariant Keisler measure µ′, and it is given

by: for all X ∈ Def(G), µ′(X) = m
(
σ(X)

)
.

For the rest of this paper, let M be a sufficiently saturated o-minimal
structure. If G is a definable group, we denote by m the unique normal-
ized Haar measure on G/G00, and by π the definable group homomor-
phism from G onto G/G00.

Compact Domination Conjecture ([HPP]). Assume that G is a definably com-
pact definable group. Then G is compactly dominated by (G/G00,m, π).

Fact 1.3 ([HPP], Lemma 10.5). Suppose G is a definably compact definable group
of dimension n, such that, for all X ∈ Def(G),

dim(X) < n ⇒ m
(
π(X)

)
= 0.(1)

Then G is compactly dominated by (G/G00,m, π).

Let us note that (1) was a crucial property that implicitly held for st in place
of π in both accounts [BO2] and [PePi] mentioned above, for X a definable subset
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of Fin(Mn) in [BO2], and X ∈ Def(G) in [PePi], respectively. Additionally, st
resembled π in that a bounded set X ⊆ Rn, or X ⊆ G, respectively, is closed if and
only if st−1(X) is type-definable.

By Fact 1.2(ii), Facts 1.4(i) and (ii)(a) below can be seen as a generalization of
the existence of a measure from [BO2] and [PePi], respectively.

Fact 1.4. (i) [HPP, Theorem 10.4] Assume M is a saturated o-minimal expansion
of an ordered group. Then the unit n-cube In ⊆ Mn is compactly dominated by(
In(R), λ, st

)
, where In(R) := st(In).

(
In and st are defined after a copy of R in

M is fixed; see [HPP, Section 10]
)
.

(ii) [HPP, Theorem 10.7] Let G be a definably compact definable group. Then G
is compactly dominated in either of the cases:

(a) G has a ‘very good reduction’.
(b) dim(G) = 1.

In this paper, we give a positive answer to Compact Domination Conjecture in
the case when G is defined in a saturated linear o-minimal expansion M of an
ordered group.

Definition 1.5 ([LoPe]). An o-minimal expansion M = 〈M, +, <, 0, S〉 of an or-
dered group is called linear if for every M-definable function f : A ⊆ Mn → M ,
there is a partition of A into finitely many Ai, such that for each i, if x, y, x+t, y+t ∈
Ai, then

f(x + t)− f(x) = f(y + t)− f(y).

Theorem 1.6. Let M be a linear o-minimal expansion of an ordered group, and
G a definably compact group definable in M. Then G is compactly dominated by
(G/G00,m, π).

Remark 1.7. We may assume that M is an ordered vector space N over an ordered
division ring. Indeed, by [LoPe], a linear o-minimal expansion M of an ordered
group can be elementarily embedded into a reduct of an ordered vector space over
an ordered division ring. Then G (or, rather, G(N )) is definable in N , and by
[El, Section 5], G00

M = G00
N . Hence, to prove property (1) for G it suffices to show

that G(N ) remains definably compact with respect to definability in N , and work
in N . To see that definable compactness is preserved under taking expansions,
observe that G can be written as G =

⋃
i∈J Gi, where each Gi is a closed subset

of G contained in one the charts of G
(
see [BO1, Lemmas 10.4, 10.5], for example,

where the authors work over a real closed field but their arguments go word-by-
word through in any o-minimal expansion of an ordered group

)
. If φi : Gi → Mn

denotes the corresponding chart map, then G is definably compact if and only if
each φi(Gi) is closed and bounded. But the latter property is clearly preserved
under taking expansions.

The strategy of our proof is (a) to define a standard part map stG : G → (S1)n,
n = dim(G), from G to the real n-torus (S1)n that ‘resembles’ π : G → G/G00,
and (b) to show that stG satisfies property (1).

In Section 2, we recall notation and several facts from [ElSt] where definable
groups in an ordered vector spaceM over an ordered division ring D were analyzed.
It was shown there that every definably compact, definably connected definable
group G is definably isomorphic to a definable quotient group U/L, where U is a∨

-definable subgroup of 〈Mn, +〉, and L is a lattice of rank n. In calculating the



4 PANTELIS E. ELEFTHERIOU

rank of L, a standard part map st : U → Rn was defined. Our main observation
here is that, in a certain sense, U corresponds to Fin(Mn) from [BO2], resulting
to a correspondence between the associated standard maps as well.

In Section 3, we investigate properties of the standard part map st, making the
correspondence with [BO2] more apparent.

Section 4 contains the main body of our proof. We use st to define a standard
part map stG : G → (S1)n that resembles π in that: ker(stG) = G00, and, for
all A ⊆ (S1)n, A is closed if and only if st−1

G (A) is type-definable. We then show
that stG satisfies property (1). We conclude that π satisfies (1), and, thus, G is
compactly dominated by (G/G00,m, π).

Note. In the recent paper [HP], the Compact Domination Conjecture was proved
in case M expands an ordered field and G is abelian. The conjecture remains open
in case M is semi-bounded.

Acknowledgements. The work presented here was carried out during my Ph.D.
studies at the University of Notre Dame. I would like to thank my thesis supervisor
Sergei Starchenko, as well as Ya’acov Peterzil for stimulating the subject. I would
also like to thank the referee for the very careful reading and suggestions.

2. Preliminaries

We assume some familiarity with the basics of o-minimality; see [vdD] for a
standard reference. In this section we fix notation and recall facts from [ElSt].

Let M = 〈M, +, <, . . . 〉 be an o-minimal expansion of an ordered group. M is
equipped with the order topology. Mn = 〈Mn, +〉 is the topological group whose
group operation is defined point-wise, that has 0 = (0, . . . , 0) as its unit element,
and whose topology is the product topology. If L is a subgroup of Mn, we denote
by EL the equivalence relation on Mn induced by L, namely, xELy ⇔ x − y ∈ L.
For U ⊆ Mn, we let EU

L := EL ¹U×U and U/L := U/EU
L . The elements of

U/L are denoted by [x]UL , x ∈ U . If U 6 Mn is a subgroup of Mn, then it is a
topological group equipped with the subspace topology. If, moreover, L 6 U , then
U/L = 〈U/L,+U/L, [0]UL 〉 is the quotient topological group, whose topological and
group structure are both induced by the canonical surjection q : U → U/L. If
S ⊆ U is a complete set of representatives for EU

L (that is, it contains exactly one
representative for each equivalence class), then the bijection f : U/L → S defined
by [x]UL 7→ x induces on S a topological group structure 〈S, +S〉:
(i) ∀x, y, z ∈ S, x +S y = z ⇔ [x]UL +U/L [y]UL = [z]UL ⇔ (x + y) EU

L z, and
(ii) A ⊆ S is open in the quotient topology if and only if (f ◦ q)−1(A) is open in U .
U/L is called a definable quotient group if there is a definable S as above, such that
+S is definable. In this case, we identify U/L with 〈S, +S〉.

An isomorphism between two topological groups is a group isomorphism which
is also a homeomorphism.

The abelian subgroup of Mn generated by the elements v1, . . . , vm ∈ Mn is de-
noted by Zv1 + · · · + Zvm. If v1, . . . , vm are Z-linearly independent, then the free
abelian subgroup Zv1 + · · ·+ Zvm of Mn is called a lattice of rank m.

For the rest of this paper let M = 〈M, +, <, 0, {λ}λ∈D〉 be a sufficiently
saturated ordered vector space over an ordered division ring D = 〈D, +, ·, <
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, 0, 1〉, and G = 〈G,⊕, eG〉 a definably connected, definably compact, de-
finable group of dimension n. Unless specified otherwise, definability is
meant in M, possibly with parameters.

The group topology on G is the t-topology from [Pi1]. The assumption of de-
finable connectedness is at no loss of generality, again by [Pi1]. For the notion of
definable compactness the reader is referred to [PeS]. By [vdD, Chapter 1, (7.6)],
M is o-minimal. By [ElSt, Corollary 4.5], G is abelian.

Definability in M was analyzed in [ElSt, Section 3] (see also [vdD, Chapter 1,
§7]). A function f : A ⊆ Mm → M is called linear if it has form f(x1, . . . , xn) =
λ1x1 + · · · + λnxn + a, for some fixed λi ∈ D and a ∈ M . The notion of a linear
cell can then be defined similarly to that of a usual cell but using linear functions
in place of definable continuous ones. The description of the definable sets is then
given by the following.

Linear Cell Decomposition Theorem. Let A ⊆ Mn and f : A → M be de-
finable. Then there is a decomposition of Mn that partitions A into finitely many
linear cells Ai, such that each f ¹Ai is linear.

D = 〈D,+, ·, <, 0, 1〉 is a division ring and 〈Q, +, ·, <, 0, 1〉 naturally embeds into
D. A set X ⊆ Mn is called convex if ∀x, y ∈ X, ∀q ∈ Q ∩ [0, 1], qx + (1− q)y ∈ X.

For λ ∈ D, |λ| := max{−λ, λ}, and for x ∈ M , |x| := max{−x, x}.
The main result from [ElSt] is the following.

Fact 2.1. G is definably isomorphic to a definable quotient group U/L, where U is
a convex

∨
-definable subgroup of 〈Mn, +〉, and L is a lattice of rank n.

For a definition of a
∨

-definable group see [PeSt]. The U mentioned in Fact 2.1
is a special case of a

∨
-definable group, and its description is crucial for this paper.

We next extract those ingredients from the proof of Fact 2.1 that will be used in
our proof of compact domination.

If ~λ = (λ1, . . . , λn) ∈ Dn and t ∈ M , we denote ~λt := (λ1t, . . . , λnt). A set
H ⊆ G is called generic if finitely many ⊕-translates of it cover G. By the analysis
in [ElSt], we may assume that eG = 0, and:

• G contains a definable generic parallelogram:

H := {~λ1t1 + · · ·+ ~λntn : −ei < ti < ei},
where e1, . . . , en ∈ M are positive, and ~λ1, . . . , ~λn ∈ Dn.

• U is the subgroup of Mn generated by H:

U :=< H >=
⋃

k<ω

H + · · ·+ H︸ ︷︷ ︸
k−times

6 Mn.

• The following map φ : U → G is a continuous, surjective group homomor-
phism: for all xi ∈ H,

φ(x1 + · · ·+ xk) = x1 ⊕ · · · ⊕ xk.

If we let L := ker(φ), then U/L ∼= G as abstract groups. In order to show that
L is a lattice of rank n, a standard part map st : U → Rn was defined in [ElSt].
We recall the definition of st in Section 2.1 below. For the moment, we finish the
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description of the main ingredients of the proof of Fact 2.1. We recall that there is
a positive Ξ ∈ N, such that the set

Σ := HΞ = {~λ1t1 + · · ·+ ~λntn : −Ξei < ti < Ξei}
contains a definable complete set S of representatives for EU

L . The restriction of φ
on S is then a definable isomorphism between the topological groups 〈S, +S〉 and
G. We may assume, up to definable isomorphism, that G = S and

• H ⊆ G ⊆ Σ ⊆ U .

This assumption does not affect our proof of compact domination for G, since,
easily, property (1), that we are aiming to show, remains invariant under definable
isomorphisms.

Observe that for all x ∈ H, φ(x) = x, and for all x ∈ U , [φ(x)]UL = [x]UL .

2.1. A standard part map st : U → Rn. Before we give the definition of the
standard part map, we recall some basic facts and definitions from linear algebra
over D.

We introduce some additional notation. If λ = (λ1, . . . , λn) ∈ Dn and µ ∈ D,
we denote µλ := (µλ1, . . . , µλn) and λµ := (λ1µ, . . . , λnµ).

The elements λ1, . . . , λm ∈ Dn are called left (right) D-independent if for all
µ1, . . . , µm in D, µ1λ1 + · · · + µmλm = 0 (λ1µ1 + · · · + λmµm = 0) implies µ1 =
· · · = µm = 0.

Let A ∈M(n,D) be an n× n matrix with entries from D. The row rank of A is
the cardinality of a maximal left D-independent set of rows from A, and the column
rank of A is the cardinality of a maximal right D-independent set of columns from
A.

Fact 2.2. (i) The row rank and the column rank of A are equal. We refer to either
of them as the rank of A.

(ii) The rank of A is n if and only if A has an inverse.

Proof. (i) See [Jac, Chapter II, Theorem 9].
(ii) Similar to [Lang, Chapter IV, Theorem 2.2]. ¤

Now let
H = {~λ1t1 + · · ·+ ~λntn : −ei < ti < ei}

be the generic parallelogram of G, with e1, . . . , en ∈ M positive, and ~λ1, . . . , ~λn ∈
Dn, as described above. Since H is generic, dim(H) = n. Consider the following
matrix with entries from D.

A =
(
~λ1 · · · ~λn

)
=




λ1
1 . . . λ1

n
... · · · ...

λn
1 . . . λn

n


 .

Claim 2.3. A has rank equal to n.

Proof. We show that A has column rank n. Assume not. Without loss of generality,
we may then assume that there are µ1, . . . , µn−1 ∈ D such that

~λn = ~λ1µ1 + · · ·+ ~λn−1µn−1.



COMPACT DOMINATION FOR GROUPS IN LINEAR O-MINIMAL STRUCTURES 7

But then

H = {~λ1t1 + · · ·+ ~λntn : −ei < ti < ei}
= {~λ1t1 + · · ·+ ~λn−1tn−1 + (~λ1µ1 + · · ·+ ~λn−1µn−1)tn : −ei < ti < ei}
= {~λ1(t1 + µ1tn) · · ·+ ~λn−1(tn−1 + µn−1tn) : −ei < ti < ei},

which clearly has dimension less than n, a contradiction. ¤
Corollary 2.4. A is invertible.

Corollary 2.5. ~λ1, . . . , ~λn are M -independent. That is, for all t1, . . . , tn ∈ M ,
~λ1t1 + · · ·+ ~λntn = 0 ⇒ t1 = · · · = tn = 0.

Proof. For any t1, . . . , tn ∈ M , if A

(
t1
...

tn

)
=

(
0
...
0

)
, then

(
t1
...

tn

)
= A−1

(
0
...
0

)
=

(
0
...
0

)
. ¤

We now proceed to the definition of the standard part map st : U → Rn. From
the construction of U given earlier, it is easy to see that every u ∈ U has form

u = ~λ1u1 + · · ·+ ~λnun,(2)

with ui ∈ M and −qei < ui < qei, for some q ∈ Z. By Corollary 2.5, it follows that
the ui’s in form (2) are unique. We define st : U → Rn as follows: for all u ∈ U ,
with form (2),

st(u) =
(
st1(u1), . . . , stn(un)

)
,

where for every i,
sti(ui) = sup{q ∈ Q : qei < ui}.

It can be checked that st is a surjective group homomorphism.

The notation ‘~λ1, . . . , ~λn,H, U, φ, L, Ξ,Σ, st’ is fixed for the rest of this pa-
per.

2.2. On Pillay’s Principle. G00 is defined as follows. For k ∈ N, we define Hk

inductively: H0 = H, and Hk+1 = 1
2Hk. Then it is not hard to see that

⋂
k<ω Hk

is a torsion-free, type-definable subgroup of G of bounded index, and therefore, by
[BOPP]:

G00 =
⋂

k<ω

Hk.

Note that G00 is open in Mn.

Lemma 2.6. ker(st) = G00.

Proof. For all x ∈ G,

x ∈ G00 ⇔ x = ~λ1h1 + · · ·+ ~λnhn, for some hi with ∀k ∈ N, − 1
2k

ei < hi <
1
2k

ei,

⇔ x = ~λ1h1 + · · ·+ ~λnhn, for some hi with ∀q ∈ Q>0, −qei < hi < qei,

⇔ st(x) = 0.

¤
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3. Properties of st : U → Rn

The definition of a box in U given below is in analogy with the definition from
[BO2] of a box in cartesian powers of an o-minimal expansion of an ordered field.

Definition 3.1. Let n ∈ N, n > 0. A box (of dimension n) is a subset of U of the
form

B =
{
~λ1t1 + · · ·+ ~λntn : piei ≤ ti ≤ qiei

}
,

for some pi, qi ∈ Q, with pi ≤ qi.
A real box (of dimension n) is a subset of Rn of the form

C = [k1, l1]× · · · × [kn, ln] ,

for some ki, li ∈ Q, with ki ≤ li.
If B is a box as above, then BR denotes the real box defined by ki = pi and

li = qi, for i = 1, . . . , n.
Let k ∈ N, k > 0. A real 1

k -box of dimension n is a real box ⊆ Rn of the form

C =
[
k1

k
,
k1 + 1

k

]
× · · · ×

[
kn

k
,
kn + 1

k

]
,

for some ki ∈ Z.
The base of such a C is the real 1

k -box of dimension n− 1 in Rn−1:
[
k1

k
,
k1 + 1

k

]
× · · · ×

[
kn−1

k
,
kn−1 + 1

k

]
.

Remark 3.2. It is easy to see that, for all x ∈ U and y ∈ Rn,

st(x) = y ⇔ for every box B ⊆ U , x ∈ B implies y ∈ BR.

The proof of the following lemma is almost word-by-word the one of [BO2, Propo-
sition 4.2].

Lemma 3.3. For every box B ⊆ U , st(B) = BR.

Proof. The inclusion st(B) ⊆ BR is by Remark 3.2. For the equality, let y ∈ BR.
We write {y} =

⋂
i∈NBRi , where {BRi : i ∈ N} is an enumeration of all real boxes

containing y. The set of all formulas x ∈ Bi is a type in M which must be realized
by some element x ∈ U . For this x, we have st(x) = y and x ∈ B. ¤

The properties listed below will be used in the sequel. For X ⊆ Mn, we denote
by X the closure of X in Mn.

Lemma 3.4. (i) For all X1, X2 ⊆ U , st(X1 ∪X2) = st(X1) ∪ st(X2).
(ii) For all X ⊆ U , st−1

(
st(X)

)
= X + G00.

(iii) For all X ⊆ U , st(X) = st(X).
(iv) For all X ⊆ U , X + G00 = X + G00.
(v) A bounded set A ⊆ Rn is closed if and only if st−1(A) is type-definable.
(vi) For all definable X ⊆ U , st(X) is closed.

Proof. (ii) ∀y ∈ U ,

y ∈ st−1
(
st(X)

) ⇔ ∃x ∈ X, st(x) = st(y) ⇔ y ∈ X + G00.

(iii) For the non-trivial inclusion (⊆), let x ∈ X. We need to find x′ ∈ X, such
that st(x′) = st(x). Since G00 is open and x ∈ X, (x + G00)∩X 6= ∅. We can take
x′ to be any element in (x + G00) ∩X.



COMPACT DOMINATION FOR GROUPS IN LINEAR O-MINIMAL STRUCTURES 9

(iv) By (ii) and (iii), X + G00 = st−1
(
st(X)

)
= st−1

(
st(X)

)
= X + G00.

(v) The proof is almost word-by-word the one of [BO2, Proposition 5.4]. Note
that by (ii) and Lemma 3.3, for every box B ⊆ U , st−1(BR) = B + G00.

Let A ⊆ Rn be bounded.
For the left-to-right direction, if A is closed, then A =

⋂
i∈N

⋃
j∈Ji

BRij is the
intersection of a countable family of unions of finitely many real boxes. Thus,
st−1(A) = {x :

∧
i∈N

∨
j∈Ji

(x ∈ Bij + G00)} is type-definable.
For the right-to-left direction, let st−1(A) be type-definable, say st−1(A) = {x :∧

i∈I(x ∈ Xi)}, where each Xi is definable. To show that A is closed, let y ∈ A.
We show that y ∈ A = st

(
st−1(A)

)
. We need to find an x ∈ ⋂

i∈I Xi such that
st(x) = y. It suffices to show that the set

⋂
i∈I Xi ∩

⋂
j∈NBj is non-empty, where

{Bj : j ∈ N} is an enumeration of all boxes B with y ∈ Int(BR). By compactness,
it suffices to show that the set P =

⋂
i∈I Xi ∩B is non-empty, where B is any box

with y ∈ Int(BR). But, since y ∈ A, there is y′ ∈ Int(BR) ∩ A 6= ∅. Thus, there is
x′ ∈ B, such that st(x′) = y′ ∈ BR ∩A. This x′ belongs to P .

(vi) Observe that the boundedness of A ⊆ Rn in (v) was only used in the left-
to-right direction. Now, let X ⊆ U . By (ii), st−1

(
st(X)

)
= X + G00, so if X is

definable, then st−1
(
st(X)

)
is type-definable and we can apply (v), right-to-left. ¤

4. G is compactly dominated

We start with defining a standard part map for G. Recall L = ker(φ) has rank
n. Let L = Zv1 + · · ·+ Zvn 6 U 6 Mn.

Claim 4.1. st(L) ⊆ Rn is a discrete lattice of rank n. Therefore, Rn/st(L) is
isomorphic to the real n-torus (S1)n.

Proof. st(L) is discrete: since for all x ∈ H, φ(x) = x, we have ker(φ) ∩H = {0}.
Hence the interior of st(H) is an open neighborhood of 0 that contains no other
elements of st(L).

st(L) has rank n: clearly, st(L) has rank at most n. Now assume, towards a
contradiction, that for some l1, . . . , ln ∈ Z, not all zero, l1st(v1)+ · · ·+ lnst(vn) = 0.
Since st : U → Rn is a group homomorphism, st(l1v1 + · · · + lnvn) = 0. Thus,
l1v1 + · · ·+ lnvn ∈ G00 ⊆ H. Since ker(φ)∩H = {0}, we have l1v1 + · · ·+ lnvn = 0,
contradicting the fact that L has rank n. ¤

Let q denote the canonical homomorphism from Rn onto Rn/st(L).
We define a standard part map stG : G → Rn/st(L) as follows. For all x ∈ G,

let
stG(x) = q

(
st(x)

)
= [st(x)]R

n

st(L).

Since st is a group homomorphism, so is stG. Indeed, for all x, y ∈ G, we have
x⊕ y = φ(x + y) ∈ x + y + L, and

(x⊕ y)− (x + y) ∈ L ⇒ st(x⊕ y)− (
st(x) + st(y)

) ∈ st(L)

⇔ [
st(x⊕ y)

]Rn

st(L)
=

[
st(x) + st(y)

]Rn

st(L)
=

[
st(x)

]Rn

st(L)
+Rn/st(L)

[
st(y)

]Rn

st(L)

⇔ stG(x⊕ y) = stG(x) +Rn/st(L) stG(y).

Also, ker(stG) = G00. Indeed, for all x ∈ G, stG(x) = [0]R
n

st(L) ⇔ st(x) ∈ st(L) ⇔
x ∈ (

G00 + L
) ∩G = G00, since G00 ⊆ G and G ∩ L = {0}.
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Lemma 4.2. The following diagram commutes,

U Rn

G Rn/st(L)
?

φ

-st

?

q

-
stG

namely, q ◦ st = stG ◦ φ. Thus, in particular, for all A ⊆ Rn/st(L),

st−1
(
q−1(A)

)
= φ−1

(
st−1

G (A)
)
.

Proof. First, notice that for all x, y ∈ U , if [x]UL = [y]UL , then [st(x)]R
n

st(L) =
[st(y)]R

n

st(L). This is because st is a group homomorphism:

x− y ∈ L ⇒ st(x− y) ∈ st(L) ⇔ st(x)− st(y) ∈ st(L).

Now, let x ∈ U . On the one hand, we have q
(
st(x)

)
= [st(x)]R

n

st(L). On the other

hand, φ(x) ∈ G with [x]UL = [φ(x)]UL , and, thus, [st(x)]R
n

st(L) =
[
st

(
φ(x)

)]Rn

st(L)
=

stG
(
φ(x)

)
. Hence, q

(
st(x)

)
= stG

(
φ(x)

)
. ¤

Lemma 4.3. Σ
R

= st(Σ) ⊆ Rn contains a set of representatives for ER
n

st(L). Thus,

for all A ⊆ Rn/st(L), A is closed (in the quotient topology) if and only if Σ
R ∩

q−1(A) ⊆ Rn is closed.

Proof. Let y ∈ Rn. Pick x ∈ U such that st(x) = y. Let g ∈ G such that g−x ∈ L.
Then st(g)− y = st(g − x) ∈ st(L). But st(g) ∈ st(G) ⊆ Σ

R
.

For the second claim, let A ⊆ Rn/st(L). If A is closed, then q−1(A) ⊆ Rn is
closed, and, thus, Σ

R ∩ q−1(A) is closed. Conversely, if Σ
R ∩ q−1(A) is closed, then(

Σ
R ∩ q−1(A)

)
+ st(L) is closed. But since Σ

R
contains a set S of representatives

for ER
n

st(L), we have

q−1(A) =
(
S ∩ q−1(A)

)
+ st(L) ⊆ (

Σ
R ∩ q−1(A)

)
+ st(L) ⊆ q−1(A),

that is, q−1(A) =
(
Σ
R ∩ q−1(A)

)
+ st(L) is closed, and, thus, A is closed. ¤

By Pillay’s Principle, G/G00 (equipped with the logic topology) is a connected,
compact, abelian Lie group of dimension n and, therefore, it is isomorphic to
Rn/st(L). The following lemma implies that the alleged isomorphism is indeed
witnessed by the map f : G/G00 → Rn/st(L) defined by:

f : x⊕G00 7→ stG(x).
(
As a side remark, f is not an isomorphism if seen as the induced quotient map

where G/G00 has the quotient topology; that would be the case if f were open.
In any case, such an f would not be what we need here, since the logic topology
on G/G00 is different from the quotient one, [Pi2, Remark 3.3].

)
We denote by

π : G → G/G00 the canonical surjective homomorphism; then f is by definition the
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unique map that makes the following diagram commute:

G Rn/st(L)

G/G00

?

π

-stG

p p p
p p p

p p p
p pµ

f

Remark 4.4. The map f : G/G00 → Rn/st(L), with x⊕G00 7→ stG(x) = [st(x)]R
n

st(L)

is a group isomorphism.

Proof. f is well-defined and it is injective, since for all x, y ∈ G,

x⊕G00 = y ⊕G00 ⇔ xª y ∈ G00 ⇔ stG(xª y) = 0 ⇔ stG(x) = stG(y).

Easily, f is a group homomorphism, since stG is. That it is surjective, is essentially
Lemma 4.3: given st(z) ∈ Rn, we can find g ∈ G, such that st(g)−st(z) ∈ st(L). ¤

Lemma 4.5. For all A ⊆ Rn/st(L), A is closed if and only if st−1
G (A) is type-

definable. Thus, f is an isomorphism between topological groups.

Proof. By Lemma 3.4(v), a bounded set A ⊆ Rn is closed if and only if st−1(A) is
type-definable. Now, let A ⊆ Rn/st(L). Then, A is closed

if and only if
(
Lemma 4.3

)
Σ
R ∩ q−1(A) ⊆ Rn is closed

if and only if st−1
(
Σ
R ∩ q−1(A)

)
is type-definable

if and only if st−1
(
Σ
R) ∩ st−1

(
q−1(A)

)
is type-definable

if and only if
(
Σ + G00

) ∩ st−1
(
q−1(A)

)
is type-definable

if and only if φ
( (

Σ + G00
) ∩ st−1

(
q−1(A)

))
is type-definable,

where the last equivalence is because φ¹Σ+G00 is type-definable. Indeed, the ‘only
if’ part is clear, whereas for the ‘if’ part, let B :=

(
Σ + G00

) ∩ st−1
(
q−1(A)

)
. We

show that if φ(B) is type-definable, then B is as well. To this end, we show that

B = {y ∈ Σ + G00 : φ¹Σ+G00(y) ∈ φ¹Σ+G00(B)}.
To see this, let y ∈ Σ + G00 be such that φ(y) = φ(b), for some b ∈ B. Then

q
(
st(y)

)
= stG

(
φ(y)

)
= stG

(
φ(b)

)
= q

(
st(b)

) ∈ A,

by Lemma 4.2, showing that y ∈ st−1
(
q−1(A)

)
, and, thus, y ∈ B. This completes

the proof of the last ‘if and only if’.
Therefore, we will be done with the first statement of the lemma if we show that

φ
( (

Σ + G00
) ∩ st−1

(
q−1(A)

))
= st−1

G (A).(3)

First, we observe that

φ
( (

Σ + G00
) ∩ st−1

(
q−1(A)

))
= φ

(
st−1

(
q−1(A)

))
.

Indeed, for the non-trivial inclusion (⊇), let φ(x) ∈ φ
(
st−1

(
q−1(A)

))
, for some x ∈

U with q
(
st(x)

) ∈ A. Then we find y ∈ Σ+G00 with φ(x) = φ(y) and q
(
st(y)

) ∈ A,
as follows. Let y ∈ Σ be such that x− y ∈ L. Then, on the one hand, φ(x) = φ(y),
and on the other, st(x)− st(y) ∈ st(L) and, thus, q

(
st(y)

)
= q

(
st(x)

) ∈ A.
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Now, by Lemma 4.2, st−1
(
q−1(A)

)
= φ−1

(
st−1

G (A)
)
. Since φ is onto,

φ
(
st−1

(
q−1(A)

))
= φ

(
φ−1

(
st−1

G (A)
))

= st−1
G (A).

This proves (3).
For the second statement, by Remark 4.4, it remains to show that f is a homeo-

morphism. We note that this can also be obtained by [HPP, Remark 2.3(i)] and the
first part of this lemma; we provide a direct proof here (still using the first part).
Let A ⊆ Rn/st(L). We show that A is closed if and only if f−1(A) = π

(
st−1

G (A)
)

is closed (in the logic topology). By the first part of this lemma, A is closed if and
only if st−1

G (A) is type-definable. Since st−1
G (A) = st−1

G (A) + G00, we get

π−1
(
π
(
st−1

G (A)
))

= π−1
(
π
(
st−1

G (A) + G00
))

= st−1
G (A) + G00 = st−1

G (A)

and, therefore, st−1
G (A) is type-definable if and only if π

(
st−1

G (A)
)

is closed in the
logic topology. ¤

The compact Lie group G/G00 has a unique normalized Haar measure m. Thus,
if m′ is a Haar measure on Rn/st(L), then there is a positive r ∈ R, such that for
all A ⊆ G/G00, A is m-measurable if and only if f(A) is m′-measurable, and, if
they are, then

m(A) = rm′(f(A)
)
.(4)

Since for all X ⊆ G, f
(
π(X)

)
= stG(X), in order to show property (1) from

Introduction for π it is thus equivalent to show it for stG, that is, to show, for all
definable X ⊆ G,

dim(X) < n ⇒ m′(stG(X)
)

= 0.(5)

On the other hand, a Haar measure m′ on Rn/st(L) can be defined using the
Lebesgue measure λ on Rn, as follows. First, let S ⊆ Rn be a fundamental domain
for ER

n

st(L) which is Lebesgue measurable. For example, if A1, . . . , An ⊆ Rn denote
the line segments from 0 to the generators of st(L), excluding the generators, we
may let S = A1 + · · ·+ An. Now, for X ⊆ Rn/st(L), let

m′(X) := λ
(
S ∩ q−1(X)

)
,

assuming that S ∩ q−1(X) is a Lebesgue measurable subset of Rn. It is an easy
classical fact that, if A ⊆ Rn is Lebesgue measurable, then for all B ⊆ S with
q(B) = q(A), B is Lebesgue measurable and λ(B) ≤ λ(A). Therefore, for every
X ⊆ G, such that st(X) is Lebesgue measurable, S ∩ q−1

(
stG(X)

)
is Lebesgue

measurable and

m′(stG(X)
) ≤ λ

(
st(X)

)
.(6)

It follows that in order to show (5), it suffices to show the following.

Lemma 4.6. Let X ⊆ U be definable. If dim(X) < n, then λ
(
st(X)

)
= 0.

Proof. By Lemma 3.4(vi), st(X) is closed and hence Lebesgue measurable.
If n = 1, then X and st(X) are finite, hence λ

(
st(X)

)
= 0. Let n > 1. We

may assume that dim(X) = n − 1. By the Linear Cell Decomposition Theorem
and Lemma 3.4(i), we may assume that X is the graph of some linear function
f : C → M , where C is a definable subset of Mn−1, after perhaps rearranging
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coordinates.

Claim 1. There are ξ1, . . . , ξn ∈ D, not all zero, and c ∈ M , such that for all
t1, . . . , tn ∈ M , if ~λ1t1 + · · ·+ ~λntn ∈ X, then ξ1t1 + · · ·+ ξntn + c = 0.

Proof of Claim 1. Assume that for all x = (x1, . . . , xn−1) ∈ C,

f(x) = µ1x1 + · · ·+ µn−1xn−1 + c,

for some fixed µi ∈ D and c ∈ M . Assume also that for i = 1, . . . , n,

~λi =

(
λ1

i

...
λn

i

)
∈ Dn.

For each i = 1, . . . , n, we set

ξi := µ1λ
1
i + · · ·+ µn−1λ

n−1
i − λn

i .

Consider any t1, . . . , tn ∈ M with λ1t1 + . . . λntn ∈ X, and let x = (x1, . . . , xn−1) ∈
C be such that

(
x, f(x)

)
= λ1t1 + . . . λntn. Then:

x1 = λ1
1t1 + · · ·+ λ1

ntn

...

xn−1 = λn−1
1 t1 + · · ·+ λn−1

n tn

µ1x1 + · · ·+ µn−1xn−1 + c = λn
1 t1 + · · ·+ λn

ntn

Substituting the first n− 1 equations into the last one, we obtain:

(µ1λ
1
1 + · · ·+ µn−1λ

n−1
1 − λn

1 )t1 + · · ·+ (µ1λ
1
n + · · ·+ µn−1λ

n−1
n − λn

n)tn + c = 0,

that is,
ξ1t1 + · · ·+ ξntn + c = 0.

So, to finish the proof of Claim 1, we need to see that not all ξi’s are zero. It is
enough to see that the matrix

A =




λ1
1 . . . λ1

n
... · · · ...

λn
1 . . . λn

n


 .

has row rank n. But this is by Claim 2.3. ¤

Without loss of generality, we may assume that there are ν1, . . . , νn−1 ∈ D,
|νi| ≤ 1, and d ∈ M , such that for all t1, . . . , tn ∈ M ,

~λ1t1 + · · ·+ ~λntn ∈ X ⇒ tn = ν1t1 + · · ·+ νn−1tn−1 + d.(7)

Claim 2. Let t1, . . . , tn, t′1, . . . , t
′
n ∈ M and i < n be such that ~λ1t1 + · · · +

~λntn, ~λ1t
′
1 + · · ·+ ~λnt′n ∈ X, ti 6= t′i and ∀j 6∈ {i, n}, tj = t′j . Then

|stn(t′n)− stn(tn)| ≤ |sti(t′i)− sti(ti)|.

Proof. By (7), we have: |t′n − tn| < |t′i − ti|. ¤
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The rest of the argument below resembles the proof of [BO2, Lemma 2.7]. Denote
by λ∗ the outer Lebesgue measure on Rn. We let

Xn−1 := {~λ1t1 + · · ·+ ~λn−1tn−1 : ∃tn ∈ M, ~λ1t1 + · · ·+ ~λntn ∈ X}.
By Claim 2, it is not hard to see that, for every k ∈ N, st(X) cannot intersect more
than n real 1

k -boxes of dimension n with the same base
(
a real 1

k -box of dimension
n − 1 in st(Xn−1)

)
. Since X ⊆ Σ = HΞ, we have st(X) ⊆ [−Ξ,Ξ]n ⊆ Rn and

st(Xn−1) ⊆ [−Ξ, Ξ]n−1 ⊆ Rn−1. Let r := (2Ξ)n−1 = λ([−Ξ,Ξ]n−1). Thus, for
every k ∈ N, st(Xn−1) is covered by rkn−1 real 1

k -boxes of dimension n− 1. Hence
for every k ∈ N, st(X) is covered by rkn−1n real 1

k -boxes of dimension n. Hence,
λ∗

(
st(X)

) ≤ 1
kn rkn−1n. We have:

λ∗
(
st(X)

) ≤ lim
k→∞

[
1
kn

rkn−1n

]
= 0.

Thus, λ
(
st(X)

)
= 0. ¤

Proof of Theorem 1.6. For every definable X ⊆ G ⊆ Σ, by (4) and (6) we have:

m
(
π(X)

)
= rm′

(
f
(
π(X)

))
= rm′(stG(X)

) ≤ rλ
(
st(X)

)
.

Therefore, by Lemma 4.6, we obtain (1) from Introduction. ¤

Corollary 4.7. (i) G has a unique left (and right) invariant Keisler measure µ′,
given by: for all X ∈ Def(G), µ′(X) = m

(
π(X)

)
.

(ii) For all X ∈ Def(G), µ′(X) > 0 if and only if X is generic.
(iii) Every definable generic subset of G contains a torsion point.

Proof. (i) is by Fact 1.2(ii). For (ii) see Claim 3 in the proof of [HPP, Proposition
9.3], and for (iii) see [HPP, Proposition 10.6]. ¤
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