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Abstract 

Modern life sciences research is increasingly relying on artificial intelligence (AI) approaches to 

model biological systems, primarily centered around the use of machine learning (ML) models.  

Although ML is undeniably useful for identifying patterns in large, complex data sets, its widespread 

application in biological sciences represents a significant deviation from traditional methods of 

scientific inquiry. As such, the interplay between these models and scientific understanding in 

biology is a topic with important implications for the future of scientific research, yet it is a subject 

that has received little attention. Here, we draw from an epistemological toolkit to contextualize 

recent applications of ML in biological sciences under modern philosophical theories of 

understanding, identifying general principles that can guide the design and application of ML 

systems to model biological phenomena and advance scientific knowledge. We propose that 

conceptions of scientific understanding as information compression, qualitative intelligibility, and 

dependency relation modelling provide a useful framework for interpreting ML-mediated 

understanding of biological systems. Through a detailed analysis of two key application areas of ML 

in modern biological research – protein structure prediction and single cell RNA-sequencing – we 

explore how these features have thus far enabled ML systems to advance scientific understanding 

of their target phenomena, how they may guide the development of future ML models, and the key 

obstacles that remain in preventing ML from achieving its potential as a tool for biological discovery. 

Consideration of the epistemological features of ML applications in biology will improve the 

prospects of these methods to solve important problems and advance scientific understanding of 

living systems. 
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Introduction 

It has become increasingly recognised that artificial intelligence (AI) – and in particular, 

machine learning (ML) – are accelerating research across a range of scientific disciplines [1], 

providing a means of identifying patterns in data sets of scale and complexity that preclude 

their analysis with traditional scientific methods alone. A variety of experimental modalities in 

biology are now routinely generating data sets that are being combined with ML approaches 

for analysis, interpretation, and prediction [2-4], defining an important role for these models in 

the advancement of scientific knowledge and understanding. Our present work is motivated 

by the observation that many of these approaches are difficult to characterise 

epistemologically – at least under traditional theories of scientific understanding – and 

therefore that the philosophical justification for various aspects of ML model design and 

application in biological research remains underdeveloped. The purposes of this work are thus 

two-fold: first, to contextualize the use of ML for biological research using modern 

epistemological conceptions of scientific understanding, and second, to use these ideas to 

outline key considerations guiding the effective development and deployment of ML models 

for biological discovery.  

Conventional Notions of Scientific Understanding 

Historically, understanding of natural phenomena has been interpreted as a 

consequence of scientific explanation [5, 6]. An influential view in this domain has been the 

Deductive-Nomological Model [7], according to which scientific explanation has a law-like 

deductive structure in which observed phenomena P are explained by reference to more 

general principles. Typically, this structure includes features of P to be explained, a “law” that 

explains these features, and sometimes a more comprehensive “theory” that relates various 

laws to each other under a single framework. For example, if one seeks to explain the warped 

appearance of an underwater object (Figure 1, panel A), then one may reference Snell’s law, 

which stipulates how light behaves under refraction, and the theory of classical 

electromagnetism, which can be used to derive Snell’s law from Maxwell’s equations of light 

[8]. By subsuming P under these law-like regularities, explanations for P can be obtained 

deductively. Importantly, this traditional model also comes with an important methodological 

assumption about natural phenomena: that they involve law-like regularities that are 

comprehensible by humans. In more recent literature, some philosophers still maintain that 

having a correct explanation is both necessary and sufficient for understanding [9, 10]. The 

emphasis on deductive explanation for scientific understanding neatly maps onto how 

scientific explanation typically proceeds in physics, which provides many impressive examples 
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of explanatory Deductive-Nomological models, including the theories of quantum mechanics, 

classical electromagnetism, and general relativity. In terms of predictive power (agreement 

with physical experiments), these theories have been extremely successful. They are also 

formulated with abstract mathematical language, capable of describing an immense variety of 

physical systems and configurations with concise notation. 

Constraints on Understanding in Biology 

The situation is rather different in biological science. The most obvious difference 

compared to physics is that scientific models in biology are typically formulated in terms of 

qualitative descriptions of the underlying phenomena, which imposes limits on their precision 

and predictive power [11]. The exact reasons for this difference in approach are difficult to 

unravel and are to some extent tautological; “physics” is simply the word we use to describe 

science formulated using abstract mathematical language, and indeed “biophysics” is a 

discipline involving the study of biological phenomena but is often considered to be a subfield 

of physics rather than biology [12]. Nevertheless, a concept with interesting implications for 

the study of biological systems, proposed originally by Stephen Wolfram [13] is computational 

irreducibility, a property which describes processes whose outcome cannot be known unless 

the process itself is explicitly simulated. Wolfram notes that a key objective of physics is to 

develop computational “shortcuts” (closed-form expressions) for predicting the behavior of 

natural systems: calculations that can be performed to reveal the outcome of a process without 

explicitly simulating each step in its evolution, thereby computationally reducing the process. 

The extent to which such opportunities for reduction exist in natural systems is not well 

understood, but Wolfram notes that even processes governed by simple laws can give rise to 

behavior that is provably computationally irreducible. Thus, the intrinsic property of 

computational irreducibility may explain why deductive approaches are less suitable for 

modelling living systems. More specifically, we identify three key features of biological 

phenomena that make them challenging to “reduce” computationally: 

1. Multidimensionality. Biological systems consist of a huge number of components and 

multiple scales of organization, with complexity at every level of organization 

(molecular, cellular, organismal, etc.). A model that effectively describes a particular 

component of a system may not make accurate predictions about a related 

phenomena; for instance, a biomechanical model of heart function may effectively 

describe the dynamics of blood flow, but fail to accurately model the effects of heart 

disease because it does not account for changes in gene expression. 
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2. Conditionality. Evolution has produced biological systems that change their behavior 

- sometimes drastically - under changes in their environment. Hence, the conditions 

under which we study biological phenomena may not correctly recapitulate the 

conditions in which we hope to understand those phenomena. For example, in vitro 

bioactivity of drugs cannot be directly extrapolated to in vivo effects in humans or 

animals (Figure 1, panel B, middle). More generally, under our current knowledge, 

biology in many cases does not carry fundamental and general assumptions that 

license deductive conclusions in a Deductive-Nomological model, at least to the same 

extent as fundamental physical phenomena. 

3. Emergence. Biological systems exhibit properties that are difficult to predict from 

knowledge of their constituent elements alone. For instance, though the chemical 

features of the individual amino acids that comprise a protein may be known, it has 

proven challenging to use that information to predict the three-dimensional 

conformation assumed by the protein molecule (Figure 1, panel B, left). Though this 

concept is related to computational irreducibility, we draw a distinction by defining 

emergence as a property specific to an observer of a system; a property can lose its 

quality of emergence if the observer discovers new features of the constituent 

elements that allow them to predict the property that emerges from their interaction. 

On the other hand, properties of computationally irreducible processes cannot be 

predicted; hence, properties of computationally irreducible processes are a subset of 

emergent properties.   

The conjunction of these features affects the direction of scientific explanation; in biological 

research, answering scientific questions relies almost entirely on inductive reasoning, where 

data collected from an experiment or observational study are used to make an inference about 

a more general phenomenon, like a disease or process. This reliance on empirical evidence 

to reason about biological phenomena has notable disadvantages, primarily related to the fact 

that experiments are time-consuming, expensive, and are difficult to conduct in conditions that 

recapitulate features of real biological systems. Yet on the other hand, due to the 

multidimensionality, conditionality, and emergence exhibited by biological systems, the 

formulation of reductive, abstract theories seems unlikely to provide models of biology that are 

sufficiently predictive to be useful in the real world. 

We propose that the need to model intractably complex systems with few law-like regularities 

motivates and justifies the use of machine learning (ML) models in representing biological 

phenomena. In this review, we explore the following questions: 
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● How can ML systems be designed to effectively model biological phenomena? 

● To what extent do ML systems themselves understand biological phenomena? 

● What are the advantages and limitations of ML systems in mediating human 

understanding of biological phenomena? 

With these questions in mind, we survey recent developments in ML technologies and focus 

on two case studies in biology: protein structure prediction and single-cell RNA sequencing.  

Importantly, we do not address the widely explored topic of ‘explainable AI’ [14, 15]: the 

question of how AI systems can be designed to facilitate human understanding of their inner 

mechanics. Instead, our primary focus is on how AI models can be designed and interpreted 

to aid understanding of biological phenomena. While traditional theories of scientific 

understanding require an explanation of the target P, various modern epistemological theories 

have explored aspects of understanding that do not necessarily involve deductive-nomological 

explanations. Many popular ML approaches used in biological research provide real forms of 

understanding in these ways, but their contribution does not fit neatly into the traditional picture 

of scientific explanation.  

 Understanding beyond explanation 

Recent literature in epistemology of science has explored multiple avenues for 

conceptualizing scientific understanding beyond explanatory requirements. The motivation for 

these developments is two-fold. First, as we have explored, many natural phenomena - 

especially biological systems - exhibit a complexity that resists explanatory treatment and 

unification, at least with current methods and knowledge. Second, a full account of scientific 

understanding should not only focus on the outcomes of scientific inquiry - which might be 

explanatory - but also the methodologies and processes that precede the outcomes, which 

may not be. In this section we discuss three important aspects of scientific understanding 

independent of providing explanations. 

Information compression 

Daniel Wilkenfeld recently proposed an account of understanding in terms of 

information compression [16] (Figure 1, panel C, left). Given our cognitive limitations, 

understanding plays an important role in highlighting certain information and backgrounding 

other information. For instance, handling a long sequence of data or information in its 

uncompressed form might hinder one from identifying regularities in the data, while encoding 

it efficiently can enable its effective use and manipulation, a problem that has been explored 
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thoroughly in the Noisy Channel Coding Problem from the field of information theory [17]. In 

other words, an important aspect of understanding is how one encodes information in a way 

that exposes its regularities. Formally, Wilkenfeld argues that thinkers with better 

understanding of a target P can generate more information related to P from a more minimal 

amount of stored (memorised) information [16]. In other words, for a given amount of 

information stored by an agent, the agent’s understanding is a function of how much additional 

information they can generate from that “kernel” of data. Likewise, for a given amount of 

information to be generated, an agent’s understanding can be measured by how much 

information they must retain in order to be able to generate that knowledge.  

We posit that this interpretation of understanding is not only relevant to humans, but to 

AI systems more generally. In particular, ample evidence is emerging that deep neural 

networks benefit significantly from architectural modifications that allow for the selective 

discarding of information in their internal representations, often achieved by designing 

operations that respect inherent symmetries of the data - transformations that conserve 

important properties of the system(s) of interest [18]. The information compression properties 

of these systems have also allowed scientists to manipulate their internal representations to 

facilitate their own understanding, for instance using data visualization methods [19].  

Qualitative Intelligibility 

Another recent development in epistemological theory of understanding has been 

contributed by Henk de Regt, who argues that one hallmark of understanding is the ability to 

make accurate qualitative predictions in the absence of precise calculations [20] (Figure 1, 

panel C, middle). Core to his account is the notion that analytical tools such as data 

visualization contribute to understanding a target P independent of the explanations they might 

provide. Through an analysis of case studies in physics, de Regt argues that core to 

understanding is ‘intelligibility’; specifically, he posits that a scientific theory is understood 

(intelligible) by scientists in a given context if they can qualitatively reason about its 

consequences without performing exact calculations. Crucially, this account of understanding 

incorporates the epistemic effects of the tools and methods of science—as opposed to solely 

the outcome of scientific inquiry (explanations)—into a fuller account of understanding, 

complementary to Wilkenfeld’s theory of understanding as information compression. For 

instance, information compression can be achieved by data visualization methods can make 

a model more qualitatively intelligible. This generates several features central to scientific 

understanding, including the ability to manipulate a model and to predict how the target would 

behave in counterfactual scenarios. 
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Dependency relation modelling 

That scientific understanding is not wedded to explanation has also been emphasized by 

a recent account proposed by Finnur Dellsén [21] (Figure 1, panel C, right). In particular, he 

proposes that a key aspect of understanding a phenomenon is to generate a model of that 

phenomenon’s dependence relations. In general, scientific models embed information how 

different parts of a system correspond and relate to each other. Dellsén argues that models 

provide understanding by highlighting salient dependency relations in a given context, and this 

is the aspect of the model of P that a scientist must grasp in order to scientifically understand 

P. According to Dellsén, a dependency model better represents P to the extent that it 

effectively depicts the network of dependence that P stands in, measured by both accuracy 

and comprehensiveness. In general terms, comprehensiveness refers to the breadth of the 

set of dependencies included in the model, while accuracy refers to the correctness of the 

relationships elaborated by the model, describing the extent to which they model true causal 

dependencies in the real world. Dellsén argues that accuracy and comprehensiveness can 

sometimes come into conflict, in that increasing a model’s comprehensiveness may produce 

a less accurate representation of the true causal effects underlying the target P. Conversely, 

to increase accuracy one may have to sacrifice a model’s comprehensiveness, a process 

which he compares to the general practice of abstraction. These somewhat competing aspects 

of understanding explain variations in modelling aims and practices in different contexts. 

In illustrating his account, Dellsén provides an analogy with causal graphs which describe 

causal relationships between elements of the target P, and in doing so highlight and 

background different pieces of information. Although causal models are desirable in many 

scientific contexts, Dellsén’s account is not necessarily limited to dependencies that are 

directly causal. Importantly, we note that in complex biological systems the nature of causality 

is often ill-defined, with phenomena at multiple scales of organization (molecules, cells, 

tissues, and organisms) meeting criteria for causality. The exact relationship between 

causality and science controversial topic that we largely omit from the present work, choosing 

to focus instead on phenomena which meet criteria for sufficient and necessary causality in 

biological experiments; that is, phenomena that occur under certain experimental conditions, 

and do not occur when those conditions are not present. These criteria are required for a 

theory of biological phenomena to be experimentally validated under the falsification principle 

[22, 23], and they therefore serve as a suitable starting point for discussing how such 

phenomena might be scientifically understood.  

 



 

 

9 

 

Figure 1: Understanding biological phenomena is difficult under conventional methods of scientific inquiry. A: Under 
the deductive-nomological model, scientific explanation has a law-like deductive structure in which observed 
phenomena P are explained by reference to more general principles. In this case, the observation of the warped 
appearance of a boat oar can first be explained by Snell’s law, which can be derived from the theory of classical 
electromagnetism. Theories stipulate law-like principles which describe specific observations. B: Three key 
features of biological phenomena that make them challenging to understand using deductive-nomological 
explanations: multidimensionality, conditionality, and emergent properties. C: Three epistemological notions of 
understanding beyond explanation, portrayed in the context of ML: information compression, De Regt pragmatic 
theory, and modelling dependence relations. 
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Machine Learning in Biology 

Learning from Biological Data 

The primary goals of machine learning (ML) are to (1) identify patterns from 

observations, and (2) generalize that knowledge to new data. To achieve these goals, 

parametric models are used to mathematically describe patterns or relationships within data 

and learning algorithms are used to parameterize (“train”) those models according to some 

objective, called an objective function, which attempts to measure the model’s performance. 

The objective function typically measures the model’s agreement with available data; hence, 

ML approaches are fundamentally inductive rather than deductive, relying on a finite set of 

specific observations to formulate models of phenomena that can be applied to arbitrary new 

data. Importantly, these approaches do not require the same law-like premises necessary for 

reasoning deductively; instead, a model can be evaluated solely based on its agreement with 

a set of observations. A model’s performance on new data is referred to as generalization 

performance, and although other measures of a model's performance are important, such as 

computational cost, interpretability, and fairness, generalization performance is generally 

considered the most important. Hence, a key concern is overfitting, a term used to describe 

the phenomenon of a model’s performance on unseen data being significantly worse than its 

performance on the training data, indicating that the learning process has captured patterns 

in the training set that are not characteristic of other data [24]. Overfitting can be driven by a 

number of factors, but they can broadly be divided into two categories [25]: model-related and 

data-related. Model-related design choices include the ML model architecture chosen for the 

task, training procedures, and the form of the objective function, while data-related factors 

relate to the composition of the data set used for training. The latter deserve particular attention 

in the context of biological research. Specifically, the properties of multidimensionality and 

conditionality described previously and in other work [26a, 27b] pose significant challenges in 

modelling of biological systems with ML. 

The multidimensional complexity of biological systems both makes it challenging to 

collect data that characterize the system of interest in sufficient detail and poses modelling 

challenges even when such data are available, e.g. in “-omics” analyses [28]. Key challenges 

in high-dimensional data analysis are described by the curse of dimensionality [29], a term 

that references the fact that the volume of space increases exponentially as its number of 

dimensions grows; hence, ML models require exponentially more data to accurately 

approximate a target function as the dimensionality of the input space increases. These 



 

 

11 

difficulties introduce a tradeoff between the breadth of the input data and the performance of 

the model. Furthermore, high-dimensional models may be less conducive to scientific 

understanding by virtue of failing to compress information effectively [16], enable qualitative 

interpretation [20], or accurately model true causal dependencies [21]. The feature of 

conditionality also introduces a variety of challenges in ML-driven modelling of biological 

systems. Fundamentally, ML approaches applied in biology are almost always aimed at 

modelling in vivo phenomena; however, available data are often limited to those collected from 

experiments in vitro or using model organisms. This difference not only makes it difficult to fit 

models that perform well in their intended setting; it can also introduce a discrepancy between 

a model’s evaluation - usually done using a subset of the available data - and the model’s 

actual performance in the context in which it will be applied. Multidimensionality and 

conditionality also pose significant challenges in appropriately labelling biological data; 

determining what quantities a supervised ML model should be trained to predict to be useful 

for its intended purpose. Many biological phenomena of interest are difficult to describe 

numerically due to their multidimensional nature (e.g. disease states) or significant 

dependence on other factors (e.g. biochemical properties like water solubility), and it may not 

always be possible to collect data or parameterise an objective function that accurately 

represents what the model is intended to achieve.  All of these factors combine to make data 

representation an important design choice in ML applications for biological science. 

Data representations 

In the context of ML, a representation refers to the particular scheme used to describe 

an object numerically [30]. The representations used to describe data often derive from 

manual curation of numerical features believed to be relevant to the ML task. However, in 

biological systems with a huge number of components and few general assumptions, manual 

selection of features is often infeasible and representations are instead constructed with 

automated approaches. Principal Components Analysis (PCA) is one such approach popularly 

applied for “dimensionality reduction”, the task of identifying useful low-dimensional 

representations of high-dimensional data [31]. PCA has become a core tool in unsupervised 

learning and data analysis more generally, allowing researchers to describe data sets using a 

small number of “meta-variables” (components) that faithfully represent relationships between 

the individual data points. If a reasonable amount of variation in the data set can be described 

using only two or three principal components, the positions of data points along these 

components can be visualized in a scatter plot, which is useful in many contexts for facilitating 

qualitative understanding of high-dimensional data [20].  
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In certain high-dimensional applications, however, PCA’s linearity constraint - that 

components must be described as a weighted sum of input variables - impedes its usefulness. 

Indeed it is quite common in data sets with large numbers of variables – for instance, -omics 

datasets that simultaneously measure thousands of molecules – that the top 2 or 3 principal 

components account for a small proportion of the data’s total variation across all variables, 

which produces a low-dimensional representation that does not accurately represent the high-

dimensional relationships between data points [32]. These limitations have prompted the 

development of non-linear dimensionality reduction techniques, including autoencoders [33], 

t-SNE [34], and UMAP [35],  which eschew the linearity constraint and aim solely to produce 

a useful low-dimensional representation, typically with the objective of effective data 

visualization and interpretation. A complementary approach is clustering, which can be 

interpreted as a data representation method that identifies a discrete representation of the 

data, consisting of some finite number of categories. Beyond visualisation and interpretability, 

a vast body of modern research has also explored the representational capabilities of deep 

neural networks, ML architectures that perform learnable transformations of data to produce 

internal numerical representations that facilitate the task they are trained to perform [18, 36]. 

These models have achieved striking success in a variety of tasks in computational biology, 

including protein structure prediction [3], drug discovery [37], and novel protein design [38].  

These innovations and others in ML more broadly have been catalysed not only by 

improvements in data quality and availability but also by advances in model design. In the 

following section we describe a key unifying framework of ML system design: inductive biases. 

Inductive Biases: Designing ML architectures 

Inductive biases are the underlying assumptions that an ML model implicitly relies on 

in order to make predictions on unseen data; since unknown quantities can take a range of 

possible values, an ML model must make a priori assumptions in order to generalise beyond 

its training set [39]. Inductive biases may be expressed at different stages in a machine 

learning pipeline, but here we focus primarily on those that are expressed via the model’s 

architectural design choices: the mathematical operations it performs to transform its input into 

its output, which, in the most general terms, express the inductive bias that the output variables 

are related to the input variables by the class of function parameterised by the model. While 

ML models can learn the parameter values that dictate the relationship between input and 

output variables, the form of the model - the operations that are used to produce the output 

from the parameters and input(s) - is typically determined before training begins. A key role of 

machine learning practitioners is therefore to develop systems with inductive biases that are 
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synergistic to the problem, reflecting high-confidence assumptions typically informed by 

human intuition or domain expertise. This enables the model to learn patterns important for 

generalisation and has been described as a means of reducing the dimensionality of the 

learning task, reducing the amount of data required to approximate a target function within a 

given input space [18]. Here we characterize and review three classes of inductive bias that 

are particularly relevant in biology: locality-related, distributional, and symmetry-related.  

We define locality-related inductive biases as those which assume that proximity 

between input entities provides information about characteristics of those entities which may 

not be positional in nature (Figure 2, panel A). Locality-based inductive biases encode the 

notion that proximity – whether in a sequence, network, or another space - determines the 

extent to which entities interact, positing an underlying dependency structure of the target 

function that relates to the distances between entities [21]. Therefore, ML models with a 

locality-related inductive bias often enforce constraints on the proximities at which entities in 

the input data may influence each other in the ML model. A classic example of this inductive 

bias in practice can be observed in the K-means clustering algorithm [40], which uses 

euclidean distance between the feature vectors of different instances to define proximity, and 

identifies similar groups of data points by assigning them to the cluster to which their feature 

vector has the greatest proximity. This foundational algorithm has found applications in a wide 

range of biological problems - particularly in analysis of gene expression data - including 

identification of cell types [41] and inference of gene co-expression modules [42]. Underlying 

these applications is the inductive bias that observations (e.g. cells or genes) with similar 

features should be grouped together in an effective clustering. In deep neural networks, the 

concept of local convolutions - learned functions that operate over small neighborhoods in the 

input data domain - are now a ubiquitous feature in a variety of layer architectures relevant to 

biological problems, notable examples of which include protein design models [43], which 

often enforce constraints on the physical distances at which amino acids can interact, and 

medical image processing models [44], which typically transform pixels according only to their 

local neighborhood within the image. 

Distributional inductive biases are those which make assumptions related to the 

random processes that generate data (Figure 2, panel B). These inductive biases are 

frequently observed in classical statistical models, in which learning algorithms - or “parameter 

estimation” procedures - are often derived from assumptions about the probability 

distribution(s) of the variable(s) to be modelled. These assumptions can be conceptualized as 

a form of information compression in that they allow data sets and populations of arbitrary size 
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to be described using a fixed number of parameters, not only selectively discarding information 

within the model itself but also facilitating qualitative interpretation and understanding by 

humans. For instance, the entire class of Bayesian statistical methods is grounded in the 

principle that existing beliefs about a random process can be expressed using a prior 

distribution, which describes the likelihood of different parameter values independent of the 

observed data values [45]. These methods have found a huge range of applications in 

biological problems ranging from phylogenetic tree inference [46] to gene expression analysis 

[47], due in part to their ability to express domain-specific knowledge in the form of 

distributional inductive biases. For example, the widely-used DESeq2 generalized linear 

model for differential expression analysis of RNA-sequencing data relies on a variety of 

domain-specific distributional inductive biases, including the assumption of a relationship 

between the variance (dispersion) and mean expression levels across all genes, which allows 

their model to more robustly estimate uncertainty in observed gene expression changes [48]. 

In general, the suite of statistical analysis methods and machine learning models developed 

for functional genomics data use a wide range of distributional inductive biases, and choosing 

the most appropriate model for a given data set depends heavily on the conditions under which 

the data was generated.  

The final class of inductive bias we consider is symmetry-related (Figure 2, panel C). 

The notion of symmetry has  received significant attention in machine learning literature, 

particularly in the emerging field of geometric deep learning, which aims to devise neural 

network models that respect the invariances and symmetries in data [18]. Symmetries are 

defined as classes of transformations under which the properties of a system remain 

consistent in some way, typically formalized in the language of abstract group theory. The core 

principle of geometric deep learning is that designing models to respect the symmetries of the 

data - that is, models that behave predictably when symmetry transformations are applied to 

their input data - improves performance significantly by constraining the learning task. It is 

believed that the key advantage of encoding symmetry is that it constrains the model to only 

use information which is relevant to the problem of interest rather than artifactual features of 

the data representation, an interpretation which aligns well with Wilkenfeld’s theory of 

understanding as information compression [16].  Graph Neural Networks (GNNs) – bespoke 

neural networks for graph data that incorporate permutation symmetry – best illustrate 

geometric deep learning concepts for biology [49]. Graphs are a universal language for 

describing biological systems, ranging from molecules - represented as graphs of atoms - to 

interactome networks of proteins and maps of synaptic connections in the brain. Importantly, 

graphs typically have permutation symmetry: the graph structure is not associated with any 
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particular ordering of the nodes. GNNs process graph data by applying a shared set of 

parameters at each node’s local neighborhood and are explicitly structured such that each 

node’s computation is invariant to the permutation of nodes [50], preventing the model from 

learning information related to node orderings. Interestingly, the transformer [51] – a modern 

architecture that has powered key deep learning applications in biology [3, 38, 52, 53] – can 

be described as a GNN operating on a fully connected graph [54]. The key component of the 

transformer is the multihead attention layer, a permutation-symmetric operation that passes 

information between all pairs of input objects, with learnable weights determining the 

interaction between each pair of items. A key insight was that even in domains with 

permutation asymmetry, the transformer can be designed to use ordering information by 

augmenting the representations of individual elements with numerical features that describe 

each element’s position [51], a technique that has enabled highly successful biological 

language modelling applications [52, 53], demonstrating how the absence of a particular 

symmetry can also inform model design choices. Other notable examples of symmetry-related 

inductive biases appear in ML models of three-dimensional biological systems with rotational 

and translational symmetries, most notably in the context of structural biology, where the 

global orientation (rotation) and position of a molecule within a coordinate system has no 

bearing on its biological function. Geometric GNNs and transformers that process molecular 

graphs equipped with additional geometric features (e.g. bond orientations) have had 

widespread success in problems such as protein structure prediction, protein design, and 

protein ligand-docking [3, 38, 55, 56]. 

 The three classes of inductive bias described here - locality-related, distributional, and 

symmetry-related - appear in a variety of specific forms, but fundamentally all seek to improve 

the generalization performance of ML systems by encoding scientific expertise and human 

intuition. While superficially it may appear that these techniques are simply a “trick” to increase 

ML model performance as measured by the relevant metrics, we propose instead that they 

represent a transfer of human understanding to ML systems, particularly as characterized by 

Wilkenfeld’s theory of understanding as information compression [16] and Dellsén’s theory of 

understanding as dependency relation modelling [21]. Though the inner workings of ML 

models can be complex and difficult to interpret, encoding human knowledge in their design 

enables researchers to obtain robust guarantees about their internal behavior and reason 

effectively about their properties. The remainder of this work explores key case studies 

highlighting important applications of ML in modern biological research, highlighting key 

epistemological principles that underlie the successful design and deployment of ML systems 

for understanding biological targets. 
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Figure 2: Inductive biases are a unifying principle across a variety of machine learning approaches to biological 
problems. We identify three classes of inductive bias commonly used in ML models of biological systems. A: 
Locality-related: proximity encodes information about relationships between observations. Models with a locality-
related inductive bias include GNNs (graph neural networks) and K-means clustering. B: Distributional: the random 
process that generates observed data has a known form. Models with a distributional inductive bias include UMAP 
(Uniform manifold approximation projection) and DESeq2. C: Symmetry-related: the property being estimated 
remains constant under certain transformations of the system. Examples of such transformations include 

permutation, rotation, and translation. 
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Protein structure prediction 

Introduction 

The three-dimensional structures of proteins are a key determinant of their chemical 

and physiological activity, and application areas ranging from drug discovery to bioprocess 

engineering benefit from accurate protein structural information. However, structural data is 

difficult to obtain experimentally, especially compared to the ease with which modern high-

throughput sequencing technologies can reveal the sequence of amino acids that comprise a 

protein of interest. In physical terms, a protein’s amino acid sequence specifies only the 

covalent peptide bonds present in the molecule; it does not directly provide any information 

regarding the huge number of non-covalent interactions which characterize a typical protein’s 

three-dimensional structure. Yet, strikingly, it was demonstrated in the early 1960s that many 

proteins can spontaneously refold into their native structures after denaturation, demonstrating 

that the peptide bond configuration of a protein molecule - that is, its amino sequence - 

determines the protein’s native three-dimensional structure in most cases [57]. These 

observations have since prompted efforts to develop computational approaches for predicting 

protein structure from sequence data [58], motivated by the hypothesis that the information 

needed to encode a protein’s three-dimensional shape is contained entirely in its sequence of 

amino acids.  

Though the relationship between a protein’s sequence and three-dimensional structure 

is commonly referred to as the “protein folding problem” [59], it is important to distinguish 

protein structure from protein folding. Protein folding is a dynamic process in which a chain of 

amino acids physically moves and eventually assumes a stable conformational state (in most 

proteins), while that stable conformational state is the protein’s structure; hence, protein 

folding is the physical process that generates protein structure. Protein folding itself is a field 

of scientific study that has attracted considerable interest [60], primarily owing to its putative 

role in neurodegeneration. However, in many cases it is possible to accurately predict the 

three-dimensional structure assumed by a protein without directly simulating the dynamics of 

the folding process, showing that, to some extent, the process of protein folding is 

“computationally reducible” [13]. In this section, we provide a brief review of historical 

approaches to computational protein structure prediction to introduce the ML paradigm with 

appropriate context. We then review the key architectural components of AlphaFold2 [3], the 

most broadly successful AI system for protein structure prediction to date. We conclude by 

exploring key epistemological questions related to the AlphaFold2 system, including how well 
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the model itself understands protein structure and the extent to which it can advance human 

scientific understanding of sequence/structure relationships and protein folding. 

History of protein structure prediction 

Historically, approaches to structure prediction have been categorized as either 

template-free or template-based [58], depending on whether they make use of experimentally 

resolved “template” structures of other proteins in order to model the structure of the protein 

to be predicted. Philosophically, these methodological categories can be roughly described as 

mechanistic (template-free models) and empirical (templated-based models) (Figure 3, panel 

A). Mechanistic approaches attempt to predict structure by treating the protein and its 

surrounding environment as a physical system and parameterising the features of the system 

to reflect our understanding of natural laws. These methods typically rely on a human-

designed energy function to calculate the energetic favorability of three-dimensional 

conformations of the protein molecule. The energy function relates the potential energy of the 

molecule to its chemical and structural features, and is typically parameterised to maximize 

agreement with experimental data [61].  Conversely, empirical protein structure prediction 

methods rely on using known (experimentally-determined) protein structures to infer the 

structural features of new proteins. These methods are based on the assumption that 

evolutionarily-related proteins tend to adopt similar structures, which has motivated the 

development of algorithmic methods for identifying homologous sequences, such as BLAST 

[62] and later hidden markov models (HMMs) [63]. These methods do not attempt to model 

how exactly observed patterns of sequence variation relate to the underlying biophysics of 

protein structure; most modern template-based approaches simply rely on identifying 

homologous sequences and performing physics-based structural optimisation post-hoc [58]. 

The modern suite of machine learning-based approaches for protein structure prediction have 

observed great success integrating these two methodologies [3, 64, 65]; in the mechanistic 

domain by exploiting physical symmetries to design machine learning models capable of 

efficiently representing and learning three-dimensional geometric information, and in the 

empirical domain by training models on large datasets to capture general patterns of sequence 

variation in proteins. 

In recent years a new paradigm of protein structure prediction has emerged, in which 

end-to-end deep learning architectures are trained to predict folded protein conformations 

using extensive datasets of experimentally determined structures [3, 52, 64]. In the 14th 

Annual Critical Assessment of Protein Folding (CASP14), the Alphafold2 system 
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demonstrated astonishing structure prediction accuracy, outperforming competing methods 

by an order of magnitude, particularly on targets without reliable template structures. In early 

iterations of CASP, accuracy improvements were primarily attributed to the development of 

improved statistical methods for identifying sequence homology [62, 63]. By 2016, the 

organizers of CASP11 had noted that, compared to previous competitions, prediction accuracy 

had ceased to improve significantly for targets with publicly-available template structures from 

a close homologue [66]. Some progress, however, was observed in the template-free 

category, owing to the introduction of novel statistical methods - “evolutionary coupling” 

techniques - to predict contacts between residues based solely on patterns of sequence 

covariation between aligned residues in homologous proteins [66]. These techniques were a 

conceptual precursor to later deep learning models that learn representations of multiple 

sequence alignment (MSA) data [3, 64, 67]. While single-sequence approaches based on 

large language models [52, 53] are becoming more competitive [65], MSA-based models - 

and AlphaFold2 in particular - remain the state of the art for protein structure prediction; hence, 

we focus solely on AlphaFold2 in this review, noting that many of the general principles we 

propose apply broadly, across different deep learning-based approaches. 

AlphaFold2 architecture 

In both its original implementation and later in AlphaFold2, the MSA for an input 

sequence serves as the key piece of information used by the model to predict a protein’s 

structure. AlphaFold2’s Evoformer module learns representations of homologous sequences 

in the MSA, where residue-level features from individual related sequences in the MSA - or 

clusters of related sequences in large MSAs - are explicitly used as input to the model and 

processed by the model’s attention layers alongside the sequence of interest, to be predicted. 

Importantly, as a transformer-based architecture, the Evoformer’s information compression 

properties are determined by learnable parameters rather than explicit constraints on the 

range at which pairs of residues can interact. In the context of protein structure, the benefit of 

global attention mechanisms that span the entirety of the input sequence are immediately 

obvious; residues that are distant in the protein’s primary structure may still interact in three-

dimensional space. We emphasize the observation that these attention mechanisms - in 

AlphaFold2 and other transformer models - allow the network to discard information while 

simultaneously providing the opportunity for distant residues to interact, drawing interesting 

parallels with Wilkenfeld’s epistemological theory of understanding as a consequence of 

information compression [16].  
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Dellsén’s theory of understanding as dependency relation modelling provides yet 

another framework for interpreting AlphaFold2’s understanding of protein folding [21]. 

Accurately modelling dependencies between residues is at the crux of protein structure 

prediction, and deep learning models are capable of learning highly informative internal 

representations of such relationships. However, mapping these internal representations of 

residue pairs into valid three-dimensional structures is a non-trivial challenge. The initial 

iteration of AlphaFold directly modelled distances between residues in the input protein [67]; 

however, these distances were not guaranteed to produce a valid configuration of atoms in 

three dimensional space, and were instead used solely as an objective in a subsequent torsion 

angle optimisation, keeping the bond lengths and bond angles within the protein fixed to their 

chemically-valid values. AlphaFold2 adopts a different approach, centered around two novel 

layer architectures in the Evoformer known as triangular update and triangular attention 

modules (triangular update show in Figure 3, panel B). Both layer architectures update the 

representation of each pair of residues using information from all other pairs of residues 

involving a residue from the pair of interest. This method is grounded in the triangular inequality 

in euclidean geometry, which imposes a fundamental constraint on the distance between two 

points if their distances from a third point are known. However, triangular layers do not impose 

any explicit constraints on the pair representations learned internally by the network; rather, 

they only provide a mechanism for modelling dependencies [21] between different residue 

pairs, parameterising layers to allow them to selectively retain and discard information.  

 The Structure Module uses the residue and pair representations produced by the 

Evoformer to generate a three-dimensional configuration of the structure (Figure 3, panel C). 

The essence of the SM’s approach is to model each residue as an independent three-

dimensional entity with a rotational component (the orientation of the CA backbone bonds) 

and a translational component (the coordinate of the alpha carbon), collectively referred to as 

an orientation frame. Crucially, the orientation frames provide a means of converting between 

coordinate representations expressed relative to each residue and those expressed within the 

global coordinate system, using the residue’s specific orientation to perform a change of basis. 

This interconversion between coordinate systems is at the core of the Invariant Point Attention 

(IPA) layers introduced in Structure Module. IPA calculates affinities between each pair of 

residues in the protein based on the representations obtained from the Evoformer and the 

residues’ current frames, where the affinity decreases as a function of the distance between 

two frames, introducing a locality-related inductive bias. Importantly, the use of orientation 

frames in this context produces an update which is invariant to rigid motions of the entire 

protein structure; hence, all rotations and translations of the predicted protein structure (which 
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influence the orientation frames) lead to the same update of the underlying embeddings, 

introducing a symmetry-related inductive bias and providing yet another example of the 

system’s information compression capabilities. The final prediction of the structure module is 

an atomic-resolution three-dimensional configuration of the protein’s amino acids with an 

estimated confidence score for each residue, trained to recapitulate the likelihood that the 

residue’s predicted conformation matches the ground truth crystal structure. 

Implications for protein science 

How the AlphaFold2 system will shape scientific understanding of protein structure and 

folding going forward is still uncertain. The complexities of its internal mechanics make the 

system difficult to directly interrogate and so it remains an open question what it has learned 

conceptually from its training process, a question that has important implications for 

determining the model’s capabilities and potential to assist humans in scientific inquiry. In our 

summary of the model’s architecture we hoped to show that the themes of information 

compression and dependency relation modelling appear ubiquitously in the system’s design, 

providing a way of conceptualizing the system’s understanding of protein structure under 

Wilkenfeld’s and Dellsén’s theories of human understanding [16, 21]. While the model’s 

information compression properties are difficult to evaluate empirically, its ability to model 

relevant dependency relations can be assessed to some extent by evaluating its performance 

on tasks that are distinct from protein structure prediction but have a similar or related 

dependency structure. The evaluation results from CASP14 established that the model is 

capable of producing three-dimensional structures that match experimentally determined 

crystal structures for a wide range of proteins, robustly showing that the model has strong 

generalization performance on its training task but failing to provide sufficient evidence that 

the system is able to reason about biochemistry more generally.  

 Shortly after its release, foundational work evaluated the AlphaFold2 system on a 

variety of downstream tasks relevant to the model’s general biochemical reasoning capabilities 

[68]. For instance, an analysis of the distribution of structural elements in the predicted versus 

experimentally-resolved proteome revealed elements predicted by AlphaFold2 that were not 

present in the space of experimentally-determined crystal structures (i.e. the training set). One 

element of particular interest is the beta solenoid, a structural element consisting of repeating 

beta strand subunits found abundantly in microbial pathogenic proteins and in highly diverse 

conformations [69]. Experimental characterisation of these structures has not explored the full 

space of possible conformations, making empirical evaluation difficult but also providing a 
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relevant benchmark to assess AlphaFold2’s ability to reason about exotic structural elements. 

The authors note that the AlphaFold2 models of novel beta solenoids appear chemically 

plausible, and later work performed a more thorough analysis of the space of predicted beta-

solenoid structures and identified a large variety of plausible predicted structures [70]. Another 

area of interest has been AlphaFold2’s ability to predict intrinsically disordered regions (IDRs) 

of proteins. The potential to use the system’s residue structural confidence score (pLDDT) as 

a predictor of intrinsically disordered regions was first identified by the project expanding the 

system’s coverage to the entire human proteome [71], where pLDDT was shown to be 

competitive with the state of the art method for prediction of disorder on the critical assessment 

of intrinsic disorder (CAID) benchmark dataset [72]. Importantly, though IDRs do appear in 

AlphaFold2’s training set, the configurations in which they appear in experimentally-

determined crystal structures are likely to be arbitrary; the model’s propensity to identify them 

accurately therefore reveals capabilities for general reasoning about sequence-structure 

relationships in proteins. More recent work has even indicated that AlphaFold2 has learned 

information related to protein dynamics [73, 74], showing that, for instance, ensembles of 

structures generated by adding noise to AlphaFold2’s forward pass are able to sample 

structural states of proteins that are inaccessible via molecular dynamics simulations [74]. 

These observations provide evidence that, in addition to learning how to perform its training 

task of predicting crystal structures, the system has accurately modelled some of the 

underlying dependency relationships that determine a protein’s three-dimensional structure.  

 Though these results indicate that the AlphaFold2 system itself understands protein 

biochemistry to some extent (at least under Dellsén’s account), the model’s potential to 

advance human scientific understanding of protein folding is a separate question. Detractors 

are likely to point out that, despite all of its capabilities, the model in its current form can only 

be used as a black box and has so many parameters that it fails to provide any human-

accessible insight into the mechanics of the underlying phenomenon. But perhaps there are 

limits to the extent to which protein folding, as a physical process, is computationally reducible 

into simpler, lower-dimensional descriptions. Proteins, like any other molecule, are 

fundamentally governed by physical principles; it is generally accepted that typical proteins 

are large enough to be modelled as classical mechanical systems [75]. Though classical 

mechanics is seemingly capable of explaining protein folding using a small number of terms 

[76], the mathematical formulation can be misleading since choices of notation and conceptual 

abstraction can mask underlying complexity. In reality, the actual number of computations 

required to calculate a protein’s folded state in a physical simulation is immense, and though 

progress has been made to identify pockets of computational reducibility within such systems, 
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it still remains infeasible to perform physics-based simulations for protein structures larger 

than 50 amino acids [77, 78]. AlphaFold2, on the other hand, requires a prolonged training 

period of weeks but is able to predict structures in seconds or minutes, performing far fewer 

actual calculations at inference time than are required to simulate a protein with molecular 

dynamics. We therefore propose that AlphaFold2, despite its complexity, constitutes a “better-

reduced” [13] description of protein folding than our best physical theories. Similarly to how 

progress in theoretical physics continues to invent more useful abstractions over time, 

developments in how we mathematically describe and conceptualize ML models may one day 

allow us to better understand the mechanics of AlphaFold2 and protein folding itself. 
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Figure 3: AlphaFold2 is the most successful protein structure prediction model to date. A: We categorise traditional 
protein structure prediction task into two methodologies - mechanistic (template-free) and empirical (template-
based). B: Three main components of the AlphaFold2 architecture - the MSA transformer, triangular update, and 
structure module. C: Two examples where AlphaFold2 has indicated understanding of biochemistry - the beta-
solenoid structure and IDRs (intrinsically disordered regions). 
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Single-cell RNA sequencing 

Introduction 

A cell’s expression of genes correlates with the proteins the cell produces and is 

therefore a key indication of the cell’s biological activity. Until just over 10 years ago, scientific 

exploration of whole tissue, organ, and system function relied on gene expression data of 

pooled cells. More recently, the idea that every cell is unique in its gene expression, function, 

and fate has been supported by novel techniques that enable the study of genetic material 

within individual cells [79, 80]. These single cell genomics technologies - in particular single 

cell RNA-sequencing (scRNA-seq) - have become increasingly popular, enabling researchers 

to explore cellular systems at unprecedented resolution. More specifically, scRNA-seq has 

provided insight into the fundamental biological features of a wide variety of systems and 

processes, including biomarkers of specific cell states [81], interactions between cell 

populations [82], and patterns of cellular development [83]. The toolkit for analyzing these data 

sets relies heavily on machine learning, and though the development of ML approaches for 

single cell analysis is an extremely active area of research [32, 41, 47], the epistemological 

implications of using these methods for scRNA-seq analysis have not been explored. Unlike 

typical ML tasks like image recognition or text classification, ML is often applied in the context 

of single cell analysis as a tool to aid basic scientific research, generating or validating 

mechanistic hypotheses rather than providing definitive answers. It is therefore apparent that 

the interplay between ML models and human understanding has important implications for 

biological research in this domain. In this section we provide an overview of the key ML 

technologies used in scRNA-seq analysis and conceptualize them in terms of philosophical 

theories of understanding, providing a framework for interpreting how ML models are 

mediating understanding of cellular biology through the analysis of single cell data. 

Before scRNA-seq, RNA transcriptomic measurements were collected using high-

throughput bulk sequencing [84]. Bulk sequencing technologies measure the average gene 

expression within a mixed population of cells and allow researchers to compare whole 

samples obtained from different conditions. Bulk sequencing has been particularly useful in 

cancer biomarker identification and detection, where biopsy samples from healthy patients 

can be compared to patients with cancer to identify biomarkers of disease and subsequently 

used as a diagnostic or prognostic marker for new patients [85, 86]. Importantly, bulk 

sequencing does not allow for gene expression differences between cell types to be 

distinguished within a single sample, which is crucial for discovering patterns of cellular 
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development or heterogeneity that influence disease or other biological processes. While 

scRNA-seq addresses these shortcomings, it introduces a new set of technical challenges 

that have motivated the widespread adoption of machine learning methods. While there is no 

formal consensus protocol for these analyses, there are various steps included in typical 

analysis pipelines, including dimensionality reduction and data visualisation, clustering, and 

trajectory analysis. Here we introduce approaches to each of these analytical tasks, exploring 

the ways in which they are advancing and limiting human understanding of biological 

phenomena.  

Dimensionality reduction 

In scRNA-seq datasets, each cell is typically represented as a vector in euclidean 

space with components representing the expression of each measured gene. Although single 

cell sequencing methods have lower sensitivity than their bulk counterparts, it is still common 

to obtain expression values for thousands of genes, producing an extremely high-dimensional 

representation for each cell. Furthermore, the typical number of samples collected in scRNA-

seq (compared to bulk) is significantly larger, with bulk sequencing studies rarely collecting 

more than 100 samples but scRNA-seq experiments routinely measuring thousands of cellular 

transcriptomes. To tame this complexity, one of the first steps typically taken in an scRNA-seq 

analysis is to produce a representation of the data in 2 or 3 dimensions, while retaining the 

maximal amount of variation in the data [87]  (Figure 4, panel A). These representations are 

then typically visualized in 2-D or 3-D plots for exploratory data analysis. The emphasis on 

information compression and qualitative interpretability of these dimensionality reduction and 

visualization methods aligns well with Wilkenfeld and De Regt’s theories of understanding [16, 

20], suggesting that these models are able to facilitate scientific understanding despite failing 

to serve as traditional explanatory models.  

The longest standing approach to dimensionality reduction is PCA (Principal 

Component Analysis) [31], a linear dimensionality reduction method which identifies 

uncorrelated principal components that explain the largest possible amount of total variation 

in the data. Though classical PCA is often used in scRNA-seq anaylsis [87], a called ZIFA 

(zero inflated factor analysis) has also been developed, using a distributional inductive bias 

for modelling dropout events when performing dimensionality reduction [88]. These methods 

are commonly used to generate representations for downstream quantitative analyses like 

clustering and trajectory inference; methods which can still operate in high-dimensional 

spaces but benefit from having components with low amounts of variation removed from the 
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original gene expression space (with thousands of dimensions). However, PCA’s linearity 

constraint often prevents it from effectively representing scRNA-seq data in two or three 

dimensions for visualization purposes. Two other popular dimensionality reduction methods 

are t-SNE (t-distributed Stochastic Neighbour Embedding) [34] or UMAP (Uniform Manifold 

Approximation Projection) [35]. Unlike PCA, these algorithms are non-linear dimensionality 

reduction methods that rely on a graph representation of relationships between cells, produced 

by constructing edges between cells with similar gene expression profiles. t-SNE and UMAP 

process this graph and embed its nodes as points in a low-dimensional space, preserving local 

similarities between cells rather than global structure [28]. Importantly, since they use a graph 

representation that only provides relational information between neighboring cells, UMAP and 

t-SNE introduce a locality-related inductive bias. Specifically, non-linear dimensionality 

reduction approaches in general typically make the assumption that the relationships between 

cells that are close together in the space of gene expression values are more relevant, and 

therefore more important to preserve, than relationships between cells that are distant in gene 

expression space.  

Clustering 

Clustering algorithms are another area of focus in ML-driven single cell RNA-

sequencing analysis (Figure 4, panel B), enabling researchers to categorise cells into distinct 

groups based on their RNA expression profiles [89]. By calculating similarity between cells 

and clustering similar cells together, all clustering algorithms fundamentally rely on a locality-

related inductive bias; however, the ways in which similarity is defined vary between 

algorithms, with important consequences. The K-means algorithm [40], for instance, measures 

similarity with exact euclidean distance between the gene expression values of different cells, 

which provides a fine-grained view of cell similarity but is potentially susceptible to overfitting 

to technical artefacts. The popular Louvain [90] and Leiden [91] algorithms, on the other hand, 

operate on single cell graphs defined by constructing edges between cells based on their gene 

expression similarity. Since these graphs often remove exact distance information, they can 

be viewed as a means of information compression, which can facilitate understanding by 

backgrounding unimportant variation [16] but may unnecessarily discard biologically relevant 

features. Despite their mechanistic differences, all clustering approaches have the same 

output: a categorisation of individual cells. For the purposes of qualitative intelligibility [20], 

these categories pair naturally with dimensionality reduction techniques, allowing researchers 

to visualize relationships between clusters of cells and identify patterns in gene expression as 

they relate to groups of cells.  
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The clusters of cells obtained from these automated approaches can be subsequently 

identified with known cell types or subtypes using markers of those populations as references 

[92]. This manual process of labelling cells using domain-specific knowledge of the underlying 

biology not only improves the qualitative intelligibility of the results of a clustering by 

conceptualizing the clusters in terms of qualitative biological knowledge; it also serves to 

determine if the information compression performed by the model has retained biologically 

relevant information [16]. However, given that manual labelling is tedious and prone to bias, 

novel machine learning methods have also been developed to streamline and automate the 

clustering and cell-type identification tasks, including deep neural networks [93] and 

combinatorial platforms [94]. Though cell type identification analyses may lead to novel 

insights and facilitate qualitative interpretation [95], it is important to recognise that the 

categorisations proposed by a clustering will always incur a loss of information. The notion 

that cells should be categorized into distinct groups at all has recently been challenged by the 

identification of transitioning cells (cells that are transitioning from one type to another), 

perhaps implying that cells should be modelled on a continuous scale instead [96]. These 

ideas are the foundation of trajectory analysis. 

Trajectory inference 

Single cell RNA sequencing studies often limit the collection of cellular transcriptomic 

data to a single point in time, and with current technologies it is not yet possible to monitor the 

transcriptomes of individual cells over time. Thus, dynamical and temporal processes such as 

cell cycling rates, differentiation trajectories, and transient effects due to environmental 

changes are challenging to model. Cells captured at the same time may on average exhibit 

similar gene expression profiles that allow them to be grouped into one population, but in 

reality these cells may be in different states (e.g. different cell cycle stage or different stage in 

differentiation). Simpson’s paradox describes this phenomenon, noting that a particular 

pattern in a larger population may disappear or reverse in particular subpopulations [97]. 

Simple clustering and annotation using the methods previously mentioned allow the user to 

select stages of dynamical processes of interest, but do not capture the full extent of cellular 

gene expression dynamics. Preparing cells for sequencing is already a laborious process, and 

it may not be feasible to manually separate cells from these states as different samples or 

synchronize them experimentally before collection.  
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Recent developments in scRNA-seq analysis have attempted to develop ML methods 

for resolving time-sensitive transcriptional differences without the need for time-series data 

[96, 98] (Figure 4, panel C). These methods aim to model dynamic temporal processes using 

trajectory inference (TI), which infers an ordering of cells along a continuous path that 

represents a time-dependent process based on their RNA expression profiles. Models for 

constructing this ordering typically rely on a locality-related inductive bias, assuming that cells 

with more similar gene expression profiles (according to some distance metric) are more likely 

to be adjacent along with inferred trajectory. These models have been applied to a wide range 

of dynamical biological systems including B cell development [99], blood cell differentiation 

[98] and neurogenesis [100].  

Due to the high complexity of TI methods, qualitative interpretation of their outputs can 

be challenging, especially compared to standard discrete clustering methods. However, these 

challenges can be overcome to some extent using dimensionality reduction and visualization 

techniques that specifically preserve specific trajectory structures (for example, nonlinear 

branching) such as PHATE [101], and methods for differential gene expression that exploit 

continuous resolution such as tradeSeq [102]. Another open question is the extent to which 

the true chronology of gene expression events - the durations involved, measured in units of 

time - can be inferred from trajectories, since events such as transcriptional bursts can distort 

the relationship between time and distance along the trajectory [103]. We therefore note that 

both for the purposes of qualitative intelligibility and mechanistic accuracy it may be beneficial 

to study trajectories based solely on the relative ordering of cells rather than their exact 

positions along its path. Despite these caveats, TI clearly provides a valuable tool for 

understanding dynamic cellular processes from static scRNA-seq data sets.  

The future of ML in scRNA-seq 

Machine learning methods for scRNA-seq data analysis are increasingly being applied 

as a tool to understand cellular biological systems. By using ML tools for dimensionality 

reduction and visualization, clustering, and trajectory analysis, researchers are able to 

interpret and understand the high-dimensional gene expression better than was ever 

previously possible. These methods compress information into more compact representations 

and allow manipulation of the data into more qualitatively intelligible forms, facilitating scientific 

understanding without directly providing explanations of the underlying phenomena [16, 20]. 

Hence, ML has emerged in the scRNA-seq space not only as a predictive tool but as an 

effective way of illuminating the underlying mechanisms of cellular biology. However, 
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challenges remain in translating the vast quantities of data produced by scRNA-seq 

experiments into useful insights. The simplification inherent in dimensionality reduction may 

lead to the loss of subtle but crucial features of cellular gene expression in the plots produced 

and interpreted by researchers. This is particularly applicable to non-linear methods like t-SNE 

and UMAP, which might sacrifice global structural preservation for enhanced local clustering 

through their locality-related inductive biases. Additionally, while clustering techniques 

facilitate qualitative interpretation of cell types and states, they can obscure the continuous 

and dynamic spectrum of cellular states and transitions. The emergence of trajectory inference 

methods attempts to address this limitation by providing a continuous framework to study 

cellular dynamics, yet the complexity of these methods may occasionally interfere with their 

intelligibility. Despite these limitations, the vast toolkit of ML methods for scRNA-seq data 

analysis clearly has great potential to advance scientific knowledge and allow researchers to 

obtain insights from prohibitively large and complex data sets. 

As ML research in the context of scRNA-seq continues to advance, ML methods are 

becoming increasingly sophisticated and therefore difficult to use and interpret, creating a 

novel set of required skills for researchers who conduct scRNA-seq analysis. Researchers 

may have limited programming experience but can make use of online guides and tutorials 

that simplify and summarize the general workflow. Though these resources are important for 

improving accessibility, they mask the complexity of the underlying analysis and the 

importance of modelling choices made in the analytical workflow. Each ML model makes 

different assumptions under its particular inductive biases and it has been shown the choice 

of model and its hyperparameters can significantly influence the results of the analysis [104]. 

While it may sometimes be infeasible to reason theoretically about modelling choices, there 

exists a rich literature of benchmarking for different approaches to dimensionality reduction 

[32], clustering [105], and trajectory inference [96] under different conditions, which can serve 

as empirical justification for choosing one model over another in the context of a given 

analysis.  
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Figure 4: Machine learning with single-cell RNA sequencing (scRNA-seq) data has provided insight into the 
features of a variety of biological systems and processes. We focus on three main steps in a typical scRNA-seq 
analysis pipeline. A: Dimensionality-reduction and visualisation, example approaches to which include PCA 
(principle component analysis) and t-SNE (t-distributed Stochastic Neighbour Embedding). B: Clustering, the 
process of identifies similar groups of cells. Two popular ML algorithms are K-means and Louvain. C: Trajectory 
inference, the process of reconstructing trajectories of cellular development without longitudinal measurements.  
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Conclusions 

Biology in the 21st century has transformed into a data-driven science, relying on the 

acquisition and analysis of large data sets to probe the features of living systems. In recent 

years, machine learning approaches have been applied to a wide variety of biological 

problems with impressive results [3, 32, 37, 41, 47, 98]. Although ML-based modelling is being 

used across a wide range of scientific disciplines [1], life sciences in particular stands to benefit 

from the application of ML due to its need to model complex systems about which few general 

assumptions can be made. As a family of methods relying fundamentally on inductive 

reasoning, ML approaches are particularly suited for studying biological phenomena, which 

have historically resisted deductive explanation due to their multidimensional, conditional, and 

emergent properties. While these properties make deductive reasoning intractable in many 

cases, they also pose unique challenges in the application of ML models in biology, which 

have the potential to produce inaccurate, incomplete, or misleading outputs if they are not 

designed, interpreted, and applied appropriately. Furthermore, the application of ML methods 

for scientific inquiry ostensibly represents a significant shift in approach from the traditional 

scientific method, which has historically focused on explanatory unification of natural 

phenomena through laws and theories from which deductive reasoning can be applied. We 

propose that recent philosophical accounts of scientific understanding beyond explanation 

provide not only a theoretical characterisation of ML-mediated biological discovery, but also 

serve as a pragmatic framework for evaluating different technical aspects of ML-based 

modelling in biological research. 

In this work we aimed to explore how ML is supporting efforts to understand biological 

systems through the lens of three conceptions of scientific understanding: Wilkenfeld’s 

account [16], which highlights the importance of effectively compressing information, de Regt’s 

account [20], which conceptualises scientific understanding as the capacity to reason 

qualitatively about target phenomena, and Dellsén’s account [21], which emphasises the role 

of constructing an accurate model of the target system’s dependencies. We provide an 

overview of these epistemological concepts, introduce key technical considerations for ML-

based modelling in biology, and review two case studies to summarise how effective ML 

models of biological systems have been designed and how they have advanced 

understanding of their target phenomena. Specifically, we relate recent ML-driven advances 

in protein structure prediction and single-cell RNA-sequencing to the epistemological accounts 

of understanding as information compression, qualitative intelligibility, and dependency 

relation modelling, producing a general framework that can be used to guide how ML models 
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of biological systems are designed, evaluated, and interpreted as tools for scientific 

understanding. Biological science will undoubtedly benefit from considering these 

philosophical foundations of understanding in the development and application of ML, 

producing ML systems that perform well at their task, provide robust guarantees for their 

behavior and function, and advance scientific knowledge of biological systems and 

phenomena. 
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