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Abstract To have a fully integrated understanding of neurobiological systems, we
must address two fundamental questions: 1. What do brains do (what is their function)?
and 2. How do brains do whatever it is that they do (how is that function implemented)?
I begin by arguing that these questions are necessarily inter-related. Thus, addressing
one without consideration of an answer to the other, as is often done, is a mistake. I
then describe what I take to be the best available approach to addressing both ques-
tions. Specifically, to address 2, I adopt the Neural Engineering Framework (NEF) of
Eliasmith & Anderson [Neural engineering: Computation representation and dynam-
ics in neurobiological systems. Cambridge, MA: MIT Press, 2003] which identifies
implementational principles for neural models. To address 1, I suggest that adopting
statistical modeling methods for perception and action will be functionally sufficient
for capturing biological behavior. I show how these two answers will be mutually
constraining, since the process of model selection for the statistical method in this
approach can be informed by known anatomical and physiological properties of the
brain, captured by the NEF. Similarly, the application of the NEF must be informed
by functional hypotheses, captured by the statistical modeling approach.

Keywords Neural architecture · Functional integration · Neurophilosophy ·
Cognitive architecture · Statistical models · Mental representation · Neural networks

1 Introduction

Theoretical approaches to cognitive science (which I take to include both psychology
and neuroscience) often attempt to construct models of human or animal behavior.

C. Eliasmith (B)
Department of Philosophy, University of Waterloo, Waterloo, ON, Canada N2L 3G1
e-mail: celiasmith@uwaterloo.ca

123



374 Synthese (2007) 159:373–388

These neurocognitive models are unique in science in that there are often two
distinct modeling relations of relevance to their construction. Usually, when developing
a theoretical description of a physical system, a scientist needs to concern himself or
herself solely with the most effective way to quantify the observed behavior of the
system. This is true, for instance, when modeling mechanical, chemical, environmen-
tal, geological and other such physical systems. This characterization, however, does
not accurately describe the task undertaken by theorists in cognitive science. This is
because cognitive modeling essentially entails a kind of “meta-modeling”—modeling
a system itself taken to be modeling its environment. The system that the neuro-
cognitive theorist is attempting to describe is taken to have its own internal model
(or representation) of the world. As a result, building models in the cognitive sciences
means it is essential to address two modeling relations; that between our description
and the physical system, and that between a physical system itself and the world.

When considering questions of functional integration, both of these modeling
relations are important to consider. And, I believe that these two relations can be
captured by answers to the following two questions:

1. What do brains do (what is the relation between the system and its environment)?
2. How do brains accomplish their functions (what is the relation between physi-

cally measurable variables of the system and our quantitative description of their
interactions across various levels of detail)?

By merely supposing that there are two modeling relations addressed by cognitive
theories, we have delineated a reply to the first question: brains build and employ
(adaptive, partial, approximate, etc.) models of the world. Of course, this is not a
satisfactory answer to that question because it is far too vague and so we must answer
it more detail. I will outline what I take to be a promising approach to characterizing
the appropriate class of models in Sect. 3.1

Notice, however, that addressing the system-world relation (i.e., taking cognitive
systems to model the world) cannot complete our theoretical characterization of the
system. After all, we have not yet said anything about the “usual” modeling relation,
that between the physical system and our mathematical description of it. As a result,
it is crucial for theoreticians in cognitive science to address this relation, captured
by question two. That is, it is essential to explicitly describe how the physical brain
could implement and use the model we take it to be constructing, given our answer to
question one.

Supposing that there are two distinct questions which must be addressed by cog-
nitive models, what is the relation between them? Before describing their specific
relation, it is first important to establish whether they are related at all. Here, I argue
that they are intimately related. Furthermore, it is fair to say that the vast majority
of work in psychology and neuroscience has been focused on one question or the
other—seldom concurrently addressing both. I would also suggest that it is not unfair
to assert that psychology has focused on the first question, whereas neuroscience has

1 The question of whether or not biological systems model the world is beyond my current scope.
I presume that they do, and refer interested readers to relevant psychological and neuroscientific work
(e.g., Johnson-Laird 1983; McIntyre et al. 2001; Wolpert et al. 1998).
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attended largely to the second. For example, the vast majority of psychological models
have not worried about biological realism, assuming that it can be added subsequently
(including classical (e.g., SOAR Newell 1990), connectionist (e.g., NETtalk Sejnowski
and Rosenberg 1986), and dynamical (e.g., MOT Busemeyer and Townsend 1993)
work).2 Similarly, the vast majority of work in theoretical neuroscience has character-
ized implementation issues (e.g., information transfer, Rieke et al. 1997; “fine-tuning”
of neural integrators, Koulakov et al. 2002; attractor networks, Amit 1989, etc.). Admit-
tedly, since there must be some function that is implemented by a neural system, the
work in theoretical neuroscience cannot completely avoid the issue of function (just
as the work in psychology cannot completely avoid issues of implementation). Nev-
ertheless, the functions theoretical neuroscientists have focused on tend to be simple,
low-dimensional, and considered in isolation (i.e., not as part of a larger, functionally
integrated system, or internal model).

While a divide and conquer approach may often be reasonable in dealing with a
system as complex as the brain, such an approach is seldom, if ever, successful when
pursued in isolation; that is, without equal consideration given to the synthesis of the
parts (Bechtel and Richardson 1993). Thus, it is a mistake to solely consider func-
tion and implementation as distinct as seems to be the status quo in psychology and
neuroscience. Rather, it is essential to address the theoretical issue of large-scale, bio-
logically plausible functional integration in a unified manner. It is difficult to overstate
how difficult this challenge is. As a result, in this paper my goal is not to provide a
polished solution to this challenge, but rather to suggest, and provide a reasonable
amount of detail about, approaches which I think hold the most promise for success-
fully meeting this challenge.

The remainder of this essay is structured as follows: I first introduce what I take to be
a promising method for relating function to biologically realistic implementation (i.e.,
an answer to question two); I then introduce what I take to be a promising approach
to addressing biologically relevant functions (i.e., an answer to question one); next,
I address how these two methods can be integrated to provided the kind of unified
approach to understanding cognitive behaviors that I have just suggested is essential.
I conclude with a brief discussion of the implications of this view.

2 Implementation and the NEF

In recent years, Charles Anderson and I have championed an approach to building
large-scale biologically plausible models called the Neural Engineering Framework
(NEF, Eliasmith and Anderson 2003). It consists of three basic principles, quantita-
tively characterized in the Appendix:3

2 This is true even though degrees of biological inspiration may partly distinguish kinds of psychological
model.
3 While these principles have been extended in more recent work (Tripp and Eliasmith 2007), here I pres-
ent their original formulation (Eliasmith and Anderson 2003) which is simpler and does not detract from
subsequent discussion.
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1. Representation: Neural representations are defined by a combination of non-linear
encoding and optimal linear decoding.

2. Transformation: Transformations of neural representations are functions of the
variables that are represented by a population.

3. Dynamics: Neural dynamics are characterized by considering neural representa-
tions as control theoretic state variables.

Neural representation (principle 1) is thus characterized by: (1) the (nonlinear)
neuron tuning curve, which typically captures the relation of the response of a given
cell to a stimulus (e.g., Gaussian tuning to the angle of a bar in the receptive field);
and (2) a theoretically defined neural decoder. This decoder is not directly empirically
observable, unlike the tuning curve, but rather captures what information is extractable
from the given response of the cell. Notably, the decoder still has empirical conse-
quences (namely, the size of synaptic weights), though these are only accessible in
the context of a circuit. For instance, if a circuit was needed to estimate the angle of
an encoded bar, the responses of all neurons sensitive to encoded bar angles could be
pooled, weighted by their decoders and the receiving neurons’ encoders (i.e., synaptic
weight ≈ decoders × receiving_encoders), and then the subsequent population could
be interpreted as representing the ‘bar angle’ scalar. This simple kind of representation
can be similarly used to represent vectors, functions, vector fields or other kinds of
mathematical objects.

Technically, the representation circuit described in the previous paragraph is the
simplest possible transformation (principle 2): the identity function. That is, the scalar
‘bar angle’ is simply reproduced from one population to the next. If, rather than finding
decoders which decode the information encoded in the original population, we find
decoders that decode some function of that information (e.g., two times ‘bar angle,’
i.e., f (x) = 2x), we can similarly define neural connection weights that effect this
transformation. The same is true for nonlinear functions as well (e.g., f (x) = x2). In
short, we can estimate any function by computing the appropriate linear decoders to
extract that function from the encoded information. This holds regardless of the kind
of mathematical object that is being represented.

Finally, the dynamics principle (principle 3) brings the first two together, and adds
the crucial dimension of time to the circuits. Essentially this principle allows the rep-
resentations of principle 1 to be combined with the transformations of principle 2 to
define sophisticated dynamical circuits. For instance, if we take the simple represen-
tation circuit described earlier, which computes the identity function, and make the
sending and receiving populations the same, we have constructed a ‘neural integrator.’
This recurrent circuit will act like a memory (given a state, it will constantly try to
preserve that state over time, decoding now what was encoded at the previous time
step, i.e., constantly recomputing the identity function). In short, this circuit defines a
simple dynamical system, in terms of the representation defined by principle 1, using
the transformation defined by principle 2. In fact, the integrator just described has been
used by a number of authors to explain the function of the nuclei prepositus hypoglossi
in the brain stem, that controls horizontal eye position (Koulakov et al. 2002; Seung
1996). The general relationship between the three principles and a spiking neural
population is depicted in Fig. 1.

123



Synthese (2007) 159:373–388 377

... ... ... ...
synaptic weights

cell body

higher-level
description

neuron-level description

PSCs

dendrites

incoming
spikes

temporal
decode

decode

encode

outgoing
 spikes

control
matrices

recurrent
connections

Fig. 1 A generic neural subsystem. The outer dotted line encompasses elements of the neuron-level
description, including PSCs, synaptic weights, and the neural nonlinearity in the soma. The inner dot-
ted line encompasses elements of the control theoretic descriptions at the higher-level. The gray boxes
identify experimentally measurable elements of neural systems. The elements inside those boxes denote
the theoretically relevant components of the description. For a formal description of these elements, see the
Appendix (adapted from Eliasmith 2003)

In short, the NEF principles: (a) apply to a wide variety of single cell dynam-
ics; (b) incorporate linear and nonlinear transformations; (c) permit linear, nonlinear
and time-varying dynamics; and (d) support the representation of scalars, vectors,
functions, or any combinations of these. In addition, the principles are formulated
so as to preserve our current understanding of the biophysical limitations of neural
systems (e.g., the presence of significant noise, the intrinsic dynamics of neurons,
largely linear somatic interactions of dendritic currents, etc.).

There are number of sources for a detailed discussion of these principles and their
application in addition to their original formulation (see, e.g., Eliasmith 2005; Tripp
and Eliasmith 2007). For the purposes of this paper, what is most relevant is that this
approach has been widely applied to constructing novel, large-scale, biologically real-
istic models. These include models of the barn owl auditory system (Fischer 2005), the
rodent navigation system (Conklin and Eliasmith 2005), escape and swimming control
in zebrafish (Kuo and Eliasmith 2005), the translational vestibular ocular reflex in mon-
keys (Eliasmith et al. 2002), working memory systems (Singh and Eliasmith 2006),
and language-based deductive inference (Eliasmith 2004). Notably, these models span
sensory, motor and cognitive systems across the phylogenetic tree. Furthermore, the
majority of these models have resulted in testable experimental predictions, some of
which have been used to drive further experiment (see, e.g., Fischer et al. in press).
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The broad applicability and success of this approach warrants the suggestion that
it captures some fundamental aspects of the relevant constraints on neural implemen-
tation. Currently, there are no obvious competitors to the NEF as a general approach
for constructing large-scale mechanistic models the brain to the level of individual,
spiking neurons. As a result, it is natural to suggest this is our current best answer to
the second question posed earlier: the principles of the NEF describe how functions
are implemented in the brain.

However, it should be clear from looking at these principles that they do not answer
questions regarding neural function. Instead, they define a kind of “neural compiler.”
Compilers, familiar from computer science, are methods of translation, not hypothe-
ses about function. Of course, the important point about translation is that expressions
in one language may take widely varying resources to re-express in another. Conse-
quently, the mathematical expressions that are natural for describing certain functions
may take an unacceptable number of neural resources to implement. This, then, puts
significant and important constraints on what functions brains actually implement. It
does not, however, tell us what those functions may be.

3 Function and statistical modeling

Statistical modeling has historical roots in data collection and analysis for characteriz-
ing political states (hence ‘stat-istics’), and mathematical roots in probability and error
theory. In these contexts, it is practical considerations of the world that drives the use
of statistics. That is, descriptive statistics are used to describe the state of the world,
including noise and variability in the measured quantities, and inferential statistics is
used to pick out the important patterns in those often noisy, measured quantities. In
other words, the tools of statistics have been developed to effectively describe complex
relationships given real-world data. This, I take it, is a similar problem to that faced
by biological systems.

What is important for cognitive science, and somewhat foreign to traditional
approaches to the subject, is the centrality of uncertainty, ambiguity, and random-
ness in this understanding of biological function. Biological systems are not designed
to be absolutely certain of the identity of an object (“there is a dog 3 feet away”),
but rather they are designed to be certain enough of its identity to allow appropriate
response (“that is probably a dog, and is too close for comfort”). To capture this deft
handling of uncertainty, perceptual processes can be understood as constructing sta-
tistical models of perceptual data, which are used to infer likely states of the world
given that data.

We can begin to formalize this characterization by supposing there is some ‘data,’ y,
which is the contribution of world states to neural activity. The purpose of perceptual
systems is to construct and use a statistical model p(y) to be able to predict the data
(and hence usefully characterize the world states). Because this ideal data distribution
will be enormously complex (as it is the probability of all possible data at all times), it
is natural to consider a parameterized model (where the dimensionality of the param-
eters is much smaller than the dimensionality of the data). The biological system thus
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Fig. 2 A hierarchical statistical
model. Parameters, indexed over
time, t , and layer, i , include
ui (t) (the hidden cause, i.e.,
neural activity), Gi and Hi
(generative and predictive
matrices, i.e., synaptic weights),
Pi and Qi (precision matrices,
i.e., intra-layer synaptic weights
on neurons computing error
terms). The dependence
relationships of the model
parameters/hidden causes are
defined by arrows. Dotted lines
indicate additional dependencies
from model parameters at future
or past times
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must estimate the distribution of the parameters in order to reason about (i.e., predict)
the data. To estimate this distribution, the system needs data. As a result, a kind of
bootstrapping process, i.e., learning, is necessary to construct this model. In practice,
however, the parameterized model p(y,�), is also too complex to estimate directly.
Instead, it has been found that a lower bound on this model can be defined, and model
estimation by maximizing this lower bound is feasible (usually given various further
assumptions). This method is variously designated Variational Bayes (VB), Maximi-
zation of Free Energy, or Product Distribution (PD) theory (Friston 2003; Hinton and
van Camp 1993; Wolpert 2004).

Notably, these methods for optimal model inference do not specify the structure of
the model itself. However, it has become clear that for many perceptual problems, a
hierarchical model—often noted to resemble the hierarchical structure of the brain—is
very effective. Essentially, a higher level in the hierarchy attempts to build a statistical
model of the level below it. Taken together, the levels define a model of the original
input data (see Fig. 2). This kind of hierarchical structure naturally allows the progres-
sive generation of more complex features at higher levels, and progressively captures
higher order correlations in the data. Furthermore, application of these bound maximi-
zation methods to such a model leads to relations defined between hierarchical levels
that are reminiscent of the variety of neural connectivity observed in cortex: that is,
feedforward, feedback, and recurrent (interlayer) connections are all essential.

The power of these methods for generating effective statistical models is impressive
(Beal 1988). They have been applied to solve a number of standard pattern recogni-
tion problems, improving on other state-of-the-art methods (Hinton and Salakhutdinov
2006). However, there are two central issues regarding their application to biological
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systems that remain important challenges. The first is the incorporation of time, and
the second is an extension to motor control.

While some recent work has incorporated time (Brand and Hertzmann 2000; e.g.,
Taylor et al. 2007), there is no detailed, theoretically well-founded approach to adding
temporal information to such statistical models that is biologically plausible. The
Taylor et al. (2007) approach simply treats past times as additional fixed inputs to a
two layer model. The Brand and Hertzmann (2000) work models motion as a Hidden
Markov Model (HMM; i.e., discrete state transitions) with no attempt at biological
plausibility. Our work has extended the bound maximization methods with a hier-
archical model to include time, but made the unrealistic assumption that time steps
are discrete and independent (Martens and Eliasmith 2007). It is thus reasonable to
conclude that statistical models can be adapted to modeling temporal correlations, but
current approaches are at early stages of development, especially in the context of
biologically plausible constraints.

Less has been done to explicitly relate statistical models to motor control (although
see Todorov 2006). As Todorov (2006) describes in detail, it is nevertheless natural
for this kind of perceptual approach to extend to stochastic optimal control. Early on,
Kalman (1960) showed that a simple optimal estimator, now known as the Kalman
filter (KF), is a mathematical dual to the linear-quadratic regulator (LQR). Todorov
(2006) has generalized this result to maximum a posteriori (MAP) smoothing and
deterministic optimal control for continuous state systems (of which KF/LQR duality
is a special case). In short, the best ways of interpreting incoming information via
perception, are deeply the same as the best ways of controlling outgoing information
via motor action. So the notion that there are a few, specifiable computational princi-
ples governing neural function seems plausible. In other words, given this very recent
result, it seems clear that there is the enticingly close quantifiable relationship between
perception and action that we would hope for. This recognition holds great promise
as a means of constructing a general, unified theory of brain function. In sum, per-
ceptual models are reasonably well-established theoretical approaches, motor control
problems can be shown to be dual to those approaches, and more ‘cognitive’ functions
(e.g., decision making) will be the result of the interface between the perceptual and
motor models.

However, there are a wide variety of challenges faced by this view. As Todorov
(2006) notes in his concluding section, important research directions that are left open
by his theoretical result relating motor and perceptual models include: motor learning
and adaptation, neural implementation of optimal control, and hierarchical/distributed
control. It is interesting to note that the perceptual duals of two of these concerns have
already been addressed by the statistical models I introduced earlier (as such perceptual
models are both learned and hierarchical). What remains left open by both the motor
and perceptual approaches to characterizing brain function that I have recommended
here is implementation.
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4 Functional integration

To this point, I have highlighted what I take to be promising answers to both the ‘how’
and the ‘what’ questions: the NEF captures how the brain computes; the statistical
approach captures what the brain computes. Both the NEF and statistical approach are
good candidates for supporting functionally integrated descriptions of neural systems
because of their generality. The NEF generalizes across representation of mathematical
objects (scalar, vectors, functions, etc.), kinds of computation (linear, non-linear), cell
models (rectified linear, leaky-integrate and fire, conductance based, etc.), and kinds
of dynamics (linear, time-varying, non-linear, etc.). The statistical approach general-
izes across perceptual processes (object recognition, location estimation, multi-modal
integration, etc.) and motor processes (path planning, feedback control, locomotion,
target tracking, etc.). Given these considerations, I am willing to make the claim that
between these two approaches, there is no obvious gap in our ability to answer, in
principle, the ‘how’ and ‘what’ questions completely.

Nevertheless, given my suggestion (in Sect. 1) that answers to these two questions
must be unified, there remains more to be said regarding how the two approaches
interact. The broadest answer is simply that implementational constraints delimit pos-
sible function (which is why your desktop computer is not a truly universal Turing
machine), and that functional specification is essential for realizing an implementa-
tion. So, in practice, the integration of ‘how’ and ‘what’ considerations is bound to be
an iterative, bootstrapping process.

One example of this kind of integration is the utility of the NEF for model selection.
One of the greatest challenges with any statistical modeling is model selection. Once
a model is described, there are well-established and effective methods for parameter
tuning and inference. However, defining the model itself, i.e., picking parameters,
making distributional and independence assumptions, etc., has few systematic con-
straints. This challenge arises largely from the generality of the approach. Any set of
relationships can be modeled statistically—but clearly the brain is tuned to picking up
and acting on a particular set of relationships. In defining a model (e.g., picking the
number of hierarchical levels, making assumptions about the forms of priors, etc.),
we implicitly limit the relationships that can be described by the system. As a result,
one good test of the plausibility of a particular model is determining whether or not it
can be neurally implemented. If we define a model which demands more neurons than
available in the brain, or demands a higher precision of representation than available,
or demands a limitless memory, we cannot take the model to be a reasonable choice for
characterizing neural function. In other words, the lack of constraints available in the
statistical modeling approach can be supplemented with the systematic constraints on
neural implementation identified by the NEF. A statistical way of thinking about this
integration is that the NEF provides a prior on possible models to be considered. The
three principles specify the form of ‘reasonable’ implementations of any statistical
model the brain may construct of the world.

The NEF itself is constrained not only by functional specification, determined by the
statistical model that is proposed, but also by available data. This allows for a bridging
of the often large gap between detailed anatomical and physiological evidence and a
high-level functional description. The NEF relies on information about tuning curves,
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projections between neural populations, single cell dynamics, etc. when helping to
specify a particular simulation. Integrating these approaches means that this infor-
mation can also determine how a statistical model might be realized in neural tissue.
Furthermore, high-level physiological data, like that available from fMRI and ERP,
can be compared to activity generated by a large scale NEF simulation of a given set of
brain areas (see e.g., Eliasmith 2004). In short, the NEF can serve as a conduit through
which large-scale integrative functional hypotheses meet experimental evidence from
a wide variety of neuroscientific methods.

Together, the NEF and statistical approach identify and integrate what are often
referred to as ‘top-down’ (functional) and ‘bottom-up’ (neurophysiological) con-
straints. As a result, the generality of the methods allow for ‘whole brain’ modeling
(more accurately, many system modeling). In fact, precisely this ability to support
models that address a wide variety of neural function within a single model raise
important challenges for the use of these combined approaches: in short, the price of
generality is complexity. Consider, for instance, how we might model a task such as
reaching for a moving object. To perform this task, the system must track (and hence
predict) where the target will be given its current position. This entails extracting
motion information. Motion information is available from a wide variety of stimuli,
and hence the inclusion of motion information in the model needs to be extracted from
a wide variety of stimuli. In other words, we need a fairly sophisticated visual system
in the model—one which we construct by specifying a hierarchical statistical model
(perhaps only a few levels are necessary) that is then tuned by many example stimuli.
The representations available from this model then must be used to generate predic-
tions, in a specific stimulus context, of how the object will move (thus implementing a
state estimator). These predictions would then need to be used to determine a statisti-
cally optimal control signal to guide the (many-degree of freedom) motion of an arm,
which must also be modeled by the system. Each of these aspects of the model could
be implemented by determining the kinds and distribution of tuning curves evident in
the relevant perceptual and motor areas, identifying appropriate single cell models,
and specifying the necessary transformations to implement the needed mappings.

Were this simulation to be built successfully on a first attempt, it would be a signif-
icant advance over currently available simulations. The difficulty lies in the diagnosis
and updating of the model in the much more likely case that a first attempt fails. That
is, the ability to build large-scale, highly integrated models brings with it a great dif-
ficulty in ‘debugging.’ Unlike compartmentalized computer code, such a simulation
is likely to need high-dimensional representations which unexpectedly interact (e.g.,
concurrent representation of current location and prediction of future location), and
complex nonlinear transformations that are difficult to predict in a stochastic environ-
ment. Of course, this kind of challenge may be appropriate in a highly distributed,
multi-functional neural system. As well, the NEF, with its capacity to describe the
relation between various levels of representation (e.g., between single neuron and
population-level representations) may go some way to making sense of the system
for the purposes of debugging. Nevertheless, many of the well-known challenges of
designing and debugging analog systems (Sarpeshkar 1998) become prominent with
these kinds of models.
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The combination of the NEF and statistical modeling approach is uniquely general,
and able to directly connect with neurally relevant data. As a result, I have suggested
that this marriage of methods is our best current approach for exploring more highly
integrated, and larger scale neural models. But, having identified methods that can sub-
serve functional integration brings with them a price: increased design challenges. This
is a price that must be paid if we are to gain a deeper understanding of neural systems.

5 Conclusion

Clearly, the project of this paper—to identify a promising route to generating function-
ally integrated neural models—is only a first and tentative step towards a challenging
research goal. Nevertheless it may be of interest to very briefly consider some of the
many consequences of adopting this approach. First, the traditional notion of ‘repre-
sentation’ does not naturally fit into this account. Instead, representations are ‘deeply
statistical’ (i.e., representations are themselves statistical distributions).

As a result of shifting our understanding of representations in this way, our under-
standing of inference naturally shifts from logical inference to probabilistic inference
as well. This is important for understanding how to design experiments that test hypoth-
eses relying on these kinds of representations and transformations.

Furthermore, given such an integrated approach to modeling will likely demand
more sophisticated experimental approaches—approaches that carefully intermix
perceptual, cognitive, and motor aspects in their entirety. In short, such a view may
help theoreticians get past modeling data, to modeling animals themselves. After all,
animals don’t control ‘button presses,’ but rather the complex, fluid, adaptive motion
that leads to such a result.

It is beyond the scope of this paper to compare and contrast these three consid-
erations with past paradigms in the behavioral sciences. Nevertheless, these brief
suggestions may be enough to peek our curiosity sufficiently to revisit some of our
assumptions about how best to describe brain function. After all, if we really want to
build a brain, we had better be convinced of the utility of our basic principles.

Appendix

This appendix describes each of the three principles of the NEF quantitatively. For
simplicity only the vector case is considered. Notably, function, scalar, and other
representational forms are instances of vector representation—scalars being one-
dimensional vectors, functions being representable as a vector of coefficients defined
over an orthonormal basis (which itself does not need to be represented), and so on.

Neural representation

In the NEF, representation in neural populations is characterized in terms of a nonlin-
ear encoding process and a linear decoding process (Eliasmith and Anderson 2003).
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Encoding involves converting a quantity, x(t), from stimulus space into a spike train:

∑

n

δ(t − tin) = Gi [Ji (x(t))] (1)

where Gi [·] ψ is the nonlinear function describing the spiking response model (e.g.,
leaky integrate-and-fire, Hodgkin-Huxley, or other conductance based models), Ji is
the current in the soma of the cell, i indexes the neuron, and n indexes the spikes
produced by the neuron. Specifically, the current is given by

Ji (x) = αi

〈
φ̃i · x

〉
+ J bias

i + ηi (2)

where Ji (x) is the input current to neuron i , x is the vector variable of the stimulus
space encoded by the neuron, αi is a gain factor, φ̃i is the preferred direction vector of
the neuron in the stimulus space, J bias

i is a bias current that accounts for background

activity, and ηi models neural noise. Notably, the dot product,
〈
φ̃i · x

〉
, describes the

relation between a high-dimensional physical quantity (e.g., a stimulus) and the result-
ing scalar signal describing the input current. In short, Eq. 1 captures the nonlinear
encoding process from a high-dimensional variable, x, to a one dimensional soma
current, Ji , to a train of spikes, δ(t − tin).

To understand how a neural system might use the information encoded into a spike
train in this manner, we must characterize a neurally plausible decoding as well. To
do so we need to understand how this information can be converted from spike trains
back into a relevant quantity in stimulus space. Note that this does not mean that the
decoding process takes place explicitly in neurons. Rather, it is a theoretically useful
means of characterizing part of the information processing characteristics of neurons.
In the NEF we characterize decoding in terms of post-synaptic currents and decoding
weights. Somewhat surprisingly, a plausible means of characterizing this decoding is
as a linear transformation of the spike train. Specifically, we can estimate the original
stimulus vector x(t) by decoding an estimate, x̂(t), using a linear combination of
filters, hi (t), weighted by decoding weights,φi :

x̂(t) =
∑

in

δ(t − tin)∗hi (t)φi =
∑

in

hi (t − tin)φi (3)

where ‘∗’ indicates convolution. These hi (t) are thus linear decoding filters which,
for reasons of biological plausibility, we take to be the postsynaptic currents (PSCs)
in the subsequent neuron.

To find the φi weights to determine this estimate, we minimize the mean-squared
error,

E = 1

2

〈[
x(t)− x̂(t)

]2
〉

x,t

= 1

2

〈[
x(t)−

∑

in

(hi (t − tin)+ ηi ) φi

]2〉

x,t,η

(4)
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where 〈·〉x denotes integration over the range of x, and ηi models the expected noise.
By optimizing with Gaussian random noise, we ensure that fine tuning is not a concern,
since the decoding weights will be robust to fluctuations. For biological plausibility,
this error is solved allowing the linear decoders to be PSCs, hence the minimization
is done only over x.

Defining a nonlinear encoding and a linear decoding (over both time and populations
of neurons) provides a general means for capturing time-varying neural representation.

Neural computation

As stated in principle 2, neural computation is a special case of neural representation.
As a result, we can modify (4) to find optimal linear decoders for a function of the
stimulus space, rather than the stimulus space itself, i.e.,

E = 1

2

〈[
x(t)− f (x̂(t))

]2
〉

x,t
. (5)

Solving this equation provides optimal decoders φ f
i which give an estimate of that

function, rather than an estimate of the variable itself as in the representation case. This
implies that representation is a ‘degenerate’ computation where the function is merely
identity. This approach has been shown to work well for both linear and nonlinear
function computation (Eliasmith and Anderson 2003).

Neural dynamics

For generality, we can write the relevant dynamics of a population in control theoretic
form, i.e., employing the dynamics state equation that comprises the foundation of
modern control theory,

ẋ(t) = Ax(t)+ Bu(t) (6)

where A is the dynamics matrix, B is the input matrix, u(t) is the input or control
vector, and x(t) is the state vector. In general, these matrices and vectors can describe
a wide variety of linear, time-invariant physical systems. Here, we use (6) to capture
the hypothesized high-level dynamics of a population of neurons.

Initially, this high-level characterization is divorced from neural-level, implemen-
tational considerations. However, it is possible to modify these matrices to render the
system neurally plausible. First, we must account for intrinsic neural dynamics by
converting this characterization into a neurally relevant one. To do so, we assume a
model of PSCs given by h (t) = τ−1e−t/τ , and can then derive the following relation
between (6) and a neurally plausible control theory:

A′ = τA + I
B′ = τB.

(7)
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So our description of the high-level neurally plausible dynamics becomes

x(t) = h(t)∗ [
A′x(t)+ B′u(t)

]
. (8)

Notably, this transformation is general, and assumes nothing about the form of A or B.
So, given any behavioral system defined in the form of (6), it is possible to construct
the neural counterpart by solving for A′ and B′. In fact, despite starting with linear
time-invariant systems, these methods can successfully be employed to model a much
broader class of dynamical systems. A variety of applications of this method to linear,
nonlinear, and time-varying neural systems is described in Eliasmith (2005).

Next, we must incorporate this high-level description of the dynamics with our
previous characterization of the neural representation. To do so we combine the dynam-
ics of (8), the encoding of (1), and the population decoding of x and u from (3). That
is, we take x̂ = ∑

jn h j (t − t jn)φ
x
j and û = ∑

kn hk(t − tkn)φ
u
k , which gives

∑

n

δ(t − tin) = Gi

[
αi

〈
φ̃i x(t)

〉
+ J bias

i

]

= Gi

[
αi

〈
φ̃i

[
A′x̂(t)+ B′û(t)

]〉 + J bias
i

]

= Gi

⎡

⎣αi

〈
φ̃i

⎡

⎣A′ ∑

jn

h j (t − t jn)φ
x
j + B′ ∑

kn

hk(t − tkn)φ
u
k

⎤

⎦
〉

+J bias
i

]
. (9)

It is important to keep in mind that the temporal filtering is only done once (here
included in the estimate of the signals), despite the fact that it is include in both (8)
and (3). That is, h(t) in these equations both defines the dynamics and defines the
decoding of the representations. To put it in a more familiar form, this equation can
be written as

Gi

⎡

⎣αi

〈
φ̃i

⎡

⎣A′ ∑

jn

h j (t − t jn)φ
x
j + B′ ∑

kn

hk(t − tkn)φ
u
k

⎤

⎦
〉

+ J bias
i

⎤

⎦

= Gi

⎡

⎣
∑

jn

ωi j h j (t − t jn)+
∑

kn

ωikhk(t − tkn)+ J bias
i

⎤

⎦ (10)

where ωi j = αi

〈
φ̃i A′φx

j

〉
and ωik = αi

〈
φ̃i B′φu

k

〉
are the recurrent and input connec-

tion weights respectively. These weights will now implement the dynamics defined
by the control theoretic structure from (8) in a neurally plausible network.

Taken together, these three sections allow for the construction of large, spiking
neural network models that implement a given (linear/nonlinear/time-varying) high
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level hypothesis about the function of a neural system, through the time-dependent
transformation of neural representations.
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