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Abstract

Classical logic is usually interpreted as the logic of propositions. But

from Boole’s and DeMorgan’s original development up to modern categor-

ical logic, there has always been the alternative interpretation of classical

logic as the logic of subsets of any given (nonempty) universe set. Parti-

tions on a universe set are dual to subsets of a universe set in the sense

of the category-theoretic duality of epimorphisms and monomorphisms—

which is reflected in the duality between quotient objects and subobjects

throughout algebra. Hence the idea arises of a dual logic of partitions.

That dual logic is described here. In one sense, the logic of partitions

is more non-classical than intuitionistic logic, e.g., partition logic is not

distributive, but in another sense it is quite classical. For instance, as in

classical subset logic, models are constructed from arbitrary unstructured

sets (two or more elements) with no ordering relations, compatibility or

accessibility relations, or topologies on the sets.
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1 Subset Logic and Partition Logic

In classical propositional logic, the atomic variables and compound formulas are

usually interpreted as representing propositions. But in terms of mathematical

entities, the variables and formulas may be taken as representing subsets of some

fixed universe set U , with the propositional interpretation being identified with

the subsets 0 and 1 of a one element set 1. Alonzo Church noted that Boole
and DeMorgan originally interpreted logic as a logic of classes.

The algebra of logic has its beginning in 1847, in the publications of

Boole and De Morgan. This concerned itself at first with an algebra

or calculus of classes, to which a similar algebra of relations was later

added.(5, pp. 155-156)

Today, largely due to the efforts of William Lawvere, the modern treatment

of logic was reformulated and generalized in what is now called categorical

logic. Subsets were generalized to subobjects or “parts” (equivalence classes

of monomorphisms) so that logic has become the logic of subobjects or parts in

a topos (such as the category of sets).1 In the basic case of the category of sets,

it is again the logic of subsets.

The propositional calculus considers "Propositions" p, q, r,... com-

bined under the operations "and","or", "implies", and "not", often

written as p ∧ q, p ∨ q, p ⇒ q, and ¬p. Alternatively, if P , Q, R,...
are subsets of some fixed set U with elements u, each proposition p

may be replaced by the proposition u ∈ P for some subset P ⊂ U ;

the propositional connectives above then become operations on sub-

sets; intersection ∧, union ∨, implication (P ⇒ Q is ¬P ∨ Q), and
complement of subsets. (19, p. 48)

1See Lawvere and Rosebrugh (17, Appendix A) for a good treatment. For the generalization

to topos theory see Mac Lane and Moerdijk (19) and for the category theoretic background,

the best references for logicians are Mac Lane (18) and Awodey (1).
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Sometimes the propositional and subset interpretations are "connected" by tak-

ing U as a set of "possible worlds" so that subsets would then be the subsets

where some proposition was true. While this may be pedagogically useful to

introduce the subset interpretation to someone only familiar with the proposi-

tional interpretation of "propositional" logic, it is conceptually misleading. The

subset interpretation is unrelated to the philosophical problems in trying to

describe and delimit "possible worlds". The universe U is a perfectly general

abstract set, and the subset interpretation is quite independent of the problems

involved in "possible worlds" semantics.

In view of the general subset interpretation, "Boolean logic" would be a

less misleading name for what is usually called "propositional logic." Using this

subset interpretation of the "propositional" connectives such as join, meet, and

implication, then a tautology, herein subset tautology, is any formula such that

regardless of what subsets of U are assigned to the atomic variables, the whole

formula will evaluate to the universe set U . Remarkably, to define subset tau-

tologies, it is sufficient to restrict attention to the special case of a singleton U

which is done, in effect, in the usual propositional interpretation where tautolo-

gies are defined as truth table tautologies (which should be a theorem, not a

definition, indeed a theorem that extends to valid probability formulas (21)).

There is a duality between subsets of a set and partitions on a set. “The dual

notion (obtained by reversing the arrows) of ‘part’ is the notion of partition.”

(17, p. 85) In category theory, this reverse-the-arrows duality gives the duality

between monomorphisms, e.g., injective set functions, and epimorphisms, e.g.,

surjective set functions, and between subobjects and quotient objects. In view

of this duality, the idea naturally arises of a logic of partitions on a universe set.

The idea also arises in combinatorial theory where Gian-Carlo Rota always

emphasized the seminal analogies between the subsets of a set and the partitions

on a set. Just as subsets of a set are partially ordered by inclusion, so partitions

on a set are partially ordered by refinement. Both partial orderings are in fact

lattices (i.e., have meets and joins) with a top element and a bottom element.

The development of partition logic outlined here was inspired by both the

category-theoretic treatment of logic with its reverse-the-arrows duality between

subsets and partitions and by Rota’s program to develop the subset-partition

analogies.2

2 The Elements-Distinctions Duality

The set-of-blocks definition of a partition on a set U is a set of non-empty subsets

("blocks") of U where the blocks are mutually exclusive (the intersection of

distinct blocks is empty) and jointly exhaustive (the union of the blocks is U).

If subsets are dual to partitions (in the sense of monomorphisms being dual to

epimorphisms), then what is the dual concept that corresponds to the notion of

elements of a subset? We will eventually see that in order to directly compare

2For the correctness and completeness theorems for a tableau system for partition logic,

see Ellerman (8).
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the formulas of partition logic to the formulas of subset logic, the notion dual

to the elements of a subset is the distinctions of a partition which are the pairs

of elements in distinct blocks of the partition. The duality between elements of

a subset and distinctions of a partition already appears in the very notion of a

function between sets. What binary relations, i.e., subsets R ⊆ X × Y , specify
functions f : X → Y ?

A binary relation R ⊆ X × Y transmits elements if for each element x ∈ X,
there is an ordered pair (x, y) ∈ R for some y ∈ Y .
A binary relation R ⊆ X × Y reflects elements if for each element y ∈ Y ,

there is an ordered pair (x, y) ∈ R for some x ∈ X.
A binary relation R ⊆ X × Y transmits distinctions if for any pairs (x, y)

and (x�, y�) in R, if x �= x�, then y �= y�.
A binary relation R ⊆ X × Y reflects distinctions if for any pairs (x, y) and

(x�, y�) in R, if y �= y�, then x �= x�.
The dual role of elements and distinctions can be seen if we translate the

usual characterization of the binary relations that define functions into the

elements-and-distinctions language. A binary relation R ⊆ X × Y defines a

function X → Y if it is defined everywhere on X and is single-valued. But

"being defined everywhere" is the same as transmitting elements, and being

single-valued is the same as reflecting distinctions:

a binary relation R is functional if it transmits elements and reflects

distinctions.

What about the other two special types of relations, i.e., those which trans-

mit distinctions or reflect elements? The two important special types of func-

tions are the injections and surjections, and they are defined by the other two

notions:

a functional relation is injective if it transmits distinctions, and

a functional relation is surjective if it reflects elements.

In view of the dual role of subsets and partitions (and elements and distinc-

tions), it is interesting to note that many basic ideas expressed using subsets

such as the notion of a "function" could just as well be expressed in a dual man-

ner using partitions. The dual to the product X × Y is the coproduct X Y

which in the category of sets is the disjoint union. If a binary relation is de-

fined as a subset R of the product X × Y , then a binary corelation would be a
partition π on the coproduct X Y . Instead of defining a function as a certain

type of binary relation (i.e., which transmits elements and reflects distinctions),

a function could just as well be defined as a certain type of binary corelation.

Let [u]π denote the block of a partition π containing an element u from the

universe set of the partition. Then a binary corelation π (a partition on X Y )

is functional if 1) every element x ∈ X is transmitted to some y-block, i.e.,

∃y ∈ Y, x ∈ [y]π, and 2) distinctions on Y are reflected as distinctions of π, i.e.,

if y �= y� for y, y� ∈ Y , then [y]π �= [y�]π.
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Moreover, this definition of a function is quite familiar (with different termi-

nology) in combinatorial theory. For a functional corelation π, there is one and

only one block of the partition for each element y ∈ Y so the blocks [y]π can
be thought of as "boxes." Then the elements of X can be thought of as "balls"

and then a function is just a distribution of the balls into the boxes. Thus

the functional corelation definition of a function is just a "disguised" version

of the balls-in-boxes definition of a function used in combinatorial theory (23).

A functional corelation is injective if distinctions between balls are transmitted

as distinctions between boxes ("different balls to different boxes"), i.e., x �= x�
implies [x]π �= [x�]π, and is surjective if each box contains at least one ball (i.e.,
each y is reflected as an x). Although functions were historically defined as

functional binary relations, from the mathematical viewpoint, functions could

just as well be defined as functional binary corelations.

The duality between the two treatments of functions is clear in category

theory. Given the diagram f : X → Y in the category of sets, its limit is

the functional relation corresponding to f which is called the graph of f , and

its colimit is the functional corelation corresponding to f which is called the

cograph of f (17, p. 29).

3 Partitions and Equivalence Relations

Partitions are often considered in the guise of equivalence relations so it will be

useful to first establish some terminology. An equivalence relation is a binary

relation E ⊆ U × U that is reflexive, symmetric, and transitive. Every equiv-

alence relation on a set U determines a partition on U where the equivalence

classes are the mutually exclusive and jointly exhaustive blocks of the partition.

Conversely, every partition on a set determines an equivalence relation on the

set (two elements are equivalent if they are in the same block of the partition).

The notions of a partition on a set and an equivalence relation on a set are

thus interdefinable. Indeed, equivalence relations and partitions are often con-

sidered as the “same" as in the conventional practice (N.B. not used here) of

defining the "lattice of partitions" as the lattice of equivalence relations. But

for the purposes of partition logic, it is important to consider the complemen-

tary type of binary relation. A partition relation R ⊆ U × U is irreflexive (i.e.,

(u, u) �∈ R for any u ∈ U), symmetric [i.e., (u, u�) ∈ R implies (u�, u) ∈ R],

and anti-transitive in the sense that if (u, u�) ∈ R, then for any a ∈ U , either
(u, a) ∈ R or (a, u�) ∈ R [i.e., U × U − R = Rc is transitive]. Thus as binary

relations, equivalence relations and partition relations are complementary. That

is, E ⊆ U × U is an equivalence relation if and only if (iff) Ec ⊆ U × U is a

partition relation. A partition relation is the set of distinctions of a partition.

Since intuitionistic logic is the best known non-classical logic and since the

variables in intuitionistic propositional logic, i.e., in a Heyting algebra (10), can

be interpreted as open subsets in a topological space, it will be useful to develop

some analogous notions ("open subset" and "interior operator") for partition

logic. There is a natural (“built-in”) closure operation on U × U = U2 which
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makes it a closure space. The closure operation is "built-in" to U in the sense

that no topology, ordering relations, or other structure is assumed on U . A

subset C ⊆ U2 is closed if it contains the diagonal Δ = {(u, u) | u ∈ U}, if
(u, u�) ∈ C implies (u�, u) ∈ C, and if (u, u�) and (u�, u��) are in C, then (u, u��)
is in C. Thus the closed sets of U2 are precisely the equivalence relations on

U . The intersection of any number of closed sets is closed. Given a subset

S ⊆ U2, the closure S is the reflexive, symmetric, and transitive closure of S.

The formation of the closure S can be divided into two steps. First S∗ is formed
from S by adding any diagonal pairs (u, u) not already in S and by symmetrizing
S, i.e., adding (u�, u) if (u, u�) ∈ S. To form the transitive closure of S∗, for any
finite sequence u = u1, u2, ..., un = u� with (ui, ui+1) ∈ S∗ for i = 1, ..., n − 1,
add (u, u�) and (u�, u) to the closure. The result is the reflexive, symmetric,
and transitive closure S of S. The complements of the closed sets in U ×U are
defined as the open sets. Let O (U × U) be the set of open subsets of U ×U , the
partition relations on U . As usual, the interior int(S) of any subset S ⊆ U ×U
is defined as the complement of the closure of its complement: int(S) = Sc

c
.

It should, however, be carefully noted that the closure space U ×U is not a
topological space, i.e., the closure operation on U2 is not a topological closure

operation in the sense that the union of two closed set is not necessarily closed

(or, equivalently, the intersection of two open sets is not necessarily open).

When equivalence relations and partitions were considered as the “same,”

then the "lattice of partitions," e.g., Birkhoff (2) or Grätzer (12), was tradition-

ally defined as isomorphic to the lattice of equivalence relations where the partial

order was inclusion between the equivalence relations as subsets of U ×U . But
since equivalence relations and partition relations are complementary subsets

of the closure space U × U , we have two anti-isomorphic lattices with opposite
partial orders.

Which lattice should be used in partition logic? For the purposes of compar-

ing formulas with ordinary logic (interpreted as applying to sets of elements), it

is crucial to take the lattice of partitions as (isomorphic to) the lattice of par-

tition relations (sets of distinctions), the opposite of the lattice of equivalence

relations.

4 Category-theoretic Duality of Subsets and Par-

titions

The duality between subsets and partitions in the category of sets extends be-

yond the usual reverse-the-arrows duality that works in any category. In this

section, that more extensive duality, which connects subset logic and partition

logic, will be elaborated.

It was asserted above that the "dual" notion of elements of a subsets was

the distinctions of a partition. How does that emerge in the category of sets?

The generic element is "the" singleton 1. The generic distinction is "the" pair
2. It was noted above that functions are the binary relations that preserve
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or transmit elements and that reflect or backwards-transmit distinctions. The

basic property of the generic element 1 (which justifies that name) is that for

every element u ∈ U in a set, there exists a function 1
u→ U which transmits

"elementness" from the generic element 1 to the element u ∈ U . The basic

property of the generic distinction 2 (which justifies that name) is that for pair

u �= u� of distinct elements of U , there exists a function U α→ 2 with backwards-
transmits "distinctness" from 2 to the pair u �= u�.
If two functions f, g : X → Y are different, then there exists an element

x ∈ X such that f (x) �= g (x) gives a distinction of Y . By the basic property
of the generic element 1, it is a separator in the sense that if f �= g, then there
is a map 1 → X such that 1 → X

f→ Y �= 1 → X
g→ Y . By the basic property

of the generic distinction 2, it is a coseparator in the sense that if f �= g, then
there is a map Y → 2 such that X

f→ Y → 2 �= X g→ Y → 2 (17, pp. 18-19).
The product in the category of sets can be characterized (up to isomorphism)

by the universal mapping property: a set X × Y with maps pX : X × Y → X

and pY : X × Y → Y is a product if for any pair of maps Z
f→ X and Z

g→ Y

from a "test set" Z to X and Y , there is a unique factor map "f, g# : Z → X×Y
such that pX "f, g# = f and pY "f, g# = g. The generic element 1 is a sufficient
test set for the product in the category of sets in the sense that if any candidate

product P with a pair of maps p1 : P → X and p2 : P → Y to X and Y

satisfied the universal mapping property for any pair of maps from the test set

1 to X and Y , then it satisfies the UMP for any test set Z so that P would be

isomorphic to the usual product X × Y constructed as the Cartesian product

of X and Y . This property of 1 as being a sufficient test set extends from the

product to all limits in the category of sets.

The coproduct in the category of sets can be characterized (up to isomor-

phism) by the universal mapping property: a set X + Y (or X Y ) with maps

iX : X → X + Y and iY : X → X + Y is a coproduct if for any pair of maps

X
f→ Z and Y

g→ Z to a "test set" Z from X and Y , there is a unique factor

map #f, g" : X + Y → Z such that #f, g" iX = f and #f, g" iY = g.3 The generic
distinction 2 is a sufficient test set for the coproduct in the category of sets in
the sense that if any candidate product C with a pair of maps i1 : X → C and

i2 : Y → C from X and Y satisfied the universal mapping property for any pair

of maps to the test set 2 from X and Y , then it satisfies the UMP for any test set

Z so that C would be isomorphic to the usual coproduct X + Y constructed as
the disjoint union X Y of X and Y (16, p. 272). This property of 2 as being
a sufficient test set extends from the coproduct to all colimits in the category

of sets.

The dual pullback and pushout constructions allow us to represent each

partition as a subset of a product and to represent each subset as a partition

on a coproduct.

Given a partition as a surjection U → π, the pullback of the surjection with

3There does not seem to be a standard notation for the coproduct factor map so we have

indicated the duality with the product factor map 	f, g
 by reversing the angle brackets.

7



itself, i.e., the kernel pair (18, p. 71) of U → π, gives the indit set indit (π) as
a subset of the product U × U , i.e., as a binary (equivalence) relation on U :

indit (π)
p2−→ U

p1 ↓ ↓
U −→ π

Pullback for equivalence relation indit (π).

Given a subset as an injection S → U , the pushout of the injection with

itself, i.e., the cokernel pair (18, p. 66) of S → U , gives a partition Δ (S) on
the coproduct (disjoint union) U U , i.e., a binary corelation which might be

called a subset corelation:

S −→ U

↓ ↓[u∗]
U

[u]−→ Δ (S)
Pushout for subset corelation Δ (S).

The disjoint union U U consists of the elements u ∈ U and the copies u∗ of
the elements u ∈ U . The subset corelation Δ (S) is constructed by identifying
any u and its copy u∗ for u ∈ S so Δ (S) is the partition on U U whose only

non-singleton blocks are the pairs {u, u∗} for u ∈ S.
The constructions can also be reversed by viewing the pullback square as

a pushout square, and by viewing the pushout square as a pullback square.

Equivalently, we can reconstruct π as the coequalizer of the two projection

maps p1, p2 from indit (π) ⊆ U × U to U (17, p. 89).

indit (π)
p1
⇒
p2

U −→ π

�α ↓∃!
2

Partition π as coequalizer of indit (π)
p1−→ U and indit (π)

p2−→ U .

Dually, we have the two maps U → Δ (S) given by u �→ [u]Δ(S) and u �→
[u∗]Δ(S), and the subset S is reconstructed as their equalizer:

1
∃! ↓ �u

S → U ⇒ Δ (S)
Subset S as equalizer of [u] : U → Δ (S) and [u∗] : U → Δ (S).

These duality relations are summarized in the following table.

8



Dualities Elements & Subsets Distinctions & Partitions

Generics Generic element 1 Generic distinction 2
Generic property Each element u ∈ U Each distinction u �= u�

realized by some 1→ U realized by some U → 2
Separating functions 1 is a separator 2 is a coseparator
Sufficient test set 1 is sufficient for limits 2 is sufficient for colimits
Objects Subsets: monos S −→ U Partitions: epis U −→ π

Subsets ↔ Partitions Partition Δ (S) on U U Subset indit (π) of U × U
is cokernal pair of S → U is kernel pair of U → π

Inverse operation Subset S is equalizer Partition π is coequalizer

of [u] , [u∗] : U ⇒ Δ (S) of p1, p2 : indit (π)⇒ U

Summary of dual relationships in the category of sets

The duality between subsets and partitions is given by the general reverse-

the-arrows duality applied to the category of sets. But the dual roles of the

generic element 1 and the generic distinction 2 uses properties more specific
to the category of sets and thus does not follow from the general reverse-the-

arrows duality. In referring to partition logic as the dual to subset logic, we

are referring not only to the general reverse-the-arrows duality but to this more

extensive duality in the category of sets.

5 The Lattice of Partitions

The set-of-blocks definition of a partition π on a set U is a set {B}B∈π of non-
empty subsets or “blocks” B ⊆ U that are disjoint and whose union is U . Just

as the usual treatment of the Boolean algebra of all subsets of a universe U

assumes that U has one or more elements, so our treatment of the lattice of all

partitions on U will assume that U has two or more elements. This avoids the

"degenerate" special cases of there being only one subset of an empty U and

only one partition on a singleton U .

A pair (u, u�) ∈ U × U is a distinction or dit (from DIsTinction) of the

partition π if there are distinct blocks B,B� ∈ π with u ∈ B and u� ∈ B�. The
set of distinctions of a partition π, its dit set denoted dit (π) ⊆ U × U , is the
partition seen as a partition relation:

dit (π) =
B,B�∈π,B �=B�

B ×B�

(where it is understood that the union includes both the cartesian products

B ×B� and B� ×B for B �= B�).
A pair (u, u�) ∈ U ×U is an indistinction or indit (from INDIsTinction) of a

partition π if u and u� belong to the same block of π. The set of indistinctions of a
partition π, its indit set denoted indit (π) = U×U−dit (π), is the complementary
equivalence relation:
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indit (π) =
B∈π

B ×B = U × U − dit (π) = dit (π)c.

In terms of the closure space structure on U × U , the open sets (partition
relations), denoted O (U × U), are the dit sets dit(π) of partitions, and the
complementary closed sets (equivalence relations) are the indit sets indit (π) of
partitions.

In spite of the functional duality between subsets and partitions, partitions

have a more complex structure than subsets. Indeed, there are at least four

ways that partitions and operations on partitions might be defined:

1. the basic set-of-blocks definition of partitions and their operations;

2. the closure space approach using open subsets and the interior operator

on U × U ;
3. the graph-theoretic approach where the blocks of a partition on U are the

nodes in the connected components of a simple (at most one arc between

two nodes and no loops at a node) undirected graph;4 and

4. the approach where the blocks of a partition on U are the atoms of a

complete Boolean subalgebra of the powerset Boolean algebra P(U) of
subsets of U (20).

The lattice of partitions Π(U) on U can be defined using the set-of-blocks

definition of a partition. The equivalent definitions in terms of the open subsets

O (U × U) of the closure space (i.e., dit sets) will also be given so that we can
consider the lattice of partitions as being represented by the lattice O (U × U)
of open subsets of the closure space U × U , the dit-set representation of Π(U).

The partial order in the lattice is the refinement relation: given two parti-

tions π = {B}B∈π and σ = {C}C∈σ,

σ 
 π (read "π refines σ" or "σ is refined by π") if for any block B ∈ π, there

is a block C ∈ σ with B ⊆ C.5

The equivalent definition using dit sets (i.e., partition relations) is just inclusion:

σ 
 π iff dit (σ) ⊆ dit (π).

The lattice of partitions Π(U) is the partition analogue of the powerset Boolean
lattice P(U). In the powerset lattice, the partial order is inclusion of elements,
and in the partition lattice, it is inclusion of distinctions—which further shows

the duality of elements and distinctions.

4 See any introduction to graph theory such as Wilson (25) for the basic notions.
5Note that the opposite partial order is called the "refinement" ordering in the customary

"upside down" treatment of the lattice of partitions. Gian-Carlo Rota used to joke that it

should be called the "unrefinement" relation. Indeed, in a recent book on Rota-style combi-

natorial theory, that relation is sensibly called "reverse refinement" (14, p. 30).
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The join π ∨σ is the partition whose blocks are the non-empty intersections

B ∩ C of the blocks of the two partitions. The join in the powerset Boolean

algebra is given by the union of the subsets of elements and the equivalent

dit-set definition in O (U × U) is simply the union of the sets of distinctions:
dit (π ∨ σ) = dit (π) ∪ dit (σ).
Recall that the closure operator on the closure space was not topological in

the sense that the union of two closed sets is not necessarily closed and thus the

intersection of two open sets (i.e., two dit sets) is not necessarily open. Hence

the definition of the meet of two partitions requires some more complication.

In O (U × U), the dit set of the meet of two partitions is the interior of the
intersection of the two dit sets, i.e.,

dit (σ ∧ π) = int (dit (σ) ∩ dit (π)).

In a topological space, the intersection of two open subsets is open so in the

topological interpretation of a Heyting algebra, the interior operator is not nec-

essary in the interpretation of the meet.

For the set-of-blocks definition of the meet of two partitions {B}B∈π and
{C}C∈σ in Π(U), two elements u and u� are directly equated, u ∼ u� if u
and u� are in the same block of π or σ so the set of directly equated pairs is:

indit (σ)∪ indit (π). Then u and u� are equated in the meet of the two partitions
if there is a finite sequence u = u1 ∼ u2 ∼ ... ∼ un = u

� that indirectly equates
u and u�. The operation of indirectly equating two elements is just the closure
operation in the closure space so the set of pairs indirectly equated, i.e., equated

in the meet σ ∧ π in Π(U), is:

indit (σ ∧ π) = (indit (σ) ∪ indit (π)).

The complementary subset of U ×U is the dit set of the meet of the partitions:

dit (σ ∧ π) = indit (σ ∧ π)
c
= (indit (σ) ∪ indit (π))c = int (dit (σ) ∩ dit (π)).

That completes the definition of the lattice of partitions Π(U) and its rep-
resentation as the lattice O (U × U) of open subsets of the product U × U :

Π(U) ∼= O (U × U) .
Representation of the lattice of partitions Π(U)

as the lattice of open subsets O (U × U)

The analogies between the lattice of subsets P(U) and the lattice of parti-
tions Π(U) are summarized in the following table.
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Dualities Boolean lattice of subsets Lattice of partitions

“Elements” Elements of subsets Distinctions of partitions

Partial order Inclusion of elements Inclusion of distinctions

Join Elements of join are Distinctions of join are

union of elements union of distinctions

Meet Largest subset Largest partition

of only common elements of only common distinctions

Top Subset U with all elements Partition 1 with all distinctions
Bottom Subset ∅ with no elements Partition 0 with no distinctions
Elements-distinctions dualities between the Boolean lattice of subsets and the

lattice of partitions

Due to the complexity of the meet operation on partitions, it might be useful

to also give the definitions using graph theory. The graph-theoretic approach

allows a very intuitive connection back to the truth tables of classical proposi-

tional logic. The truth tables for the classical Boolean propositional connectives

can be stated in an abbreviated form using signed formulas such as T (π ∧ σ)
or Fσ. The truth table for the Boolean meet π∧σ is abbreviated by saying the

Boolean conditions for T (π ∧ σ) are "Tπ and Tσ" while the Boolean conditions
for F (π ∧ σ) are "Fπ or Fσ". Thus for the four Boolean operations of join

π∨σ, meet π∧σ, implication σ ⇒ π, and Sheffer stroke, not-and or nand σ | π,
the table of Boolean conditions is as follows:

Signed Formula T (π ∨ σ) F (π ∨ σ) T (σ ⇒ π) F (σ ⇒ π)
Boolean Cond. Tπ or Tσ Fπ and Fσ Fσ or Tπ Tσ and Fπ

Boolean conditions for ∨ and ⇒,
and

Signed Formula T (π ∧ σ) F (π ∧ σ) T (σ | π) F (σ | π)
Boolean Cond. Tπ and Tσ Fπ or Fσ Fσ or Fπ Tσ and Tπ

Boolean conditions for ∧ and |.

Given any partition π on U , and any pair of elements (u, u�), we say that
Tπ holds at (u, u�) if (u, u�) is a distinction of π, and that Fπ holds at (u, u�)
if (u, u�) is not a distinction of π, i.e., if u and u� are in the same block of π.
Given any two partitions π and σ on U , we can define the partition version of

any Boolean connective π ∗ σ by putting an arc between any two nodes u and

u� if the Boolean conditions for F (π ∗ σ) hold at (u, u�). Then the blocks of
the partition operation π ∗σ are the nodes in the connected components of that
graph. Thus two elements u and u� are in the same block of the partition π ∗ σ

if there is a chain or finite sequence u = u1, u 2, ..., un−1, un = u� such that for
each i = 1, ..., n− 1, the Boolean conditions for F (π ∗ σ) hold at (ui, ui+1).

In order for π ∗ σ to distinguish u and u�, it has to "cut" them apart in the

sense of the graph-theoretic notion of a "cut" which is the graph-theoretic dual

to the notion of a chain (22, p. 31). A set arcs in a graph form a cut between

the nodes u and u� is every chain connecting u and u� contain an arc from
the set—so that the set of arcs cut every chain connecting the two points. The
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above graph-theoretic definition of π ∗ σ, i.e., two points are not distinguished

if there is chain connecting the points with the Boolean conditions for F (π ∗ σ)
holding at each link, can be stated in an equivalent dual form. Two points are

distinguished in π ∗σ if the set of arcs where T (π ∗ σ) holds form a cut between

the two points.

This graph-theoretic approach can be used to uniformly define all the parti-

tion logical operations in terms of the corresponding Boolean logical operations,

but the case at hand is the meet. The graph constructed for the meet would

have an arc between u and u� if the Boolean conditions for F (π ∧ σ) held at
(u, u�), i.e., if Fπ or Fσ held at (u, u�). But this just means that (u, u�) ∈
indit (σ)∪indit (π), and the nodes in the connected components of that graph are
the nodes u and u� connected by a finite sequence u = u1, u 2, ..., un−1, un = u�

where for each i = 1, ..., n − 1, (ui, ui+1) ∈ indit (σ) ∪ indit (π), which is the
closure space definition of the meet given above.

Example 1 Let σ = {{a, b, c} , {d}} and π = {{a, b} , {c, d}}. In the graph be-
low, all the arcs in the complete graph K4 on four nodes are labelled according

to the status of the two endpoints in the two partitions. The Boolean condi-

tions for F (σ ∧ π) are "Fσ or Fπ" . The arcs where those conditions hold are

thickened. In the graph with only the thick arcs, there is only one connected

component so σ ∧ π = {{a, b, c, d}} = 0. Equivalently, the set of arcs where the
Boolean conditions for T (σ ∧ π) hold, i.e., the thin arcs, do not "cut" apart any
pair of points.

Graph for σ ∧ π

For the Boolean subalgebra approach, given a partition π on U , define

B (π) ⊆ P(U) as the complete subalgebra generated by the blocks of π as the
atoms so that all the elements of B (π) are formed as the arbitrary unions and
intersections of blocks of π. Conversely, given any complete subalgebra B of
P(U), the intersection of all elements of B containing an element u ∈ U will

provide the atoms of B which are the blocks in a partition π on U so that

B = B (π). Thus an operation on complete subalgebras of the powerset Boolean
algebra will define a partition operation. Since the blocks of the partition meet

π ∧ σ are minimal under the property of being the exact union of π-blocks and

also the exact union of σ-blocks, a nice feature of this approach to partitions is

that:

13



B (π ∧ σ) = B (π) ∩ B (σ).
The bottom of the lattice of partitions Π(U) is the indiscrete partition 0 =

{U} (nicknamed the “blob”) with the null dit set dit(0) = ∅ (no distinctions).
The blob distinguishes nothing and is refined by all partitions on U . The top

of the lattice of partitions is the discrete partition 1 = {{u} : u ∈ U} where all
blocks are singletons and whose dit set is all ordered pairs off the diagonal, i.e.,

dit(1) = U × U −Δ where Δ = {(u, u) : u ∈ U}. The discrete partition refines
all partitions on U . In the analogy between the powerset lattice P(U) and the
lattice of partitions Π(U), the top of the lattice of subsets has all the elements
and the top of the lattice of partitions has all the distinctions, while the bottom

of subset lattice has no elements and the bottom of the partition lattice has no

distinctions.6

The powerset Boolean algebra (BA) P(U) is not just a lattice; it has ad-
ditional structure which can be defined using the binary connective of the set

implication: A⇒ B = (U −A) ∪B = Ac ∪B, for A,B ⊆ U . The lattice struc-
ture on Π(U) needs to be enriched with other operations such as the binary
operation of "implication" on partitions.

6 The Implication Operation on Partitions

How might the implication partition σ ⇒ π of two partitions be defined? Some

motivation might be extracted from Heyting algebras, or, equivalently, intu-

itionistic propositional logic. The subset version of intuitionistic propositional

logic is explicit in its topological interpretation where the variables are inter-

preted as open subsets of a topological space U . Given two open subsets A and

B, the subset implication A ⇒ B = Ac ∪ B is not necessarily open but the

topological interior operator may be applied to arrive at an open subset. The

Heyting algebra implication can be defined as: A ⇒ B = int(Ac ∪ B) for open
subsets A and B which gives the classical definition if the topology is discrete.

Since we have an interior operator on the (non-topological) closure space U×U ,
this suggests that the implication partition σ ⇒ π might be defined using the

closure-space approach by:

dit (σ ⇒ π) = int (dit (σ)
c ∪ dit (π)).

This dit-set definition is easily seen to be equivalent to the graph-theoretic

definition. The Boolean conditions for F (σ ⇒ π) are "Tσ and Fπ" so by the

graph-theoretic definition, two nodes u and u� are in the same block of the
partition σ ⇒ π if they are connected by a finite chain of pairs (ui, ui+1) with
Tσ and Fπ holding at each pair, i.e., (ui, ui+1) ∈ dit (σ)∩ indit (π). Thus u and
u� are in the same block by the graph-theoretic definition if

(u, u�) ∈ (dit (σ) ∩ indit (π)) = (dit (σ)
c ∪ dit (π))c

6For a survey of what is known about partition lattices, see Grätzer (12) where the usual

opposite presentation is used.

14



which is precisely the indit set by the closure-space definition:

indit (σ ⇒ π) = dit (σ ⇒ π)
c
= [int (dit (σ)

c ∪ dit (π))]c =
(dit (σ)

c ∪ dit (π))c .
Since the dit-set definition of σ ⇒ π involves the interior operator on the

closure space U × U and the graph-theoretic definition involves the equivalent

consideration of connected components of a graph, it would be very convenient

to have a direct set-of-blocks definition of the implication partition σ ⇒ π. From

Boolean algebras and Heyting algebras, we can extract one desideratum for the

implication σ ⇒ π: if σ ≤ π in the partial order of the Boolean or Heyting

algebra, then and only then σ ⇒ π = 1. Hence for any partitions σ and π

on U , if σ is refined by π, i.e., σ 
 π in Π(U), then and only then we should
have σ ⇒ π = 1 (the discrete partition). The property is realized by the simple

set-of-blocks definition of the implication, temporarily denoted as σ
∗⇒ π, that

if a block B ∈ π is contained in a block C ∈ σ, then B is "discretized," i.e.,

replaced by singleton blocks {u} for all u ∈ B, in the implication σ
∗⇒ π and

otherwise the block B remains the same. The following proposition says that

the dit-set definition is the same as the set-of-blocks definition so that either

may be used to define the partition implication σ ⇒ π.

Proposition 1 σ ⇒ π = σ
∗⇒ π.

Proof: By the two definitions, dit (π) ⊆ dit (σ ⇒ π) and dit (π) ⊆ dit σ
∗⇒ π

with the reverse inclusions holding between the indit sets. We prove the propo-

sition by showing that dit σ
∗⇒ π ⊆ dit (σ ⇒ π) and that indit σ

∗⇒ π ⊆
indit (σ ⇒ π) where indit (σ ⇒ π) = (indit (π)− indit (σ)). Now suppose that
(u, u�) ∈ indit σ

∗⇒ π where indit σ
∗⇒ π ⊆ indit (π) so that u, u� ∈ B

for some block B ∈ π. Moreover if B were contained in any block C ∈ σ,

then (u, u�) ∈ dit σ
∗⇒ π = indit σ

∗⇒ π
c

contrary to assumption so B is

not contained in any C ∈ σ. If u and u� were in different blocks of σ then

(u, u�) �∈ indit (σ) so that (u, u�) would not be subtracted off in the formation of
indit (σ ⇒ π) = (indit (π)− indit (σ)) and thus would be in indit (σ ⇒ π) which
was to be shown. Hence we may assume that u and u� are in the same block
C ∈ σ. Thus (u, u�) was subtracted off in indit (π)−indit (σ) and we need to show
that it is restored in the closure (indit (π)− indit (σ)). Since u, u� ∈ B ∩ C but
B is not contained in any one block of σ, there is another σ-block C � such that
B∩C � �= ∅. Let u�� ∈ B∩C �. Then (u, u��) and (u�, u��) are not in indit (σ) since
u, u� ∈ C and u�� ∈ C � but those two pairs are in indit (π) since u, u�, u�� ∈ B.
Hence the pairs (u, u��) , (u�, u��) ∈ indit (π)− indit (σ) = indit (π)∩dit (σ) which
implies that (u, u�)must be in the closure indit (σ ⇒ π) = (indit (π)− indit (σ)).
That establishes indit σ

∗⇒ π ⊆ indit (σ ⇒ π).

To prove the converse in the form dit σ
∗⇒ π ⊆ dit (σ ⇒ π), assume (u, u�) ∈

dit σ
∗⇒ π . Since dit (π) ⊆ dit (σ ⇒ π), we would be finished if (u, u�) ∈
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dit (π). Hence assume (u, u�) �∈ dit (π) so that u, u� ∈ B for some π-block

B and (u, u�) is one of the new dits added when σ
∗⇒ π is formed from π.

Thus B ⊆ C for some σ-block C so that (u, u�) ∈ indit (σ) and (u, u�) is not
in the difference indit (π) − indit (σ) = indit (π) ∩ dit (σ) (which is a symmet-
ric relation). It remains to show that it is not in the closure indit (σ ⇒ π) =
(indit (π)− indit (σ)). To be in the closure, there would have to be some se-
quence u = u1, u2, ..., un = u� such that (ui, ui+1) ∈ indit (π) − indit (σ) =
indit (π) ∩ dit (σ) for i = 1, ..., n − 1. But since all the (ui, ui+1) ∈ indit (π)
and u = u1 ∈ B, all the u = u1, u2, ..., un = u� ∈ B and B ⊆ C so all

the pairs (ui, ui+1) ∈ indit (σ) which contradicts those pairs being in the dif-
ference indit (π) − indit (σ) = indit (π) ∩ dit (σ). Hence (u, u�) is not in the
closure indit (σ ⇒ π) = (indit (π)− indit (σ)) so (u, u�) is in the complement
dit (σ ⇒ π) = indit (σ ⇒ π)

c
which completes the proof of the proposition. �

Hence we may drop the temporary notation σ
∗⇒ π and consider the par-

tition implication σ ⇒ π as characterized by the set-of-blocks definition: form

σ ⇒ π from π by discretizing any block B ∈ π contained in a block C ∈ σ.

The implication partition σ ⇒ π can be interpreted as a Boolean probe for

containment between blocks. If B ⊆ C for some C ∈ σ, then the probe finds

containment and this is indicated by setting the π-block B locally equal to 1,
i.e., by discretizing B, and otherwise B stays locally like 0, i.e., stays as a whole
block (or "mini-blob") B. Whenever the refinement relation σ 
 π holds, then

all the non-singleton blocks B ∈ π are discretized in σ ⇒ π (and the singleton

blocks are already discrete) so that σ ⇒ π = 1 (and vice-versa).

Example 2 The equivalent graphical definition of the implication will be used

to compute an example. Again let σ = {{a, b, c} , {d}} and π = {{a, b} , {c, d}}.
In the graph below, all the arcs in the complete graph K4 have the same labels as

in the previous example since σ and π are the same. But the Boolean conditions

for F (σ ⇒ π) are "Tσ and Fπ". Only one arc connecting c and d satisfies that

condition so it is thickened. In the graph with only the thickened arc, there are

three connected components which give the blocks of the implication: σ ⇒ π =
{{a} , {b} , {c, d}}. Note that this agrees with the set-of-blocks definition of the
partition implication. Since {a, b} ∈ π is the only block of π contained in a block

of σ, σ ⇒ π is like π except that {a, b} is discretized.
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Graph for σ ⇒ π

7 The Negation Operation on Partitions

In intuitionistic logic, the negation ¬σ would be defined as the implication

σ ⇒ 0 with the consequent taken as the zero element 0, i.e., ¬σ = σ ⇒ 0. In
the topological interpretation using open subsets, σ would be an open subset

and ¬σ would be the interior of its complement. Adapted to partitions, these
give the following dit-set definition of the partition negation (since dit (0) = ∅):

dit (¬σ) = int (dit (σ)c) = int (dit (σ)c ∪ dit (0)) = dit (σ ⇒ 0).

The graph-theoretic approach can also used for the unary operation of nega-

tion. In the truth table for negation, the Boolean condition for F (¬σ) is Tσ
so the graph for ¬σ has an arc between u and u� if Tσ holds at (u, u�). In
graph-theoretic terms, that is the complement of the graph which had an arc

between u and u� if Fσ held at (u, u�), i.e., u and u� were in the same block of
σ. By the dit-set definition,

indit (¬σ) = {int (dit (σ)c)}c = {dit (σ)cc}cc = {dit (σ)}

so the dit-set and graph-theoretic definitions are equivalent.

A graph is said to be connected if it has only one connected component,

and otherwise disconnected. Thus a simple undirected graph is connected iff

the partition given by its connected components is the indiscrete partition or

blob 0. If a partition σ is not the blob, then the graph with arcs wherever Fσ

holds would be disconnected. It is a standard result of graph theory that the

complement of any disconnected graph is connected (25, p. 30). But this means

that the graph constructed for the negation ¬σ of any non-blob partition σ must

be connected, i.e., ¬σ = 0. If σ = 0, then dit (σ) = ∅ so there are no arcs in
the graph for ¬σ and thus the connected components are the singletons, i.e.,
¬0 = 1. Thus negation is a rather trivial operation on partitions; the negation
of any non-zero partition is zero and the negation of zero is one.

There is however one consequence worth noting. If π and σ were both non-

zero partitions then their dit sets would be non-empty. If those non-empty dit

sets were disjoint then dit (π) ⊆ dit (σ)c so taking interiors,

dit (π) = int (dit (π)) ⊆ int (dit (σ)c) = dit (¬σ) = ∅

contrary to the assumption that dit (π) was non-empty. Hence any two non-
empty dit sets must have a non-empty intersection. That is, given any two

non-zero partitions π and σ on U , there exists a pair u and u� that are in
distinct blocks of π and are in distinct blocks of σ.

Lemma 3 (Common-dits property) All non-empty dit sets have some dits

in common. �
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The contrapositive form of the common-dits property is that if the union of

two equivalence relations is the universal equivalence relation, i.e., indit (π) ∪
indit (σ) = U ×U , then one of the equivalence relations is already the universal
one, i.e., indit (π) = U × U or indit (σ) = U × U .

Negation becomes more interesting if we generalize by replacing the blob in

the definition ¬σ = σ ⇒ 0 by an arbitrary but fixed partition π. This leads

to the notion of the π-negation of a partition σ which is just the implication

σ ⇒ π with the fixed partition π as the consequent. We added a π to the

negation symbol to represent this negation relative to π:

π-negation:
π¬σ = σ ⇒ π.

The unadorned negation ¬σ is the 0-negation, i.e., ¬σ = σ ⇒ 0. Using this
suggestive notation, the partition tautology that internalizes modus ponens,

(σ ∧ (σ ⇒ π))⇒ π, is the law of non-contradiction,
π¬ σ ∧ π¬σ , for π-negation.

While it is useful to establish the notion of partition negation, it need not be

taken as a primitive operation.

8 The Nand Operation on Partitions

In addition to the lattice operations of the join and meet, and the implication

operation, we introduce the Sheffer stroke, not-and, or nand operation σ | τ ,
with the dit-set definition:

dit (σ | τ) = int [indit (σ) ∪ indit (τ)].

For the graph-theoretic definition consider the graph whose nodes are the el-

ements u ∈ U and where there is an arc connecting u and u� if the Boolean condi-
tions for F (σ | τ), namely "Tσ and T τ", hold at (u, u�). Thus u and u� are in the
same connected component if (u, u�) ∈ {dit (σ) ∩ dit (τ)} = [indit (σ) ∪ indit (τ)]c,
and thus they are a distinction if and only if they are in the complement of

the closure which is the interior: int [indit (σ) ∪ indit (τ)]. Hence this graph-
theoretic definition of the nand operation is the same as the dit-set definition.

To turn it into a set-of-blocks definition where σ = {C}C∈σ and τ = {D}D∈τ ,
note that each element u and u� is in a unique intersection of blocks from the

two partitions. If u ∈ C ∩D and u� ∈ C � ∩D�, then if u ∼ u� because C �= C �
and D �= D� then all the elements of C ∩D and C � ∩D� are in the same block
of the nand σ | τ . But if for any non-empty C ∩ D, there is no other block
C � ∩D� of the join with C �= C � and D �= D�, then the elements of C ∩D would

not even be connected with each other so they would be singletons in the nand.

Hence for the set-of-blocks definition of the nand σ | τ , the blocks of the nand
partition are formed by taking the unions of any join blocks C ∩D and C � ∩D�

which differ in both "components" but by taking as singletons the elements of

any C ∩D which does not differ from any other join block in both components.
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Example 4 The equivalent graphical definition of the nand operation will be

used to compute an example. Again let σ = {{a, b, c} , {d}} and π = {{a, b} , {c, d}}.
The Boolean conditions for F (σ | π) are "Tσ and Tπ" so those arcs are thick-
ened in the following graph. The partition nand is then given as the connected

components of the graph with only the thickened arcs: σ | π = {{a, b, d} , {c}}.

Graph for σ | π

Example 5 If σ = {C,C �} where C = {u} and C � = U − {u} and τ = {D,D�}
where D = U − {u�} and D� = {u�}, then σ ∨ τ = {{u} , {u�} , U − {u, u�}}.
Hence u ∈ C ∩D = {u} ∩ (U − {u�}) and u� ∈ C � ∩D� = (U − {u}) ∩ {u�} so
u ∼ u� in the graph for σ | τ . But the elements u�� ∈ C � ∩D = U − {u, u�} are
not connected to any other elements since C �∪D = (U − {u})∪ (U − {u�}) = U
so they are all singletons in the nand. Hence σ | τ = {{u, u�} , {u��} , ...}.

As in subset logic, negation in partition logic can be defined using the nand:

σ | σ = ¬σ. In fact, if σ 
 τ , then σ | τ = ¬σ. For example, since σ is always

refined by τ ⇒ σ for any τ , σ | (τ ⇒ σ) = ¬σ. The formula σ | σ = ¬σ is also a
special case of the formula (σ | τ) ∧ (σ ⇒ τ) = ¬σ derived in the next section.

In subset logic, the "and" and the nand subsets would be complements of one

another but the relationship is more subtle in partition logic. We say that two

partitions ϕ and ϕ� which refine a partition π, i.e., π 
 ϕ,ϕ�, are π-orthogonal

if
π¬ϕ ∨ π¬ϕ� = 1. Since all partitions refine 0, two partitions ϕ and ϕ� are

0-orthogonal or, simply, orthogonal if ¬ϕ ∨ ¬ϕ� = 1.7

Lemma 6 ϕ and ϕ� are orthogonal, i.e., ¬ϕ ∨ ¬ϕ� = 1, iff ϕ | ϕ� = 1.

Proof: If ¬ϕ∨¬ϕ� = 1, then int (indit (ϕ))∪ int (indit (ϕ�)) = dit (1) = U2−Δ.
Then every possible dit (u, u�) for u �= u� is in either indit (ϕ) or indit (ϕ�) so the
two partitions have no dits in common. Hence the graph for ϕ | ϕ� has no arcs
and thus the connected components are singletons so ϕ | ϕ� = 1. Conversely, if
ϕ | ϕ� = 1, then its graph has no arcs so the partitions have no dits in common.
But we saw in the last section that any two non-blob partitions must have a dit

in common, so one of the partitions is 0 and ¬0 = 1 so that ¬ϕ ∨ ¬ϕ� = 1. �
7The formula ¬ϕ ∨ ¬ϕ = 1 is classically equivalent to ϕ ∧ ϕ = 0 which is more familiar

as a criterion for orthogonality.
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Just as the unary negation operation ¬ϕ is usefully generalized by the binary
operation

π¬ϕ = ϕ ⇒ π, so the binary nand operation σ | τ is usefully generalized
by the ternary operation of π-nand defined by:

dit (σ |π τ) = int (indit (σ) ∪ indit (τ) ∪ dit (π)).

Then a similar argument shows that for π 
 ϕ,ϕ�:

ϕ and ϕ� are π-orthogonal iff ϕ |π ϕ� = 1.

If two partitions are orthogonal and one of the partitions is non-zero, then

the other partition must be zero. If ϕ and ϕ� are orthogonal, i.e., ϕ | ϕ� = 1,
then ϕ ∧ ϕ� = 0 follows but not vice-versa. For instance on the three element
set U = {a, b, c} with ϕ = {{a, b} , {c}} and ϕ� = {{a} , {b, c}}, then ϕ ∧ ϕ� = 0
but ϕ | ϕ� = {{a, c} , {b}} �= 1 as can easily be seen by drawing the graph.

Every partition σ and its 0-negation ¬σ are orthogonal since ¬σ∨¬¬σ = 1.
In the example above, the meet of σ = {{u} , U − {u}} and τ = {{u�} , U − {u�}}
is σ ∧ τ = 0 and ¬0 = 1 but σ | τ �= 1 so the negation ¬ (σ ∧ τ) is not neces-
sarily the same as the nand σ | τ . However, the "and" or meet σ ∧ τ and the

"not-and" or nand σ | τ are orthogonal; if one is non-zero, the other must be
zero. Thus no pair (u, u�) can be a dit of both and hence: (σ | τ) | (σ ∧ τ) = 1
always holds for any σ and τ , i.e., (σ | τ) | (σ ∧ τ) is a partition tautology. The
same example above shows that the nand σ | τ is also not the same as ¬σ ∨ ¬τ
(which equals 0 in the example). Although the three formulas are equal in
subset logic, in partition logic we only have the following refinement relations

holding in general:

¬σ ∨ ¬τ 
 σ | τ 
 ¬ (σ ∧ τ).

Since only one direction ¬σ ∨ ¬τ 
 ¬ (σ ∧ τ) holds in general, the "strong"
DeMorgan law ¬σ ∨ ¬τ = ¬ (σ ∧ τ) does not hold in partition logic. However,
the other "weak" DeMorgan law holds in partition logic even for π-negation,

i.e.,
π¬ (σ ∨ τ) =

π¬σ ∧ π¬τ .

9 Sixteen Binary Operations on Partitions

What other partition operations might be defined? For binary operations σ ∗ τ

on Boolean 0, 1 variables σ and τ , there are four combinations of values for σ

and τ , and thus there are 24 = 16 possible binary Boolean operations: 2× 2→
2. Thinking in terms of subsets S, T ⊆ U instead of Boolean propositional

variables, there are the four basic regions in the general position Venn diagram

for S and T , namely S∪T , S∪T c, Sc∪T , and Sc∪T c, which are the four possible
conjuncts in the conjunctive normal form expression for a formula with two

variables. Then there are again 24 = 16 subsets of the set of those four conjuncts,
and thus there are sixteen subsets of U defined by taking the intersections of the

basic regions in each subset of the four conjuncts (where the empty intersection
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is all of U). That defines what might reasonably be called the 16 binary logical
operations on subsets of U .

Now take S = dit (σ) and T = dit (τ) as subsets of U × U and define the 16
subsets of U×U in the same way. Some of these such as S∪T = dit (σ)∪dit (τ) =
dit (σ ∨ τ) will be open and thus will be the dit sets of partitions on U . For
those which are not already open, we must apply the interior operator to get

the dit set of a partition on U . This gives 16 binary operations on partitions
that would naturally be called logical since they are immediately paired with

the corresponding 16 binary logical operations on subsets. We will use the same
notation for the partition operations. For instance, for subsets S, T ⊆ U , the

conditional or implication subset is Sc ∪ T = S ⇒ T . When S = dit (σ) and
T = dit (τ) as subsets of U ×U , the subset Sc ∪ T is not necessarily open so we
must apply the interior operator to get the dit set defining the corresponding

implication operation on partitions, i.e., int [dit (σ)
c ∪ dit (τ)] = dit (σ ⇒ τ).

In both subset and partition logic, there are only two nullary operations

(constants), 0 and 1. With unary operations, the situation is still straightfor-
ward. There are only four Boolean unary operations, identity and negation (or

complementation) in addition to the two nullary operations (seen as constant

unary operations). These immediately yield the partition operations of identity

and negation in addition to the two partition constant operations. If these par-

tition operations are compounded, then the new unary operation on partitions

of double negation is generated. But that is all since the triple negation is the

same as the single negation and the constants of 0 and 1 are interchanged under
negation. Thus we may reasonably say that there are only five logical unary

operations for partitions: 0, 1, σ, ¬σ, and ¬¬σ.
The situation for binary partition operations is more complicated. If the

sixteen binary operations on subsets are compounded, then the result is always

one of the sixteen binary operations. But the presence of the interior operator

significantly changes the partition case so the result of compounding any of the

sixteen binary operations on partitions may well be a new binary operation.

Perhaps there is a Kuratowski-like result (15) showing that there is a certain

finite number of binary operations on partitions that could be defined from

all the possible combinations of the sixteen binary operations. But for our

present purposes, we will settle for being able to define the sixteen binary logical

operations on partitions that correspond to the sixteen logical subset binary

operations. There are many new binary operations on partitions, e.g., ¬ (σ ∧ τ)
and ¬σ ∨ ¬τ (noted in the analysis of σ | τ), obtained by compounding these
sixteen operations and they could just as well be called "logical" operations.

Which binary operations suffice to define all the sixteen operations?

The four operations, the join, meet, implication, and nand, suffice to de-

fine the sixteen binary partition operations by using the partition version of

conjunctive normal form—which, in turn, is based on the following result.

Lemma 7 For any subsets A,B ⊆ U × U , int [A ∩B] = int [int (A) ∩ int (B)].

Proof: Clearly int [int (A) ∩ int (B)] ⊆ int [A ∩B] so to prove the converse,
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assume (u, u�) ∈ int [A ∩B] = [(A ∩B)c]c which means that (u, u�) is not
in the complement which is the closure of (A ∩B)c, i.e., (u, u�) �∈ [Ac ∪Bc].
Now if (u, u�) is not in int [int (A) ∩ int (B)], then (u, u�) ∈ [int (A)c ∪ int (B)c]
where int (A)

c
= (Ac) and similarly for B. A u, u�-chain is a finite sequence

u = u1, u2, ..., un, un+1 = u� of elements of U with u and u� as the endpoints.
For (u, u�) to be in the closure [int (A)c ∪ int (B)c] means there is a u, u;-chain
u = u1, u2, ..., un, un+1 = u� such that for i = 1, ..., n, the link (ui, ui+1) is in
(Ac) or in (Bc). If, say, (ui, ui+1) ∈ (Ac), then there is similarly a ui, ui+1-
chain of elements, with each successive pair in Ac, connecting ui and ui+1, and

similarly if (ui, ui+1) ∈ (Bc). Replacing each (ui, ui+1) by a finite chain with
successive pairs in Ac or in Bc, we arrive at a u, u�-chain with each successive
pair in Ac ∪ Bc so that (u, u�) ∈ [Ac ∪Bc] contrary to the assumption. Hence
int [A ∩B] ⊆ int [int (A) ∩ int (B)] and the result follows. �
In the subset version of the conjunctive normal form, the 15 non-universal

subsets are obtained by taking the intersections of 15 combinations of the four
regions: S ∪T , S ∪T c, Sc∪T , and Sc∪T c. Taking S = dit (σ) and T = dit (τ),
the interiors of these four basic "conjuncts" are, respectively, the dit sets of:

σ ∨ τ , τ ⇒ σ, σ ⇒ τ , and σ | τ . By expressing each of the 15 non-universal
subsets of U×U in conjunctive normal form, applying the interior operator, and
then using the lemma to distribute the interior operator across the intersections,

we express each of the 15 partition operations (aside from the constant 1) as a
meet of some combination of the join σ ∨ τ , the implications τ ⇒ σ and σ ⇒ τ ,

and the nand σ | τ . The constant operation 1 can be obtained using just the
implication σ ⇒ σ or τ ⇒ τ . These results and some other easy reductions are

given in the following table where the interior of the subset of U ×U in the first
column yields the dit set of the binary operation given in the second column.8

15 regions Conjunctive Normal Form Binary operation on partitions

(S ∪ T ) ∩ (Sc ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) 0
(Sc ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) σ∨τ = ¬σ ∧ ¬τ
(S ∪ T ) ∩ (S ∪ T c) ∩ (Sc ∪ T c) τ σ = σ ∧ ¬τ

(S ∪ T c) ∩ (Sc ∪ T c) ¬τ = τ ⇒ 0
(S ∪ T ) ∩ (Sc ∪ T ) ∩ (Sc ∪ T c) σ τ = ¬σ ∧ τ

(Sc ∪ T ) ∩ (Sc ∪ T c) ¬σ = σ ⇒ 0
(S ∪ T ) ∩ (Sc ∪ T c) σ �≡ τ

Sc ∪ T c σ | τ
(S ∪ T ) ∩ (Sc ∪ T ) ∩ (S ∪ T c) σ ∧ τ

(Sc ∪ T ) ∩ (T c ∪ S) σ ≡ τ

(S ∪ T ) ∩ (S ∪ T c) σ

S ∪ T c τ ⇒ σ

(S ∪ T ) ∩ (Sc ∪ T ) τ

Sc ∪ T σ ⇒ τ

S ∪ T σ ∨ τ

Interior of column 1 gives partition operation in column 2

8For notation, we have followed, for the most part, Church (5).
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Using the lemma, the interior is distributed across the intersections of the

subset CNF to give the partition CNF in the following table.

Binary operation Partition CNF for 15 binary operations

0 = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (τ ⇒ σ) ∧ (σ | τ)
σ∨τ = ¬σ ∧ ¬τ = (σ ⇒ τ) ∧ (τ ⇒ σ) ∧ (σ | τ)
τ σ = σ ∧ ¬τ = (σ ∨ τ) ∧ (τ ⇒ σ) ∧ (σ | τ)
¬τ = τ ⇒ 0 = (τ ⇒ σ) ∧ (σ | τ)

σ τ = ¬σ ∧ τ = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (σ | τ)
¬σ = σ ⇒ 0 = (σ ⇒ τ) ∧ (σ | τ)

σ �≡ τ = (σ ∨ τ) ∧ (σ | τ)
σ | τ = σ | τ
σ ∧ τ = (σ ∨ τ) ∧ (σ ⇒ τ) ∧ (τ ⇒ σ)
σ ≡ τ = (σ ⇒ τ) ∧ (τ ⇒ σ)

σ = (σ ∨ τ) ∧ (τ ⇒ σ)
τ ⇒ σ = τ ⇒ σ

τ = (σ ∨ τ) ∧ (σ ⇒ τ)
σ ⇒ τ = σ ⇒ τ

σ ∨ τ = σ ∨ τ

Distributing interior across intersections gives partition CNF

In classical subset logic, these 15 binary operations on subsets plus the uni-
verse set would be closed under combining the operations so we would have the

reduction of all formulas in two variables to conjunctive normal form. But in

partition logic, these functions are not at all closed under combinations, e.g.,

the double negation ¬¬σ is in general distinct from σ and ¬σ, so we have only
derived the conjunctive normal form for the 15 binary operations. The point
was to show that the 15 functions, and thus all their further combinations, could
be defined in terms of the four primitive operations of join, meet, implication,

and nand.9

The fourteen non-zero operations occur in natural pairs: ⇒ and , ⇐ and

, ≡ and �≡, ∨ and ∨, and ∧ and | in addition to σ and ¬σ, and τ and ¬τ .
Except in the case of the join ∨ (and, of course, σ and τ), the second operation

in the pair is not the negation of the first. The relationship is not negation but

0-orthogonality. The pairs of formulas σ ⇒ τ and σ τ (and similarly for the

other pairs) are 0-orthogonal; if one is non-zero, the other must be zero. Later
we see a different pairing of the operations by duality.

10 Partition Algebra Π(U) on U and its Dual

The partition lattice of all partitions on U enriched with the binary operations

of implication and nand is the partition algebra Π (U) of U . It plays the role for

9There are other combinations which can be taken as primitive since the inequivalence,

symmetric difference, exclusive-or, or xor σ �≡ τ can be used to define the nand operation:
((σ ∨ τ)⇒ (σ �≡ τ)) = σ | τ .
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partition logic that the Boolean algebra P(U) of all subsets of U plays in or-

dinary subset logic. Dualization in classical propositional logic—when expressed

in terms of subsets—amounts to reformulating the operations as operations on

subset complements. But since the complements are in the same Boolean alge-

bra, Boolean or classical duality can be expressed as a theorem about a Boolean

algebra. We have defined the lattice of partitions (sets of disjoint and mutu-

ally exhaustive non-empty subsets of a set) as being isomorphic to the lattice

of partition relations on U × U (anti-reflexive, symmetric, and anti-transitive

relations). Rather than multiply notations, we have used Π(U) to refer ambigu-
ously to both those isomorphic lattices. The complement of a partition relation

is an equivalence relation which is not an element in the same lattice. Hence

in partition logic, duality is naturally expressed as a relationship between the

partition algebra Π(U) (seen as the algebra of partition relations) and the dual
algebra Π(U)op of equivalence relations.
Given a formula ϕ in Boolean propositional logic, the dual formula ϕd is ob-

tained by interchanging 0 and 1, and by interchanging each of the following pairs
of operations: ⇒ and , ∨ and ∧, ≡ and �≡,⇐ and , and ∨ and |, while leaving
the atomic variables and negation ¬ unchanged (5, p. 106). In partition logic,
we use exactly the same definition of dualization except that the atomic variables

will now stand for equivalence relations rather than partitions so we will indicate

this by adding the superscript "d" to the atomic variables. Hence the dual of the

modus ponens formula ϕ = (σ ∧ (σ ⇒ τ))⇒ τ is ϕd = σd ∨ σd τd τd .

The converse non-implication (to use Church’s terminology) would usually be

thought of as the difference operation (17, p. 201), i.e., σd τd is the result of

subtracting σd from τd so it might otherwise be symbolized as τd\σd or τd−σd.

In this notation, the dual to the modus ponens formula is: τd− σd ∨ τd − σd .

Similarly the non-implication σd τd, dual to the reverse implication σ ⇐ τ ,

might otherwise by symbolized as σd\τd or σd − τd. The process is reversible.

Starting with a formula ϕd with superscript "d" on all atomic variables (to in-

dicate they refer to equivalence relations instead of partitions), dualizing means

making the same interchanges of operation symbols and constants, and erasing

the "d" superscripts so that the dual of the dual is the original formula.

We have used the lower case Greek letters π, σ, ... to stand for set-of-blocks

partitions while the corresponding binary partition relations were the dit sets

dit (π), dit (σ), .... The Greek letters with the superscript "d" stand for binary
equivalence relations which take the form indit (π), indit (σ), .... Thus atomic
variables such as π dualize to πd and would be interpreted as denoting indit sets

indit (π).
The operations of the dual algebra Π(U)op of equivalence relations on U

could be defined directly but it is more convenient to define them using duality

from the partition operations. The top of the dual algebra, usually denoted 1, is
0d = indit (0) = U×U , the universal equivalence relation which identifies every-
thing (like Hegel’s night in which all cows are black). The bottom of the dual

algebra, usually denoted 0, is 1d = indit (1) = Δ, the diagonal where each ele-
ment of U is only identified with itself. Given any equivalence relations indit (π)
and indit (σ) on U , their meet ∧ is defined via duality as the indit set of the
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join of the two corresponding partitions: indit (π) ∧ indit (σ) = indit (π ∨ σ) =
indit (π) ∩ indit (σ). Using the superscript-d notation, this is: πd ∧ σd =

(π ∨ σ)
d
= indit (π ∨ σ). Similarly the join of two equivalence relations is de-

fined via duality as: indit (π)∨ indit (σ) = indit (π ∧ σ) = {indit (π) ∪ indit (σ)},
so that using the superscript-d notation: πd ∨ σd = (π ∧ σ)

d
= indit (π ∧ σ).

The same pattern is applied to the duals of the other two primitive operations

of implication and nand. The difference of two equivalence relations is de-

fined via duality as: indit (π)− indit (σ) = indit (σ ⇒ π) = {dit (σ) ∩ indit (π)},
which in the other notation is: πd − σd = (σ ⇒ π)

d
= indit (σ ⇒ π). And fi-

nally, the nor-or or nor operation on equivalence relations is defined via duality

as: indit (π)∨ indit (σ) = indit (π | σ) = {(indit (π) ∪ indit (σ))c}, which gives:
πd∨σd = (π | σ)d = indit (π | σ). That completes the definition of the dual
algebra Π(U)op of equivalence relations on U with the top 1, bottom 0, and the
four primitive operations of meet, join, difference, and nor.

The dualization operation ϕ �−→ ϕd is a purely syntactic operation, but in

the partition algebra Π(U) and equivalence relation algebra Π(U)op we reason
semantically about partitions and equivalence relations on U . Given a com-

pound formula ϕ in the language of the partition algebra, it would be inter-

preted by interpreting its atomic variables as denoting partitions on U and then

applying the partition operations (join, meet, implication, and nand) to arrive

at an interpretation of ϕ. Such an interpretation automatically supplies an in-

terpretation of the dual formula ϕd. If α was an atomic variable of ϕ and was

interpreted as denoting a partition on U , then αd is interpreted as denoting the

equivalence relation indit (α). Then the equivalence relation operations (meet,
join, difference, and nor) are applied to arrive at an equivalence relation inter-

pretation of the formula ϕd. The relationship between the two interpretations

is very simple.

Proposition 2 ϕd = indit (ϕ).

Proof: The proof uses induction over the complexity of the formulas. If ϕ is one

of the constants 0 or 1, then the proposition holds since: 0d = 1 = indit (0)
and 1d = 0 = indit (1). If ϕ = α is atomic, then it is true by the definition:

σd = indit (σ). If ϕ is a compound formula then the main connective in ϕ is

one of the four primitive partition operations and the main connective in ϕd

is one of the four primitive equivalence relation operations. Consider the case:

ϕ = π ∧ σ so that ϕd = πd ∨ σd. By the induction hypothesis, πd = indit (π)
and σd = indit (σ), and by the definition of the equivalence relation join: ϕd =
πd ∨ σd = indit (π) ∨ indit (σ) = {indit (π) ∪ indit (σ)} = indit (ϕ). The other
three cases proceed in a similar manner. �

Corollary 1 The map ϕ �−→ indit (ϕ) is a dual-isomorphism: Π(U)→ Π(U)op

between the partition algebra and the dual equivalence relation algebra.

Proof: Clearly the mapping is a set isomorphism since each partition ϕ on

U is uniquely determined by its dit set dit (ϕ), and thus by its complement
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indit (ϕ). By "dual-isomorphism," we mean that each operation in the partition
algebra is mapped to the dual operation in the equivalence relation algebra.

Suppose ϕ = σ ⇒ π so that ϕd = πd − σd. By the proposition, this means

that indit (ϕ) = indit (π) − indit (σ) (where we must be careful to note that
"−" is the difference operation on equivalence relations which is the closure of
the set-difference operation indit (π) ∩ indit (σ)c on subsets of U × U) so that
ϕ �−→ indit (ϕ) maps the partition operation of implication to the equivalence
relation operation of difference. The other operations are treated in a similar

manner. �
The previous result, int [A ∩B] = int [int (A) ∩ int (B)] for A,B ⊆ U × U ,

could also be expressed using the closure operation as [A ∪B] = A ∪B and

thus the conjunctive normal form treatment of the 15 binary operations on parti-
tions in terms of the operations of ∨, ∧,⇒, and | dualizes to the disjunctive nor-
mal form treatment of the 15 (dual) binary operations on equivalence relations in
terms of the dual operations ∧, ∨, −, and ∨, which are the primitive operations
in the algebra of equivalence relations Π(U)op. For instance, the CNF expres-
sion for the inequivalence or symmetric difference is: σ �≡ τ = (σ ∨ τ) ∧ (σ | τ)
so that:

dit (σ �≡ τ) = int [int (dit (σ) ∪ dit (τ)) ∩ int (dit (σ)c ∪ dit (τ)c)]
= int [(dit (σ) ∪ dit (τ)) ∩ (dit (σ)c ∪ dit (τ)c)] .

Taking complements yields:

indit (σ �≡ τ) = [(indit (σ) ∩ indit (τ)) ∪ (indit (σ)c ∩ indit (τ)c)]
= (indit (σ) ∩ indit (τ)) ∪ (indit (σ)c ∩ indit (τ)c)
= [(σd ∧ τd) ∪ (σd∨τd)]

= σd ∧ τd ∨ σd∨τd

= σd ≡ τd.

Thus the equivalence σd ≡ τd of equivalence relations has the disjunctive normal

form: σd ≡ τd = σd ∧ τd ∨ σd∨τd in the "dual" logic of equivalence relations.

The other operations on equivalence relations can be defined similarly using the

disjunctive normal form of the logic of equivalence relations.

In referring to the dual logic of equivalence relations, we must keep distinct

different notions of duality. Partition logic is dual to subset logic in the sense

of the duality between monomorphisms and epimorphisms (or between subsets

and quotient sets). But equivalence relation logic is only dual to partition logic

in the sense of complementation—analogous to the duality between Heyting al-

gebras and co-Heyting algebras, or between open subsets and closed subsets of a

topological space. Since the complement of an open set is a closed set that is not

necessarily open, complementation-duality for partition logic and intuitionistic
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propositional logic is a duality between two types of algebras (partition algebras

and equivalence relation algebras in the one case and Heyting and co-Heyting

algebras in the other case). But the complement of a general subset is another

subset so complementation-duality for subset logic is a duality within a Boolean

algebra.

11 Partition Tautologies

For present purposes, we may take the formulas of classical propositional logic

(i.e., subset logic) as using the binary operations of ∨, ∧, ⇒, and | along with
the constants 0 and 1 so that we have exactly the same well-formed formulas
in subset logic and partition logic. A classical tautology or subset tautology is a

formula that always evaluates to 1 (the universe set U) in the Boolean algebra
P(U) regardless of the subsets assigned to the atomic variables. A partition

tautology is a formula that always evaluates to 1 (the discrete partition) in
the partition algebra Π(U) regardless of the partitions assigned to the atomic
variables.10 It is also useful to define a weak partition tautology as a formula

that never evaluates to 0 (the indiscrete partition) regardless of the partitions
assigned to the atomic variables. Of course, any partition tautology is a weak

partition tautology. Moreover, it is easily seen that:

Proposition 3 ϕ is a weak partition tautology iff ¬¬ϕ is a partition tautology.
�

An immediate question is the relationship of partition tautologies and weak

partition tautologies to the classical subset tautologies as well as to the valid

formulas of intuitionistic propositional logic (where formulas are assumed to be

written in the same language).

There is a sense in which results in partition logic can be trivially seen as

a generalization of results in ordinary subset logic. This reduction principle

(only treated informally here) is based on the observation that any partition

logic result holding for all U will hold for |U | = 2 (any two element universe
set) where there is an isomorphism between the partition algebra Π (2) on the
two-element set and the Boolean algebra P(1) on the one-element set. There
are only two partitions, the bottom 0 and top 1 on U where |U | = 2. Moreover,
the partition operations of join, meet, implication, and nand in this special case

satisfy the truth tables for the corresponding Boolean operations on subsets

(using 0 and 1 in the usual manner in the truth tables). For instance, in Π(U)
where |U | = 2, we can only substitute 0 or 1 for the atomic variables in σ ⇒ τ .

The result is 0 in the case where σ = 1 and τ = 0, and the result in 1 in the
other three cases. But that is just the truth table for the Boolean implication

operation in P(1). Similarly for the other operations so there is an isomorphism:
Π(2) ∼= P (1). Hence if a partition logic result holds for all U , then it holds for
10Needless to say, the constants 0 and 1 are always assigned the bottom and top, respec-

tively, in any evaluation or interpretation of a formula in either P(U) or Π(U).
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a two-element U where the partition operations on 0 and 1 are isomorphic to
the Boolean operations on 0 and 1 where 0 and 1 in the Boolean case stand for
the null subset and the universe set of a one-element universe. But if a result

in subset logic holds on the one-element universe, i.e., in P(1), then it holds in
subset logic. This reduction principle might be summarized in the slogan:

Partition logic in a two-element universe is Boolean logic: Π(2) ∼= P (1).

For instance, if ϕ is a weak partition tautology, e.g., ϕ = σ ∨ ¬σ, then it
will never evaluate to 0 in any Π(U) where it is always assumed |U | ≥ 2. For
|U | = 2, there are only two partitions 0 and 1, so never evaluating to 0 means
always evaluating to 1. Since the Boolean operations in P(U) on subsets 0
(null set) and 1 (universe set) where |U | = 1, are isomorphic to those partition
operations Π(U) on the 0 (indiscrete partition) and 1 (discrete partition) where
|U | = 2, the Boolean operations would always evaluate to 1. This proves the
following proposition.

Proposition 4 All weak partition tautologies are subset tautologies. �

Corollary 2 All partition tautologies are subset tautologies. �

The converse is not true with Peirce’s law, ((σ ⇒ π)⇒ σ) ⇒ σ, accumula-

tion, σ ⇒ (π ⇒ (σ ∧ π)), and distributivity, ((π ∨ σ) ∧ (π ∨ τ))⇒ (π ∨ (σ ∧ τ)),
being examples of classical tautologies that are not partition tautologies.

There is no inclusion either way between partition tautologies and the valid

formulas of intuitionistic propositional logic. For instance, the accumulation

and distributivity formulas are valid in both classical and intuitionistic logic

but not in partition logic. The ("non-weak") law of excluded middle, σ ∨¬σ, is
a weak partition tautology, and the weak law of excluded middle, ¬σ ∨ ¬¬σ, is
a ("non-weak") partition tautology that is not intuitionistically valid.

In the dual algebra Π(U)op of equivalence relations, the bottom is the small-
est equivalence relation 0 = Δ = indit (1) containing only the diagonal pairs
(u, u). Dual to the notion of a partition tautology is the notion of an equivalence
relation contradiction which is a formula (with the atomic variables written with

the "d" superscript) that always evaluates to the bottom 0 of Π(U)op regardless
of the equivalence relations substituted for the atomic variables. Similarly, a

formula (with the atomic variables written with the "d" superscript) is a weak

equivalence relation contradiction if it never evaluates to the top 1 = U × U of

Π(U)op. We then have the following duality theorem.

Proposition 5 (Principle of duality for partition logic) Given a formula

ϕ, ϕ is a (weak) partition tautology iff ϕd is a (resp. weak) equivalence relation

contradiction.

Proof: Using the dual-isomorphism Π(U) → Π(U)op, a partition formula ϕ

evaluates to the top 1 of Π(U), i.e., dit (ϕ) = dit (1) = U × U − Δ when any

partitions are substituted for the atomic variables of ϕ iff ϕd evaluates to the
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bottom of Π(U)op, i.e., ϕd = dit (ϕ)
c
= indit (1) = 0, when any equivalence

relations are substituted for the atomic variables of ϕd. Similarly for the weak

notions. �
Using the reduction principle, restricting the above proposition and its re-

lated concepts to |U | = 2 would yield the usual Boolean duality principle (5, p.
107) that ϕ is a tautology iff ϕd is a contradiction (where the weak or "non-

weak" notions coincide in the Boolean case and where Π(2) ∼= P (1) ∼= Π(2)op).
In the Boolean case, if a formula ϕ is not a subset tautology, then there is

a non-empty universe set U and an assignment of subsets of U to the atomic

variables of ϕ so that ϕ does not evaluate to 1 (the universe set U). Such a
model showing that ϕ is not a tautology is called a countermodel for ϕ. In the

Boolean case, it suffices to restrict the universe set U to a one-element set. If

ϕ has a countermodel, then it has a countermodel using the two subsets of a

one-element set.

Analogous questions can be posed in partition logic. Is there a finite number

n so that if ϕ always evaluates to 1 for any partitions on U with |U | ≤ n, then
ϕ is a partition tautology? For instance, if ϕ is not a partition tautology and is

also not a Boolean tautology, then it suffices to take n = 2 since Π(2) ∼= P (1) so
a Boolean countermodel in P (1) also provides a partition countermodel in Π(2).
Hence the question is only open for formulas ϕ which are classical tautologies

but not partition tautologies. A standard device answers this question in the

negative.

Proposition 6 There is no fixed n such that if any ϕ always evaluates to 1 on
any universe U with |U | ≤ n, then ϕ is a partition tautology.

Proof: Consider any fixed n ≥ 2. We use the standard device of a "universal
disjunction of equations" (12, p. 316) to construct a formula ωn that evaluates

to 1 for any substitutions of partitions on U with |U | ≤ n and yet the formula is
not a partition tautology. Let Bn be the Bell number, the number of partitions

on a set U with |U | = n. Take the atomic variables to be πi for i = 0, 1, ..., Bn so
that there are Bn+1 atomic variables. Let ωn be the join of all the equivalences
between distinct atomic variables:

ωn = {πi ≡ πj : 0 ≤ i < j ≤ Bn}.

Then for any substitution of partitions on U where |U | ≤ n for the atomic

variables, there is, by the pigeonhole principle, some "disjunct" πi ≡ πj =
(πi ⇒ πj) ∧ (πj ⇒ πi) which has the same partition substituted for the two
variables so the disjunct evaluates to 1 and thus the join ωn evaluates to 1.
Thus ωn evaluates to 1 for any substitutions of partitions on any U where

|U | ≤ n. To see that ωn is not a partition tautology, take U = {0, 1, ..., Bn}
and let πi be the atomic partition which has i as a singleton and all the other

elements of U as a block, i.e., πi = {{0, 1, ..., i− 1, i+ 1, ..., Bn} , {i}}. Then
πi ⇒ πj = πj and πj ∧ πi = 0 so that ωn = 0 for that substitution and thus ωn
is not even a weak partition tautology. �
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For n = 2, B2 = 2 so that ω2 = (π0 ≡ π1)∨ (π0 ≡ π2)∨ (π1 ≡ π2). Thus ω2
is a Boolean tautology and hence so is any larger join ωn for n > 2.
There is no upper bound n so that if any formula has a countermodel, then

it has a countermodel with |U | ≤ n. However, it seems likely to the author that
if a partition formula has a countermodel, then it has a finite countermodel (i.e.,

the finite model property) but that question remains open.

12 Boolean subalgebras Bπ of Π(U) for any par-
tition π

In any Heyting algebra, the elements of the form ¬σ = σ ⇒ 0 for some σ are the
regular elements. They form a Boolean algebra but it is not a subalgebra since

the join of two regular elements is not necessarily regular (so one must take the

double negation of the join to have the Boolean algebra join). In the topological

interpretation, the regular elements of the Heyting algebra of open subsets are

the regular open sets (the regular open sets are obtained as the interior of the

closure of a subset) and the union of two regular open subsets is open but not

necessarily regular open.

Following the analogy, we define a partition as being π-regular if it can be

obtained as the implication σ ⇒ π for some partitions σ and π. Intuitively, a

π-regular partition is like π except that some blocks may have been discretized.

Recall that the implication partition σ ⇒ π can be interpreted as a Boolean

probe for containment between blocks. If B ⊆ C for some C ∈ σ, then the

probe finds containment and this is indicated by setting the π-block B locally

equal to 1, i.e., by discretizing B, and otherwise B stays locally like 0, i.e., stays
as a whole block (or "mini-blob") B. Hence we might intuitively think of any

π-regular partition σ ⇒ π as a function assigning either a 0 or 1 to each block
B ∈ π. Hence it would be no surprise if they formed a Boolean algebra.

Let

Bπ = {σ ⇒ π : for some σ ∈ Π(U)}

be the subset of Π(U) of π-regular partitions with the induced partial ordering of
refinement. The top is still 1 but the bottom is π = (1⇒ π) itself. The partition
operations of meet and join operate on the blocks of π-regular partitions in a

completely Boolean manner. Since every π-regular partition is like π except that

some blocks may be set locally to 1 while the others remain locally like 0, the
meet of two π-regular partitions, say σ ⇒ π and τ ⇒ π, will have no interaction

between distinct π-blocks. Each block of the meet will be "truth-functionally"

determined by whatever is assigned to B in the two constituents. If either of

the B’s remains locally equal to 0, then the whole block B survives in the meet,
i.e., B is locally equal to 0 in the meet (σ ⇒ π) ∧ (τ ⇒ π). But if both B’s
were discretized in the constituents, i.e., both are set locally to 1, then B is still
discretized in the meet, i.e., B set locally to 1. That local pattern of 0’s and 1’s
is precisely the truth table for the Boolean meet or conjunction.
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If πns is the set of non-singleton blocks of the partition π, then the π-regular

partitions are in one-to-one correspondence with the characteristic functions

χ : πns → 2 = {0, 1} where each π-regular partition σ ⇒ π is associated with

its local assignments. That is: χ (σ ⇒ π) : πns → 2 takes B ∈ πns to 1 if B is

discretized in σ ⇒ π, and otherwise to 0.
The argument just given shows that the meet of two π-regular partitions would

correspond to the Boolean conjunction of the characteristic functions of local

assignments given by the truth table for conjunction:

χ ((σ ⇒ π) ∧ (τ ⇒ π)) = χ (σ ⇒ π) ∧ χ (τ ⇒ π).

In a similar manner, the blocks in the join of two π-regular partitions, σ ⇒ π

and τ ⇒ π, would be the intersections of what is in the B-slots. If B was

discretized (set locally to 1) in either of the constituents, then B would be

discretized in the join (τ ⇒ π) ∨ (σ ⇒ π) =
π¬τ ∨ π¬σ (since the intersection of

a discretized B with a whole B is still the discretized B). But if both B’s were

still whole (set locally to 0) then their intersection would still be the whole block
B. This pattern of 0’s and 1’s is precisely the truth table for the Boolean join
or disjunction. In terms of the characteristic functions of local assignments:

χ ((τ ⇒ π) ∨ (σ ⇒ π)) = χ (τ ⇒ π) ∨ χ (σ ⇒ π).

For the implication (σ ⇒ π) ⇒ (τ ⇒ π) between two π-regular partitions,

the result would have B remaining whole, i.e., being set to 0, only in the case
where B was whole in the consequent partition τ ⇒ π but discretized in the

antecedent partition σ ⇒ π; otherwise B is discretized, i.e., set to 1. This
pattern of 0’s and 1’s is precisely the truth table for the ordinary Boolean
implication. In terms of the characteristic functions:

χ ((σ ⇒ π)⇒ (τ ⇒ π)) = χ (σ ⇒ π)⇒ χ (τ ⇒ π).

To show that Bπ is a Boolean algebra, we must define negation inside of
Bπ. The negation of a π-regular element σ ⇒ π would be its implication to the

bottom element which in Bπ is π itself. Thus the negation of σ ⇒ π =
π¬σ is

just the iterated implication: (σ ⇒ π)⇒ π =
π¬π¬σ, the double π-negation. It is

easily seen that this just "flips" the B-slots to the opposite state. The B’s set

(locally) to 1 in σ ⇒ π are flipped back to (locally) 0 in (σ ⇒ π)⇒ π, and the

B’s left whole in σ ⇒ π are flipped to 1 or discretized in (σ ⇒ π) ⇒ π. This

pattern of 0’s and 1’s is just the truth table for the Boolean negation. In terms
of the characteristic functions, χ ((σ ⇒ π)⇒ π) = ¬χ (σ ⇒ π).

Thus it is easily seen that the set of π-regular elements Bπ is a Boolean alge-
bra, called the Boolean core of the upper interval [π,1] = {τ ∈ Π(U) : π 
 τ 
 1},
since it is isomorphic to the powerset Boolean algebra P (πns) of the set πns
(taking the subsets of πns as being represented by their characteristic functions).

Proposition 7 Bπ ∼= P (πns). �
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Unlike the case of the Boolean algebra of regular elements in a Heyting

algebra, the Boolean core Bπ is a subalgebra of the partition algebra Π(U) for
the "Boolean" operations of join, meet, and implication (N.B. not the nand

operation), i.e., the Boolean operations in Bπ are the corresponding partition
operations from the partition algebra Π(U). The BA Bπ even has the same top
1 as the partition algebra; only the bottoms are different, i.e., π in Bπ and 0 in
Π(U).

Any powerset BA P(U) of a nonempty U has a partition representation

as a Boolean core on the coproduct U U , which is the dual to the subset

representation of Π(U) as the lattice of open subsets O (U × U) of the product
U×U . To see this, we might explore some more of the category-theoretic duality
between subsets and partitions. Any partition π on U can be expressed as a

surjection U → π defined by u �−→ [u]π, where each element is taken to its
block. In a dual manner, each subset S ⊆ U can be expressed as an injection

S → U where each element of S is carried to itself as an element of U . The dual

categorical constructions of the pullback and pushout can be applied to these

two maps. The pullback of U → π with itself:

indit (π) → U

↓ ↓
U → π

Pullback for equivalence relation indit (π)

yields the indit set indit (π) as a subset of the product U × U . The pushout of
S → U with itself:

S → U

↓ ↓
U → Δ (S)

Pushout for subset corelation Δ (S)

yields the partition Δ (S) on the coproduct U U whose only non-singleton

blocks are the pairs {u, u∗} where u ∈ S and where u∗ is the copy of u in
the disjoint union. The partitions on U U of the form Δ (S) for some subset
S ⊆ U might be called the subset corelations. If S = U , then Δ (U) = Δ is the

subset corelation on U U whose only blocks are the pairs {u, u∗} for u ∈ U .
Taking Δ as the fixed partition π in Π(U U), the Boolean core BΔ, or to make
the universe explicit, BΔ (U U), consists precisely of the subset corelations.
To model the powerset BA P(U), we associate each subset S ⊆ U with the

partition Δ (Sc) where for each u ∈ S, the block {u, u∗} of Δ is discretized.

Thus Δ (Sc) acts like the characteristic function for S by locally setting the
blocks {u, u∗} ∈ Δ to 1 if u ∈ S and to 0 if u �∈ S. The Δ-negation transforms
Δ (Sc) to Δ (S), i.e.,

Δ¬Δ (Sc) = Δ (Sc) ⇒ Δ = Δ (S), and vice-versa. The
assignment S �−→ Δ (Sc) gives an isomorphism of Boolean algebras:

P(U) ∼= BΔ (U U) .

Representation of the Boolean algebra of subsets P(U)
as the BA of subset corelations BΔ (U U)
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The dual constructions of the pullback and pushout associate the binary

relation indit (π), i.e., a subset of the product U × U with a partition π on U,

and the binary corelation Δ (S), i.e., a partition on the coproduct U U , with a

subset S of U . Taking the complements of each gives the subset representation

Π(U) ∼= O(U×U) of the partition algebra as well as the partition representation
P(U) ∼= BΔ (U U) of the subset BA. That is, the complement of indit (π) is
the partition relation, dit (π), and the partition algebra Π(U) is represented
by the algebra O(U × U) of partition relations, dit (π), of the product U × U .
The complement of Δ (S) is the subset corelation, Δ (Sc) =

Δ¬Δ (S), and the
subset BA P(U) is represented by the Boolean algebra BΔ (U U) of subset
corelations, Δ (Sc), on the coproduct U U .

13 The Boolean Cores and Partition Tautologies

Since the Boolean core Bπ = Bπ (U) of the interval [π,1] and the whole parti-
tion algebra Π(U) have the same top 1 and the same operations of join, meet,
and implication, we immediately have a way to transform any classical tautol-

ogy into a partition tautology. But we must be careful about the connectives

used in the classical tautology. The partition operations of the join, meet,

and implication are the same as the Boolean operations in the Boolean core

Bπ. But the negation in that BA is not the partition negation ¬ but the π-

negation
π¬. Similarly, the nand operation in the Boolean algebra Bπ is not

the partition nand | but the π-nand defined by the ternary partition operation:

dit (σ |π τ) = int [indit (σ) ∪ indit (τ) ∪ dit (π)] which agrees with the usual nand
when π = 0. But the nand operation in the BA Bπ can be defined in terms of
the other BA operations so we may assume that the classical tautology is writ-

ten without a nand operation |. Similarly we may assume that negations ¬σ are
written as σ ⇒ 0 so that no negation sign ¬ occur in the partition tautology.
Given any propositional formula using the connectives of ∨, ∧, and ⇒ and

the constants of 0 and 1, its single π-negation transform is obtained by replacing

each atomic variable σ by its single π-negation
π¬σ = σ ⇒ π and by replacing

the constant 0 by π. The binary operations ∨, ∧, and⇒ as well as the constant

1 all remain the same. For instance, the single π-negation transform of the

excluded middle formula σ ∨¬σ = σ ∨ (σ ⇒ 0) is the partition tautology of the
weak excluded middle for π-negation:

(σ ⇒ π) ∨ ((σ ⇒ π)⇒ π) =
π¬σ ∨ π¬π¬σ.

A formula that is a classical tautology will always evaluate to 1 in a Boolean
algebra regardless of what elements of the Boolean algebra are assigned to the

atomic variables. The single π-negation transformation maps any formula into

a formula for an element of the Boolean core Bπ. If the original formula with
the atomic variables σ, τ ,... was a classical tautology, then the single π-negation

transform of the formula will evaluate to 1 in Bπ for any partitions (π-regular
or not) assigned to the original atomic variables σ, τ , ... with π fixed. But this
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is true for any π so the single π-negation transform of any classical tautology

will evaluate to 1 for any partitions assigned to the atomic variables π, σ, τ ,...

. Thus it is a partition tautology.

Proposition 8 The single π-negation transform of any classical tautology is a

partition tautology. �

For example, since the law of excluded middle, σ ∨ ¬σ, is a classical tautol-
ogy, its single π-negation transform,

π¬σ ∨ π¬π¬σ, is a partition tautology. This
particular example is also intuitively obvious since the blocks B that were not

discretized in
π¬σ are discretized in the double π-negation

π¬π¬σ so all the non-
singleton blocks are discretized in

π¬σ ∨ π¬π¬σ (and the singleton blocks were

already "discretized") so it is a partition tautology. This formula is also an ex-

ample of a partition tautology that is not a valid formula of intuitionistic logic

(either for π = 0 or in general).
We can similarly define the double π-negation transform of a formula as the

formula where each atomic variable σ is replaced by its double π-negation
π¬π¬σ

and by replacing the constant 0 by π. By the same argument, the double π-

negation transform of any classical tautology is a partition tautology so there

are at least two ways to transform any classical subset tautology into a partition

tautology.

Proposition 9 The double π-negation transform of any classical tautology is a

partition tautology. �

The double π-negation transform of excluded middle, σ∨¬σ, is the partition
tautology

π¬π¬σ ∨ π¬π¬π¬σ. Since the π-negation has the effect of flipping the B’s

back and forth being locally equal to 0 or 1, it is clear that
π¬σ = π¬π¬π¬σ so the

formula
π¬π¬σ ∨ π¬π¬π¬σ is equivalent to π¬π¬σ ∨ π¬σ.

We might mention the partition analogue of the Gödel transform (11) that

produces an intuitionistic validity from each classical tautology. For any classical

formula ϕ in the language of ∨, ∧, ⇒, and | as well as 0 and 1, we define the
Gödel π-transform ϕg of the formula as follows:

• If ϕ is atomic, then ϕg = ϕ ∨ π;

• If ϕ = 0, then ϕg = π, and if ϕ = 1, then ϕg = 1;

• If ϕ = σ ∨ τ , then ϕg = σg ∨ τg;

• If ϕ = σ ⇒ τ , then ϕg = σ ⇒ τg;

• if ϕ = σ ∧ τ , then ϕg =
π¬π¬σg ∧ π¬π¬τg; and

• if ϕ = σ | τ , then ϕg =
π¬π¬σg | π¬π¬τg.

Then it can be shown that ϕg is classically equivalent to ϕ ∨ π, as well as

the following:
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Proposition 10 ϕ is a classical tautology iff
π¬π¬ϕg is a partition tautology.

Thus the Gödel π-transform of excluded middle ϕ = σ ∨ (σ ⇒ 0) is ϕg =

(σ ∨ π) ∨ (σ ⇒ π) and
π¬π¬ [(σ ∨ π) ∨ (σ ⇒ π)] is a partition tautology. Note

that the single π-negation transform, the double π-negation transform, and the

Gödel π-transform all gave different formulas starting with the classical excluded

middle tautology.

Moreover, it might be noted that in the case of π = 0, the negation ¬σ =
σ ⇒ 0 is unchanged and, for atomic variables ϕ, ϕ ∨ 0 = ϕ so atomic variables

can be left unchanged in the Gödel 0-transform. Hence any classical formula
ϕ expressed in the language of ¬, ∨, and ⇒ would be unchanged by the Gödel

0-transform.

Corollary 3 For any formula ϕ in the language of ¬, ∨, and⇒, ϕ is a classical
tautology iff ϕ is a weak partition tautology iff ¬¬ϕ is a partition tautology.

The Gödel 0-transform of excluded middle σ ∨¬σ is the same formula, σ ∨¬σ,
which is a weak partition tautology, and ¬¬ (σ ∨ ¬σ) is a partition tautology.
Returning to the Boolean core Bπ of the upper interval [π,1] of Π(U), the

universe sets U are assumed to have two or more elements to avoid the degen-

erate case of a singleton universe where 0 = 1, i.e., the indiscrete and discrete
partitions are the same. But in partitions π, singleton blocks cannot be avoided

and the same problem emerges locally. For a singleton block B, being locally

like 0 (i.e., remaining whole) and being locally like 1 (being discretized) are
the same (which is why the universe U is always assumed to have two or more

elements). Hence they play no role in the Boolean algebras Bπ. We have seen
another Boolean algebra B (π) associated with every partition π on a set U ,

where B (π) is the complete subalgebra of P(U) generated by the blocks of π.
Since each element of B (π) is the union of a set of blocks of π, it is isomorphic

to the powerset BA of the set of blocks that make up π, i.e., B (π) ∼= P (π).
Since Bπ ∼= P (πns) is isomorphic to the powerset BA of the set of non-singleton
blocks of π, and since the introduction of each singleton {u} will have the effect
of doubling the elements of P (πns) (with or without the singleton), we can
reach P (π) from P (πns) by taking the direct product with the two element BA
2 for each singleton in π. Thus we have the following result which relates the

two BAs associated with each partition π.

Proposition 11 B (π) ∼= Bπ ×
{u}∈π

2. �

Partition lattices are the "standard" examples of non-distributive lattices,

but one can do much better than simply say a partition lattice is non-distributive.

The Boolean core of each interval [π,1] is, of course, distributive since it is a
Boolean algebra using the meet and join operations of the partition lattice.

Moreover, each partition in the interval distributes across the Boolean core.

To see this, note that one of these distributivity results is essentially due to

Oystein Ore. Ore (20) did much of the path-breaking work on partitions. He
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defined two partitions as being associable if each block in their meet is a block

in one (or both) of the partitions.11 Although Ore did not consider π-regular

partitions, any two π-regular partitions are associable. Ore showed that any

partition joined with the meet of two associable partitions will distribute across

the meet. Hence we have the following result for any partitions ϕ, σ, τ , and π.

Lemma 8 (Ore’s associability theorem) ϕ∨ π¬σ ∧ π¬τ = ϕ ∨ π¬σ ∧ ϕ ∨ π¬τ .

Ore’s theorem does not assume that ϕ is in the interval [π,1] but we can
interchange join and meet if we restrict ϕ to the interval.

Lemma 9 ("Dual" to Ore’s theorem) If ϕ ∈ [π,1], then ϕ ∧ π¬σ ∨ π¬τ =

ϕ ∧ π¬σ ∨ ϕ ∧ π¬τ .

Proposition 12 (Distributivity over the Boolean core) If π 
 ϕ,

ϕ ∨ π¬σ ∧ π¬τ = ϕ ∨ π¬σ ∧ ϕ ∨ π¬τ

ϕ ∧ π¬σ ∨ π¬τ = ϕ ∧ π¬σ ∨ ϕ ∧ π¬τ .

14 From Partition Logic to Information Theory

Conceptually, the "next step" beyond subset logic was finite probability theory.

Historically, Boole presented finite probability theory as the next step beyond

subset logic in his Laws of Thought book. The universe U was the finite num-

ber of possible outcomes and the subsets were events. Quoting Poisson, Boole

defined "the measure of the probability of an event [as] the ratio of the number

of cases favourable to that event, to the total number of cases favourable and

unfavourable, and all equally possible." (4, p. 253)

Hence one obvious next step beyond partition logic is to make the analogous

conceptual moves and to see what theory emerges. The theory that emerges is

a logical version of information theory.

For a finite U , the finite (Laplacian) probability p(S) of a subset ("event")
is the ratio: p(S) = |S| / |U |. Analogously, the finite logical entropy (or logical
information content) h (π) of a partition π is the relative size of its dit set:

h (π) = |dit (σ)| / |U × U |. If U is an urn with each "ball" in the urn being

equiprobable, then p(S) is the probability of an element randomly drawn from
the urn being in S, and h (π) is the probability that a pair of elements randomly
drawn from the urn (with replacement) is a distinction of π.

Let π = {B1, ..., Bn} with pi = |Bi| / |U | being the probability of drawing an
element of the block Bi. The number of indistinctions (non-distinctions) of π

11Ore actually dealt with the join of equivalence relations but we are using the partition

presentation.
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is |indit (π)| = Σi |Bi|2 so the number of distinctions is |dit (π)| = |U |2−Σi |Bi|2
and thus since Σipi = 1, the logical entropy of π is: h (π) = |U |2 − Σi |Bi|2 / |U |2 =
1− Σip2i = (Σipi) (Σipi)− Σip2i = Σipi (1− pi), so that:

Logical entropy: h (π) = Σipi (1− pi) .

In Shannon’s information theory, the entropy H (π) of the partition π (with

the same probabilities assigned to the blocks) is:

Shannon entropy: H (π) = Σipi log (1/pi)

where the log is base 2.
Each entropy can be seen as the probabilistic average of the "block entropies"

h (Bi) = 1 − pi and H (Bi) = log (1/pi). To interpret the block entropies,

consider a special case where pi = 1/2
n and every block is the same so there are

2n equal blocks like Bi in the partition. The logical entropy of that special equal-
block partition, Σipi (1− pi) = (2n) pi (1− pi) = (2n) (1/2n) (1− pi) = 1 − pi,
is the:

Logical block entropy: h(Bi) = 1− pi .

Instead of directly counting the distinctions, we could take the number of

binary equal-blocked partitions it takes to distinguish all the 2n blocks in that
same partition. As in the game of "twenty questions," if there is a search for an

unknown designated block, then each such binary question reduces the number

of blocks by a power of 2 so the minimum number of binary partitions it takes

to distinguish all the 2n blocks (and find the hidden block no matter where it
was) is n = log (2n) = log (1/pi), which is the:

Shannon block entropy: H (Bi) = log (1/pi) .

To precisely relate the block entropies, we solve each for pi which is then

eliminated to obtain:

h (B) = 1− 1/2H(B) .

The interpretation of the Shannon block entropy is then extended by analogy

to the general case where 1/pi is not a power of 2 so that the Shannon entropy
H (π) = ΣipiH (Bi) is then interpreted as the average number of binary parti-
tions needed to make all the distinctions between the blocks of π–whereas the

logical entropy is the normalized count h (π) = Σipih (Bi) of the distinctions of
the partition π.

The two notions of entropy boil down to two different ways to count the

distinctions of a partition. Thus the concept of a distinction from partition

logic provides a logico-conceptual basis for the notion of entropy or information

content in information theory.12

12For further development of logical information theory, see Ellerman (7).
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15 Concluding remarks

In conclusion, we might remark on two points: the ambiguity in the contrast of

classical and non-classical logic, and the reasons why partition logic has been so

late in development.

The best known "non-classical" logic is intuitionistic logic. And yet under

the topological interpretation, it is the logic of open subsets when the universe

set U is endowed with a topology and ordinary subset logic is the special case

when the topology is discrete. In many respects, partition logic is even further

removed from classical logic since it is not even distributive. But partition logic,

like classical subset logic, starts with an unstructured universe set U (two or

more elements). The subsets of the powerset Boolean algebra P(U) and the
partitions of the partition algebra Π(U) are both defined simply on the basis of
the set U with no additional structure Thus subset logic and partition logic are

at the same mathematical level, and are based on the category-theoretic dual

concepts of subsets and partitions. It would make little conceptual sense to say

that the notion of a subset of a set was "classical" while the dual notion of a

partition on a set was "non-classical." From that viewpoint, partition logic is

non-classical only in a historical sense rather than in some conceptual sense.

Finally, we might speculate about why it has taken so long for partition logic

to be developed. The subset interpretation of classical logic was there from the

beginning in Boole and DeMorgan and in fact antedates the propositional inter-

pretation. And the duality between subsets or subobjects (equivalence classes

of monomorphisms) and partitions or quotient objects (equivalence classes of

epimorphisms) is at least as old as category theory.

There seems to be a cluster of reasons for the retarded development of par-

tition logic. In spite of the precedence of the subset interpretation, it is in fact

routinely ignored in most presentations of logic. From the mathematical view-

point, the propositional interpretation of the atomic variables in subset logic

is isomorphic to the subsets-of-1 interpretation which, remarkably enough, is
sufficient to determine all subset tautologies. The "propositional" special case

has been so important in applications (e.g., model theory for quantified proposi-

tions) that the general subset interpretation has been rather overshadowed and

neglected. Since propositions and partitions are not "dual," the idea of a dual

partition logic has not arisen in the conventional treatment of logic. It is the

general subset interpretation—together with the well-known category-theoretic

duality of subsets and partitions—that calls for a dual logic of partitions.

From the partition side, one reason for the late development of partition logic

is simply that the "lattice of partitions" was traditionally defined "upside down"

as (isomorphic to) the lattice of equivalence relations rather than its opposite.

But the element-distinction duality makes it clear that the lattice of partitions

should use the partial ordering given by the set of distinctions (dit set) of a

partition rather than its set of indistinctions (just as the lattice of subsets uses

the partial ordering given by the set of elements of a subset rather than its set of

non-elements). This also allowed the direct comparison of formulas in classical,

intuitionistic, and partition logic.
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Lastly, at least to our knowledge, the implication, nand, and other new

binary operations on partitions (aside from the join and meet) have not been

previously studied. In a recent paper in a commemorative volume for Gian-Carlo

Rota, the three authors remark that in spite of the importance of equivalence

relations, only the operations of join and meet have been studied.

Equivalence relations are so ubiquitous in everyday life that we often

forget about their proactive existence. Much is still unknown about

equivalence relations. Were this situation remedied, the theory of

equivalence relations could initiate a chain reaction generating new

insights and discoveries in many fields dependent upon it.

This paper springs from a simple acknowledgement: the only opera-

tions on the family of equivalence relations fully studied, understood

and deployed are the binary join ∨ and meet ∧ operations. (3, p.

445)

Yet the new operations, particularly the implication, are crucial to the whole

development. The only partition tautologies with only lattice operations are

trivialities such as 1 and 1 ∨ π. Without the non-lattice operations, one can

always study identities in the partition lattice such as π 
 π ∨ σ (which corre-

sponds to the tautology π ⇒ π ∨ σ). But it has been shown (24) that partition

lattices are so versatile that any formula in the language of lattices (i.e., without

the implication or other non-lattice operations) that is an identity in all par-

tition lattices (or lattices of equivalence relations) is actually a general lattice-

theoretic identity. Hence the logic taking models in all partition algebras Π (U)
only became interesting by moving beyond the lattice operations on partitions.

Throughout his career, Gian-Carlo Rota emphasized the analogies between

the Boolean lattice of subsets of a set and the lattice of equivalence relations on a

set. Partition logic, with the heavy emphasis on the analogies with subset logic,

should be seen as a continuation of that Rota program. The closest earlier work

in the vein of partition logic was indeed by Rota and colleagues [(9), (13)], but

it used the "upside down" lattice of equivalence relations and did not define the

partition implication (which would be the difference operation on equivalence

relations) or other non-lattice operations. It was restricted to the important

class of commuting equivalence relations (6) where identities hold which are not

general lattice-theoretic identities.

In sum, the recasting of "propositional" logic as subset logic (which then en-

gaged the category-theoretic duality between subsets and partitions), the turn-

ing of the lattice of partitions "right side up," and the introduction of the im-

plication and other non-lattice partition operations were all important for the

development of partition logic.
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