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Abstract. Condorcet’s voting paradox shows that pairwise majority voting may lead to cyclical majority 
preferences. In a famous paper, Sen (1966) identified a general condition on a profile of individual preference 
orderings, called triplewise value-restriction, which is sufficient for the avoidance of such cycles. This note aims 
to make Sen’s result easily accessible. We provide an elementary proof of Sen's possibility theorem and a simple 
reformulation of Sen’s condition. We discuss how Sen’s condition is logically related to a number of precursors. 
Finally, we state a necessary and sufficient condition for the avoidance of cycles, and suggest that, although 
there is still some logical space between that condition and Sen’s sufficient condition, Sen’s condition cannot be 
further generalized in an appealing way. 
 

1. INTRODUCTION 
 
Condorcet's paradox shows that pairwise majority voting over three or more candidates can 
lead to cyclical majority preferences, even when the preferences of individual voters are 
transitive: Suppose there are three voters, labelled 1, 2 and 3, and three candidates, labelled x1, 
x2 and x3, with the following preferences: 
 
voter 1: x1 > x2 > x3 
voter 2: x2 > x3 > x1 
voter 3: x3 > x1 > x2. 
 
Then there are majorities of 2 out of 3 voters for x1 > x2, for x2 > x3 and for x3 > x1. The 
resulting majority preference ordering is cyclical: x1 > x2 > x3 > x1. 

Cyclical majority preferences (in short: cycles) are democratically undesirable, as they 
are unsuitable for reaching consistent democratic decisions. A large literature in social choice 
theory addresses the threat posed by cycles for the functioning of democratic decision 
mechanisms (for example, Riker 1982). Several sufficient conditions for the avoidance of 
cycles have been identified. Black (1948) showed that, if the n-tuple of individual preference 
orderings across n voters satisfies an appealing condition called single-peakedness, the 
resulting majority preference ordering will be transitive. Later, other sufficient conditions for 
transitive majority preference were found, amongst them single-cavedness (Inada 1964), 
separability into two groups (Inada 1964), and latin-squarelessness (Ward 1965). (See also 
section 3 below.) 

In a famous paper, Sen (1966) generalized these results, showing that a condition that 
is less demanding than, but implied by, each of these conditions is already sufficient for 
avoiding cycles. Sen's condition is called tripewise value-restriction. However, Sen's 
condition and theorem are not intuitively straightforward. This note aims to make the 
mechanism underlying Sen's result easily accessible, by giving an elementary proof of Sen's 
theorem, together with a simple reformulation of the condition of triplewise value-restriction. 
In terms of our reformulation, we also discuss how Sen’s condition is logically related to its 
precursors. Finally, we suggest that, although there is still some logical space between Sen’s 
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sufficient condition for the avoidance of cycles and a necessary and sufficient condition, this 
space may be to narrow to allow an appealing generalization of Sen’s condition. 

 
2. AN EASY PROOF OF A SLIGHTLY SIMPLIFIED VERSION OF SEN’S THEOREM  

 
We first prove a slightly simplified variant of Sen's result. Suppose there are n voters, labelled 
1, 2, ..., n, and k candidates, labelled x1, x2, ..., xk. To avoid ties under majority voting, we 
assume that n is odd. And suppose each voter holds a preference ordering over the candidates. 
We use the notation x1 > x2 to mean that the voter strictly prefers candidate x1 to candidate x2. 
Each voter’s preference ordering is assumed to be complete and transitive. 
 
Completeness. For any two candidates x1, x2, either x1 > x2 or x2 > x1 (but not both). 
 
Transitivity. For any x1, x2, x3, if x1 > x2 and x2 > x3, then x1 > x3.  
 
An n-tuple of individual preference orderings across n voters is called a profile of individual 
preference orderings, in short a profile. A profile is triplewise value-restricted if it satisfies 
the following property. 
 
Triplewise value-restriction. For every triple of distinct candidates x1, x2, x3, there exists 
xi∈{x1, x2, x3} and r∈{1, 2, 3} such that no voter ranks xi as his or her r-th preference among 
x1, x2, x3. 
 
Theorem 1. (Sen 1966) For every profile satisfying triplewise value-restriction, pairwise 
majority voting generates a transitive (hence acylic) majority preference ordering.  

 
Sen's original result allows voters to be indifferent between two or more candidates. In this 
section, we assume that voters always order candidates in a strict ranking. In section 4, we 
explain how our method can be used to prove Sen's result in full generality. 

Our proof is in three steps. In a first step, we identify a condition that is sufficient for 
avoiding cycles over triples of alternatives. In a second step, we show that, if this condition 
holds for every triple of alternatives, this is sufficient for the avoidance of any cycles. In a 
third step, we show that our condition (applied to every triple of alternatives) is logically 
equivalent to triplewise value-restriction, as stated above. 

Step 1. Consider three candidates, x1, x2, x3. There are six logically possible strict 
preference orderings over x1, x2, x3: 
 

1: x1 > x2 > x3  2: x1 > x3 > x2   3: x2 > x1 > x3  
4: x2 > x3 > x1  5: x3 > x1 > x2  6: x3 > x2 > x1. 

 
Let ahij denote the number of voters holding the preference ordering xh > xi > xj (ahij is a non-
negative integer). A preference ordering can be represented as a matrix M = (mij), where  
 

1 if xi > xj, 
mij = { 

0 otherwise. 
 

The six orderings above thus correspond to the following matrices: 
 

      0 1 1       0 1 1     0 0 1               
                M123 = (  0 0 1 ),    M132 =  ( 0 0 0 ),     M213 = ( 1 0 1 ), 
           0 0 0                    0 1 0            0 0 0 
 
           0 0 0              0 1 0            0 0 0 
                   M231 = ( 1 0 1 ),        M312 = ( 0 0 0 ),        M321 = ( 1 0 0 ). 

1 0 0            1 1 0                1 1 0 
 



 3 

Pairwise majority voting corresponds to the following weighted sum: 
 

        S  = a123 M123 + a132 M132 + a213 M213 + a231 M231 + a312 M312 + a321 M321 
 
                         0  a123+a132+a312 a123+a132+a213 

= ( a213+a231+a321                0    a123+a213+a231  ). 
               a231+a312+a321 a132+a312+a321            0 

 
S = (sij) induces a majority preference ordering defined as follows. For each i, j, xi > xj if and 
only if sij > sji.  

When can a cycle occur under pairwise majority voting? There are two logically 
possible cycles: x1 > x2 > x3 > x1 and x1 > x3 > x2 > x1.  

Suppose we have a majority cycle of the first type, x1 > x2 > x3 > x1.  
 

x1 > x2 means s12 > s21, i.e.  a123+a132+a312 > a213+a231+a321  (1) 
x2 > x3 means s23 > s32, i.e. a123+a213+a231 > a132+a312+a321  (2) 
x3 > x1 means s31 > s13, i.e. a231+a312+a321 > a123+a132+a213.  (3) 

 
We now add pairs of these inequalities. 
 

(1)+(2) implies  a123 > a321 
(1)+(3) implies a312 > a213 
(2)+(3) implies a231 > a132. 

 
Analogously, a majority cycle of the second type, x1 > x3 > x2 > x1, implies the reverse 
inequalities, a321 > a123, a213 > a312 and a132 > a231. Hence we have the following lemma: 
 
Lemma 1. If there is a majority cycle over x1, x2, x3, then (a123 > a321 and a312 > a213 and a231 > 
a132) or (a321 > a123 and a213 > a312 and a132 > a231). 
 
An obvious corollary of lemma 1 is the following: 
 
Lemma 2. If (a123 ≤ a321 or a312 ≤ a213 or a231 ≤ a132) and (a321 ≤ a123 or a213 ≤ a312 or a132 ≤ 
a231), then there is no majority cycle over x1, x2, x3. 
 
We can infer a corollary of lemma 2 which is suitable for proving Sen's theorem. 
 
Lemma 3. If (a123 = 0 or a312 = 0 or a231 = 0) and (a321 = 0 or a213 = 0 or a132 = 0), then there is 
no majority cycle over x1, x2, x3. 
 
Step 2. Now suppose there are k candidates.  
 
Lemma 4. (Standard result) If there is a cycle over m candidates (3 ≤ m ≤ k) in the majority 
preference ordering, then there is also a cycle over three candidates in that ordering. 
 
Proof. Suppose there is a cycle over m candidates, x1, x2, ..., xm, in the majority preference 
ordering, i.e. x1 > x2 > ... > xm > x1. We have x1 > x2 and x2 > x3. Either x3 > x1 or x1 > x3. If x3 > 
x1, we have found a cycle over three candidates, namely x1, x2, x3. If x1 > x3, we consider x1 > 
x3 and x3 > x4. Again, either x4 > x1, in which case we have a cycle over x1, x3, x4, or x1 > x4.  
We continue until we reach either a cycle over three candidates, or until we reach x1 > xm-1,  
xm-1 > xm. But xm > x1, and hence we have a cycle over x1, xm-1, xm. ■ 
 
Note that any complete strict preference ordering is either transitive or cyclic (where the 
ordering is cyclic if there exists at least one cycle). Lemma 3 and lemma 4 imply the 
following theorem. 
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Theorem 2. Suppose, for every triple of distinct candidates x1, x2, x3, we have (a123 = 0 or a312 
= 0 or a231 = 0) and (a132 = 0 or a321 = 0 or a213 = 0). Then pairwise majority voting generates a 
transitive (hence acylic) majority preference ordering.  

 
Step 3. To see that Sen's theorem is an immediate corollary of theorem 2, we give a simple 
reformulation of triplewise value-restriction. 
 
Lemma 5. A profile satisfies triplewise value-restriction if and only if, for every triple of 
distinct candidates x1, x2, x3, (a123 = 0 or a312 = 0 or a231 = 0) and (a132 = 0 or a321 = 0 or a213 = 
0).  
 
Proof. For every triple of distinct candidates x1, x2, x3, Sen's condition of triplewise value-
restriction corresponds to a disjunction of nine cases, as detailed in the first two rows of table 
1. Each of the nine cases is equivalent to a corresponding case in the third row, and the 
condition of lemma 5 is precisely the disjunction of these cases. 
 

x1 x2 x3 x1 x2 x3 x1 x2 x3 
is not ranked 1st 

by any voter if and only if 
is not ranked 2nd 

by any voter if and only if 
is not ranked 3rd 

by any voter if and only if 
a123=0 

& a132=0
a213=0 

& a231=0 
a312=0 

& a321=0 
a213=0 

& a312=0 
a123=0 

& a321=0 
a132=0 

& a231=0
a231=0 

& a321=0
a132=0 

& a312=0
a123=0 

& a213=0
Table 1 

■ 
 

3. SEN’S CONDITION AND ITS PRECURSORS 
 
Table 1 is revealing in another respect. Each of the three sets of conditions (“is not ranked 
1st”, “is not ranked 2nd”, “is not ranked 3rd”) corresponds to one of the precursors of Sen’s 
condition mentioned in section 1.   

The first set of conditions (“is not ranked 1st”) corresponds to single-cavedness for 
every triple. The general condition of single-cavedness requires the existence of a single 
ordering of all candidates from 'left'-most to 'right'-most such that each voter has a least 
preferred position on that 'left'/'right' ordering with increasing preference for candidates as 
they get increasingly distant from the least preferred position. Single-cavedness implies 
single-cavedness for every triple, but not the other way round. 
 
    1st 

 
    2nd  
 
    3rd  
 
    4th  
  
    5th   

x3        x2           x4       x1   x5  

        Ω                               
 

  1      2        3       4       5 
Figure 1. Two orderings which are single-caved. 
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Single-Cavedness. There exists a bijection Ω : {x1, x2, ..., xk} → {1, 2, ..., k} such that, for 
every triple of candidates x1, x2, x3 and every voter i, if (Ω(x1) < Ω(x2) < Ω(x3)) or (Ω(x3) < 
Ω(x2) < Ω(x1)), then [x2 > x1 implies x3 > x1] for voter i. 
 
Single-cavedness for triples permits a different bijection Ω for every triple of candidates.  

The second set of conditions (“is not ranked 2nd”) corresponds to separability into two 
groups for every triple. The general condition of separability into two groups requires that 
any subset of the set of all candidates can be partitioned into two parts such that each voter 
either prefers any candidate in one of the two parts to any candidate in the other. Separability 
into two groups implies separability into two groups for every triple, but not the other way 
round. 
 
               {x2}  {x1, x4} 
 
 
 
    {x3, x5}   {x1, x2, x4} 
 
 
 

 
{x1, x2, x3, x4, x5} 

Figure 3. Separability into two Groups. For each vertex, each voter prefers any 
candidate in one branch to any candidate in the other. 
 
Separability into two Groups. Any subset Y of the set of all candidates can be partitioned 
into two disjoint non-empty subsets Y1 and Y2 such that, for every voter i, either [for all x1∈Y1 
and all x2∈Y2, x1 > x2] or [for all x1∈Y1 and all x2∈Y2, x2 > x1] for voter i. 
 
Separability into two groups for every triple requires the existence of the required partition 
only for any triple of candidates. 

The third set of conditions (“is not ranked 3rd”) corresponds to single-peakedness for 
every triple. The general condition of single-peakedness requires the existence of a single 
ordering of all candidates from 'left'-most to 'right'-most such that each voter has a most 
preferred position on that 'left'/'right' ordering with decreasing preference for candidates as 
they get increasingly distant from the most preferred position. Single-peakedness implies 
single-peakedness for every triple, but not the other way round. 
 
    1st 

 
    2nd  
 
    3rd  
 
    4th  
 
    5th   

x4        x5           x2       x3   x1  

        Ω                               
 

  1      2        3       4       5 
Figure 2. Two orderings which are single-peaked. 
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Single-Peakedness. There exists a bijection Ω : {x1, x2, ..., xk} → {1, 2, ..., k} such that, for 
every triple of candidates x1, x2, x3 and every voter i, if (Ω(x1) < Ω(x2) < Ω(x3)) or (Ω(x3) < 
Ω(x2) < Ω(x1)), then [x1 > x2 implies x1 > x3] for voter i. 
 
Single-peakedness for triples permits a different bijection Ω for every triple of candidates.  
 

4. PROVING SEN’S RESULT IN FULL GENERALITY 
 
Finally, let us briefly sketch how our method can be used to allow the consideration of 
indifference in individual preference orderings, and thus to prove Sen’s result in full 
generality. Allowing indifference means that there are three different ways in which a voter 
might rank two candidates, x1 and x2. The voter might rank one strictly above the either, i.e. x1 
> x2 or x2 > x1; the voter might have an equal preference for both, i.e. x1 = x2; or the voter 
might not rank or compare them at all. The first possibility corresponds to a strict ordering, 
the second to indifference, and the third to an incomplete ordering. Following Sen’s result, we 
will only consider the first two possibilities and rule out incomplete orderings (in principle, 
however, incomplete orderings are also representable in terms of the matrix formalism 
introduced in section 2). 

Over triples of candidates, there are 7 possible preference orderings with indifference, 
in addition to the 6 strict orderings shown above: x1 > x2 = x3, x1 = x2 > x3, x2 > x1 = x3, x1 = x3 
> x2, x3 > x1 = x2, x2 = x3 > x1, and x1 = x2 = x3.  (Note that x1 > x2 = x3 and x1 > x3 = x2 are 
considered the same.) 

We define a corresponding notation. Here ahij has the same interpretation as before. 
For weak orderings, let (for example) ah>i=j denote the number of voters holding the 
preference ordering xh > xi = xj. The matrix corresponding to x1 > x2 = x3, for example, is 
 

           0 1 1 
      M1>2=3 = ( 0 0 0 ). 

      0 0 0 
 
Strict orderings correspond to matrices with three non-zero entries, as defined in section 2, 
weak orderings correspond to matrices with two non-zero entries, except x1 = x2 = x3, which 
corresponds to the matrix consisting only of zeroes.  

In analogy to the argument above, pairwise majority voting corresponds to the 
following weighted sum: 
 
S  = a123 M123 + a132 M132 + a213 M213 + a231 M231 + a312 M312 + a321 M321 
       + a1=2>3 M1=2>3 + a1=3>2 M1=3>2 + a2=3>1 M2=3>1 + a3>1=2 M3>1=3 + a2>1=3 M2>1=3 + a1>2=3 M1>2=3 
   
                       0  a123+a132+a312+a1=3>2+a1>2=3    a123+a132+a213+a1=2>3+a1>2=3 
= (a213+a231+a321+a2=3>1+a2>1=3                                         0               a123+a213+a231+a1=2>3+a2>1=3 ). 
      a231+a312+a321+a2=3>1+a3>1=2    a132+a312+a321+a1=3>2+a3>1=2                     0 
 
For simplicity, we assume that the number of voters that are not indifferent about any 
particular pair of candidates is odd. This assumption is different from Sen’s. Sen’s own 
assumption is that the number of voters who are not indifferent about any particular triple of 
candidates is odd. The following two examples show that Sen’s assumption and our 
assumption are logically independent. Case (i): Our assumption is satisfied, but Sen’s is not. 
Consider 6 voters with the following preference orderings: (1) x1=x2>x3>x4; (2) x1=x3>x2>x4; 
(3) x1=x4>x2>x3; (4) x2=x3>x1>x4; (5) x2=x4>x1>x3; (6) x3=x4>x1>x2. Case (ii): Sen’s 
assumption is satisfied, but ours is not. Consider 3 voters with the following preference 
orderings: (1) x1>x2=x3; (2) x2>x3=x1; (3) x3>x1=x2. Our assumption has the possible advantage 
of being slightly easier to verify than Sen’s: verifying whether the number of voters who are 
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not indifferent over a pair of candidates is odd is simpler than verifying whether the number 
not indifferent over a triple of candidates is odd. 

Given that the number of voters that are not indifferent about any particular pair of 
candidates is odd, there will not be any ties under majority voting, and, as before, the only two 
logically possible cycles are x1 > x2 > x3 > x1 and x1 > x3 > x2 > x1. 

The first cycle corresponds to the following inequalities: 
 
x1 > x2 means s12 > s21, i.e.  a123+a132+a312+a1=3>2+a1>2=3 > a213+a231+a321+a2=3>1+a2>1=3   (1) 
x2 > x3 means s23 > s32, i.e. a123+a213+a231+a1=2>3+a2>1=3 > a132+a312+a321+a1=3>2+a3>1=2   (2) 
x3 > x1 means s31 > s13, i.e. a231+a312+a321+a2=3>1+a3>1=2 > a123+a132+a213+a1=2>3+a1>2=3. (3) 
 
Adding pairs of these inequalities leads to: 
 
(1)+(2) implies  a123+a1=2>3+a1>2=3 > a321+a2=3>1+a3>1=2   
(1)+(3) implies a312+a1=3>2+a3>1=2 > a213+a1=2>3+a2>1=3 
(2)+(3) implies a231+a2=3>1+a2>1=3 > a132+a1=3>2+a1>2=3. 
 
Analogously, the second cycle implies the reverse inequalities. Using (a version of) lemma 4 
as before, we can state the following theorem. 
 
Theorem 3. Suppose, for every triple of distinct candidates x1, x2, x3, we have 
(a123+a1=2>3+a1>2=3=0 or a312+a1=3>2+a3>1=2 = 0 or a231+a2=3>1+a2>1=3 = 0) and 
(a321+a2=3>1+a3>1=2 = 0 or a213+a1=2>3+a2>1=3=0 or a132+a1=3>2+a1>2=3 = 0). Then pairwise 
majority voting generates a transitive (hence acylic) majority preference ordering.  

 
To see that the condition of theorem 3 is equivalent to Sen’s condition of triplewise value-
restriction, we just need to use the interpretation, in the case of indifference, that each 
candidate can have more than one rank within a voter’s preference ordering, i.e. if xh=xi>xj, 
then xh and xi would each be regarded as both first and second within the given preference 
ordering among xh, xi, xj. Using this interpretation and stating the condition of theorem 3 in a 
form similar to table 1 then yields a version of Sen’s general result. 
 

5. A NECESSARY AND SUFFICIENT CONDITION FOR AVOIDING CYCLES 
 
As we have pointed out, triplewise value-restriction is a sufficient condition for avoiding 
cycles. It is a generalization of its precursors, which are themselves sufficient conditions. But 
it is still not a necessary and sufficient condition. Can triplewise value-restriction itself be 
further generalized? How ‘close’ is it to a necessary and sufficient condition? We will now 
see that there is still some logical space between Sen’s condition and a necessary and 
sufficient condition, but we suggest that this space may be to narrow to allow an appealing 
generalization of triplewise value-restriction. 

We first state a necessary and sufficient condition for the occurrence of cycles. The 
result is a version of a result by Miller (2000). 
 
Theorem 4. Pairwise majority voting generates a cycle if and only if, for some triple of 
distinct candidates x1, x2, x3, we have  
 

((a123 > a321 and a312 > a213 and a231 > a132) or (a321 > a123 and a213 > a312 and a132 > a231)) 
and |a123-a321|<n’/2 and |a231-a132|<n’/2 and |a312-a213|<n’/2, 

 
where n’ := |a123-a321| + |a231-a132| + |a312-a213|. 
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A proof is given in an appendix. Negating both sides of the if-and-only-if equivalence yields 
the following corollary. 
 
Corollary of theorem 4. Pairwise majority voting generates a transitive (hence acylic) 
majority preference ordering if and only if, for every triple of distinct candidates x1, x2, x3, we 
have  
 

((a123 ≤ a321 or a312 ≤ a213 or a231 ≤ a132) and (a321 ≤ a123 or a213 ≤ a312 or a132 ≤ a231)) 
or |a123-a321|≥n’/2 or |a231-a132|≥n’/2 or |a312-a213|≥n’/2, 

 
where n’ := |a123-a321| + |a231-a132| + |a312-a213|. 
 
Sen’s condition implies, but is not implied by, the condition of the corollary of theorem 4. 
However, to see why it may nonetheless be impossible to find an appealing generalization of 
Sen’s condition, let us introduce a criterion for describing a condition on a profile as simple. 
A condition (on a profile) is simple if it is dependent, for each logically possible preference 
ordering, only on whether or not that ordering occurs in the profile, but not on the number of 
voters holding the given ordering. Thus a condition is simple if it consists only of 
propositions of the forms ahij = 0 and ahij  ≠ 0, as well as conjunctions or disjunctions of such 
propositions. The condition of triplewise value-restriction as defined in section 2 satisfies the 
criterion of simplicity (leaving aside the requirement that n be odd). Technically, triplewise 
value-restriction in its full generality already violates the criterion, as it requires the number of 
voters who are not indifferent about any particular triple (or pair) of alternatives to be odd. 
 The task of finding a simple sufficient condition for the avoidance of cycles, then, is to 
find a condition with the following two properties: (i) the condition’s basic components are 
only propositions of the forms ahij = 0 and ahij  ≠ 0; (ii) the condition implies  
 

((a123 ≤ a321 or a312 ≤ a213 or a231 ≤ a132) and (a321 ≤ a123 or a213 ≤ a312 or a132 ≤ a231)) 
or |a123-a321|≥n’/2 or |a231-a132|≥n’/2 or |a312-a213|≥n’/2, 

 
where n’ := |a123-a321| + |a231-a132| + |a312-a213|. Sen’s solution – (a123 = 0 or a312 = 0 or a231 = 0) 
and (a132 = 0 or a321 = 0 or a213 = 0) – seems to be the most general one we can get. 
 

APPENDIX: PROOF OF THEOREM 4. 
 

Step 1. Let x1, x2, x3 be any triple of candidates. 
 
There is a majority cycle of type x1 > x2 > x3 > x1 

     ⇔   (a123+a132+a312 > a213+a231+a321) 
and  (a123+a213+a231 > a132+a312+a321) 
and  (a231+a312+a321 > a123+a132+a213) 

     ⇔   (a123-a321+a231-a132+a312-a213 > 2(a231-a132)) 
and  (a123-a321+a231-a132+a312-a213 > 2(a312-a213)) 
and  (a123-a321+a231-a132+a312-a213 > 2(a123-a321)). 
 

Similarly, 
  

There is a majority cycle of type x1 > x3 > x2 > x1 

     ⇔   (a321-a123+a132-a231+a213-a312 > 2(a132-a231)) 
and  (a321-a123+a132-a231+a213-a312 > 2(a213-a312)) 
and  (a321-a123+a132-a231+a213-a312 > 2(a321-a123)). 
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Step 2. Suppose there is some majority cycle. By lemma 4, this implies that there is a cycle 
over three candidates, say x1, x2, x3. The cycle must be of type 1 (x1 > x2 > x3 > x1) or of type 2 
(x1 > x3 > x2 > x1). As we have seen in section 2, a cycle of type 1 implies (a123 > a321 and a312 
> a213 and a231 > a132). By step 1, we then also have  

 
(|a123-a321|+|a231-a132|+|a312-a213| > 2|a231-a132|) 

and  (|a123-a321|+|a231-a132|+|a312-a213| > 2|a312-a213|) 
and  (|a123-a321|+|a231-a132|+|a312-a213| > 2|a123-a321|). 

 
Also, as we have seen in section 2, a cycle of type 2 implies (a321 > a123 and a213 > a312 and a132 
> a231). By step 1, we then also have 
 

(|a123-a321|+|a231-a132|+|a312-a213| > 2|a231-a132|) 
and (|a123-a321|+|a231-a132|+|a312-a213| > 2|a312-a213|)    
and  (|a123-a321|+|a231-a132|+|a312-a213| > 2|a123-a321|). 

 
Hence a majority cycle implies  
 

((a123 > a321 and a312 > a213 and a231 > a132) or (a321 > a123 and a213 > a312 and a132 > a231)) 
and |a123-a321|<n’/2 and |a231-a132|<n’/2 and |a312-a213|<n’/2    (*) 

 
(with n’ as defined above). 

Suppose, conversely, there exists a triple of candidates, x1, x2, x3, such that (*) holds. 
We must have either (a123 > a321 and a312 > a213 and a231 > a132) or (a321 > a123 and a213 > a312 
and a132 > a231).  

If (a123 > a321 and a312 > a213 and a231 > a132), we have  
 

(a123-a321+a231-a132+a312-a213 > 2(a231-a132)) 
and  (a123-a321+a231-a132+a312-a213 > 2(a312-a213)) 
and  (a123-a321+a231-a132+a312-a213 > 2(a123-a321)),  

 
which implies a majority cycle of type 1, by step 1. 

If (a321 > a123 and a213 > a312 and a132 > a231), we have 
 

(a321-a123+a132-a231+a213-a312 > 2(a132-a231)) 
and  (a321-a123+a132-a231+a213-a312 > 2(a213-a312)) 
and  (a321-a123+a132-a231+a213-a312 > 2(a321-a123)), 

 
which implies a majority cycle of type 2, by step 1. ■ 
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