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Abstract

In �nite probability theory, events are subsets S � U of the outcome set. Subsets can be
represented by 1-dimensional column vectors. By extending the representation of events to two
dimensional matrices, we can introduce "superposition events." Probabilities are introduced
for classical events, superposition events, and their mixtures by using density matrices. Then
probabilities for experiments or �measurements�of all these events can be determined in a manner
exactly like in quantum mechanics (QM) using density matrices. Moreover the transformation
of the density matrices induced by the experiments or �measurements� is the Lüders mixture
operation as in QM. And �nally by moving the machinery into the n-dimensional vector space
over Z2, di¤erent basis sets become di¤erent outcome sets. That �non-commutative�extension
of �nite probability theory yields the pedagogical model of quantum mechanics over Z2 that can
model many characteristic non-classical results of QM.
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1 Introduction: Probability Theory with Superposition Events

The purpose of this paper is to introduce new concepts such as "superposition events" into �nite
probability theory. Let U = fu1; :::; ung be the outcome set or sample space of outcomes with the
respective point probabilities of p = (p1; :::; pn). Classical events are represented by subsets S � U
with probabilities Pr (S) =

P
ui2S pi where the conditional probability of the event T given the

event S is Pr (T jS) = Pr(S\T )
Pr(S) .
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2 The Density Matrix Representations

To generalize classical events to superposition events, we need a richer mathematical representa-
tion than just the notion of a subset. The mathematical information in a �classical� event S (for
convenience, always non-empty) could be represented in a (normalized) column vector jSi with ith

entry being
q

pi
Pr(S)�S (ui) (where �S : U ! f0; 1g is the characteristic or indicator function for S,

�S (ui) = 1 if ui 2 S and 0 otherwise). The same information could be represented in two dimensions
by the diagonal n� n matrix � (�S) with the diagonal entries pi

Pr(S)�S (ui), i.e.,

� (�S)i =
pi

Pr(S)�S (ui).

But the richer two-dimensional matrices allows us to de�ne the superposition event �S associated
with S as being represented by the n � n matrix � (�S) (writing the transpose jSit = hSj) by
multiplying the n� 1 column vector jSi times the 1� n transpose jSit = hSj:

� (�S) = jSi hSj with the entries � (�S)ik =
q

pi
Pr(S)

pk
Pr(S)�S (ui)�S (uk).

Note that singleton events S = fuig have no distinct elements to superpose and accordingly
� (� fuig) = � (� fuig).

Both � (�S) and � (�S) are examples of real density matrices which can be de�ned abstractly
as symmetric matrices � = �t over the reals with trace (sum of diagonal elements) tr [�] = 1; and
with non-negative eigenvalues. But for practical purposes, density matrices (over the reals unless
otherwise stated) may be taken to be any probabilistic mixtures of matrices of the form � (�S).
That is, for any probability distribution q = (q1; :::; qm) and classical events Sj � U for j = 1; :::;m,
the convex combination

Pm
j=1 qj� (�Sj) is also a density matrix.

A density matrix � is said to be pure if �2 = �, and otherwise mixed. For instance, � (�S) is
pure while � (�S) is a mixture unless S is a singleton event fuig since � (� fuig)2 = � (� fuig)2 =
� (� fuig) = � (� fuig) trivially.

A partition � = fB1; :::; Bmg on U is a set of non-empty mutually disjoint subsets fBjgmj=1
whose union is U . [2] The partition � is represented by the density matrix:

� (�) =
Pm

j=1 Pr (Bj) � (�Bj)
Density matrix associated with a partition � on U

that is mixed unless � is the indiscrete partition 0U = fUg since � (0U ) = � (�U). With a suitable
interchange of rows and columns, any density matrix � (�) de�ned by a partition would be block-
diagonal according to the partition blocks Bj 2 �. For the discrete partition 1U = ffu1g ; :::; fungg on
U , � (1U ) = � (�U). Thus the two extreme partitions at the top (discrete partition 1U ) and bottom
(indiscrete partition 0U ) in the lattice of partitions (ordered by re�nement) on U correspond to the
two extreme density matrices � (�U) and � (�U), and all the intermediate partitions � have density
matrices that are mixtures of the pure density matrices � (�Bj) for their blocks.

For the discrete partition on a subset S, 1S = ffuiggui2S and the indiscrete partition 0S = fSg
on a subset S, � (1S) = � (�S) and � (0S) = � (�S). The discrete partition 1S on a set S � U
distinguishes all the elements of S from each other in singleton blocks, and thus the density matrix
� (1S) associated with that partition is the statistical mixture of the singleton events for elements
of S: � (1S) = � (�S) =

P
ui2S

pi
Pr(S)� (� fuig). In contrast, the superposition event �S associated

with S represented by � (�S) blurs, blobs, or coheres together, i.e., superposes, the elements of S. For
equal probabilities 1

jSj , the elements of S are equally superposed. Otherwise, we may say ui; uk 2 S
are superposed with an amplitude of � (�S)ik =

q
pi

Pr(S)
pk

Pr(S) . The entries in the density matrices

associated with S, namely � (�S) and � (�S), have the same diagonal elements and di¤er only in
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the o¤-diagonal elements. When an o¤-diagonal entry � (�S)ik is non-zero, then it indicates that the
corresponding elements ui; uk 2 S are cohered together with that non-zero amplitude. All the o¤-
diagonal elements in � (�S) are zero indicating that the elements of S are completely distinguished
or decohered from each other.

For a suggestive visual example, consider the outcome set U as a pair of isosceles triangles that
are distinct by the labels on the equal sides and the opposing angles.

Figure 1: Set of distinct isosceles triangles

The superposition event �U is de�nite on the properties that are common to the elements of U , i.e.,
the angle a and the opposing side A, but is inde�nite where the two triangles are distinct, i.e., the
two equal sides and their opposing angles.

Figure 2: The superposition event �U .

Consider the partition � = fB1; B2g = ff};~g ; f|;�gg on the outcome set U = f|;};~;�g
with equiprobable outcomes like drawing cards from a randomized deck. For instance, the super-
position event associated with B1 = f};~g, is pure since (rows and columns labelled in the order
f|;};~;�g):

� (�B1) =
1

Pr(f};~g)

2664
0 0 0 0

0 Pr(f}g)
p
Pr(f}g) Pr(f~g) 0

0
p
Pr(f~g) Pr(f}g) Pr(f~g) 0

0 0 0 0

3775 =
2664
0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0

3775
equals its square, but density matrix for the half-half mixture of the two suit-color pure events:

1
2� (�B1) +

1
2� (�B2)

= 1
2

2664
0 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 0

3775+ 1
2

2664
1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

3775 =
2664
1
4 0 0 1

4
0 1

4
1
4 0

0 1
4

1
4 0

1
4 0 0 1

4

3775
is a mixture since it does not equal its square.

Intuitively, the interpretation of the superposition event represented by � (�B1) = � (� f};~g)
is that it is de�nite on the properties common to its elements, e.g., in this case, being a red suite, but
inde�nite on where the elements di¤er. The inde�niteness is indicated by the non-zero o¤-diagonal
elements that indicate that the diamond suite } is blurred, cohered, or superposed with the hearts
suite ~ in the superposition state � f};~g.

3



3 Computing �Measurement�or Trial Probabilities with Den-
sity Matrices

A (real-valued) random variable on the outcome space U is a function f : U ! R with values of
f�1; :::; �mg. The inverse image of f is a partition � = fBjgmj=1 where Bj = f�1 (�j). In ordinary
classical probability theory, the conditional probability of getting the value �j given the event S
in a trial is Pr (�j jS) = Pr(Bj\S)

Pr(S) . But now we have two versions of S, the classical event and the
superposition event. Since they have di¤erent density matrices, we can take the given conditioning
event as a density matrix �. Let PT for T � U be the diagonal projection matrix with the diagonal
entries (PT )ii = �T (ui). Projection matrices are idempotent, i.e., PTPT = PT and equal their
transpose PT = P tT . The usual conditional probability of the classical event T given the classical
event S can be computed as:

Pr (T jS) := Pr(S\T )
Pr(S) = tr [PT � (�S)].

In general, the probability of getting the value �j conditioned by the density matrix � is de�ned as:

Pr (�j j�) := tr
�
PBj�

�
.

In particular, starting with the conditioning event being the superposition event corresponding to
S, that probability is:

Pr (�j j� (�S)) = tr
�
PBj� (�S)

�
=

Pr(Bj\S)
Pr(S) .

This yields the perhaps surprising result that the probabilities for the values of a random variable
(or any given event T ) are the same if the conditioning event is the classical event S represented by
the mixed � (�S) or the superposition event �S represented by the pure � (�S):

Pr (�j j� (�S)) = tr
�
PBj

� (�S)
�
=

Pr(Bj\S)
Pr(S) = tr

�
PBj

� (�S)
�
= Pr (�j j� (�S)).

But the interpretation is quite di¤erent. The classical trial starting with the subset S represented
by � (�S) picks out the subset Bj \ S represented by � (� (Bj \ S)) with probability Pr (�j jS) =
tr
�
PBj� (�S)

�
. However, the �measurement�of the superposition event �S represented by � (�S)

�sharpens� or projects that inde�nite event to the more de�nite superposition event � (Bj \ S)
represented by � (� (Bj \ S)) with probability Pr (�j jS) = tr

�
PBj

� (�S)
�
. In either case, the follow-

up trial or �measurement� returns the same value �j with probability 1, i.e., Pr (�j jBj \ S) =
tr
�
PBj

� (� (Bj \ S))
�
= tr

�
PBj

� (� (Bj \ S))
�
= 1. In the classical case, all the elements of Bj \ S

have the value �j so the conditioning classical event Bj \ S occurs with probability 1. In the super-
position case, the property of having the value �j is de�nite on the superposition event � (Bj \ S)
represented by � (� (Bj \ S)), so no �sharpening�occurs and projection PBj restricted to Bj \ S is
the identity so the measurement returns the same event � (Bj \ S) with probability 1.

Let us illustrate this result with the case of �ipping a fair coin. The classical set of outcomes
U = fH;Tg is represented by the density matrix:

� (�U) =

�
1
2 0
0 1

2

�
.

Figure 3: Classical event: trial picks out heads or tails
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The superposition event �U , that blends or superposes heads and tails, is represented by the density
matrix:

� (�U) =

�
1
2

1
2

1
2

1
2

�
.

Figure 4: Superposition event: Measurement sharpens to heads or tails.

The probability of getting heads in each case is:

Pr (Hj� (�U)) = tr
�
PfHg� (�U)

�
= tr

��
1 0
0 0

� �
1
2 0
0 1

2

��
= tr

�
1
2 0
0 0

�
= 1

2

Pr (Hj� (�U)) = tr
�
PfHg� (�U)

�
= tr

��
1 0
0 0

� �
1
2

1
2

1
2

1
2

��
= tr

�
1
2

1
2

0 0

�
= 1

2

and similarly for tails. Thus the two conditioning events U and �U cannot be distinguished by
performing an experiment or measurement that distinguishes heads and tails. But this actually
should not be too surprising since the same thing occurs in quantum mechanics. For instance, a spin
measurement along, say, the z-axis of an electron cannot distinguish between the superposition state
1p
2
(j"i+ j#i) with a density matrix like � (�U) and a statistical mixture of half electrons with spin

up and half with spin down with a density matrix like � (�U) [1, p. 176]. The states can only be
distinguished by measuring in a di¤erent basis, and we will show in a later section how probability
theory with superposition events can be further enriched to demonstrate that possibility.

It might be further noticed that the average value of a random variable can also be computed
in that same manner as in QM. If Of is the n � n diagonal matrix with diagonal entries f (ui)
which represents f : U ! R, then the average value of the random variable restricted to a subset S,P

ui2S Pr (�ijS) f (ui), is:

hfiS = tr [Of� (�S)] = tr [Of� (�S)].
Average value of random variable f on S.

The probability Pr (T jS) = tr [PT � (�S)] = tr [PT � (�S)] is just the average value of the charac-
teristic function �T : U ! f0; 1g on S considered as a random variable on U , i.e., O�T = PT . In
particular,

Pr (S) = tr [PS� (�U)] = tr[PS� (�U)]

is the average value of �S on U .

4 How �Measurement�Transforms Density Matrices

Since events, classical or superposition and any probability mixture thereof, are now dealt with
using density matrices, we need to de�ne the resulting change in the density matrix when a trial,
an experiment, or a measurement of a random variable occurs. Since the density matrix � (�S)
is constructed as jSi times its transpose hSj, the corresponding transformation by the projection
matrix PT is:
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PT � (�S)P
t
T = PT jSi hSjPT =

Pr(T\S)
Pr(S) � (� (T \ S))

since the pre- and post-multiplying by PT zeros all the entries in jSi hSj except the ones
q

pi
Pr(S)

pk
Pr(S) =

1
Pr(S)

p
pipk for ui; uk 2 T \ S, and � (� (T \ S)) has the entries 1

Pr(T\S)
p
pipk for the same ui; uk 2

T \ S, so Pr(T\S)
Pr(S)

1
Pr(T\S)

p
pipk =

1
Pr(S)

p
pipk giving the result. When T = Bj = f�1 (�j),

PBj
� (�S)PBj

=
Pr(Bj\S))
Pr(S) � (� (Bj \ S)).

When the outcome of the experiment is �j with probability Pr (�j jS) = Pr(Bj\S)
Pr(S) , then the super-

position event �S represented by the density matrix � (�S) is transformed into the superposition
event � (Bj \ S) represented by the density matrix � (� (Bj \ S)). The partition induced on S by
� = fBjgmj=1 =

�
f�1 (�j)

	m
j=1

is � � S, the partition of all the non-empty blocks Bj \ S for
j = 1; :::;m. The density matrix associated with all the probabilistic results is the mixed sum of
the density matrices � (� (Bj \ S)) weighted by their probabilities Pr (�j jS) = Pr(Bj\S)

Pr(S) which is
denoted by � (� � S). Thus we have:

� (� � S) :=
Pm

j=1 Pr (�j jS) � (� (Bj \ S))
=
Pm

j=1
Pr(Bj\S)
Pr(S) � (� (Bj \ S)) =

Pm
j=1 PBj� (�S)PBj

The Lüders mixture operation: � (�S) � (� � S).

The operation of experimenting with or �measuring�the random variable f : U ! R starting
with the superposition event �S represented by the pure density matrix � (�S) transforms it into
the mixture � (� � S) =

Pm
j=1 PBj

� (�S)PBj
, and that transformation is called the Lüders mixture

operation [1, p, 279] in quantum mechanics.
As an example, let us take S = f|;};�g � U = f|;};~;�g and take f : U ! f0; 1g � R as

a random variable that distinguished the color of the suits so � = fB1; B2g =
�
f�1 (0) ; f�1 (1)

	
=

ff};~g ; f|;�gg. Then we have:

� (�S) =

2664
1
3

1
3 0 1

3
1
3

1
3 0 1

3
0 0 0 0
1
3

1
3 0 1

3

3775.
And the probability in an experiment of getting a black suite where B2 = f�1 (1) = f|;�g is:

Pr (1jS) = tr [B2� (�S)] = tr

2664
2664
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

3775
2664
1
3

1
3 0 1

3
1
3

1
3 0 1

3
0 0 0 0
1
3

1
3 0 1

3

3775
3775 = tr

2664
1
3

1
3 0 1

3
0 0 0 0
0 0 0 0
1
3

1
3 0 1

3

3775 = 2
3 .

The experiment of measuring the suite-colors starting with �S transforms the density matrix
� (�S) according to the Lüders mixture operation:

� (� � S) =
P2

j=1 PBj
� (�S)PBj

=

2664
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

3775
2664
1
3

1
3 0 1

3
1
3

1
3 0 1

3
0 0 0 0
1
3

1
3 0 1

3

3775
2664
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

3775
+

2664
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

3775
2664
1
3

1
3 0 1

3
1
3

1
3 0 1

3
0 0 0 0
1
3

1
3 0 1

3

3775
2664
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

3775
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=

2664
0 0 0 0
0 1

3 0 0
0 0 0 0
0 0 0 0

3775+
2664
1
3 0 0 1

3
0 0 0 0
0 0 0 0
1
3 0 0 1

3

3775 =
2664
1
3 0 0 1

3
0 1

3 0 0
0 0 0 0
1
3 0 0 1

3

3775.

5 Measurement and Logical Entropy

The logical entropy of a partition [4] � = fB1; :::; Bmg on U is:

h (�) :=
Pm

j=1 Pr (Bj) (1� Pr (Bj)) = 1�
Pm

j=1 Pr (Bj)
2
=
P

j 6=j0 Pr (Bj) Pr (Bj0)

and the logical entropy of any probability distribution q = fq1; :::; qmg is similarly:

h (q) = 1�
Pm

j=1 q
2
j =

P
j 6=j0 qjqj0 = 2

P
j<j0 qjqj0 .

The interpretation of the logical entropy of � is the probability in an ordered pair of independent
draws or trials to get elements distinguished by � (i.e., elements from di¤erent blocks of �) or
di¤erent qj�s. The logical entropy of any density matrix � is:

h (�) = tr [� (1� �)] = 1� tr
�
�2
�
.

The trace of any density matrix squared is the sum of all the squared entries (or the absolute
squares in complex density matrices of QM): tr

�
�2
�
=
Pn

i;k=1 j�ikj
2 [6, p. 77]. When the partition

� is represented by the density matrix � (�) =
P

j Pr (Bj) � (�Bj), then a simple calculation shows
that:

h (� (�)) = 1� tr
h
� (�)

2
i
= 1�

Pm
j=1 Pr (Bj)

2
= h (�).

Since the trace of any density matrix is 1 and for any pure density matrix, �2 = �, tr
�
�2
�
=

tr [�] = 1 so the logical entropy of any pure density matrix is 0. Logical entropy measures distinc-
tions, and in a pure superposition event �S, there are no distinctions between the superposed or
cohered outcomes. When an o¤-diagonal element of a density matrix is non-zero, that means the
corresponding diagonal elements cohere together or are superposed in a superposition. But when
the experiment or �measurement operation�distinguishes (or decoheres) those elements, the corre-
sponding o¤-diagonal elements are zeroed. Since the logical entropy measures distinctions, the logical
entropy created by the measurement operation can be computed as the squares of the o¤-diagonal
elements zeroed in the Lüders mixture operation on the density matrices.

Theorem 1 The logical entropy created in the measurement of � (�S) by �, i.e. h (� (� � S)) �
h (� (�S)) [which equals h (� (� � S)) since � (�S) is pure], is the sum of the squares of the o¤-
diagonal elements in � (�S) that are zeroed in the Lüders mixture operation � (�S) � (� � S).

Proof: All elements in the density matrix � (�S) either have the same value (e.g., all diagonal
elements and some o¤-diagonal elements) or are zeroed (e.g., some o¤-diagonal elements) by the
projections in the Lüders mixture operation. Hence the sum of squares of the o¤-diagonal elements
that are zeroed is:Pn

i;k=1 � (�S)
2
ik �

Pn
i;k=1 � (� � S)

2
ik = tr

h
� (�S)

2
i
� tr

h
� (� � S)2

i
=
�
1� tr

h
� (� � S)2

i�
�
�
1� tr

h
� (�S)

2
i�
= h (� � S)� h (� (�S)). �

This theorem holds,mutatis mutandis, for quantum logical entropy and the Lüders mixture operation
in quantum information theory where the squares are absolute squares [5].

To illustrate the theorem, consider the previous suite-color measurement where S = f|;};�g,
The logical entropy of the pure � (�S) is 0, and:
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� (� � S)2 =

2664
1
3 0 0 1

3
0 1

3 0 0
0 0 0 0
1
3 0 0 1

3

3775
2664
1
3 0 0 1

3
0 1

3 0 0
0 0 0 0
1
3 0 0 1

3

3775 =
2664
2
9 0 0 2

9
0 1

9 0 0
0 0 0 0
2
9 0 0 2

9

3775
so h (� (� � S)) = 1� tr

h
� (� � S)2

i
= 1� 5

9 =
4
9 . Comparing the before and after matrices,

� (�S) =

2664
1
3

1
3 0 1

3
1
3

1
3 0 1

3
0 0 0 0
1
3

1
3 0 1

3

3775 
2664
1
3 0 0 1

3
0 1

3 0 0
0 0 0 0
1
3 0 0 1

3

3775 = � (� � S),
we see that four entries of 13 are zeroed (since the di¤erent colors were distinguished by the color
measurement) and the sum of their squares is also 4

9 as per the theorem. For illustrative purposes, we
might represent the matrix associated with the superposition event �S for S = f|;};�g represented
by � (�S) as: 2664

f|;|g f|;}g 0 f|;�g
f};|g f};}g 0 f};�g
0 0 0 0

f�;|g f�;}g 0 f�;�g

3775
so it is clear that the four o¤-diagonal elements zeroed by the measurement (that distinguished
color) are the four that cohered di¤erent colored suites together in the superposition.

The suit-color partition � = ff};~g ; f|;�gg restricted to S = f|;};�g is � � S = ff}g ; f|;�gg.
In two independent ordered draws from S, the probability of getting elements from di¤erent blocks
of � � S is 13

2
3+

2
3
1
3 =

4
9 = h (� (� � S)) ;and that is the general interpretation of h (�), the probability

in two ordered draws of getting elements in distinct blocks of �.

6 The Pedagogical Model of Quantum Mechanics over Z2
The previous results including the fundamental theorem connecting measurement and logical entropy
hold�mutatis mutandis�in quantum mechanics (QM) when superposition states are being measured
using a given (orthonormal) basis U = fu1; :::; ung of an observable.[5] But many results in QM
require consideration of di¤erent bases. The above results about probabilities using superposition
events can be extended in the pedagogical model of quantum mechanics over Z2 (QM/Sets) [3] where
the state space is Zn2 and where the n-ary zero-one vectors are considered as subsets of the basis set
with equiprobable outcomes. Then U is just one basis which could be taken as the computational
basis, but there are many other bases. By Gauss�s formula [7, p. 71], the number of ordered bases for
Zn2 are: (2n � 1)

�
2n � 21

�
:::
�
2n � 2n�1

�
and the number of unordered bases is obtained by dividing

by n!.
For n = 2; there are

�
22 � 1

� �
22 � 21

�
1
2! = 3 (unordered) bases of Z22. In the coin-�ipping

example where U = fH;Tg was taken as the outcome set, there is another basis U 0 = fH 0; T 0g
where fH 0g = fH;Tg and fT 0g = fTg which is a basis since fH 0g + fT 0g = fH;Tg + fTg = fHg
(mod 2 addition) and fT 0g = fTg. The third basis is for U 00 = fH 00; T 00g where fH 00g = fHg and
fT 00g = fH;Tg. Since we have di¤erent bases for Z22, we can consider a ket as an abstract vector that
can be represented in di¤erent bases, e.g., fHg, fH 0; T 0g, and fH 00g all represent the same abstract
vector in di¤erent bases. Then we can form a ket-table where each row represents a ket. In Z22, there
are 22 � 1 = 3 non-zero abstract vectors, each corresponding to a row in the ket-table.
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U -basis U 0-basis U 00-basis

fH;Tg fH 0g fT 00g
fHg fH 0; T 0g fH 00g
fTg fT 0g fH 00; T 00g
Figure 5: ket-table for Z22.

Each ket or abstract vector is a superposition in one basis and a singleton event in the other two
bases.

We saw previously that we could not distinguish the classical mixture event U associated with
� (�U) from the superposition event �U associated with � (�U) when measured in the U -basis. For
instance, the probability of getting heads in the two cases is:

Pr (Hj� (�U)) = tr
�
PfHg� (�U)

�
= tr

��
1 0
0 0

� �
1
2 0
0 1

2

��
= tr

�
1
2 0
0 0

�
= 1

2

Pr (Hj� (�U)) = tr
�
PfHg� (�U)

�
= tr

��
1 0
0 0

� �
1
2

1
2

1
2

1
2

��
= tr

�
1
2

1
2

0 0

�
= 1

2 .

But the two events can be distinguished when measured in a di¤erent basis such as the U 0-basis.
The vector fHg is expressed in the U -basis by the column vector

�
1
0

�
U
(the subscript indicating

the basis) and in the U 0-basis by the column vector
�
1
1

�
U 0 . The basis conversion matrix is

CU!U 0 =

�
1 0
1 1

�
so
�
1 0
1 1

� �
1
0

�
U

=

�
1
1

�
U 0
.

Hence converting the superposition
�
1
1

�
U
or fH;Tg to the U 0-basis gives:

CU!U 0

�
1
1

�
U

=

�
1 0
1 1

� �
1
1

�
U

=

�
1
0

�
U 0
or fH 0g so its density matrix (computing in the reals) is�

1
0

�
U 0

�
1 0

�
U 0 =

�
1 0
0 0

�
U 0
. The classical mixed event U is the half-half mixture of fHg and fTg.

The basis conversion for fHg gives CU!U 0

�
1
0

�
U

=

�
1 0
1 1

� �
1
0

�
U

=

�
1
1

�
U 0
so the associated real

density matrix is: "
1p
2
1p
2

#
U 0

h
1p
2

1p
2

i
U 0
=

�
1
2

1
2

1
2

1
2

�
U 0

and for fTg, CU!U 0

�
0
1

�
U

=

�
1 0
1 1

� �
0
1

�
U

=

�
0
1

�
U 0
so its real density matrix is:

�
0
1

�
U 0

�
0 1

�
U 0 =

�
0 0
0 1

�
U 0
.

Their half-half mixture has the density matrix in the U 0-basis:

1
2

�
1
2

1
2

1
2

1
2

�
U 0
+ 1

2

�
0 0
0 1

�
U 0
=

�
1
4

1
4

1
4

3
4

�
U 0
.

We then measure by the partition � = ffH 0g ; fT 0gg with half-half probabilities so the proba-
bility of H 0 for the superposition event fH;Tg or fH 0g in the U 0-basis is:

tr

�
PfH0g

�
1 0
0 0

�
U 0

�
= tr

��
1 0
0 0

�
U 0

�
1 0
0 0

�
U 0

�
= tr

�
1 0
0 0

�
U 0
= 1
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and for the classical mixture of half fHg and half fTgwhich in the U 0-basis is the mixture of half
fH 0; T 0gand half fT 0g, is:

tr

�
PfH0g

�
1
4

1
4

1
4

3
4

�
U 0

�
= tr

��
1 0
0 0

�
U 0

�
1
4

1
4

1
4

3
4

�
U 0

�
= tr

�
1
4

1
4

0 0

�
U 0
= 1

4 .

The �rst calculation makes intuitive sense since the superposition fH;Tg in the U -basis is the
singleton event fH 0g in the U 0-basis, so measuring in the U 0-basis for the event fH 0g will give fH 0g
with probability 1. The second calculation makes intuitive sense since it is half-half in the mixture
whether we get the fT 0g event or the fH 0; T 0g event and then the probability of getting H 0 is zero
for the fT 0g event and 1

2 for the fH
0; T 0g event so the overall probability of fH 0g is 1

4 . Thus the
two events, the classical mixture of half fHg and half fTg, and the superposition fH;Tg, which
cannot be distinguished by measurements in the U -basis, can be distinguished by measurement in
the U 0-basis.

7 Concluding Remarks

Ordinary �nite probability theory can be extended to include superposition events by using the
two-dimensional representations of:

� � (�S) for the classical event S � U , where the outcomes in S are kept discrete and completely
decohered, and

� � (�S) for the superposition event �S that superposes or coheres together the outcomes in S.

The calculation of probabilities for classical events in ordinary �nite probability theory can be
computed using the density matrices in the form � (�S) for classical events S. Thus the extension
to include superposition events just extends to using density matrices of the form � (�S), and the
density matrix formalism also represents classical mixtures of superposition events.

Ordinary �nite probability theory sticks with one outcome or sample space U . But the whole
machinery can be developed in Zn2 where U is just one among many basis sets and then it is part of
the pedagogical model of quantum mechanics over Z2 or QM/Sets. That pedagogical model of QM
over Z2 could also be viewed as just the non-commutative extension of �nite probability theory with
superposition events (since the bases do not in general commute in QM/Sets). Many characteristic
QM results can be modeled in this non-commutative probability theory such as the double-slit
experiment, the indeterminacy principle, quantum statistics for identical particles, and even Bell�s
Theorem.[3]

Our purpose has been to illustrate, in a rather classical setting, the notion of a superposition
event, where all the outcomes in the event cohere together (with various amplitudes), so the event
is objectively inde�nite between those outcomes. The notions of objective-inde�niteness and su-
perposition are the essentials in what Abner Shimony called the "Literal" or objectively-inde�nite
interpretation of QM, an interpretation that is routinely neglected in the literature that focuses on
fantasies about many worlds or hidden variables.

From these two basic ideas alone � inde�niteness and the superposition principle � it
should be clear already that quantum mechanics con�icts sharply with common sense. If
the quantum state of a system is a complete description of the system, then a quantity
that has an inde�nite value in that quantum state is objectively inde�nite; its value is
not merely unknown by the scientist who seeks to describe the system. [8, p. 47]
But the mathematical formalism ... suggests a philosophical interpretation of quantum
mechanics which I shall call "the Literal Interpretation." ...This is the interpretation
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resulting from taking the formalism of quantum mechanics literally, as giving a represen-
tation of physical properties themselves, rather than of human knowledge of them, and
by taking this representation to be complete. [9, pp. 6-7]

To understand or interpret QM, one needs to better understand the notions of objective inde�niteness
and superposition as well as the related notion of a (distinguishing) measurement that sharpens an
inde�nite superposition event to a mixture of more de�nite ones. We have shown that the concepts of
superposition, objective-inde�niteness, and measurement can be illustrated in a very small extension
of classical �nite probability theory�which should help to intuitively understand those notions in
quantum mechanics.
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