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Abstract. Head direction (HD) cells, abundant in the rat postsubiculum and anterior thalamic
nuclei, fire maximally when the rat’s head is facing a particular direction. The activity of a
population of these cells forms a distributed representation of the animal’s current heading. We
describe a neural network model that creates a stable, distributed representation of head direction
and updates that representation in response to angular velocity information. In contrast to earlier
models, our model of the head direction system accurately tracks a series of actual rat head
rotations, and, using biologically plausible neurons, it fits the single-cell tuning curves of real HD
cells recorded from rats executing those same rotations. The model makes neurophysiological
predictions that can be tested using current technologies.

Introduction

Head direction cells in the postsubiculum (PoS, also known as dorsal presubiculum) were
first described by Rancket al [16]. In subsequent work, Taubeet al [22] characterized
these cells as having triangular tuning curves: the firing rate drops off linearly from a peak
at thepreferred directionuntil it reaches a baseline value. Taubeet al [23] report that PoS
cells typically have baseline-to-baseline tuning curve widths of 100◦. Similar cells have
been found in the anterior thalamic nuclei (ATN) [4, 11, 21], most of which seem to be in
the anterior dorsal (AD) nucleus. See figures 7 and 8 later for sample PoS and ATN tuning
curves. These curves can also be modelled very closely by Gaussians with an average
standard deviation of approximately 66◦ [4, 29].

One way of interpreting the activity of these cells is as a distributed representation of the
rat’s current head direction. A population of HD cells with preferred directionsφi evenly
distributed through 360◦ represents the direction of the weighted vector sum

∑
i Fivi , where

Fi is the normalized firing rate andvi is a unit vector pointing in directionφi . This is the
weighted circular mean [12], and is also known as apopulation vectorencoding [10].

In order for the activity of such a population to represent the rat’s head direction while
its head is rotating, motion information must update the firing rates of head direction cells.
Head direction cells in PoS and ATN are known to be sensitive to visual motion cues [4],
and to the positions of landmarks such as a white card on the wall of a cylindrical arena
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[11, 21, 23]. Visual motion cues allow the system to update its current representation based
on observed angular velocity, while taking bearings off familiar landmarks provides the
absolute heading information needed to correct for velocity integration errors.

The rat’s head direction system remains active even in total darkness [13, 21], so other
sources of input must be sufficient to update the heading estimate. Blair and Sharp [4]
report that PoS and ATN cells are sensitive to vestibular sensation, while Chenet al [5, 6]
report that some cells in retrosplenial cortex (also known as posterior cingulate cortex) are
correlated with both head direction and self-motion. Retrosplenial cortex is tightly coupled
to both ATN [26] and postsubiculum [27]. Tactile sensations, perhaps via the vibrissae,
might supply additional information about head movements.

Focusing on vestibular input, the head direction representation could be updated by
integrating angular head velocity over time. Data showing that some cells in PoS code for
angular head velocity and others code for head direction modulated by angular velocity [19]
support such a possibility, as does the observation of cells in retrosplenial cortex that are
correlated with head direction and modulated by self-motion information [5, 6].

Although the two populations in PoS and ATN seem similar, Blair and Sharp [4] and
Taube and Muller [24] have recently shown a difference between them: ATN cell activity
is best correlated not with current head direction, but with head direction approximately
20–40 ms in the future. PoS head direction cells, on the other hand, are best correlated with
the animal’s current (or recent) head direction†.

1. Previous models of the head direction system

McNaughtonet al [13] proposed an associative mapping model for updating head direction
based on angular velocity. In this model, a head direction cell populationH and an angular
velocity populationH ′ jointly produce activity in a position× velocity populationHH ′.
EachHH ′ cell’s efferent connections encode a prediction of the animal’s future heading.
Various anatomical areas, such as parietal and retrosplenial cortex, are discussed as sources
of the H andH ′ signals, and PoS is suggested as a possible site for theHH ′ population.
The model did not address the shape of head direction cell tuning curves or the presence of
head direction cells in the anterior thalamic nuclei.

Another approach to modelling the head direction system is the circular shift register.
Skaggset al [20] sketched such a solution, and were also the first to introduce attractor
dynamics in a head direction model. In their proposal, head direction cells project to
corresponding left and right rotation cells, whose activity is also controlled by vestibular
cells that fire when the animal is making a left or right turn. The rotation cells project back
to either the left or right neighbours of the head direction cell that drives them. Thus, during
a turn, the hill of activity over the head direction cell population gradually shifts. Intrinsic
connections in the head direction cell population give the system attractor dynamics, which
serves to maintain the shape of the hill at all times. Another population, the ‘visual cells’,
makes direct connections to the head direction cells and when active, move the hill of
activation to specific locations. This model was an abstract proposal and did not include
specific equations or simulation results.

Blair [3] proposed a somewhat different shift register model in which clockwise and
anticlockwise angular velocity modulated head direction cells (AVHD cells) in the reticular

† Both Blair and Sharp [4] and Taube and Muller [24] report an optimal correlation of ATN activity with future
head direction (about 37 ms in the future) and PoS activity with current head direction, but Blair and Sharp (personal
communication) have recently revised their estimates, suggesting that although ATN activity still anticipates future
head direction (by 24 ms), PoS activity may lag the current head direction (by 13 ms).
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thalamic nucleus selectively inhibit cells in ATN that are offset from the corresponding
AVHD cells. The activity of ATN cells is also governed by a modulatory input from
angular speed cells hypothesized to exist in the mammilary bodies; this varies the rate of
shifting because the ATN cells provide input that helps drive the AVHD cells. ATN also
drives HD cells in PoS and retrosplenial cortex. Blair was the first to demonstrate a model
in which the ATN representation leads the PoS representation. However, the model did not
produce realistic tuning curves, and Blair did not report tracking performance on realistic
data sets. He did show that his model could accomplish a single turn at a reasonable speed.

A fundamental limitation of neural shift registers is that they can integrate accurately
over only a limited range of angular velocities. In order to accomodate the effects of
slow rotations, the system must have a fine-scale representation of direction. However, the
greater the number of distinct directions that can be represented, the greater the number
of intermediate states the system must go throughin the same interval of real timeto
accomodate a rapid rotation. Synaptic delays and the relatively low firing rates of HD cells
bound the number of successive shift operations that can take place in a given time interval.
One solution might be to use a parallel shifter circuit that can shift by any amount in one
step, as in [1] or [25]. However, this requires a large number of connections which becomes
prohibitive for a fine-scale representation of direction; it also seems an awkward approach
to dealing with continuously variable angular velocity inputs.

Zhang [29] presents the first simulation results of a pure attractor model of the head
direction system. He defines a Gaussian-shaped hill of activation and derives weights and
an activation function that produce self-sustaining activity patterns of this form. He then
derives another weight function to dynamically translate the activity pattern to the left
or right. However, Zhang does not use a biologically plausible neural model: his units
have both excitatory and inhibitory effects and have unbounded firing rates, and he does
not separate the roles of ATN and PoS. Zhang also does not measure tracking ability on
realistic data sets, leaving this for future work. Zhang shows how a representation of head
direction in his attractor network can be made to leadtrue head direction during a turn, but
gives no computational reason why this should occur, nor does he explain why ATN should
lead true head direction while PoS remains locked to true (or recent) head direction.

In this paper we present an attractor model that accurately tracks head direction with
biologically plausible units that display realistic tuning curves. We compare the head
direction representation in our postsubicular representation with data recorded by Blair
and Sharp from freely moving rats and show that the representation accurately tracks head
direction. We also show that our postsubicular and anterior thalamic cells reproduce tuning
curves seen in neurophysiological recordings from that same movement sequence. Finally,
we show that in our model, the anterior thalamic head direction representation must lead
the postsubicular representation.

2. The coupled attractor model

2.1. Neuronal model

We use a neuronal model that is more realistic than standard integrate-and-fire models, but
more abstract than compartmental models. We assume for simplicity that action potentials
are Boolean events with infinitesimal duration. Given an action potental at times in a
neuronj that synapses onto neuroni, we assume (again for simplicity) that the postsynaptic
potential (PSP) in neuroni has an instantaneous rise and exponential fall-off with time
constantτ . We model this PSP by the product of a synaptic weightwij and anα function
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αj (t − s) = e−(t−s)/τj . The voltageVi(t) of neuroni is then taken to be the linear sum of
the effect at timet of all PSPs that have ever occured there. LetFj (s) be 1 if cell j fired
a spike at times and 0 otherwise. We writeVi(t) as a tonic inhibition† term γi plus a sum
over all synapsesj of the integral of all PSPs induced by that synapse:

Vi(t) = γi +
∑

j

wij

∫ t

0
αj (t − s)Fj (s) ds. (1)

In order to work with a continuous formulation, we replace the spike recordFj (s) with
a probability of firingFj (s), defined as a sigmoidal function of the voltageVj (s). This
probabilistic approximation of spiking behaviour can also be understood as a model of a
neuronal population [15];Fj (s) is then the fraction of neurons in populationj firing at
time s. Following [15], we rewrite these equations in a form similar to the Wilson–Cowan
equations [28] by defining thesynaptic driveSj (t) supplied by neuronj :

Sj (t) =
∫ t

0
αj (t − s)Fj (s) ds (2)

which can be written as a differential equation:

τj
dSj (t)

dt
= −Sj (t) + Fj (t). (3)

The synaptic driveSj (t) of neuronj thus approaches the neuron’s firing rateFj (t) with
time constantτj . Note that this time constant is the same as the time constant of the decay
of the PSPα function, and is thus a function of the presynaptic neuron, not the postsynaptic
one.

Synaptic drive can be interpreted as a coarse-grained time-average of the actual firing
rate [15, 28] and is not necessarily a measurable neuronal property. It can be understood
as the effect neuronj has on neuroni divided by the synaptic weight between them [15].

Finally, we rewrite the equation for the voltageVi(t) as a function of the impinging
synaptic drives of the neurons that synapse on neuroni. This gives us a neuronal model
consisting of three equations. Spatial summation is described in (4) and temporal summation
in (6):

Vi(t) = γi +
∑

j

wijSj (t) (4)

Fi(t) = 1 + tanh(Vi(t))

2
(5)

τi

dSi(t)

dt
= −Si(t) + Fi(t). (6)

As has been shown in [15], equations (4)–(6) form a consistent neuronal model that
can be understood as describing either a continuous approximation to a single neuron, or a
population of neurons withVi(t) being the average voltage andFi(t) the fraction of neurons
in the population firing a spike at timet .

† In practice, for all cases in which our model requiresγ to be non-zero, it is inhibitory, but nothing in these
equations prohibitsγ from being excitatory.
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2.2. Maintaining a stable representation

To create a population with a triangular attractor state (actually a Gaussian with standard
deviation of roughly 66◦) we follow [7] and create an excitatory pool E and an inhibitory
pool I, each composed of units governed by equations (4)–(6). For simplicity, we assume
that the units in each pool have evenly distributed preferred directions. A unit in the
excitatory pool strongly excites those units in both pools whose preferred directions are
close to it. A unit in the inhibitory pool weakly inhibits practically all units in both pools,
but units close in preferred direction are inhibited slightly more. See figure 1.

Figure 1. Connection structure of the excitatory (E) and inhibitory (I) pools in one attractor
module. Shown are the strong, narrowly focused excitatory connections from an excitatory unit
and the weak, diffuse inhibitory connections from an inhibitory unit.

Thus the voltages of thekth elements of pools E and I are respectively given by

V E
k (t) = γE +

∑
j

wEE(φk − φj )S
E
j (t) +

∑
j

wEI(φk − φj )S
I
j (t) (7)

V I
k (t) = γI +

∑
j

wIE(φk − φj )S
E
j (t) +

∑
j

wII (φk − φj )S
I
j (t) (8)

whereφk is the preferred direction of unitk, andwXY (·) are periodized normalized Gaussian
functions that determine the weights on the connections from pool Y to pool X. Inhibitory
neurons have an inhibitory effect becausewEI andwII are negative (see equation (12) and
table 1 later). Since we want inhibitory units to have longer range effects than excitatory
ones, we start with the Gaussians

gE(x) = exp

(−x2

σ 2
E

)
and gI(x) = exp

(−x2

σ 2
I

)
(9)

whereσI > σE. Following [8], we call

∞∑
j=−∞

f (x + Pj ) (10)
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the periodized versionof f (x) with period P . We defineg∗
E and g∗

I to be the periodized
versions ofgE andgI with period 360◦ that have been normalized so that

NE−1∑
k=0

g∗
E

(
360

k

NE

)
= 1 =

NI−1∑
k=0

g∗
I

(
360

k

NI

)
(11)

whereNX is the number of units in pool X.wEE, wIE, wII , andwEI are defined to beg∗
E

andg∗
I respectively multipled by appropriate constants:

wEE = κEE g∗
E

wIE = κIE g∗
E

wII = κII g∗
I

wEI = κEI g
∗
I .

(12)

With appropriately chosen parameters (see [14] for the derivation, and our table 1 for
the parameter values used), the excitatory and inhibitory pools will have single regions of
excitation in each pool as stable attractor states.

2.3. Updating the representation

Our model of PoS–ATN interactions consists of two coupled attractor modules and an
additional inhibitory gain control population which we, like Blair [3], will identify with the
mammillary bodies (see section 5). All connections between the two attractor modules are
between their excitatory pools.

In addition to the intrinsic connections within each pool and between the two pools
making up an attractor, which are necessary for the maintenance of the representation, there
are two types of connections between the excitatory PoS:E and ATN:E pools:matchingand
offset. Matching connections are reciprocal connections between units with corresponding
preferred directions. In the absence of any head rotation, matching connections dominate
and serve to synchronize the locations of the peaks in the PoS and ATN pools.

Offset connections are responsible for changing the represented head direction. They
come in two forms: left and right. Each element in the excitatory pool of the PoS structure
with preferred directionφ has a left-offset connection to the unit in the excitatory pool of
the ATN structure with preferred directionφ − δ and a right-offset connection to the unit
with preferred directionφ + δ, whereδ is the amount of the offset and is the same for all
units. Although adding in the true tangent vector to accomplish rotation would imply that
δ = 90◦, the attractor nature of the ATN structure will move the stable state towards any
off-peak excitation. In practice, we useδ = 10◦ because this deforms the tuning curves less
and produces a smoother progression of represented head direction values.

All offset connections have strengths modulated by angular head velocity in the
following way. While the head is rotating to the right, right-offset connections have strength
proportional to the speed of rotation and left-offset connections have strength zero. The
opposite holds true for rotations to the left. During periods when the animal is not turning,
both sets of offset connections have zero strength; only the matching connections remain
effective, synchronizing the PoS and ATN representations.

The angular velocity modulation of the offset connections to ATN is an empirically
determined function which we denoteξ(φ̇). As shown later in figure 4, the relationship
is nonlinear but monotonic. We implement the compensatory gain control signal from the
mammillary bodies by setting the tonic inhibition on all ATN:E cells toγE = − 1

2ξ(φ̇).
This non-specific modulation is applied to all units in the ATN:E population, independent
of preferred direction.



Rodent head direction system 677

Figure 2. Connections between postsubiculum (PoS), anterior thalamic nuclei (ATN), and
mammillary bodies (MB). Matching connections are drawn as a straight arrow; left- and right-
offset connections as curved arrows. Activity of theangular head velocity (left turn)units is
proportional to angular speed during left turns, and zero otherwise. They modulate the strength
of the left-offset connections. Theangular head velocity (right turn)behaves analogously.

Figure 3. Active connections between PoS and ATN during a head rotation to the right. Shown
are matching connections (vertical arrows) and right-offset connections (slanted arrows) from the
shaded units. The left-offset connections, inactive during a right turn, are omitted. Mammillary
body input (providing tonic inhibition to the ATN:E population) is also not shown.

This matching-plus-offset connections architecture entails that the locations of Gaussians
in the two attractor modules will be synchronized during periods of no rotation, but during
rotations ATN will lead PoS. Furthermore, the amount of lead will depend on the angular
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velocity of the rotation, but due to the gain control mechanism, the shape of the hill in ATN
will remain largely unchanged.

Our model is thus compatible with the data presented in the introduction: that PoS and
ATN are reciprocally connected, and that cells in PoS are better correlated with current or
recent heading, while ATN cells are better correlated with future heading. The model is
summarized in figures 2 and 3.

Table 1. Simulation parameters.

Time step 0.1 ms

Number of units in a pool [NE, NI ] 100
Excitatory unit time constant [τE] 1 ms
Excitatory unit tonic inhibition [γE] −1.5
Inhibitory unit time constant [τI ] 0.2 ms
Inhibitory unit tonic inhibition [γI ] −7.5

Standard deviation ofgE (σE) 30◦
E → E connection weight (κEE) 5.0
E → I connection weight (κIE) 16.0
Standard deviation ofgI (σI ) 360◦
I → I connection weight (κII ) −8.0
I → E connection weight (κEI) −12.0

PoS→ ATN matching connection strength 1.0
ATN → PoS matching connection strength 0.6
Offset [δ, section 2.3] 10◦
PoS→ ATN offset connection strength [ξ(φ̇)] See figure 4
MB → ATN connection strength − 1

2ξ(φ̇)

Angular velocity (degrees/second)

ξξ

0

0.25

0.5

0.75

1

0 100 200 300 400 500 600

Figure 4. Connection strength of the right-offset connection between PoS:E and AD as a
function of angular velocity. This functionξ(φ̇) was determined experimentally.
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3. Results

We show that our model tracks head direction accurately, using cells with tuning curves
similar to real cells in postsubiculum and the anterior thalamic nuclei. For our simulations,
we used units with evenly spaced preferred directions and parameters shown in table 1.

We begin by comparing the model to data recorded by Blair and Sharp from freely
moving rats (for details on recording methods, see [4]). These data included the rat’s head
direction, sampled at 60 Hz. Missing data points were linearly interpolated. To counteract
quantization error, we calculated the head direction at every time as the average direction
over a 133 ms window centred at that time. This filtering smoothed out fine fluctuations
without removing important detail from the angular velocity trace. We then estimated the
rat’s angular head velocity over the 16 ms time period between two samplesφt and φt+1

as the change in head direction divided by 16 ms. These head velocity estimates served as
the vestibular inpuṫφ for our simulations.
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Figure 5. Performance of the model tracking 20 s of rodent head rotations. Head direction data
courtesy of Blair and Sharp. The full curve is original data, and the dotted curve is the direction
represented by PoS:E population.

Simulations thus consisted of (i) initializing the units to random states, (ii) allowing
the two modules to settle to stable attractor states (approx 20–30 ms), (iii) identifying the
direction represented in PoS:E with the initial head direction sample, and (iv) allowing the
system to run using thėφ sequence calculated as per above, and at each step comparing the
direction represented in PoS:E with the measured head direction of the animal.

Figure 5 shows the model’s ability to integrate actual rodent head movements. The
cumulative HD tracking error fluctuated, but typically did not exceed 20◦ for simulations
shorter than 3 min. Figure 6 shows this for the simulation in figure 5.

Tracking accuracy was largely dependent on four parameters: how strongly vestibular
input modulated offset connectionsξ(φ̇) (see figure 4), the offset amountδ, and the time
constantsτE andτI . The offset connection modulationξ(φ̇) controlled the angular velocity
of the Gaussian for a given input head velocity, while the amount of offset (δ = 10◦)
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Figure 6. Cumulative tracking error over the course of tracking 20 s of rodent head rotations.
Same simulation as figure 5.

controlled the lead of the ATN population. Theτ parameters controlled the resistance of
units to changing activation, determining the inertia of each pool.

In agreement with [7], we observed that large values ofτI can cause oscillatory
behaviour. τE controlled the qualitative behaviour of the system: small values (< 2 ms)
allowed accurate tracking of turns at up to 600◦ s−1 with little distortion of the hill shapes
and small differences between PoS and ATN hill locations. Larger values ofτE produced
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Figure 7. Comparison of tuning curves for an actual postsubiculum cell (full curve) and a
simulated PoS:E cell (dotted curve with diamonds) during tracking of a series of rat head
rotations. Single-cell recording data courtesy of Blair and Sharp.
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distorted hill shapes when tracking fast turns, but yielded larger differences between PoS
and ATN hill locations.

Tuning curves of model PoS:E and ATN:E cells (say celli) were determined by
recordingFi(t) at each timet and storingFi(t) and the actual head direction (not the
represented direction) at that point in the simulation. A histogram ofFi was then generated,
binned by head direction in 10◦ bins. Tuning curves of real PoS and ATN cells were
generated from spike timing data supplied by Blair and Sharp. And as can be seen in
figures 7 and 8, the model shows an excellent fit to the real PoS and ATN cells.

Given the parameters in table 1, the direction represented by the ATN:E population
leads the direction represented by the PoS:E population by approximately 10 ms over a wide
range of turning speeds. Although this is smaller than the 20–40 ms discrepancy reported
in neurophysiological experiments [4, 24], our model at least replicates the qualitative
observation that ATN leads PoS. With further refinement, we hope to come closer to
replicating the actual lead of ATN relative to the PoS population.

4. Predictions

4.1. Existence of attractors

The attractor nature of the postsubiculum and the anterior thalamic nuclei, an assumption
common to several HD models, can be tested by injecting noise into the PoS and/or ATN
populations. Because PoS cells are not arranged topographically (i.e. nearby neurons
have unrelated preferred directions [18]), noise can be injected into the postsubiculum
by microstimulation. The representation of head direction should be disrupted by this
procedure, but if the postsubiculum is really an attractor system, the disruption should only
be transient. Even in darkness, without external or self-motion cues, the PoS population’s
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Figure 8. Comparison of tuning curves from two actual ATN cells (full and dashed curves)
and a simulated ATN cell (dotted curve with diamonds) during tracking of a series of rat head
rotations. Single-cell recording data courtesy of Blair and Sharp.
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firing rates should return to a well formed representation of head direction. A similar
experiment could test the attractor nature of the ATN population.

The coupled attractor architecture of our model further predicts that the two
representations will always be internally consistent and aligned with each other. When
two or more HD cells have been recorded simultaneously, the difference between their
preferred directions never changes [21, 23]. The attractor nature of our model accounts
for this observation and suggests that even after injecting noise into postsubiculum, the
difference in preferred direction between two simultaneously recorded cells will return to
its original value. In our model, the matching connections align the representations in ATN
and PoS, suggesting that the difference in preferred directions between cells in both these
areas will also not change from session to session or environment to environment.

4.2. Symmetry of ATN tuning curves

Our model updates the representated head direction by adding extra activation into the
ATN, offset by an angle of±δ. During rotations, this causes the tuning curves of ATN
cells to be stretched to the rotating side. This should be easily testable using theasymmetry
measurement of Taubeet al [22], defined as the absolute value of the ratio of the slopes of
the left and right legs of the triangular tuning curve. The rotation-side leg (i.e. the right leg
for clockwise rotations, the left for anticlockwise rotations) should have a flatter slope than
the opposite leg, and faster rotations should produce stronger asymmetries.

5. Discussion

In order to get our model to accurately track the head trajectory of a real animal while
maintaining realistic tuning curves in all four populations (excitatory and inhibitory pools
of PoS and ATN), we had to make a number of biologically questionable assumptions.

All neurons in both pools of an attractor have tuning curves with similar widths and
heights, and preferred directions are evenly distributed around the circle.These simplifying
assumptions were made for the purpose of keeping the simulation tractable. Real head
direction cells show a wide range of tuning widths and heights [22, 23, 21]. All three
assumptions could be relaxed by assuming that there is a distribution around each of these
parameters (tuning width, tuning height, preferred direction) and that the values used are
average values. We have shown previously how similar assumptions could be relaxed in a
model of motor control [17].

The integration time constantsτE and τI are in the millisecond and tenth-of-millisecond
range. In order to track high-speed turns, the model requires small integration time
constants. We do not see this as a major problem, for two reasons. First, a population
of neurons with staggered firing times can produce temporal discriminations much finer
than the integration constants of individual cells. As Pintoet al [15] have shown, the
single-neuron model presented in subsection 2.1 can also be interpreted as a representation
of a neuronal population. Second, the fact that a rat can move at high angular velocities
does not imply that the head direction system can track them†. Visual cues (if available)

† Etienne [9] has shown that a hamster can be disoriented by moderate rotation (on the order of five full
revolutions), which implies that the head direction tracking system accumulates error even at normal turning
speeds.
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can help realign the head direction representation after the turn. If further investigation
of the rodent head direction system shows that it cannot track high velocity turns without
error, then the model can use more realistic time constants. With values ofτE = 10 ms and
τI = 2 ms, and an offset valueδ = 50◦, we have determined aξ(φ̇) function that will track
head direction accurately for turning speeds up to 100◦ s−1.

The model includes intrinsic connections within ATN.There are few or no intrinsic
connections within the anterior thalamic nuclei, and no evidence for inhibitory interneurons
within the anterior dorsal (AD) nucleus† (see [2] for a review). We have found that if
ATN is not organized as an attractor but merely sums the inputs from matching and offset
connections, ATN tuning curves deform drastically during rotations. Since this has not been
observed in the rat, we suggest that ATN does have attractor dynamics. However, ATN
does not appear to contain the necessary machinery for an attractor module. We do not
know which anatomical structures interconnected with ATN might contribute to its attractor
nature, but we offer this as a prediction.

The model requires multiplicative connections between the PoS and ATN populations,
because the strength of the offset connections is a function of angular velocity.No such
connections have been seen, however, the crucial aspect of the theory is that the loop from
PoS to ATN and back must be modulated by vestibular input. Both Taubeet al [22] and
Sharp [18] report that some cells in postsubiculum are sensitive to both head direction and
angular velocity. If these PoS cells project to the ATN:E population, they can serve as
the origin of the offset connections, and then the offset connections would not have to be
modulated by angular velocity since the presynaptic neurons already are. Another possible
source of the offset connections is retrosplenial cortex, which includes head direction cells
modulated by self-motion [5, 6] and is interconnected with the anterior thalamic nuclei
[2, 26].

Cells in the mammillary bodies are assumed to fire at a rate proportional to angular velocity.
Blair [3] makes a similar proposal, except that he assumes firing ratedecreaseswith angular
velocity. Our model requires an inhibitory gain control input to the ATN:E population
because without it, the combined input from the offset and matching connections distorts
the ATN tuning curves. In the cat, the effect of stimulating the mammillothalamic tract
is inhibitory, but the actual synapses seen in rat would seem to be excitatory; see [2] for
a review. We identify this gain control population with the mammillary bodies, but more
work needs to be done to determine whether the mammillary bodies could actually play this
role. As yet there are no published data on neural recordings from the mammillary bodies.

In summary, we have described a coupled attractor model of the rodent head direction
system whose components closely match the tuning curves of cells in PoS and ATN. The
model tracks actual head rotations with good accuracy, and the ATN representation of
head direction leads the PoS representation during turns, in qualitative agreement with
neurophysiological observations. The model makes explicit predictions about the attractor
nature of PoS and ATN representations, and the shape of ATN tuning curves during rotations,
which we hope to see tested in future experiments.

† Most head direction neurons in ATN probably come from the anterior dorsal (AD) nucleus [4, 21].
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