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Abstract  In this paper, we aim to apply the concepts of the 

neutrosophic crisp sets and its operations to the classical 

mathematical morphological operations, introducing what we

call "Neutrosophic Crisp Mathematical Morphology". Sever-

al operators are to be developed, including the neutrosophic 

crisp dilation, the neutrosophic crisp erosion, the neutrosoph-

ic crisp opening and the neutrosophic crisp closing. 

Moreover, we extend the definition of some morphological 

filters using the neutrosophic crisp sets concept. For instance, 

we introduce the neutrosophic crisp boundary extraction, the 

neutrosophic crisp Top-hat and the neutrosophic crisp Bot-

tom-hat filters.  

The idea behind the new introduced operators and filters is to 

act on  the image in the neutrosophic crisp domain instead of 

the spatial domain.     

Keywords: Neutrosophic Crisp Set, Neutrosophic Sets, Mathematical Morphology, Filter Mathematical Morphology.

1 Introduction 

In late 1960's, a relatively separate part of image analysis 

was developed; eventually known as "The Mathematical 

Morphology". Mostly, it deals with   the mathematical 

theory of describing shapes using sets in order to extract 

meaningful information's from images, the concept of 

neutrosophy was first presented by Smarandache [14]; as 

the study of original, nature and scape of neutralities, as 

well as their interactions with different ideational spectra. 

The mathematical treatment for the neutrosophic 

phenomena, which already exists in our real world, was 

introduced in several studies; such as in [2]. 

The authors in [15], introduced the concept of the 

neutrosophic set to deduce. Neutrosophic mathematical 

morphological operations as an extension for the fuzzy 

mathematical morphology.   

In [9] Salama introduced the concept of neutrosophic crisp 

sets, to represent any event by a triple crisp structure. In 

this paper, we aim to use the idea of the neutrosophic crisp 

sets to develop an alternative extension of the binary 

morphological operations. The new proposed neutrosophic 

crisp morphological operations is to be used for image 

analysis and processing in the neutrosophic domain. To 

commence, we review the classical operations and some 

basic filters of mathematical morphology in both §2 and § 

3.  

A revision of the concepts of neutrosophic crisp sets and 

its basic operations, is presented in §4 . the remaining 

sections, (§5, §6 and §7), are devoted for presenting our 

new concepts for "Neutrosophic crisp mathematical 

morphology" and its basic operations, as well as some 

basic neutrosophic crisp morphological filters. 
2 Mathematical Morphological Operations: 

In this section, we review the definitions of the classical 

binary morphological operators as given by Heijmans [6]; 

which are consistent with the original definitions of the 

Minkowski addition and subtraction [4].  

For the purpose of visualizing the effect of these operators, 

we will use the binary image show in Fig.1(b); which is 

deduced form the original gray scale image shown in 

Fig.1(a). 
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        a)                                        b) 

Fig.1: a) the Original grayscale image  b) the Binary im-

age 

2.1 Binary Dilation: (Minkowski addition) 

Based on the concept of Minkowski addition, the dilation 

is considered to be one of the basic operations in mathe-

matical morphology, the dilations is originally developed 

for binary images [5]. To commence, we consider any Eu-

clidean space E and a binary image  in E, the Dilation 

of by some structuring element is defined by: 

, Bb b
ABA  where  is the translate of the set  

A along the vector b, i.e.,

},{ BbAaEbaAb 

The  Dilation  is commutative,  and  may  also be given by: 

 Aa aBBBBA




An interpretation of the Dilation of A by B can be under-

stood as, if we  put a copy of B at each pixel in A and un-

ion all of the copies, then we get . 

The Dilation can also be obtained by: 

, where (–B) de-

notes the reflection of B, that is,  

}{ BxExB   

Where the reflection satisfies the following property: 

)( BA = )()( BA 

. 

     a)                                       b) 

Fig.2: Applying the dilation operator: a) the Original    bi-

nary image   b) the dilated  image. 

2. 2 Binary Erosion: (Minkowski subtraction)

Strongly related to the Minkowski subtraction, the erosion 

of the binary image A by the structuring element B is de-

fined by:  Bb bABA
  Un-

like dilation, erosion is not commutative, much like how 

addition is commutative while subtraction is not [5]. 

hence BA  is all pixels in A that these copies were trans-

lated to. The erosion of A by B is also may be given by the 

expression: 

 where pB  is the transla-

tion of B by the vector p, i.e.,

EpBbEpbBp  },/{

. 

    a)                                         b) 

  Fig.3: Applying the erosion operator: a) the Original 

binary image   b) the eroted  image. 

2. 3 Binary Opening [5]:

The Opening of A  by B is obtained by the erosion of A by 

B, followed by dilation of the resulting image by B:  

.)( BBABA  The 

opening is also given by 


AB x

x

BBA


 , which means 

that, an opening can be consider to be the union of all 

translated copies of the structuring element that can fit in-

side the object. Generally, openings can be used to remove 

small objects and connections between objects. 

     a)                                        b) 

  Fig.4: Applying the opening operator: a) the Original 

binary image    b) the image  opening. 
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2.4  Binary Closing [5]: 

The closing of A by B is obtained by the dilation of A by B, 

followed by erosion of the resulting structure by B: 

BBABA • )( . 

The closing can also be obtained by  

))(( BcocoAcoBA •  , 

where coA  denotes the complement of A relative to E (that 

is, }{ AaEacoA   ). 

Whereas opening removes all pixels where the structuring 

element won’t fit inside the image foreground, closing fills 

in all places where the structuring element will not fit in the 

image background, that is opening removes small objects, 

while closing removes small holes. 

    a)                                         b) 

Fig.5: Applying the closing operator: a) the Original    bi-

nary image    b) the image closing. 

3. Mathematical Morphological Filters [13]:

In image processing and analysis, it is important to extract 

features of objects, describe shapes, and recognize patterns. 

Such tasks often refer to geometric concepts, such as size, 

shape, and orientation. Mathematical Morphology takes 

these concept from set theory, geometry, and topology to 

analyse the geometric structures in an image. Most essen-

tial image-processing algorithms can be represented in the 

form of Morphological operations.  

In this section we review some basic Morphological filters, 

such as: the boundary extraction, and the Top-hat and the 

Bottom-hat filters.  

3.1  The Boundary External  [13]: 

Boundary extraction of a set  requires first the dilating of 

 by a structuring element  and then taking the set dif-

ference between   and . That is, the boundary of 

a set  is obtained by:  . )( BAAA    

    a)                                    b) 

 Fig.6: Applying the External Boundary: a) the Original 

binary image    b) the External  Boundary. 

3.2 The Hat Filters [13]: 

In Mathematical Morphology and digital image processing, 

top-hat transform is an operation that extracts small ele-

ments and details from given images. There exist two types 

of hat filters: The Top-hat filter is defined as the difference 

between the input image and its opening by some structur-

ing element; The Bottom-hat filter is defined dually as the 

difference between the closing and the input image. Top-

hat filter are used for various image processing tasks, such 

as feature extraction, background equalization and image 

enhancement. 

If an opening removes small structures, then the difference 

of the original image and the opened image should bring 

them out. This is exactly what the white Top-hat  filter 

does, which is defined as the residue of the original and 

opening: 

Top-hat filter:     )( BAAThat    

The counter part of the Top-hat filter is the Bottom-hat fil-

ter which is defined as the residue of  closing and the orig-

inal:  

Bottom-hat filter:  ABABhat • )(  

These filters preserve the information removed by the 

Opening and Closing operations, respectively. They are of-

ten cited as white top-hat and  black top-hat, respectively. 

        a)                                         b) 

   Fig.7: Applying the Top-hat:  a) the Original binary im-

age   b) the Top-hat image   

        a)                                         b) 

 Fig.8: Applying the Bottom-hat filter:  

a) the Original binary image  b) Bottom-hat filter image
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4. Neutrosophic Crisp Sets Theory [9]:
In this section we review some basic concepts of neutro-

sophic crisp sets and its operations.  

4.1 Neutrosophic Crisp Sets: 
   4.1.1 Definition [9] 

Let X  be a non-empty fixed set, a neutrosophic crisp set 

A (NCS for short), can be defined as a triple of the form 
321 ,, AAA where 

and 
3A are crisp subsets of X. The three 

components represent a classification of the elements of 

the space  according to some event A; the subset con-

tains all the elements of X that are supportive to A , 

contains all the elements of X that are against A , and  

contains all the elements of X that stand in a distance from 

being with or against A .  Consequently, every crisp 

event A  in X can be considered as a NCS having the form: 

321 ,, AAAA  . The set of all neutrosophic crisp sets 

of  X will be denoted . 

Fig.9:  Neutrosophic Crisp Image:tivelycrespe 321 ,, AAA

4.1.2 Definition [7, 9]: 

The null (empty) neutrosophic set , the absolute (uni-

verse) neutrosophic set  and  

the complement of a neutrosophic crisp set are defined as 

follows: 

 may be defined as one of the following two N

types: 

Type 1:,  XN ,, 

Type 2:    XXN ,, 

2)  may be defined as one of the following two 

types: 

Type 1:  

Type 2: 

3) The complement of a NCS ( co A for short) may 

be defined as one of the following two types:

Type 1: , 

Type 2: . 

4.2. Neutrosophic Crisp Sets Operations: 
In [6, 14], the authors extended the definitions of the crisp 

sets operations to be defined over Neutrosophic Crisp Sets 

(in short NCSs). In the following definitions we consider a 

non-empty set X, and any two  Neutrosophic Crisp Sets of 

X, A  and B , where    and 

. 

4.2.1 Definition [8, 9]: 
For any two sets A, B  , A is said to be a neu-

trosophic crisp subset of the NCS B, i.e., ( BA  ), and 

may be defined as one of the following two types: 
332211 ,:1 BAandBABABAType 

4.2.2 Proposition [7, 9]:  
For any neutrosophic crisp set , the following properties 

are hold: 

a) AN  and 
NN  

b) 
NXA and 

NN XX 

4.2.3 Definition [7, 9]: 
The neutrosophic intersection and neutrosophic union of 

any two neutrosophic crisp sets A, B , may be 

defined as follows:   

1. The neutrosophic intersection ,  may be defined 

as one of the following two types:

  Type1:

  Type2: 

2. The neutrosophic union , may be defined as one 

of the following two types: 

Type 1:

Type2: 

4.2.4 Proposition [7, 9]: 

For any two neutrosophic crisp sets ,   , then: 

coBcoABAco  )(

and 

coBcoABAco  )(

Proof:  We can easily prove that the two statements are 

true for both the complement operators. De-
fined in definition 4.1.2. 

4.2.5 Proposition [9]: 
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For any arbitrary family  of neutrosophic 

crisp subsets of , a generalization for the neutrosophic in-

tersection and for the neutrosophic union given 

in Definition 4.2.3, can be defined as follows: 

1) 
Ii

iA


may be defined as one of the following two 

types: 

 Ii i

Ii

i

Ii

i

Ii

i AAAAType




 321 ,,:1

 Ii iIi i

Ii

i

Ii

i AAAAType




 321 ,,:2

2) may be defined as one of the  Ii iA


following two types: 

  
Ii Ii

iIi Ii iii AAAAType
 

 
 321 ,,:1

  
Ii Ii

iIi
Ii

iii AAAAType
 




 321 ,,:2

5. Neutrosophic Crisp Mathematical Morphology:
As a generalization of the classical mathematical morphol-

ogy, we present in this section the basic operations for the 

neutrosophic crisp mathematical morphology. To com-

mence, we need to define the translation of a neutrosophic 

set. 

5.1.1 Definition: 

Consider the Space X=Rn or Zn  With 

origin 0 = (0,...,0) given The  reflection  of  the  structuring 

element  B mirrored in its  Origin  is defined  as: 
321 ,, BBBB  . 

5.1 Definition: 

For every the ,Ap  translation by  is the map 

paaXXp  ,:  it 

transforms any Subset A of X into its translate 

by ,2Zp

Where 

},:{ 111 BpAupuAp 

},:{ 322 BpAupuAp 

},:{ 333 BpAupuAp 

5.2  Neutrosophic Crisp Mathematical Morpholog-
ical  Operations: 

5.2.1 Neutrosophic Crisp Dilation Operator: 

let A, B , then we define two types of the neu-

trosophic crisp dilation as follows: 

Type1: 
332211 ,,

~
BABABABA 

wher

e for each u and v  Z2

 1

111

Bb bABA


  2

222

Bb bABA
 


3

333

Bb

bABA




Fig.10(i): Neutrosophic Crisp Dilation components in type 1 

321 ,, AAA  respectively 

Type2: 

where for each u and  v Z2 

,1

111  Bb bABA


 
3

222

Bb

bABA





3

333

Bb

bABA




Fig.10(ii): Neutrosophic Crisp Dilation components in type 2 

321 ,, AAA respectively 

5.2.2 Neutrosophic Crisp  Erosion Operation: 
let A and B   ; then the neutrosophic dilation  is 

given as two type: 

Type 1: 

where for each  u and  v 
3

1112

Bb

bABAZ





3

222

Bb

bABA


 and  1

333

Bb bABA



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Fig.11(i): Neutrosophic Crisp Erosion components in type 1  

321 ,, AAA respectively 

Type2: 

where for each  u  and  v
2Z 

3

111

Bb

bABA




 1

222

Bb bABA


 and  1

333

Bb bABA




Fig.11(ii): Neutrosophic Crisp Erosion components in type2 

321 ,, AAA respectively 

5.2.3 Neutrosophic Crisp Opening Operation: 
let A, B ; then we define two types of the neu-

trosophic crisp dilation  operator as follows: 

Type 1:     
11111 )( BBABA 

22222 )( BBABA 
33333 )( BBABA 

Fig.12(i): Neutrosophic Crisp opening components in type1  

321 ,, AAA respectively 

 Type 2:       

11111 )( BBABA 
22222 )( BBABA •
33333 )( BBABA •

Fig.12(ii): Neutrosophic Crisp opening components in type2 

321 ,, AAA respectively 

5.2.4 Neutrosophic Crisp Closing Operation: 
let A and B   ; then the neutrosophic dilation  is 

given as two types: 

Type 1: 

33333 )( BBABA 
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Fig.13(i): Neutrosophic Crisp closing components in type1 

321 ,, AAA respectively 

Type 2:    

33333 )( BBABA 

Fig.13(ii): Neutrosophic Crisp closing components in type2 

321 ,, AAA respectively 

6. Algebraic Properties in Neutrosophic Crisp:
In this section, we investigate some of the algebraic prop-

erties of the neutrosophic crisp erosion and dilation, as 

well as the neutrosophic crisp opening and closing operator 

[15]. 

6.1 Properties of the Neutrosophic Crisp Erosion 
Operator: 

6.1.1 Proposition:  
The Neutrosophic erosion satisfies the monotonicity for all 

A, B  . 
332211 ,,):1 CACACABAaType 

332211 ,, CBCBCB 

22221111 , CBCACBCA 

3333 CACA 
332211 ,,) ACACACBAb 

332211 ,, BCBCBC 

22221111 , BCACBCAC 

3333 ACAC 

332211 ,,):2 CACACABAaType 

332211 ,, CBCBCB 

22221111 , CBCACBCA 

3333 CACA 
332211 ,,) ACACACBAb 

332211 ,, BCBCBC 

22221111 , BCACBCAC 

3333 ACAC 
Note that: Dislike the Neutrosophic crisp dilation opera-

tor, the Neutrosophic crisp erosion does not 

satisfy commutativity and the associativity 

properties. 

6.1.2 Proposition:  for any family  in 

 and B . 

Type1: a)  = 

332211 ,, BABABA
Ii

i

Ii

i

Ii

i 




)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 




 b) )(
~
 

Ii Ii

ii ABAB
 




Ii

i

Ii

i

Ii

i ABABAB


 332211 ,,

)(),(),( 332211

i

Ii

i

Ii

i

Ii

ABABAB 



 Type2: a)  = 

332211 ,, BABABA
Ii

i

Ii

i

Ii

i 




)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 




 b) )(
~
 

Ii Ii

ii ABAB
 




Ii

i

Ii

i

Ii

i ABABAB


 332211 ,,

)(),(),( 332211

i

Ii

i

Ii

i

Ii

ABABAB 




Proof:  a)   in two type:  
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Type 1: BA
Ii i

)(),(),( 3

)(

21 
Ii

bi

BbIi

ib

BbIi

ib

Bb

AAA








)(),(),( 32

)(

1

)(    
Ii

Bb ib

Ii
Bb bi

Ii Bb

bi AAA





 

 



       = )( BAiIi



Type 2: similarity, we can show that it is true in type 2, 

b) The proof is similar to point  a).

6.1.3 Proposition:  for any family 
in  and  B  

Type 1:  )
~

(
~

) BABAa
Ii

i

Ii

i 



332211 ,, BABABA

Ii iIi iIi i 
 

)(),(),( 332211 BABABA iIiiIiiIi


 
)

~
(

~
) 

Ii

i

Ii

i ABABb


  

 Ii iIi iIi i ABABAB


 332211 ,,

)(),(),( 332211

iIiiIiiIi
ABABAB 

 
Type 2:    )

~
(

~
) BABAa

Ii

i

Ii

i 



332211 ,, BABABA

Ii iIi iIi i 
 

)(),(),( 332211 BABABA iIiiIiiIi


 
)

~
(

~
) 

Ii

i

Ii

i ABABb


  

 Ii iIi iIi i ABABAB


 332211 ,,

)(),(),( 332211

iIiiIiiIi
ABABAB 

 

Proof:  a) 




BAType
Ii

i

~
:1 

)(),(),( 11

)(

1

)(  Ii i

Bb
Ii bi

Bb
Ii bi

Bb

AAA



 


 



)(),(),( 32

)(

1

)(  
Bb

ib

IiIi Bb

bi

Bb

biIi
AAA

 






)

~
( BA

Ii

i


   

Type 2: can be verified in a similar way as in type 1. 

b) The proof is similar to point  a)

6.2 Proposition:  (Properties of the Neutrosophic 

Crisp  Dilation Operator): 

6.2.1 Proposition:  
The neutrosophic Dilation satisfies the following proper-

ties:  BA,  

i) Commutativity: BA
~

= AB
~

ii) Associativity:  BBA 
~

)
~

( = )
~

(
~

BBA 

iii) Monotonicity: (increasing in both arguments):

Type1: 

a) 332211 ,, CACACABA 

332211 ,, CBCBCB 

22221111 , CBCACBCA    and  

  
3333 CBCA 

332211 ,,) ACACACBAb 

332211 ,, BCBCBC    

22221111 , BCACBCAC   and 
3333 BCAC 

    Type2: 
332211 ,,) CACACABAa 
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332211 ,, CBCBCB 

22221111 , CBCACBCA        and 

 3333 CBCA 

332211 ,,) ACACACBAb 

332211 ,, BCBCBC    

  and 22221111 , BCACBCAC 

3333 BCAC 

6.2.2 Proposition: for any family in  

 and B   

Type 1:     = 

 332211 ,, BABABA
Ii

i

Ii

i

Ii

i 




)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 



 = 


Ii

i

Ii

i

Ii

i ABABAB


 332211 ,,

)(),(),( 332211

i

Ii

i

Ii

i

Ii

ABABAB 




 Type 2:  = 

332211 ,, BABABA
Ii

i

Ii

i

Ii

i 




)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 




 = 


Ii

i

Ii

i

Ii

i ABABAB


 332211 ,,

)(),(),( 332211

i

Ii

i

Ii

i

Ii

ABABAB 




Proof:  we will prove this property for the two types of the 

neutrosophic crisp intersection operator:    

Type 1: BA
Ii i 

               

)(),(),( 3

)(

21 
Ii

bi

BbIi

ibBb
Ii

ibBb
AAA













)(),(),( 3

)(

21    
Ii Bb

bi

Ii
Bb ib

Ii
Bb ib AAA

 











     = )( BAiIi


  

Type 2:  

(),(), 3

(

21

Ii

bi

BbIi

ib

BbIi

ibA






               

)(),(),( 3

)(

21    
Ii Bb

bi

Ii
Bb ib

Ii
Bb ib AAA

 











)( BAiIi


 = 

b) The proof is similar to a)

6.2.3 Proposition:      for any family  in 

 and B 

Type 1:  )
~

(
~

) BABAa
Ii

i

Ii

i 



332211 ,, BABABA

Ii iIi iIi i 
 

)(),(),( 332211 BABABA iIiiIiiIi


 
)

~
(

~
) i

IiIi

i ABABb 




 Ii iIi iIi i ABABAB


 332211 ,,

)(),(),( 332211

iIiiIiiIi
ABABAB 

 
Type 2:  )

~
(

~
) BABAa

Ii

i

Ii

i 



332211 ,, BABABA

Ii iIi iIi i 
 

)(),(),( 332211 BABABA iIiiIiiIi


 
)

~
(

~
) i

IiIi

i ABABb 




 Ii iIi iIi i ABABAB


 332211 ,,
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)(),(),( 332211

iIiiIiiIi
ABABAB 

 
Proof:  a) we will prove this property for the two types of 

the neutrosophic crisp union operator:   




BAType
Ii

i

~
:1  )(),(),( 3

)(

21   
Bb

bi

IiBb Ii

ibIi ibBb
AAA





 


)
~

( BA
Ii

i 


 )(),(),( 3

)(

21  
Bb

bi

IiIi Bb

ibBb iIi
AAA





 




Type 2:  


BA
Ii

i

~
 )(),(),( 3

)(

2

)(

1   
Bb

bi

IiBb

bi

Ii
Ii iBb

AAA











)
~

( BA
Ii

i 


 )(),(),( 3

)(

2

)(

1  
Bb

bi

IiIi Bb

biBb iIi
AAA





 




b) The proof is similar to (a)

6.2.4 Proposition (Duality Theorem of  Neutrosophic 

Crisp Dilation):  

let A, B  .  Neutrosophic crisp  Erosion and  

Dilation are dual operations i.e. 

Type1: 

)(),(),()
~

( 332211 BAcocoBcoAcoBcoAcoBcoAco 

332211 ,, BABABA 

BA
~

= 

Type2: 

=

332211 ,, BABABA 

BA
~

= 

6.3 Properties of the Neutrosophic Crisp Opening 

Operator: 

6.3.1 Proposition:  

The neutrosophic opening satisfies the monotonicity   

 BA,

Type1: 
332211 ,, CACACABA 

332211 ,, CBCBCB 

,, 22221111 CBCACBCA  
3333 CBCA  

Type2:
332211 ,, CACACABA 

332211 ,, CBCBCB 

22221111 , CBCACBCA  
3333 CBCA  

6.3.2 Proposition:  for any family  in 

 and  B
Type1: )~(~ BABA

Ii

i

Ii

i  




332211 ,, BABABA
Ii

i

Ii

i

Ii

i •


 

)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i •


 

Type2: )~(~ BABA
Ii

i

Ii

i  




332211 ,, BABABA
Ii

i

Ii

i

Ii

i ••


 

)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i ••


 

6.3.3 Proposition: for any family 

      in   and  B    

Type1: )~(~ BABA
Ii

i

Ii

i  




332211 ,, BABABA
Ii iIi iIi i •

  

)(),(),( 332211 BABABA iIiiIiiIi
•

  

Type2: )~(~  
Ii

i

Ii

i BABA




332211 ,, BABABA
Ii iIi iIi i ••

  

)(),(),( 332211 BABABA iIiiIiiIi
••

  

Proof: Is similar to the procedure used to prove the propo-

sitions given in § 6.1.3 and  § 6.2.3. 
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6.4 Properties of the Neutrosophic Crisp Closing 

6.4.1 Proposition:  
The neutrosophic closing satisfies the monotonicity  

 BA,

Type1: 

a) 332211 ,, CACACABA •••

332211 ,, CBCBCB •••

,, 22221111 CBCACBCA ••••

3333 CBCA ••

Type2: 

a) 332211 ,, CACACABA •••

332211 ,, CBCBCB •••

,, 22221111 CBCACBCA ••••

3333 CBCA ••     

6.4.2 Proposition: for any family 

In  and  B

Type1: )~(~ BABA
Ii

i

Ii

i ••




332211 ,, BABABA
Ii

i

Ii

i

Ii

i 


••

)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i 


••

Type2: )~(~ BABA
Ii

i

Ii

i ••




332211 ,, BABABA
Ii

i

Ii

i

Ii

i  


•

)(),(),( 332211 BABABA
Ii

i

Ii

i

Ii

i  


•

6.4.3 Proposition: for any family

in  and  B

Type1: )~(~ BABA
Ii

i

Ii

i 


••

332211 ,, BABABA
Ii iIi iIi i  

••

)(),(),( 332211 BABABA iIiiIiiIi
 

••

Type2: )~(~ 
Ii

i

Ii

i BABA


••

332211 ,, BABABA
Ii iIi iIi i   

•

)(),(),( 332211 BABABA iIiiIiiIi
  

•

Proof: Is similar to the procedure used to prove the propo-

sitions given in § 6.1.3. 

6.4.4 Proposition (Duality theorem of Closing): 
let A, B ;   Neutrosophic  erosion and  dilation 

are dual operations  i.e. 

Type1: 

)(),(),()~( 332211 BAcocoBcoAcoBcoAcoBcoAco •••

332211 ,, BABABA •  =    BA ~

Type2: 

332211 ,, BABABA ••  = BA ~

7. Neutrosophic Crisp Mathematical Morphologi-
cal Filters: 
 7.1 Neutrosophic Crisp External Boundary: 

Where 
1A  is the set of all pixels that belong to the 

foreground of the picture, 
3A  contains the pixels that 

belong to the background whilecontains those 
2A

pixel which do not belong to neither.
3A  nor  

1A
Let A, B , such that 321 ,, AAAA   and B is 

some structure element of the form ;,, 321 BBBB  then 

the NC boundary extraction filter is defined to be: 

)( 1111

1 BAAA 
3333

3 )( ABAA  , 

 )()( 3

3

1

1

2 AAAA   

 )()()( 11332 BABAAA 

)()()( AAAb  
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a)                                b) 
Fig. 14: Applying the neutrosophic crisp External boundary: 

a) the Original image  b) Neutrosophic crisp 

boundary. 

7.2 Neutrosophic Crisp Top-hat Filter: 

)()( 1111

1 BAAAB   
3333

3 )()( ABAAB •

))()(()( 3

3

1

1

2 ABABAAB   

 )()()( 33112* BABAAAB • 

)()()(~ * ABABApoT hat   

a)                                b)       
Fig. 15:  Applying the Neutrosophic crisp top-hat filter:  a) 
Original image b) Neutrosophic Crisp components 

321 ,, AAA  respectively 

7.3 Bottom-hat filter: 
1111

1 )()( ABAAB •

)()( 3333

3 BAAAB 

))()(()( 3

3

1

1

2 ABABAAB   

 )()()( 33112* BABAAAB •

)()()(
~ * ABABAomtBot hat 

a) b)  

Fig. 16: Applying the Neutrosophic crisp Bottom-hat filter:  

Neutrosophic Crisp components 321 ,, AAA  respectively 

8 Conclusion: 
In this paper we established a foundation for what we 

called "Neutrosophic Crisp Mathematical Morphology". 

Our aim was to generalize the concepts of the classical 

mathematical morphology.  

For this purpose, we developed serval neutrosophic crisp 

morphological operators; namley, the neutrosophic crisp 

dilation, the neutrosophic crisp erosion, the neutrosophic 

crisp opening and the neutrosophic crisp closing operators. 

These operators were presented in two different types, each 

type is determined according to the behaviour of the 

seconed component of the triple strucure of the operator. 

Furthermore, we developed three neutrosophic crisp 

morphological filters; namely, the neutrosophic crisp 

boundary extraction, the neutrosophic crisp Top-hat and 

the neutrosophic crisp Bottom-hat filters.  

Some promising expermintal results were presented to 

visualise the effect of the new introduced operators and 

filters on the image in the neutrosophic domain instead of  

the spatial domain.  
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