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Abstract
This essay aims to vindicate the thesis that cognitive computational

properties are abstract objects implemented in physical systems. I avail
of Voevodsky’s Univalence Axiom and function type equivalence in Ho-
motopy Type Theory, in order to specify an abstraction principle for epis-
temic hyperintensions. The homotopic abstraction principle for epistemic
hyperintensions provides an epistemic conduit for our knowledge of inten-
sions as abstract objects. I examine, then, how intensional functions in
Epistemic Modal Algebra are deployed as core models in the philosophy
of mind, Bayesian perceptual psychology, and the program of natural lan-
guage semantics in linguistics, and I argue that this provides abductive
support for the truth of homotopic abstraction. Epistemic modality can
thus be shown to be both a compelling and a materially adequate can-
didate for the fundamental structure of mental representational states,
comprising a fragment of the language of thought.

1 Introduction
This essay aims to vindicate the thesis that cognitive computational properties
are abstract objects implemented in physical systems.1 A recent approach to
the foundations of mathematics is Homotopy Type Theory.2 In Homotopy Type
Theory, homotopies can be defined as equivalence relations on intensional func-
tions. In this essay, I argue that homotopies can thereby figure in abstraction
principles for epistemic (hyper-)intensions, i.e. functions from epistemically pos-
sible worlds or states to extensions.3 Homotopies for epistemic hyperintensions

∗I changed my name, from Hasen Joseph Khudairi and Timothy Alison Bowen, to David
Elohim, in April, 2024. Please cite this paper and my published book and articles under
‘Elohim, David’.

1See Turing (1950); Putnam (1967); Newell (1973); Fodor (1975); and Pylyshyn (1978).
2See The Univalent Foundations Program (2013).
3For the first proposal to the effect that abstraction principles can be used to define ab-

stracta such as cardinal number, see Frege (1884/1980: 68; 1893/2013: 20). For the locus
classicus of the contemporary abstractionist program, see Hale and Wright (2001).
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thus comprise identity criteria for some cognitive mechanisms. The philosoph-
ical significance of the foregoing is twofold. First, the proposal demonstrates
how epistemic modality and hyperintensionality is a viable candidate for a frag-
ment of the language of thought.4 Second, the proposal serves to delineate
one conduit for our epistemic access to epistemic hyperintensions as abstract
objects.5

In Section 2, I provide an abstraction principle for epistemic hyperintensions,
by availing of Voevodsky’s Univalence axiom and function type equivalence re-
lations countenanced in Homotopy Type Theory. In Section 3, I describe how
models of Epistemic Modal Algebra are availed of when perceptual representa-
tional states are modeled in Bayesian perceptual psychology; when speech acts
are modeled in natural language semantics; and when knowledge, belief, inten-

4Given a metalanguage, a precedent to the current approach – which models thoughts
and internal representations via possible worlds semantics – can be found in Wittgenstein
(1921/1974: 2.15-2.151, 3-3.02).

5The proposal that epistemic intensions might be sui generis abstract objects, not reducible
to sets, is proffered by Chalmers (2011: 101) who writes: ‘It is even possible to introduce a
special sort of abstract object corresponding to these intensions. Of course these abstract
objects cannot be sets of ordered pairs. But we might think of an intension formally as an
abstract object which when combined with an arbitrary scenario yields a truth value (or an
extension).’

Bealer (1982) proffers a non-modal algebraic logic for intensional entities – i.e., properties,
relations, and propositions – which avails of a λ-definable variable-binding abstraction operator
(op. cit.: 46-48, 209-210). Bealer reduces modal notions to logically necessary conditions-cum-
properties, as defined in his non-modal algebraic logic (207-209). The present approach differs
from the foregoing by: (i) countenancing a modal algebra, on an epistemic interpretation
thereof; (ii) availing of Voevodsky’s Univalence Axiom in Homotopy Type Theory – which
collapses identity and isomorphism – in order to provide an equivalence relation for the relevant
abstraction principle; and (iii) demonstrating how the model is availed of in various branches
of the cognitive sciences, such that Epistemic Modal Algebra may be considered a viable
candidate for the language of thought.

Katz (1998) proffers a view of the epistemology of abstracta, according to which the syntax
and the semantics for the propositions are innate (35). Katz suggests that the proposal is
consistent with both a Fregean approach to propositions, according to which they are thoughts
formed by the composition of senses, and a Russellian approach, according to which they are
structured tuples of non-conceptual entities (36). He endorses an account of senses according
to which they are correlated to natural language sentence types (114-115). One difference
between Katz’s proposal and the one here presented is that Katz rejects modal approaches to
propositions, because the latter cannot distinguish between distinct contradictions (38fn.6).
Following, Lewis (1973: I.6), the present approach does not avail of impossible worlds which
distinguish between distinct contradictions. For approaches to epistemic space and conceiv-
ability which do admit of impossible worlds, see Rantala (1982); Jago (2009; 2014); Berto
(2014); Berto and Schoonen (2018); and Priest (2019). However, Elohim (2024) advances
an epistemic two-dimensional truthmaker semantics, such that impossible states can be con-
structed which distinguish between distinct contradictory states (see Fine, 2021, for further
discussion). A second difference is that, on Katz’s approach, the necessity of mathematical
truths is argued to consist in reductio proofs, such that the relevant formulas will be true on
all interpretations, and thus true of logical necessity (39). Elohim (2024) argues that modal
axiom K, i.e. epistemic closure is invalid for reductio proofs. However, the endeavor to reduce
the necessity of mathematical truths to the necessity of logical consequence would result in the
preclusion, both of cases of informal proofs in mathematics, which can, e.g., involve diagrams
(see Azzouni, 2004; Giaquinto, 2008: 1.2), and of mathematical truths which obtain in axiom-
atizable, yet non-logical mathematical languages such as Euclidean geometry. Finally, Katz
rejects abstraction principles, and thus implicit definitions for abstract objects (105-106).
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tional action, and rational intuition are modeled in philosophical approaches
to the nature of propositional attitudes. This provides abductive support for
the claim that Epistemic Modal Algebra is both a compelling and materially
adequate candidate for a fragment of the language of thought. In Section 4, I
argue that the proposal resolves objections to the relevant abstraction principles
advanced by both Dean (2016) and Linnebo and Pettigrew (2014). Section 5
provides concluding remarks.

2 An Abstraction Principle for Epistemic (Hyper-
)Intensions

In this section, I specify a homotopic abstraction principle for epistemic (hyper-
)intensions. Intensional isomorphism, as a jointly necessary and sufficient condi-
tion for the identity of intensions, is first proposed in Carnap (1947: §14). The
isomorphism of two intensional structures is argued to consist in their logical,
or L-, equivalence, where logical equivalence is co-extensive with the notions of
both analyticity (§2) and synonymy (§15). Carnap writes that: ‘[A]n expression
in S is L-equivalent to an expression in S’ if and only if the semantical rules of S
and S’ together, without the use of any knowledge about (extra-linguistic) facts,
suffice to show that the two have the same extension’ (p. 56), where semanti-
cal rules specify the intended interpretation of the constants and predicates of
the languages (4).6 The current approach differs from Carnap’s by defining the
equivalence relation necessary for an abstraction principle for epistemic (hyper-
)intensions on Voevodsky’s (2006) Univalence Axiom, which collapses identity
with isomorphism in the setting of intensional type theory.7

Topological Semantics
In the topological semantics for modal logic, a frame is comprised of a set of
points in topological space, a domain of propositions, and an accessibility
relation:
F = ⟨X,R⟩;
X = (Xx)x∈X ; and

6For criticism of Carnap’s account of intensional isomorphism, based on Carnap’s (1937:
17) ‘Principle of Tolerance’ to the effect that pragmatic desiderata are a permissible constraint
on one’s choice of logic, see Church (1954: 66-67).

7Note further that, by contrast to Carnap’s approach, epistemic intensions are here distin-
guished from contextual linguistic intensions (see Elohim, 2024, for further discussion of the
difference between epistemic and contextual intensions), and the current work examines the
philosophical significance of the convergence between epistemic hyperintensions and formal,
rather than natural, languages. For a translation from type theory to set theory – which
is of interest to, inter alia, the definability of epistemic hyperintensions in the setting of set
theory – see Linnebo and Rayo (2012). For topological Boolean-valued models of Epistemic
Set Theory – i.e., a variant of ZF with the axioms augmented by epistemic modal operators
interpreted as informal provability and having a background logic satisfying S4 – see Scedrov
(1985), Flagg (1985a), and Goodman (1990). For Epistemic Type Theory, see Flagg (1985b).
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R = (Rxy)x,y∈X iff Rx ⊆ Xx x Xx, s.t. if Rxy, then ∃o⊆X, with x∈o s.t.
∀y∈o(Rxy),
where the set of points accessible from a privileged node in the space is said to
be open.8 A model defined over the frame is a tuple, M = ⟨F,V⟩, with V a
valuation function from subsets of points in F to propositional variables taking
the values 0 or 1. Necessity is interpreted as an interiority operator on the
space:
M,x ⊩ □ϕ iff ∃o⊆X, with x∈o, such that ∀y∈o M,y ⊩ ϕ.

Homotopy Theory
Homotopy Theory countenances the following identity, inversion, and
concatenation morphisms, which are identified as continuous paths in the
topology. The formal clauses, in the remainder of this section, evince how
homotopic morphisms satisfy the properties of an equivalence relation.9

Reflexivity
∀x,y:A∀p(p : x =A y) : τ(x,y,p), with A and τ designating types, ‘x:A’
interpreted as ‘x is a token of type A’, p • q is the concatenation of p and q,
reflx: x =A x for any x:A is a reflexivity element,

∏
x:AB(x) is a dependent

function type, and e:
∏

x:Aτ(a, a, reflα) is a dependent function10:
∀α:A∃e(α) : τ(α, α, reflα);
p,q : (x =A y)
∃r∈e : p =(x=Ay) q
∃µ : r = (p=(x=Ay)q) s.

Symmetry
∀A∀x,y:A∃HΣ(x=y → y=x)
HΣ := p 7→ p−1, such that
∀x:A(reflx ≡ reflx

−1).

Transitivity
∀A∀x,y:A∃HT (x=y → y=z → x=z)
HT := p 7→ q 7→ p • q, such that
∀x:A[reflx • reflx ≡ reflx].

8In order to ensure that the Kripke semantics matches the topological semantics, X must
further be Alexandrov; i.e., closed under arbitrary unions and intersections. Thanks here to
Peter Milne.

9The definitions and proofs at issue can be found in the Univalent Foundations Program
(2013: 2.0-2.1). A homotopy is a continuous mapping or path between a pair of functions.

10A dependent function is a function type ‘whose codomain type can vary depending on
the element of the domain to which the function is applied’ (Univalent Foundations Program
(op. cit.: §1.4).
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Homotopic Abstraction
For all type families A,B, there is a homotopy:

H := [(f ∼ g) :≡
∏

x:A(f(x) = g(x)], where∏
f :A→B [(f ∼ f) ∧ (f ∼ g → g ∼ f) ∧ (f ∼ g → g ∼ h → f ∼ h)],

such that, via Voevodsky’s (op. cit.) Univalence Axiom, for all type families
A,B:U, there is a function:
idtoeqv : (A =U B) → (A ≃ B),
which is itself an equivalence relation:
(A =U B) ≃ (A ≃ B).

Epistemic hyperintensions take the form,
pri(x) = λs.JxKs,s,
with s an epistemically possible state.
Abstraction principles for epistemic hyperintensions take, then, the form of

a function type equivalence:

• ∀x[f(x) = g(x)] ≃ [f(x) ≃ g(x)].

Observational type theory countenances ‘structure identity principles’ which
are type equivalences between identification types, and the theory is said to be
observational because the type formation rules satisfy structure-preserving defi-
nitional equality. Higher observational type theory holds for propositional equal-
ity. ‘The idea of higher observational type theory is to make these and analogous
structural characterizations of identification types be part of their definitional in-
ference rules, thus building the structure identity principle right into the rewrite
rules of the type theory’ (2023: https://ncatlab.org/nlab/show/higher+observational+type+theory).
Shulman (2022) argues that higher observational type theory is one way to make
the Univalence Axiom computable. Wright (2012c: 120) defines Hume’s Prin-
ciple as a pair of inference rules, and higher observational type theory might be
one way to make first-order abstraction principles defined via inference rules,
although not higher-order abstraction principles, computable. The Burali-Forti
paradox could be circumvented, because the target abstraction principles would
not be based on isomorphism like the Univalence Axiom. See Burali-Forti
(1897/1967). Hodes (1984) and Hazen (1985) note that abstraction principles
based on isomorphism with unrestricted comprehension entrain the paradox. I
avoid the Burali-Forti paradox in my abstraction principle for two-dimensional
hyperintensions because the definition is not augmented to second-order logic
like in the abstractionist foundations of mathematics, is instead taken in isola-
tion, and the definition defines functions from classes of epistemic states taken
as actual to classes of metaphysical states to extensions.
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3 Examples in Philosophy and Cognitive Sci-
ence

The material adequacy of epistemic modal algebras as a fragment of the the
language of thought is witnessed by the prevalence of possible worlds semantics
– the model theory for which is algebraic (see Blackburn et al., 2001: ch. 5)
– in cognitive psychology. Possible worlds model theory is availed of in the
computational theory of mind, Bayesian perceptual psychology, and natural
language semantics.

Marcus (2001) writes that: ‘A multilayer perceptron consists of a set of input
nodes, one or more sets of hidden nodes, and a set of output nodes ... These
nodes are attached to each other through weighted connections; the weights of
these connections are generally adjusted by some sort of learning algorithm ...
Nodes are units that have activation [real] values ... Input and output nodes
also have meanings or labels that are assigned by an external programmer ...
The meanings of nodes (their labels) play no direct role in the computation: a
network’s computations depend only on the activation values of nodes and not
on the labels of those nodes’ (7-8). Both a single and multiple nodes can serve
to represent the variables for a target domain. A target domain for variables is
universally quantified over and the function is one-one, mapping a number of
inputs to an equivalent number of outputs (35-36). Models of the above alge-
braic rules can be defined in both classical and weighted, connectionist systems
(42-45). Temporal synchrony or dynamic variable-bindings are stored in short-
term memory (56-57), while information relevant to long-term variable-bindings
are stored in ‘binary registers’ i.e. ‘bits’ (41, 54-56). Marcus writes of bits that:
‘Operations are defined in parallel over these sets of binary bits. When a pro-
grammer issues a command to copy the contents of variable x into variable y,
the computer copies in parallel each of the bits that represents variable x into
the corresponding bits that represent variable y’ (41). Examples of the forego-
ing algebraic rules on variable-binding include both the syntactic concatenation
of morphemes and noun phrase reduplication in linguistics (37-39, 70-72), as
well as learning algorithms (45-48). Conditions on variable-binding are further
examined, including treating the binding relation between variables and values
as tensor products – i.e., an application of a multiplicative axiom for variables
and their values treated as vectors (53-54, 105-106). In order to account for
recursively formed, complex representations, which he refers to as structured
propositions, Marcus argues instead that the syntax and semantics of such rep-
resentations can be modeled via an ordered set of registers, which he refers to
as ‘treelets’ (108).

A strengthened version of the algebraic rules on variable-binding can be
accommodated in models of epistemic modal algebras, when the latter are
augmented by cylindrifications, i.e., operators on the algebra simulating the
treatment of quantification, and diagonal elements.11 By contrast to Boolean

11See Henkin et al (op. cit.: 162-163) for the introduction of cylindric algebras, and for the
axioms governing the cylindrification operators.
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Algebras with Operators, which are propositional, cylindric algebras define first-
order logics. Intuitively, valuation assignments for first-order variables are, in
cylindric modal logics, treated as possible worlds of the model, while existential
and universal quantifiers are replaced by, respectively, possibility and necessity
operators (♢ and □) (Venema, 2013: 249). For first-order variables, {vi | i <
α} with α an arbitrary, fixed ordinal, vi = vj is replaced by a modal constant
ai,j (op. cit: 250). The following clauses are valid, then, for a model, M, of
cylindric modal logic, with Ei,j a monadic predicate and Ti for i,j < α a dyadic
predicate:

M,w ⊩ p ⇐⇒ w∈V(p);
M,w ⊩ ai,j ⇐⇒ w∈Ei,j ;
M,w ⊩ ♢iψ ⇐⇒ there is a v with wTiv and M,v ⊩ ψ (252).
Cylindric frames need further to satisfy the following axioms (op. cit.: 254):
1. p → ♢ip
2. p → □i♢ip
3. ♢i♢ip → ♢ip
4. ♢i♢jp → ♢j♢ip
5. ai,i

6. ♢i(ai,j ∧ p) → □i(ai,j → p)
[Translating the diagonal element and cylindric (modal) operator into, re-

spectively, monadic and dyadic predicates and universal quantification: ∀xyz[(Tixy
∧ Ei,jy ∧ Tixz ∧ Ei,jz) → y = z] (op. cit.)]

7. ai,j ⇐⇒ ♢k(ai,k ∧ ak,j).
Finally, a cylindric modal algebra of dimension α is an algebra, A = ⟨A, +,

•, –, 0, 1, ♢i, aij⟩i,j<α, where ♢i is a unary operator which is normal (♢i0 = 0)
and additive [♢i(x + y) = ♢ix + ♢iy] (257).

The philosophical interest of cylindric modal algebras to Marcus’ cognitive
models of algebraic variable-binding is that the valuation assignments to vari-
ables in the Epistemic Modal Algebra are epistemically possible worlds, while
universal quantification is interpreted as epistemic necessitation. The interest
of translating universal generalization into operations of epistemic necessitation
is, finally, that – by identifying epistemic necessity with apriority – both the
algebraic rules for variable-binding and the recursive formation of structured
propositions can be seen as operations, the implicit knowledge of which is apri-
ori.

In Bayesian perceptual psychology, the problem of underdetermination is
resolved by availing of a gradational possible worlds model. The visual system
is presented with a set of possibilities with regard, e.g., to the direction of a
light source. So, for example, the direction of light might be originating from
above, or it might be originating from below. The visual system computes
the constancy, i.e. the likelihood that one of the possibilities is actual.12 The
computation of the perceptual constancy is an unconscious statistical inference,

12See Mamassian et al. (2002).
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as anticipated by Helmholtz’s (1878) conjecture.13 The constancy places, then, a
condition on the accuracy of the attribution of properties – such as boundedness
and volume – to distal particulars.14

In the program of natural language semantics in empirical and philosoph-
ical linguistics, the common ground or ‘context set’ is the set of possibilities
presupposed by a community of speakers.15 Kratzer (1979: 121) refers to cases
in which the above possibilities are epistemic as an ‘epistemic conversational
background’, where the epistemic possibilities are a subset of objective or cir-
cumstantial possibilities (op. cit.). Modal operators are then defined on the
space, encoding the effects of various speech acts in entraining updates on the
context set.16 So, e.g., assertion is argued to provide a truth-conditional update
on the context set, whereas there are operator updates, the effects of which are
not straightforwardly truth-conditional and whose semantic values must then
be defined relative to an array of intensional parameters (including a context –
agent, time, location, et al. – and a tuple of indices).

Finally, Epistemic Modal Algebra, as a fragment of the language of thought,
is able to delineate the fundamental structure of the propositional attitudes tar-
geted in 20th century philosophy; notably knowledge, belief, intentional action,
and rational intuition. In Elohim (2024) I argue, e.g., that the types of inten-
tion – acting intentionally; referring to an intention as an explanation for one’s
course of action; and intending to pursue a course of action in the future – can
be modeled as modal operators, whose semantic values are defined relative to an
array of intensional parameters. E.g., an agent can be said to act intentionally
iff her ‘intention-in-action’ receives a positive semantic value, where a necessary
condition on the latter is that there is at least one world in her epistemic modal
space at which – relative to a context of a particular time and location, which
constrains the admissibility of her possible actions as defined at a first index,
and which subsequently constrains the outcome thereof as defined at a second
index – the intention is realized:

JIntenton-in-Action(ϕ)Kw = 1 only if ∃w’JϕKw′,c(=t,l),a,o = 1.
The agent’s intention to pursue a course of action at a future time – i.e., her

‘intention-for-the-future’ – can receive a positive value only if there is a possible
world and a future time, relative to which the possibility that a state, ϕ, is
realized can be defined. Thus:

JIntention-for-the-future(ϕ)Kw = 1 only if ∃w’∀t∃t’[t< t’ ∧ JϕKw′,t′ = 1].
In the setting of epistemic logic, epistemic necessity can further be modeled

in a relational semantics encoding the properties of knowledge and belief (see
13For the history of the integration of algorithms and computational modeling into contem-

porary visual psychology, see Johnson-Laird (2004).
14See Burge (2010), and Rescorla (2013), for further discussion. A distinction ought to

be drawn between unconscious perceptual representational states – as targeted in Burge (op.
cit.) – and the inquiry into whether the properties of phenomenal consciousness have accuracy-
conditions – where phenomenal properties are broadly construed, so as to include, e.g., color-
phenomenal properties, as well as the property of being aware of one’s perceptual states.

15See Stalnaker (1978).
16See Kratzer (op. cit.); Stalnaker (op. cit.); Lewis (1980); Heim (1992); Veltman (1996);

von Fintel and Heim (2011); and Yalcin (2012).
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Hintikka, 1962; Fagin et al., 1995; Meyer and van der Hoek, 1995; Williamson,
2009; Elohim, 2024). In Elohim (2024), I treat Gödel’s (1953) conception of
rational intuition as a modal operator in the setting of dynamic logic, and
demonstrate how – via correspondence theory – the notion of ‘intuition-of’, i.e.
a property of awareness of one’s cognitive states, can be shown to be formally
equivalent to the notion of ‘intuition-that’, i.e. a modal operator concerning the
value of the propositional state at issue. The correspondence results between
(fixed point) modal propositional and bisimulation-invariant first-order logic and
monadic second-order logic are advanced in van Benthem (1983; 1984/2003) and
Janin and Walukiewicz (1996). Availing of correspondence theory in order to
account for the relationship between the notions of ‘intuition-of’ and ‘intuition-
that’ resolves the inquiry about the foregoing posed by Parsons (1993: 233). As a
dynamic interpretational modality, rational intuition can further serve as a guide
to possible reinterpretations both of quantifier domains (see Fine, 2005) and of
the intensions of mathematical vocabulary such as the membership-relation (see
Uzquiano, 2015). This provides an account of Gödel’s (op. cit.; 1961) suggestion
that rational intuition can serve as a guide to conceptual elucidation.

4 Objections and Replies
Dean (2016) raises two issues for a proposal similar to the foregoing, namely
that algorithms – broadly construed – can be defined via abstraction principles
which specify equivalence relations between implementations of computational
properties in isomorphic machines.17 Dean’s candidate abstraction principle
for algorithms as abstracts is: that the algorithm implemented by M1 = the
algorithm implemented by M2 iff M1 ≃ M2.18 Both issues target the uniqueness
of the algorithm purported to be identified by the abstraction principle.

The first issue generalizes Benacerraf (1965)’s contention that, in the reduc-
tion of number theory to set theory, there must be, and is not, a principled
reason for which to prefer the identification of natural numbers with von Neu-
mann ordinals (e.g., 2 = {∅,{∅}}), rather than with Zermelo ordinals (e.g., 2
= {{∅}}). The issue is evinced by the choice of whether to define algorithms
as isomorphic iterations of state transition functions (see Gurevich, 1999), or
to define them as isomorphic recursions of functions which assign values to
a partially ordered set of elements (see Moschovakis, op. cit.). Linnebo and
Pettigrew (2014: 10) argue similarly that, for two ‘non-rigid’ structures which
admit of non-trivial automorphisms, one can define a graph which belies their
isomorphism. E.g., let an abstraction principle be defined for the isomorphism

17Fodor (2000: 105, n.4) and Piccinini (2004) note that the identification of mental states
with their functional roles ought to be distinguished from identifying those functional roles
with abstract computations. Conversely, a computational theory of mind need not be commit-
ted to the identification of abstract, computational operations with the functional organization
of a machine. Identifying abstract computational properties with the functional organization
of a creature’s mental states is thus a choice point, in theories of the nature of mental repre-
sentation.

18See Moschovakis (1998).
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between S and S*, such that
∀S,S*[AS = AS* iff ⟨S, R1 . . . Rn⟩ ≃ ⟨S*, R*1 . . . R*n⟩].
However, if there is a graph, G, such that:
S = {v1, v2}, and R = {⟨v1, v2⟩, ⟨v2, v1⟩},
then one can define an automorphism, f : G ≃ G, such that f(v1) = v2 and

f(v2) = v1, such that S* = {v1} while R* = {⟨v*1, v*1⟩}. Then S* has one
element via the automorphism, while S has two. So, S and S* are not, after all,
isomorphic.

The second issue is that complexity is crucial to the identity criteria of
algorithms. Two algorithms might be isomorphic, while the decidability of one
algorithm is proportional to a deterministic polynomial function of the size of
its input – with k a member of the natural numbers, N, and TIME referring
to the relevant complexity class:

⋃
k∈N TIME(nk) – and the decidability of the

second algorithm will be proportional to a deterministic exponential function
of the size of its input –

⋃
k∈N TIME(2nk ). The deterministic polynomial time

complexity class is a subclass of the deterministic exponential time complexity
class. However, there are problems decidable by algorithms only in polynomial
time (e.g., the problem of primality testing, such that, for any two natural
numbers, the numbers possess a greatest common divisor equal to 1), and only
in exponential time (familiarly from logic, e.g., the problem of satisfiability –
i.e., whether, for a given formula, there exists a model which can validate it –
and the problem of validity – i.e. whether a satisfiable formula is valid).19

Both issues can be treated by noting that Dean’s discussion targets abstrac-
tion principles for the very notion of a computable function, rather than for
abstraction principles for cognitive computational properties. It is a virtue of
homotopic abstraction principles for cognitive intensional functions that both
the temporal complexity class to which the functions belong, and the applica-
tions of the model, are subject to variation. Variance in the cognitive roles,
for which Epistemic Modal Algebra provides a model, will crucially bear on
the nature of the representational properties unique to the interpretation of the
intensional functions at issue. Thus, e.g., when the internal representations in
the language of thought – as modeled by Epistemic Modal Algebra – subserve
perceptual representational states, then their contents will be individuated by
both the computational constancies at issue and the external, environmental
properties – e.g., the properties of lightness and distance – of the perceiver.20 A
further virtue of the foregoing is that variance in the coding of Epistemic Modal
Algebras – i.e. in the types of information over which the intensional func-
tions will be defined – by contrast to a restriction of the language of thought to
mathematical languages such as Peano arithmetic, permits homotopic abstrac-
tion principles to circumvent the Burali-Forti paradox for implicit definitions
based on isomorphism.21

19For further discussion, see Dean (2021).
20The computational properties at issue can also be defined over non-propositional infor-

mation states, such as cognitive maps possessed of geometric rather than logical structure.
See, e.g., O’Keefe and Nadel (1978); Camp (2007); and Rescorla (2009).

21See Burali-Forti (1897/1967); Hodes (1984); and Hazen (1985).
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The examples of instances of Epistemic Modal Algebra – witnessed by the
possible worlds models in Bayesian perceptual psychology, linguistics, and phi-
losophy of mind – provide abductive support for the existence of the intensional
functions specified in homotopic abstraction principles. The philosophical signif-
icance of independent, abductive support for the existence of epistemic modal-
ities in the philosophy of mind and cognitive science is that the latter permits
a circumvention of the objections to the abstractionist foundations of number
theory that have accrued since its contemporary founding (see Wright, 1983).
Eklund (2006) suggests, e.g., that the existence of the abstract objects which
are the referents of numerical term-forming operators might need to be secured,
prior to assuming that the abstraction principle for cardinal number is true.
While Hale and Wright (2009) maintain, in response, that the truth of the
relevant principles will be prior to the inquiry into whether the terms defined
therein refer, they provide a preliminary endorsement of an ‘abundant’ concep-
tion of properties, according to which identifying the sense of a predicate will be
sufficient for predicate reference.22 One aspect of the significance of empirical
and philosophical instances of models of Epistemic Modal Algebra is thus that,
by providing independent, abductive support for the truth of the homotopic
abstraction principles for epistemic hyperintensions, the proposal remains neu-
tral on the status of ‘sparse’ versus ‘abundant’ conceptions of properties.23 The
truth of my first-order abstraction principle for hyperintensions is grounded in
its being possibly recursively enumerable i.e. Turing computable and the Turing
machine being physically implementable. Another aspect of the philosophical
significance of possible worlds semantics being availed of in Bayesian vision
science and empirical linguistics is that it belies the purportedly naturalistic
grounds for Quine’s (1963/1976) scepticism of de re modality.24

5 Concluding Remarks
In this essay, Voevodsky’s Univalence Axiom and function type equivalence
in Homotopy Type Theory were availed of, in order to specify an abstraction
principle for hyperintensional, computational properties. The homotopic ab-
straction principle for epistemic hyperintensions provides an epistemic conduit
for our knowledge of hyperintensions as abstract objects. Because hyperinten-

22For identity conditions on abundant properties – where the domain of properties, in the
semantics of second-order logic, is a subset of the domain of objects, and the properties are
definable in a metalanguage by predicates whose satisfaction-conditions have been fixed –
see Hale (2013). For a generalization of the abundant conception, such that the domain of
properties is isomorphic to the powerset of the domain of objects, see Cook (2014).

23Finding abductive support for abstraction principles is suggested by Rayo (2003). Hale
and Wright (2009) and Wright (2012, 2014, 2016) argue that there is prima facie, default
non-evidential entitlement to accept that abstraction principles are true.

24See Barcan Marcus (1993: 66-67), for a defense of Aristotelian essentialism, according to
which essentialist modalities are temporal and ‘causal and physical modalities’. Barcan Marcus
writes, too, that ‘What has gone wrong in recent discussions of essentialism is the assumption
of surface synonymy between "is essentially" and de re occurrences of "is necessarily"’ (60),
and examines the distinction in various systems of quantified modal logic (Ch. 4, §III).
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sions in Epistemic Modal Algebra are deployed as core models in the philosophy
of mind, Bayesian visual psychology, and natural language semantics, there is
independent abductive support for the truth of homotopic abstraction. Epis-
temic modality and hyperintensionality may thereby be recognized as both a
compelling and a materially adequate candidate for the fundamental structure
of mental representational states, and as thus comprising a fragment of the
language of thought.
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