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Abstract

Since the pioneering work of Birkhoff and von Neumann, quantum logic has been interpreted
as the logic of (closed) subspaces of a Hilbert space. There is a progression from the usual
Boolean logic of subsets to the “quantum logic”of subspaces of a general vector space—which is
then specialized to the closed subspaces of a Hilbert space. But there is a “dual” progression.
The set notion of a partition (or quotient set or equivalence relation) is dual (in a category-
theoretic sense) to the notion of a subset. Hence the Boolean logic of subsets has a dual logic
of partitions. Then the dual progression is from that logic of set partitions to the quantum
logic of direct-sum decompositions (i.e., the vector space version of a set partition) of a general
vector space—which can then be specialized to the direct-sum decompositions of a Hilbert space.
This allows the quantum logic of direct-sum decompositions to express measurement by any
self-adjoint operators. The quantum logic of direct-sum decompositions is dual to the usual
quantum logic of subspaces in the same sense that the logic of partitions is dual to the usual
Boolean logic of subsets.
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1 Introduction

This paper is an introduction to quantum logic based on direct-sum decompositions rather than
on subspaces. Intuitively, a direct-sum decomposition (DSD) of a vector space V over a base field
K is a set of (nonzero) subspaces {Vi}i∈I that are disjoint (i.e., their pair-wise intersections are
the zero space {0}) and that span the space such that each vector v ∈ V has a unique expression
v =

∑
i∈I vi with each vi ∈ Vi (with only a finite number of vi’s nonzero). For introductory purposes,

we assume V is finite dimensional. Each self-adjoint operator on a Hilbert space, and, in general, each
diagonalizable operator, has eigenspaces that form a direct-sum decomposition of the vector space.
But the notion of a direct-sum decomposition makes sense over arbitrary vector spaces independently
of an operator.

For instance, in the pedagogical model of “quantum mechanics over sets”or QM/Sets [6], the
vector space is Zn2 so the only diagonalizable operators are projection operators P̂ : Zn2 → Zn2 . But
given a set U = {v1, ..., vn} of basis vectors for Zn2 , any real-valued function f : U → R determines
a DSD

{
℘
(
f−1 (r)

)}
r∈f(U)

of Zn2 (where ℘() is the power-set and f (U) is the image or “spectrum”
of “eigenvalues”of the numerical attribute f). Thus the concept of a direct-sum decomposition of a
vector space allows one to capture many of the relevant properties of such a real-valued “observable”
even though it does not take values in the base field (which is only Z2 in QM/Sets). It is only
as the base field is increased up to the complex numbers that all real-valued observables can be
“internalized”as self-adjoint operators taking values in the base field.

By way of background, “logic” is usually seen as being about propositions, and Birkhoff and
von Neumann [2] kept that focus in their development of quantum logic. But going “back to Boole,”
Boolean logic was the logic of subsets of a universe set—with the propositional case being a very
important special case. A Boolean tautology was a formula such that no matter what subsets of the
universe set were substituted for the variables, the whole formula evaluated to the universe set. It
was then a theorem, not a definition as in most modern logic texts, that it was suffi cient for validity
to consider only the “propositional” special case (truth-table validity) where the universe was, in
effect, a one element set (with subsets symbolized as 0 and 1 or F and T ). One advantage in going
“back to Boole”and considering the logic of subsets (instead of only the propositional special case)
is that the concept of a subset has a (category-theoretic) dual in the concept of a quotient set,
equivalence relation, or partition—and hence the development of the logic of partitions ([4]; [5]).1

“Subsets of a universe set”linearize to “subspaces of a vector space”and thus the usual quantum
logic can also be seen as being about subspaces (e.g., the closed subspaces of a Hilbert space)—or the
associated propositions about a vector being in the subspaces (just as the variables in the Boolean
logic of subsets can also be interpreted in the usual way about propositions, e.g., that a generic
element is in a subset). Dually, “partitions on a universe set”linearize to “direct-sum decompositions
on a vector space”(which can then be specialized to a Hilbert space). The focus of this paper is that
vector space version of a partition, namely a direct-sum decomposition (N.B.: not a quotient space).
The dual of a partial Boolean algebra (pBA) [9] is then a “partial partition algebra” of DSDs on
an arbitrary vector space (our topic here)—which can then be specialized to a Hilbert space for the
strictly quantum mechanical interpretation (or specialized to a vector space over Z2 for pedagogical
purposes).

1As Gian-Carlo Rota put it: “categorically speaking, the Boolean σ-algebra of events and the lattice Σ of all
Boolean σ-subalgebras are dual notions" [14, p. 65] using the characterization of partitions by Boolean subalgbras
[11, p. 43] that goes back to Ore [13]. The category theorist, F. William Lawvere, called subobjects “parts”and then
noted that: “The dual notion (obtained by reversing the arrows) of ‘part’is the notion of partition.” [12, p. 85]
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Figure 1: Progressions from sets to vector spaces using the dual concepts of subset and partition.

There is a natural partial order (“refinement” as with partitions on sets) on the DSDs of a
vector space V and there is a minimum element 0 = {V }, the indiscrete DSD (nicknamed the
“blob”) which consists of the whole space V . A DSD is atomic in the partial order if there is no
DSD between it and the minimum DSD 0, and the atomic DSDs are the binary ones consisting of
just two nontrivial subspaces. Each atomic DSD determines a pair of projection operators, and the
indiscrete DSD also determines a pair of projection operators, namely the identity operator Î and
the zero operator Î− Î = 0̂. Conversely, each projection operator P̂ : V → V (other than the identity
or zero operator) determines an atomic DSD consisting of the image of P̂ and the image of Î − P̂ ,
while the identity and zero operators determine the indiscrete DSD.

To the extent that the usual quantum logic of subspaces can be viewed as representing mea-
surement, it is the measurement of projection operators P̂ and Î − P̂ whose images form an atomic
DSD. The quantum logic of DSDs is the more natural setting to represent measurement of all self-
adjoint operators—since measurement in any case involves DSDs, atomic or otherwise. But it would
be a misperception to see the quantum logic of DSDs as a “generalization”of the quantum logic of
subspaces because self-adjoint operators generalize projection operators on Hilbert spaces. Instead,
the two quantum logics should be seen as dual formations, i.e., as the two dual vector-space or
“linearized”versions of the dual logics of the Boolean logic of subsets and the logic of set partitions
as in Figure 1. Symbolically,

Logic of subsets : Logic of partitions :: QL of subspaces : QL of DSDs.

2 The partial partition algebra of direct-sum decompositions

Definition 1 Let V be a finite dimensional vector space over a field K. A direct sum decomposition
(DSD) of V is a set of subspaces {Vi}i∈I such that Vi ∩

∑
i′ 6=i Vi′ = {0} (the zero space) for i ∈ I

and which span the space, i.e., ⊕i∈IVi = V .

Let DSD (V ) be the set of DSDs of V . To fix notation, let π = {Vi}i∈I , σ = {Wj}j∈J , and
τ = {Xk}k∈K be three arbitrary DSDs of V .

2.1 Compatibility of DSDs

In the algebra of partitions on a fixed set, the operations of join, meet, and implication are always
defined, but in the context of “vector space partitions,” i.e., DSDs, we need to define a notion of
compatibility. Intuitively, for vector spaces:

diagonalizable operator = DSD + scalars (eigenvalues) associated with subspaces.

Since the quantum logic of DSDs abstracts away from the specific eigenvalues, we need the DSD-
version of the commutativity of operators.
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Given two DSDs π = {Vi}i∈I and σ = {Wj}j∈J , their proto-join is the set of non-zero subspaces
{Vi ∩Wj |Vi ∩Wj 6= {0}}(i,j)∈I×J (which do not necessarily form a DSD). If the two DSDs π and σ
were defined as the eigenspace DSDs of two diagonalizable operators, then the space spanned by the
proto-join would be the space spanned by the simultaneous eigenvectors of the two operators, and
that space is the kernel of the commutator of the two operators [6]. If the two operators commuted,
then their commutator is the zero operator whose kernel is the whole space so the proto-join would
span the whole space. Hence the natural definition of compatibility, without any mention of operators,
is:

Definition 2 π and σ are compatible, written π ↔ σ, if the proto-join spans the whole space V
(and is thus a DSD).

The indiscrete DSD 0 = {V } (the “blob”) is compatible with all DSDs, i.e., 0↔ π for any π.

2.2 The join of compatible DSDs

When two DSDs π and σ are compatible, π ↔ σ, their proto-join is the join:

π ∨ σ = {Vi ∩Wj |Vi ∩Wj 6= {0}}(i,j)∈I×J

Join of DSDs when π ↔ σ.

The binary relation of compatibility on DSDs is reflexive and symmetric. The indiscrete DSD 0 =
{V } acts as the identity for the join: 0 ∨ π = π for any DSD π.

In a set of mutually compatible DSDs, we need to show that the join operation preserves com-
patibility. If π ↔ σ, it is trivial that (π ∨ σ) ↔ π and (π ∨ σ) ↔ σ, but for a third DSD τ with
π ↔ τ and σ ↔ τ , does (π ∨ σ)↔ τ?

Lemma 3 Let the DSDs π = {Vi}i∈I and σ = {Wj}j∈J be compatible so that π∨σ is a DSD and thus
any v ∈ V has a unique expression v =

∑
(i,j)∈I×J vij where vij ∈ Vi ∩Wj. Let vi =

∑
j∈J vij ∈ Vi

so that v =
∑
i∈I vi. If v ∈ Vi, then v = vi.

Proof. Let v̂i =
∑
i′∈I,i′ 6=i vi′ so that v = vi + v̂i. Hence if v ∈ Vi, then v − vi = v̂i ∈ Vi. Since

v̂i ∈ ⊕i′∈I,i′ 6=iVi′ , v̂i ∈ Vi ∩ ⊕i′∈I,i′ 6=iVi′ so v̂i = 0 since π = {Vi}i∈I is a DSD which implies
Vi ∩ ⊕i′∈I,i′ 6=iVi′ = {0}.

Theorem 4 Given three DSDs, π = {Vi}i∈I , σ = {Wj}j∈J , and τ = {Xk}k∈K that are mutually
compatible, i.e., π ↔ σ, π ↔ τ , and σ ↔ τ , then (π ∨ σ)↔ τ .

Proof. We need to prove π ∨ σ ↔ τ = {Xk}k∈K , i.e., that ⊕(i,j,k)∈I×J×K (Vi ∩Wj ∩Xk) = V .
Consider any nonzero v ∈ V where since π ↔ σ, there are vij ∈ Vi ∩ Wj for each i ∈ I and
j ∈ J such that v =

∑
(i,j)∈I×J vij . Consider any such nonzero vij . Now since π ↔ τ , there are

vij,i′k ∈ Vi′ ∩Xk for each i′ ∈ I and k ∈ K such that vij =
∑

(i′,k)∈I×K vij,i′k. But since vij ∈ Vi,
by the Lemma, only vij,ik is nonzero, so vij =

∑
k∈K vij,ik. Symmetrically, since σ ↔ τ , there are

vij,j′k ∈Wj′ ∩Xk for each j′ ∈ J and k ∈ K such that vij =
∑

(j′,k)∈J×K vij,j′k. But since vij ∈Wj ,
by the Lemma, only vij,jk is nonzero, so vij =

∑
k∈K vij,jk. Now since {Xk}k∈K is a DSD, there is a

unique expression for vij =
∑
k∈K vijk where vijk ∈ Xk. Hence by uniqueness: vijk = vij,ik = vij,jk.

But since vij,ik ∈ Vi and vij,jk ∈ Wj and vij,ik = vijk = vij,jk, we have vijk ∈ Vi ∩ Wj ∩ Xk.
Thus v =

∑
(i,j)∈I×J vij =

∑
(i,j)∈I×J

∑
k∈K vijk =

∑
(i,j,k)∈I×J×K vijk. Since v was arbitrary,

⊕(i,j,k)∈I×J×K (Vi ∩Wj ∩Xk) = V .
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2.3 The meet of two DSDs

Definition 5 For any two DSDs π = {Vi}i∈I and σ = {Wj}j∈J , the meet π ∧ σ is the DSD whose
subspaces are direct sums of subspaces from π and the direct sum of subspaces from σ and are minimal
subspaces in that regard. That is, {Yl}l∈L is the meet if there is a set partition {Il}l∈L on I and a
set partition {Jl}l∈L on J such that for all l ∈ L: Yl = ⊕i∈IlVi = ⊕j∈JlWj and that holds for no
more refined partitions on the index sets.

Note that for the blob 0 = {V }, V = ⊕i∈IVi = ⊕j∈JWj using the blob set partitions {I} and
{J}, but in general the meet will use more refined partitions on I and J . If π ↔ τ and σ ↔ τ , then
it is trivial that (π ∧ σ)↔ τ .

As in the old movie of the same name, “The Blob”absorbs everything it meets:

0 ∧ π = 0.

2.4 The refinement partial order on DSDs

The partial order on the DSDs of V is defined as for set partitions but with subspaces replacing
subsets:

Definition 6 π refines σ, written σ � π, if for every Vi ∈ π, ∃Wj ∈ σ such that Vi ⊆Wj.

It is clear that refinement is reflexive and transitive. For anti-symmetry, suppose σ � π and π � σ.
Fixing Vi ∈ π there is Wj with Vi ⊆ Wj , and then for that Wj , there is a Vi′ such that Wj ⊆ Vi′ .
Hence Vi ∩Vi′ = Vi so Vi = Vi′ = Wj (since if Vi 6= Vi′ , then Vi ∩Vi′ = {0}) . And by symmetry, any
Wj′ must equal the Vi′ where Wj′ ⊆ Vi′ so π = σ.

Lemma 7 If σ � π, then each Wj = ⊕{Vi : Vi ⊆Wj}.

Proof. Consider any nonzero vector v ∈Wj . Since π is a DSD, v =
∑
i∈I vi where vi ∈ Vi so we can

divide v into two parts: v =
∑
Vi⊆Wj

vi+
∑
Vi′*Wj

vi′ . Now σ � π, so for each vi′ ∈ Vi′ *Wj , there is
aWj′ such that vi′ ∈ Vi′ ⊆Wj′ so

∑
Vi′*Wj

vi′ ∈
∑
j′ 6=jWj′ . But

∑
Vi′*Wj

vi′ = v−
∑
Vi⊆Wj

vi ∈Wj

and Wj ∩
∑
j′ 6=jWj′ = {0} since σ is a DSD. Thus v −

∑
Vi⊆Wj

vi = 0 so v ∈ ⊕{Vi : Vi ⊆Wj}.
Hence σ � π implies π ↔ σ and π ∨ σ = π as well as π ∧ σ = σ as expected.

Proposition 1 For any two DSDs π and σ, if they a common upper bound τ , i.e., π, σ � τ , then
(i) π ↔ σ, and (ii) the join π ∨ σ is defined and is the least upper bound of π and σ.

Proof. If π, σ � τ = {Xk}k∈K , then for each Xk, there is a Vi such that Xk ⊆ Vi and there is a Wj

such that Xk ⊆Wj so Xk ⊆ Vi∩Wj . Since the {Xk}k∈K span the space so must the nonzero Vi∩Wj

so π ↔ σ which proves (i) and makes π ∨ σ = {Vi ∩Wj 6= {0}}(i,j)∈I×J into a DSD. To prove (ii),
as just shown, for any given Xk, there is a Vi and Wj such that Xk ⊆ Vi ∩Wj so π ∨ σ � τ . Hence
π ∨ σ is the least upper bound of π and σ in the refinement partial order.

Two DSDs π and σ need not have a common upper bound so DSD (V ) is not a join-semilattice.

Lemma 8 Given a DSD π = {Vi}i∈I , let X = ⊕i∈IXVi and Y = ⊕i∈IY Vi both be direct sums of
some Vi’s. If X ∩ Y is nonzero, then X ∩ Y = ⊕i∈IX∩IY Vi.

Proof. Consider a nonzero v ∈ X ∩ Y so there is a unique expression v =
∑
i∈IX vi,X where

vi,X ∈ Vi ⊆ X and a unique expression v =
∑
i∈IY vi,Y where vi,Y ∈ Vi ⊆ Y . Since π is a DSD, there

is also a unique expression v =
∑
i∈I vi so, for each nonzero vi, vi = vi,X = vi,Y ∈ Vi ∩X ∩ Y . Thus

for any such i, Vi is a common direct summand to X and Y , so Vi ⊆ X ∩ Y . Thus every nonzero
element v ∈ X ∩ Y is in a direct sum of Vi’s for Vi ⊆ X ∩ Y and thus X ∩ Y is the direct sum of Vi
that are common direct summands of X and Y .
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Proposition 2 The meet π ∧ σ is the greatest lower bound of π and σ.

Proof. If τ � π, σ then each Xk = ⊕{Vi : Vi ⊆ Xk} = ⊕{Wj : Wj ⊆ Xk}. By the construction of
π∧σ, there is a set partition {Il}l∈L on I and a set partition {Jl}l∈L on J such that each subspace in
the meet π ∧ σ = {Yl} satisfies: Yl = ⊕i∈IlVi = ⊕j∈JlWj , and where no subsets of I smaller than Il
and subsets of J smaller than Jl have that property. Since each Vi is contained in some Xk, if i ∈ Il,
then Vi ⊆ Yl∩Xk. Since both Yl and Xk are direct sums of some Vi, then by the Lemma the nonzero
subspace Yl ∩Xk is also a direct sum of the common direct summand Vi’s. Symmetrically, since the
same Yl and Xk are direct sums of some Wj’s, then by the Lemma the nonzero subspace Yl ∩Xk is
also a direct sum of the common direct summand Wj’s. But since Yl is the smallest direct sum of
both Vi’s and Wj’s, Yl ∩ Xk = Yl, i.e., Yl ⊆ Xk, and thus π ∧ σ is the greatest (in the refinement
partial ordering) lower bound on π and σ.

As the blob is compatible with all DSDs, it is the minimum element in the ordering: 0 � π
for any π ∈ DSD (V ). Hence any two DSDs π and σ always have a common lower bound, so they
always have a meet π ∧ σ , i.e., DSD (V ) is a meet-semilattice. Thus the partial partition algebra
DSD (V ) could also be called the meet-semi-lattice of DSDs on a vector space V .

The binary DSDs α = {A1, A2} are the atoms of the meet-semi-lattice DSD (V ). A meet-semi-
lattice is said to be atomistic if every element is the join of the atoms below it.

Proposition 3 The meet-semi-lattice DSD(V ) is atomistic.

Proof. Consider a non-blob DSD π = {Vi}i∈I . If α = {A1, A2} � π = {Vi}i∈I , then Ak =
⊕{Vi : Vi ⊆ Ak} for k = 1, 2. Thus for any other atom α′ = {A′1, A′2} � π, the join α ∨ α′ is
defined and α∨α′ � π, and each nonzero subspace Ak ∩A′k′ is the direct sum of the common direct
summand Vi’s. If a join of atoms had a subspace Vi1 ⊕ Vi2 , i1, i2 ∈ I, then the join with the atom
{Vi1 ,⊕i′ 6=i1,i′∈IVi′} would split apart Vi1 ⊕ Vi2 , so the join of all the atoms below π gives the Vi ∈
π.

3 Partition logics in a partial partition algebra

3.1 The partition lattice determined by a maximal DSD

Just as a partial Boolean algebra is made up of overlapping Boolean algebras, so the partial partition
algebra DSD (V ) is made up of overlapping partition logics or algebras. There is no maximum
DSD, only maximal DSDs. Each maximal element in the partial ordering is a discrete (or “non-
degenerate”) DSD ω = {Uz}z∈Z of one-dimensional subspaces (rays) of V (so |Z| is the dimension
of V ).2 A partition lattice is determined by the set of DSDs∏

(ω) = {π|π � ω} = [0, ω] ⊆ DSD (V )

compatible with a maximal element ω and with the induced ordering and operations (which is
analogous to the way in which a complete set of one-dimensional subspaces determines a Boolean
algebra in a partial Boolean algebra [8, p. 193]).

2Choosing a basis vector for each one-dimensional Uz would give a basis for V but the focus on DSDs means
working only with the rays Uz .
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Figure 2: Partial Partition Algebra or Meet-Semi-Lattice of DSDs of V
with partition logics

∏
(ω) and

∏
(ω′).

It might be noted that much of the lattice-theoretic literature refers to the lattice of equiva-
lence relations as the “lattice of partitions” where the partial order however “corresponds to set
inclusion for the corresponding equivalence relations” [7, p. 251] so instead of being refinement, it
is actually “reverse refinement” [11, p. 30]. The refinement partial order on DSD (V ) corresponds
to set inclusion of the binary relations that are the complements of equivalence relations and are
called partition relations [5] or apartness relations. In the lattice of equivalence relations, the top
is the biggest (indiscrete) equivalence relation (where everything is identified) and the bottom is
the smallest (discrete) equivalence relation where each element is identified only with itself—whereas
the partition lattice

∏
(ω) uses the opposite partial order.3 With either partial order, the lattice is

complete and relatively complemented but not distributive.
For any π ∈

∏
(ω), π � ω so ω is (by definition) the maximum or top DSD in

∏
(ω) and

thus might be symbolized as the discrete DSD 1ω = ω. Each subspace Vi ∈ π � ω has Vi =
⊕{Uz : Uz ⊆ Vi, z ∈ Z} so 1ω absorbs what it joins and is the unit element for meets within

∏
(ω):

π ∨ 1ω = 1ω and π ∧ 1ω = π.

All the DSDs π and σ compatible with ω, i.e., π, σ ∈
∏

(ω), are compatible with each other since
they have a common upper bound.

Fixing a maximal DSD ω reduces much of the reasoning in
∏

(ω) to reasoning about sets.
If we just take ω = {Uz}z∈Z as a set, then each DSD π = {Vi}i∈I in

∏
(ω) = [0, ω] defines a

set partition π (ω) = {Bi}i∈I on ω where Bi = {Uz|Uz ⊆ Vi} for i ∈ I so that Vi = ⊕Bi. Also
|
∏

(ω)| = B (|Z|) = B (dim (V )), the Bell number for the dimension of V .
Indeed, given any DSD π = {Vi}i∈I , each subspace Wj of σ ∈ [0, π] determines a subset Cj =

{Vi : Vi ⊆Wj} so σ defines a set partition σ (π) = {Cj}j∈J on π as a set soWj = ⊕Cj for j ∈ J . Thus
the lower segment [0, π] is isomorphic to the set-based partition lattice (join and meet operations)
on that set π [5], and, in particular,

∏
(ω) = [0, ω] is isomorphic to the lattice of set partitions on the

set ω. As a partition lattice,
∏

(ω), or in general [0, π], have the usual properties of partition lattices
([13]; [1]; [7, Chapter IV, section 4]). Many theorems about set partitions can then be transferred
over in an appropriate form to

∏
(ω).

For example, taking a distinction or dit of a DSD π ∈
∏

(ω) for ω = {Uz}z∈Z as a pair (Uz, Uz′)
in distinct subspaces, i.e., Uz ⊆ Vi and Uz′ ⊆ Vi′ for some distinct Vi, Vi′ ∈ π, the common-dits
property of non-blob set partitions [5, p. 106] carries over to

∏
(ω).

3 Instead of the usual DeMorgan complementation-duality relation within a Boolean algebra, there is a
complementation-duality relation between the logic of partitions and the logic of equivalence relations [5].
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Proposition 4 (Common dits) Any two non-blob DSDs π, σ ∈
∏

(ω) have a dit in common.

Proof. Since π is not the blob, there are Uz, Uz′ with Uz ⊆ Vi and Uz′ ⊆ Vi′ for Vi 6= Vi′ . If
Uz ⊆ Wj ∈ σ and Uz′ ⊆ Wj′ ∈ σ for Wj 6= Wj′ we are finished so assume Uz ⊕ Uz′ ⊆ Wj for some
j ∈ J . Since σ is also not the blob, there is a Uz′′ contained in some Wj′′ where Wj′′ 6= Wj . Then
Uz′′ cannot be in the same subspace of π as Uz and Uz′ since those two are in different subspaces of
π, so either (Uz, Uz′′) or (Uz′ , Uz′′) is a dit common to π and σ.

3.2 The implication operation on DSDs

In order to be properly called a “logic”, each partition lattice
∏

(ω) of DSDs has a natural implication
operation inherited from the logic of set partitions so partition logic refers to a partition lattice plus
the implication operation.

Definition 9 For σ, π ∈
∏

(ω), implication is:

σ ⇒ π = {Uz|Uz ⊆ Vi if ∃Vi ∈ π and Wj ∈ σ, Vi ⊆Wj}
∪ {Vi|Vi ∈ π and ¬∃Wj ∈ σ, Vi ⊆Wj}.

Since each Vi = ⊕{Uz : Uz ⊆ Vi}, the implication σ ⇒ π is still a DSD in
∏

(ω) in spite of some
of the Vi ∈ π being “discretized” into the Uz contained in it. In the implication DSD σ ⇒ π, each
Vi ∈ π either remains whole like a mini-blob 0Vi = {Vi} on the space Vi if Vi is not contained in
any Wj ∈ σ, or it is discretized into the Uz ⊆ Vi which in effect assigns a “1” to Vi if ∃Wj such
that Vi ⊆Wj . In other words, the implication σ ⇒ π acts like an indicator or characteristic function
assigning a 1 or 0 to each Vi depending respectively on whether or not ∃Wj such that Vi ⊆ Wj .
Thus trivially:

σ ⇒ π = 1ω iff σ � π.

The interpretation of the implication DSD σ ⇒ π follows from the ‘classical’ case of the
analogously-defined implication set partition σ ⇒ π. If σ and π are the inverse-image set parti-
tions for random variables Yσ and Yπ on a sample space U , then σ � π (i.e., σ ⇒ π = 1U ) means
that Yπ is a “suffi cient statistic” [11, p. 31] for Yσ in the sense that the value of Yπ determines the
value of Yσ. In general, the singletons in the set partition σ ⇒ π indicate the extent to which Yπ
is suffi cient for Yσ, i.e., the singletons of σ ⇒ π are the outcomes in the sample space where the
Yπ-value determines Yσ-value.

Translating to the quantum case, if σ and π in
∏

(ω) are the eigenspace DSDs of observables Ôσ
and Ôπ, and σ ⇒ π = 1ω, then not only is each π-eigenvector a σ-eigenvector, but the π-eigenvalue
of a π-eigenvector determines the σ-eigenvalue as well. Restated without operators, σ ⇒ π = 1ω
means that π is suffi cient for σ in the sense that if a given nonzero vector vi is in Vi ∈ π, then
vi ∈ Vi ⊆Wj ∈ σ for some Wj .

More generally, the one-dimensional subspaces Uz in the DSD σ ⇒ π give the Ôπ eigenvalues,
i.e., Uz ⊆ Vi, that determine the Ôσ eigenvalues. For instance if Ôσ had degenerate eigenvalues and
Ôπ1 ,...,Ôπm were observables with DSDs also in

∏
(ω) (and thus compatible), then σ ⇒ ∨mi=1πi = 1ω

implies that the eigenvalues of Ôπ1 ,...,Ôπm are suffi cient to uniquely determine the eigenvalues of
Ôσ. When ∨mi=1πi = 1ω as well, then the eigenvalues of Ôπ1 ,...,Ôπm are suffi cient to uniquely label
the rays Uz ∈ ω.

3.3 Exploiting duality in quantum partition logic

In partition logic on sets ([4], [5]), the set partition operations (e.g., join, meet, and implication) on
the partitions on a given universe set U can be represented as subset operations on certain subsets of
U ×U , i.e., on certain binary relations on U . For a set partition π = {B1, ..., Bm} on U , a distinction
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or dit of π is an ordered pair (u, u′) ∈ U × U of elements in distinct blocks of π. The ditset dit (π)
of π is a binary relation on U (i.e., a subset of U × U), and it is the complement in U × U of the
equivalence relation associated with π. A partition relation on U×U is defined as the complement of
an equivalence relation. The partition relations on U ×U are in one-to-one correspondence with the
partitions on U . Given a partition π on U , the ditset dit (π) is the corresponding partition relation,
and given a partition relation, the equivalence classes in the complementary equivalence relation
give the corresponding partition.

The operations on the set partitions (join, meet, and implication) have corresponding operations
on partition relations. The simplest is that the join of partitions which corresponds to the union
of ditsets: for set partitions π and σ on U , dit (π ∨ σ) = dit (π) ∪ dit (σ). For the meet and impli-
cation operations, we need to use the reflexive-symmetric-transitive closure operation on subsets of
U × U where for S ⊆ U × U , the RST-closure cl (S) is the equivalence relation that is the inter-
section of all the equivalence relations containing S.4 Then the interior, int (S), is the complement
of the closure of the complement, i.e., int (S) = cl (Sc)

c(where ()
c is the set complement opera-

tion). Then the other operations on partition relations isomorphic to the partition operations are:
dit (π ∧ σ) = int [dit (π) ∩ dit (σ)] and dit (σ ⇒ π) = int [dit (σ)

c ∪ dit (π)]. The smallest partition
relation is dit (0U ) = ∅ and the largest is dit (1U ) = U × U −∆ (where ∆ = {(u, u) |u ∈ U} is the
diagonal, the smallest equivalence relation on U). Since σ � π iff dit (σ) ⊆ dit (π), the partial order
on partition relations is just inclusion. In this manner the partition algebra

∏
(U) of partitions on

U is represented as the algebra of the special subsets of U × U that are partition relations.
With ω fixed and playing the role of U , the above construction can be transferred to vector

spaces. The operations on DSDs in
∏

(ω) can be represented as subspace operations on certain
subspaces of the tensor product V ⊗ V that are direct sums of the subspaces in the maximal DSD
ω⊗ω = {Uz ⊗ Uz′ | (Uz, Uz′) ∈ ω × ω} of one-dimensional subspaces on V ⊗V . The easiest translation
uses the fact that a DSDs π = {Vi}i∈I ∈

∏
(ω) defines a set partition π (ω) = {Bi}i∈I on ω =

{Uz}z∈Z as a set where: Bi = {Uz|Uz ⊆ Vi} and Vi = ⊕Bi for i ∈ I. Then the ditspace defined by
the DSD π is the subspace of V ⊗ V :

Dit (π) = ⊕{Uz ⊗ Uz′ | (Uz, Uz′) ∈ dit (π (ω))} .

Note that by the common-dits proposition, any two nonzero ditspaces, i.e., ditspaces for non-blob
DSDs π, σ ∈

∏
(ω), have a nonzero intersection. The operations on the ditspaces are those induced

by the operations on the ditsets. For π, σ ∈
∏

(ω),

Dit (π ∨ σ) = ⊕{Uz ⊗ Uz′ | (Uz, Uz′) ∈ dit (π (ω) ∨ σ (ω))}
Dit (π ∧ σ) = ⊕{Uz ⊗ Uz′ | (Uz, Uz′) ∈ dit (π (ω) ∧ σ (ω))}

Dit (σ ⇒ π) = ⊕{Uz ⊗ Uz′ | (Uz, Uz′) ∈ dit (σ (ω)⇒ π (ω))} .

The smallest ditspace is Dit (0) = {0} and the largest ditspace is Dit (1ω) = ⊕{Uz ⊗ Uz′ |Uz 6= Uz′},
and the partial ordering is inclusion. Then the partition algebra of DSDs in

∏
(ω) is represented by

the algebra of the ditspaces of V ⊗ V for DSDs in
∏

(ω).
In view of the basic (category-theoretic) duality between subsets and partitions, this construc-

tion (using ditsets) to represent partition operations as subset operations (with the corresponding
vector space version of the construction using ditspaces), has a dual construction to represent subset
operations by partition operations. Instead of working with certain subsets of the product U × U ,
the dual set construction works with certain partitions on the coproduct U ] U . And for the vector
space version, instead of working with subspaces of the tensor product V ⊗V , the dual vector space
construction works with DSDs on the coproduct or direct sum V ⊕ V ∗ (where V ∗ is a copy of V ).

The set partition implication endows a rich structure on the partition algebra
∏

(U) of set
partitions on U (always |U | ≥ 2). For π ∈

∏
(U), the π-regular partitions are the partitions of the

4NB: The closure operation is not topological since the union of two equivalence relations is not necessarily an
equivalence relation.
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form σ ⇒ π, which may be symbolized as
π¬σ, for any σ ∈

∏
(U). They are all in the segment [π,1U ]

and they form a Boolean algebra, the Boolean core Bπ of [π,1U ], under the partition operations of
join, meet, and π-negation, where the π-negation of σ ⇒ π =

π¬σ is (σ ⇒ π)⇒ π =
π¬π¬σ. The dual

construction uses this Boolean algebra based on partition operations.
Let’s sketch the set version of the dual construction first and then go over the vector space

version in more detail. Given a subset S ⊆ U , the subset corelation ∆ (S) is the partition on U ]U∗
(U∗ being a copy of U) whose blocks are the pairs {u, u∗} for u ∈ S and singletons {u} and {u∗}
if u /∈ S. The subset co-relations are partitions on the coproduct U ] U defined by subsets of U ,
and they are dual to the partition relations dit (π) that are subsets of the product U ×U defined by
partitions on U . Then ∆ (U) is the partition on U ]U∗ consisting of all pairs {u, u∗} for u ∈ U , and
∆ (∅) = 1U]U∗ . The key lemma (see below) is that ∆ (S) ⇒ ∆ (U) = ∆ (Sc) so the ∆ (U)-regular
partitions on U ]U∗ are the same as the subset corelations. Then it can be seen (proof below) that
the Boolean core B∆(U) of [∆ (U) ,1U]U∗ ] is a Boolean algebra using the partition operations of join,
meet, and ∆ (U)-negation that is isomorphic to the powerset BA ℘ (U). In that manner, the Boolean
subset operations on subsets of U are represented by partition operations on certain partitions on
U ] U∗[4, p. 320].

For the vector space version of the dual construction, note that given a maximal DSD ω =
{Uz}z∈Z , there is the associated powerset BA ℘ (ω) or ℘ (Z) depending on whether we take ω or Z as
playing the role of U . Choosing the latter option, for each S ∈ ℘ (Z), there is an associated subspace
A (S) = ⊕{Uz|z ∈ S} and an associated projection operator PS : V → V to that subspace. Each
atomic DSD {A,A′} in

∏
(ω) has the form {A (S) , A (Sc)} (where Sc = Z − S is the complement

in Z) with V = A (Z) and {0} = A (∅). Thus there is an induced BA structure on the subspaces
{A (S) |S ∈ ℘ (Z)} and on the projection operators {PS |S ∈ ℘ (Z)} isomorphic to ℘ (Z). But how
can this BA of certain subspaces of V be represented using the DSD operations of quantum partition
logic?

Let V ⊕ V ∗ be the direct sum (coproduct) of V with a copy V ∗ of itself. Given a maximal
element ω = {Uz}z∈Z of V , then the union with the copy ω∗ = {U∗z }z∈Z forms a maximal element
ω ∪ ω∗ in the refinement ordering of DSDs in DSD (V ⊕ V ∗) so we can work in the partition logic∏

(ω ∪ ω∗).

Definition 10 For S ∈ ℘ (Z) with the corresponding subspace A (S), let ∆ (A (S)) or just ∆ (S) be
the DSD in

∏
(ω ∪ ω∗), called a subspace corelation, consisting of all the one-dimensional subspaces

Uz and U∗z for z /∈ S,i.e., Uz * A (S), and Uz ⊕ U∗z for z ∈ S, i.e., Uz ⊆ A (S).

Recall that due to the commutativity of vector addition, Uz ⊕ U∗z′ = U∗z′ ⊕ Uz. Then ∆ (Z) is the
DSD consisting of all the subspaces Uz ⊕ U∗z for z ∈ Z and ∆ (∅) = 1ω∪ω∗ = ω ∪ ω∗.

Lemma 11 ∆ (S)⇒ ∆ (Z) = ∆ (Sc).

Proof. For any z ∈ S, we have Uz ⊕ U∗z in both ∆ (S) and ∆ (Z), so Uz ⊕ U∗z is discretized in
∆ (S) ⇒ ∆ (Z) into Uz and U∗z separately. For any z ∈ Sc, Uz ⊕ U∗z is only in ∆ (Z) so it remains
whole in ∆ (S)⇒ ∆ (Z) so that implication DSD is ∆ (Sc).

Thus the ∆ (Z)-regular DSDs ∆ (S) ⇒ ∆ (Z) are the subspace corelations in
∏

(ω ∪ ω∗). The
Boolean core B∆(Z) of the segment [∆ (Z) , ω ∪ ω∗] is a BA with the DSD operations of join, meet,
implication, and ∆ (Z)-negation in

∏
(ω ∪ ω∗).

Proposition 5 B∆(Z)
∼= ℘ (Z).

Proof. The isomorphism associates ∆ (S) ⇒ ∆ (Z) ∈ B∆(Z) with S ∈ ℘ (Z). For S, T ∈ ℘ (Z), the
union S ∪ T is associated with the join (∆ (S)⇒ ∆ (Z)) ∨ (∆ (T )⇒ ∆ (Z)) = ∆ (Sc) ∨ ∆ (T c) =
∆ (Sc ∩ T c) = ∆ ((S ∪ T )

c
) = ∆ (S ∪ T ) ⇒ ∆ (Z). The other Boolean operations of meet, im-

plication, and ∆ (Z)-negation go in a similar manner. The null set ∅ ∈ ℘ (Z) is associated with
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∆ (∅)⇒ ∆ (Z) = ∆ (∅c) = ∆ (Z) which is the bottom of the BA B∆(Z), and Z ∈ ℘ (Z) is associated
with ∆ (Z) ⇒ ∆ (Z) = ∆ (Zc) = ∆ (∅) = 1ω∪ω∗ which is the top of B∆(Z). If S ⊆ T in ℘ (Z), then
T c ⊆ Sc so ∆ (S) ⇒ ∆ (Z) = ∆ (Sc) � ∆ (T c) = ∆ (T ) ⇒ ∆ (Z) in the refinement ordering of∏

(ω ∪ ω∗).
The treatment of DSD operations on V as subspace operations on V ⊗V , and the dual treatment

of subspace operations on V as DSD operations on V ⊕V ∗ exhibit the dual relationship between the
two quantum logics of DSDs and subspaces.

3.4 DSDs, CSCOs, and measurement

Given a self-adjoint operator L̂ on a Hilbert space V (or diagonalizable operator on any V ), the
projections P̂λi can be constructed from the DSD π = {Vλi}i∈I of eigenspaces for the eigenvalues
{λi}i∈I , and then the operator can be reconstructed—given the eigenvalues—from the decomposition
L̂ =

∑
i∈I λiP̂λi . What information about self-adjoint operators is lost by dealing only with their

DSDs of eigenspaces? The information about which eigenvalues for eigenvectors are the same or
different is retained by the distinct eigenspaces in the DSD. It is only the specific numerical values
of the eigenvalues that is lost, and those numerical values are of little importance in QM. Any
transformation into other real numbers that is one-to-one (thus avoiding “accidental”degeneracy)
would do as well. Thus we can say that the essentials of the measurement process in QM can be
translated into the language of the quantum logic of direct-sum decompositions.

Given a state ψ and a self-adjoint operator L̂ : V → V on a finite dimensional Hilbert space,
the operator determines the DSD π = {Vλi}i∈I of eigenspaces for the eigenvalues λi. The projective
measurement operation uses the eigenspace DSD to decompose ψ into the unique parts given by
the projections P̂λi (ψ) into the eigenspaces Vλi , where P̂λi (ψ) is the outcome of the projective

measurement with probability Pr (λi|ψ) =
∥∥∥P̂λi (ψ)

∥∥∥2

/ ‖ψ‖2.
The eigenspace DSD π = {Vλi}i∈I of L̂ is refined by one or more maximal DSDs, i.e., π =

{Vλi}i∈I � ω = {Uz}z∈Z . For each such ω, there is a set partition π (ω) = {Bλi}i∈I on ω such
that Vλi = ⊕Bλi . If some of the Vλi have dimension larger than one (“degeneracy”), then more
measurements by commuting operators will be necessary to further decompose down to single eigen-
vectors. If two self-adjoint operators commute, then their eigenspace DSDs are compatible. Given
another self-adjoint operator M̂ : V → V commuting with L̂, its eigenspace DSD σ =

{
Wµj

}
j∈J (for

eigenvalues µj of M̂) is compatible with π = {Vλi}i∈I and thus has a join DSD π ∨ σ in DSD (V )
which is also in

∏
(ω) for one or more maximal ω each representing an orthonormal basis of simul-

taneous eigenvectors. The combined measurement by the two commuting operators is just the single
measurement using the join DSD π ∨ σ.

Dirac’s notion of a Complete Set of Commuting Operators (CSCO)
{
Ôπl

}m
l=1

[3] translates

into the language of the quantum logic of DSDs as a Complete Set of Compatible DSDs (CSCD)
{πl}ml=1 whose join ∨ml=1πl is a maximal DSD ω = 1ω in DSD (V ) and thus is the maximum DSD
1ω in

∏
(ω). As noted above, the eigenvalues of the observables Ôπl can then be used to uniquely

label the Uz ∈ 1ω = ω. Without the operators to supply the eigenvalues, given a CSCD {πl}ml=1

of
∏

(ω), then for each Uz ∈ 1ω, there is a unique subspace Vz(l) ∈ πl for l = 1, ...,m such that
∩ml=1Vz(l) = Uz so each Uz ∈ 1ω is uniquely determined or ‘labelled’by a subspace Vz(l) ∈ πl (rather
than its eigenvalue) for l = 1, ...,m.

In partition logic [5] on sets, a valid formula, i.e., a partition tautology, is a logical formula (using
the partition operations of join, meet, and implication) so that when any partitions on the universe
set U are substituted for the variables, the result is the discrete partition 1U on that set. Restated
for DSDs, a DSD tautology in the partition logic

∏
(ω) is any formula (in the language of join, meet,

and implication) so that no matter which DSDs of
∏

(ω) are substituted for the variables, the result
is 1ω. For instance, modus ponens σ ∧ (σ ⇒ π)⇒ π is a DSD tautology in the partition logic

∏
(ω),
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so for any DSDs π, σ ∈
∏

(ω), π is suffi cient for σ ∧ (σ ⇒ π). In the Boolean core Bπ of [π, ω], the
ordinary Boolean tautologies, like the law of excluded middle,

(σ ⇒ π) ∨ ((σ ⇒ π)⇒ π) =
π¬σ ∨ π¬π¬σ,

hold for any π, σ ∈
∏

(ω), so they are DSD tautologies in the whole partition logic
∏

(ω), where
that formula is the weak law of excluded middle for π-negation. Thus for any DSDs π, σ ∈

∏
(ω),

the DSDs σ ⇒ π and (σ ⇒ π) ⇒ π form a CSCD since their join is the discrete DSD 1ω. The
law of excluded middle in Bπ generalizes to the DSD tautology that is the disjunctive normal form
decomposition of 1ω for any number of variables. For instance, for any π, σ, and τ in

∏
(ω), we have

the DSD tautology: (
π¬π¬σ ∧ π¬π¬τ

)
∨
(
π¬π¬σ ∧ π¬τ

)
∨
(
π¬σ ∧ π¬π¬τ

)
∨
(
π¬σ ∧ π¬τ

)
so those four disjuncts form a CSCD. Assigning distinct real numbers to the subspaces of the disjunct
DSDs defines commuting self-adjoint operators that form one of Dirac’s CSCOs.

4 Final remarks

The usual subspace version of quantum logic can be viewed as the extension of the Boolean logic of
subsets to the logic of subspaces of a vector space (specifically, closed subspaces of a Hilbert space).
Since the notion of a set partition is the category-theoretic dual to the notion of a subset, the logic
of set partitions is, in that sense, dual to the Boolean logic of subsets. Our topic has been the dual
form of quantum logic that can be viewed as the extension of the logic of set partitions to the logic
of direct-sum decompositions of a vector space (specifically, a Hilbert space).

The usual quantum logic of subspaces focuses on propositions, i.e., the proposition that a state
vector is in a certain subspace, and the associated projection operators. Since a self-adjoint operator
(observable) determines a direct-sum decomposition (losing only the specific numerical eigenvalues),
the quantum logic of DSDs can be viewed as focusing on self-adjoint operators (abstracted from
specific eigenvalues). The quantum logic of DSDs thus provides the natural setting to abstractly
model projective measurement. As Weyl put it: “Measurement means application of a sieve or
grating”[15, p. 259] (thinking of the eigenspace DSD as a “sieve”). Kolmogorov referred to the set
partition given by the inverse-image of a random variable as the “experiment” ([10, p. 6], [11, p.
31]) so, in the same spirit, one might abstractly describe the vector-space partition or direct-sum
decomposition of eigenspaces given by a self-adjoint operator as the “measurement.”
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